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Abstract: Modern methods for detecting changes in the scale or covariance of multivariate distributions
rely primarily on testing for the constancy of the covariance matrix. These depend on higher-order moment
conditions, and also do not work well when the dimension of the data is large or even moderate relative
to the sample size. In this paper, we propose a nonparametric change point test for multivariate data using
rankings obtained from data depth measures. As the data depth of an observation measures its centrality
relative to the sample, changes in data depth may signify a change of scale of the underlying distribution,
and the proposed test is particularly responsive to detecting such changes. We provide a full asymptotic
theory for the proposed test statistic under the null hypothesis that the observations are stable, and natural
conditions under which the test is consistent. The finite sample properties are investigated by means of a
Monte Carlo simulation, and these along with the theoretical results confirm that the test is robust to heavy
tails, skewness and high dimensionality. The proposed methods are demonstrated with an application to
structural break detection in the rate of change of pollutants linked to acid rain measured in Turkey lake, a
lake in central Ontario, Canada. Our test suggests a change in the rate of acid rain in the late 1980s/early
1990s, which coincides with clean air legislation in Canada and the US. The Canadian Journal of Statistics
48: 417–446; 2020 © 2020 Statistical Society of Canada
Résumé: Les méthodes modernes de détection de changements dans l’échelle ou la covariance des
distributions multivariées se fondent d’abord sur des tests pour la constance de la matrice de covariance.
Elles dépendent ainsi de conditions sur les moments d’ordre supérieur et fonctionnent mal lorsque la
dimension des données est grande, voire modérée, par rapport à la taille d’échantillon. Les auteurs
proposent un test de rupture pour des données multivariées basé sur des rangs obtenus à l’aide d’une mesure
de profondeur. Puisque la profondeur d’une observation mesure sa centralité par rapport à l’échantillon, un
changement à sa profondeur peut indiquer un changement d’échelle de la distribution sous-jacente, et le
test proposé est particulièrement sensible à ce type de changements. Les auteurs développent une théorie
asymptotique complète pour la statistique de test proposée sous l’hypothèse nulle que les observations
sont stables, en autant que quelques conditions naturelles garantissant la convergence du test soient
respectées. Ils explorent les propriétés du test sur des échantillons finis à l’aide d’études de Monte Carlo
qui confirment, avec les résultats théoriques, que le test est robuste aux queues lourdes, à l’asymétrie et
à la grande dimensionnalité. Ils illustrent les méthodes proposées avec une application à la détection de
points de rupture structurels dans le taux de changement des polluants liés aux pluies acides mesurées au
lac Turkey situé en Ontario au Canada. Le test suggère un changement dans le taux lié aux pluies acides à
la fin des années 1980 ou au début des années 1990, ce qui coincide avec l’entrée en vigueur de lois sur la
qualité de l’air au Canada et aux États-Unis. La revue canadienne de statistique 48: 417–446; 2020 © 2020
Société statistique du Canada
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1. INTRODUCTION

Frequently when considering a sample of ordered observations, it is of interest to determine
whether the sample contains one or more change points at which the underlying stochastic
structure of the observations changes. Methods used for detecting and estimating such changes
are the focus of the field of change point analysis, which enjoys an enormous literature, and we
refer the reader to Brodsky & Darkhovsky (1993), Csörgő & Horváth (1997) and Horváth &
Rice (2014) for an overview of the subject. When it comes to scalar observations, change point
theory is quite comprehensive. In particular, it includes considerations for robust change point
analysis, as well as tests and estimators for changes in the scale or variance of observations; see
Dehling & Fried (2012), Gombay (1994), Hušková (2013) and Bandyopadhyay & Mukherjee
(2007) for robust change point methods, and Inclán & Tiao (1994), Wied, Krämer & Dehling
(2012) and Dette, Wu & Zhou (2015) for changes in the variance and autocorrelation structure
of time series.

In extending such methodology to multivariate data, a number of difficulties are encountered.
The most natural extension of the notion of variance for data in ℝp, p ≥ 2, is the covariance
matrix, which captures the second-order properties of the distribution. Methodology for testing
the constancy of the covariance matrix is developed in Galeano & Peña (2007), Aue et al.
(2009) and Kao, Trapani & Urga (2018). These require fourth-order moment conditions, which
is no different than similar procedures for scalar data, but they also rely on the dimension
being rather small, as the calculation of critical values and/or normalizing sequences of the
test statistics proposed involve estimating the fourth-order structure of the data. Moreover,
as noted in Zhou (2013) and Dette, Wu & Zhou (2015), these methods are also sensitive to
misidentification of the mean, in the sense that if the mean were to change during the observation
period whilst the covariance structure remains fixed, then the tests tend to spuriously reject
the hypothesis of constant covariance. Robust methods in multivariate change point analysis
are quite limited in the literature, perhaps due to the difficulty in defining appropriate robust
measures in higher dimensions. Lung-Yut-Fong, Lévy-Leduc & Cappé (2015) develop a robust
change point test to detect changes in the location in multivariate distributions based on a
coordinate-wise generalization of the Wilcoxon/Mann–Whitney statistic. Bickel (1964, 1965)
discuss the potential drawbacks of coordinate-wise generalizations of univariate procedures to
the multivariate setting.

In this paper, we propose a nonparametric change point procedure for multivariate data based
on ranks obtained from data depths. A multivariate data depth is a measure of how central, or
deep, a given point in ℝp is with respect to a multivariate distribution or data cloud. We refer
the reader to Small (1990), Liu (1990), Donoho & Gasko (1992), Liu, Parelius & Singh (1999),
Zuo & Serfling (2000), and the references therein for more detailed descriptions and properties.
As data depth provides a measure of centrality of individual observations within a multivariate
dataset, testing for changes in the distribution of depths provides a means of determining if the
scale of the underlying distribution of the observations changes. See Liu & Singh (1993), Liu &
Singh (2006), Chenouri, Small & Farrar (2011) and Chenouri & Small (2012), for multivariate
nonparametric tests. The proposed methodology, in this paper, has a number of advantages. Since
the proposed test statistic is ultimately based on ranks, it is robust to heavy tailed and skewed
distributions, and establishing its asymptotic properties does not rely on any moment conditions.
Moreover, the asymptotic properties, and corresponding critical values used to determine the
significance of the test statistic are derived using the exchangeability of data depth measures,
and hence does not depend on the data dimensionality. This allows the test to have good size
properties even when the dimensionality is large compared to the sample size; a fact that is
demonstrated via a comprehensive simulation study. We derive and study conditions under
which the test is asymptotically consistent which show that the proposed test is not necessarily
sensitive to changes in the mean, but is sensitive to changes in the scale of the distribution.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 419

The test is also remarkably simple to implement, as the test statistic is computed by maximizing
a cumulative sum (CUSUM) type process based on data depth ranks.

The remainder of the paper is organized as follows. In Section 2, we formally define
several data depth measures that are used in subsequent sections. Section 3 contains the formal
statement of the change-point problem, and introduces the proposed test statistic along with a
full asymptotic theory. We study the efficacy of these asymptotic results in finite samples, and
compare our test to the covariance change point test of Aue et al. (2009) by means of a Monte
Carlo simulation study in Section 4. In Section 5, we present an application of our test to acid
rain data obtained from Turkey Lake, a lake in central Ontario, taken the early 1980s until the
early 2000s. The formal proofs of the asymptotic results as well as some additional simulation
results are provided in Appendices A and B following the references.

2. DATA DEPTH AND MULTIVARIATE DEPTH RANKING

Let X1,… ,XN be a random sample of size N from a p-dimensional distribution F and suppose
that F̂N represents the corresponding empirical distribution, taken as a nonparametric estimate
of F. In this section, D(x; F) shall denote, for any given depth function D, the depth of the
point x ∈ ℝp with respect to the distribution F. In particular, D(x; F̂N) shall denote the depth
function with respect to the empirical distribution F̂N or dataset 𝕏 = {X1,… ,XN}. Quite a large
number of depth functions have been introduced in the literature, each having the basic intention
of providing a measure of relative centrality of the data points. We now formally define a few
depth functions that we will use for the purpose of change-point detection.

The halfspace depth or Tukey depth at a point x ∈ ℝp is the minimal proportion of data
contained in a closed half-space whose boundary, a (p − 1)-dimensional hyperplane, passing
through x. More formally

HSD
(

x ; F̂N

)
=

min‖u‖=1 # {i ∶ u⊤Xi ≤ u⊤x, i = 1, 2,… ,N}
N

.

The notion of halfspace depth in ℝ dates back to Hotelling (1929) and Chamberlin (1937), while
its extension to ℝ2 was given by Hodges (1955) in his bivariate sign test, and Tukey (1975)
formally defined the halfspace depth as a tool for visualizing bivariate data. Donoho (1982)
and Donoho & Gasko (1992) extended the notion to ℝp, and studied several properties of the
theoretical and empirical halfspace depth.

Another multivariate generalization of the notion discussed in Hotelling (1929) and Cham-
berlin (1937) is the simplicial depth (Liu, 1990). The simplicial depth of a given point x ∈ ℝp

with respect to the empirical distribution F̂N is defined to be

SD(x; F̂N) =
(

N
p + 1

)−1 ∑
𝟙(S[Xi1 , Xi2 ,… ,Xip+1

] ∋ x) ,

where S[Xi1 ,Xi2 ,… ,Xip+1
] is the closed simplex with vertices Xi1 ,Xi2 ,… ,Xip+1

, and where
∑

runs over all possible subsets of 𝕏 of size p + 1, and 𝟙(⋅) is the indicator function. Oja depth (Oja,
1983; Zuo & Serfling, 2000) is defined similarly but instead considers the volume of simplices
based on subsets of data.

The spatial depth of a point x ∈ ℝp with respect to F̂N is

SPD(x ; F̂N) =
1

1 + N−1 ∑N
i=1 ‖Xi − x‖ ,

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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420 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

where ‖ ⋅ ‖ is the usual Euclidean norm; see Gower (1974), Brown (1983) and Zuo & Serfling
(2000). An affine equivariant version of this depth function may be obtained by replacing the
Euclidean norm with the generalized Euclidean norm ‖ ⋅ ‖M as

‖x‖M =
√

x⊤M x, for all x ∈ ℝp ,

where M is a p × p positive definite matrix, such as a covariance matrix; see Rao (1988). This
generalized distance is known as the Mahalanobis distance (Mahalanobis, 1936) when the matrix
M is the inverse of either the theoretical or empirical covariance matrices. The Mahalanobis
distance gives rise to the Mahalanobis depth of x, which is defined by

MHD(x ; F̂N) =
1

1 + ‖x − �̂�‖2
Σ̂−1

,

where �̂� is the centroid of the data and �̂� is the empirical covariance matrix. See Zuo & Serfling
(2000). Modified robust versions of the affine equivariant SPD and MHD can be obtained by
replacing �̂� and �̂� with appropriate robust estimates such as the reweighted MCD estimator
in Rousseeuw & van Zomeren (1990). In this paper we will use Mahalanobis depth with the
reweighted MCD estimates with the asymptotic breakdown values of 25% and 50%, denoted by
MHD75 and MHD50, indicating 75% and 50% of the observations are subsampled in order to
calculate the estimators, respectively.

The population versions of these depth functions are defined similarly. Given a depth function
D, we can compute the depth values of the sample points X1,… ,XN with respect to a given
(either theoretical or empirical) distribution F, that is

D(X1 ; F),… ,D(XN ; F) ,

which may subsequently be ordered into an increasing list. This defines what we shall call the
depth ranking of the data. In particular, for a sample point Xi

R̂i = #{X𝑗 ; D(X𝑗 ; F̂N) ≤ D(Xi ; F̂N), 𝑗 = 1,…N}, (2.1)

is the empirical depth rank of Xi, and where #A denotes the cardinality of any set A.

3. MULTIVARIATE CHANGE POINT PROBLEM AND DEPTH BASED WILCOXON
TYPE CUSUM PROCESSES

Consider multivariate observations X1,… ,XN in ℝp, which we assume are independent. In
the cases when these data are naturally ordered, for instance if they are observations, or
model residuals, from a multivariate time series, it is often of interest to determine whether
the distribution of the observations remains stable throughout the sample, or if instead the
distribution seems to change at one or more change points. In light of the assumed independence,
we may cast this problem within the framework of hypothesis testing by considering a test of

H0 ∶ Xi, 1 ≤ i ≤ N are identically distributed,

namely that the distribution of the observations is homogenous throughout the sample, versus

HA,𝜃 ∶ X1,… ,X⌊N𝜃⌋ ∼ F1, and X⌊N𝜃⌋+1,… ,XN ∼ F2, where 𝜃 ∈ (0, 1), (3.1)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 421

where F1 ≠ F2. We call this alternative the “at-most-one change” alternative, and we discuss
later how one might adapt the proposed method to more general alternatives allowing for multiple
changes. The parameter 𝜃 denotes the unknown break fraction that defines when the sample
changes distribution from F1 to F2, and we call k∗ = ⌊N𝜃⌋ the change point.

We propose to test H0 versus HA,𝜃 based on the depth ranks of the observations. The basic
idea is that under HA,𝜃 and if the nature of the difference between F1 and F2 is a change in scale,
then one would expect that the depths of the observations X1,… ,X⌊N𝜃⌋ would be on average

larger/smaller than the depths of X⌊N𝜃⌋+1,… ,XN , and hence the depth ranks R̂1,… , R̂⌊N𝜃⌋
defined by (2.1) would tend to be larger/smaller than R̂⌊N𝜃⌋+1,… , R̂N . On the other hand, under

H0 the ranks R̂i are uniformly distributed on the integers between 1 and N, regardless of the
underlying common distribution of X1,… ,XN , and hence for each i = 1,… ,N

E[ R̂i ] =
N + 1

2
, and Var[ R̂i ] =

N2 − 1
12

.

This suggests basing a test of H0 on functionals of the rank-CUSUM process

ZN(t) =
1√
N

⌊Nt⌋∑
i=1

R̂i − (N + 1)∕2√
(N2 − 1)∕12

t ∈ (0, 1).

A similar process to ZN(t) is studied in the context of univariate nonparametric location change
point analysis based on linear ranks in Bhattacharya & Frierson (1981) and Carlstein, Müller &
(1994). Under HA,𝜃 , and if 𝜃 were known, then ZN(𝜃) coincides with the two sample Wilcoxon
test statistic, and hence a natural functional of ZN(t) to consider is

TN = sup
0≤t≤1

|ZN(t) | ,
which is the maximally selected two sample Wilcoxon test statistic over all possible break
fractions applied to the data-depths. We are able to obtain the following large sample results for
ZN and TN under H0.

Theorem 1. Under H0, the process {ZN(t), 0 ≤ t ≤ 1} converges weakly in [0, 1] endowed
with the Skorokhod topology (see Chapter 3 of Billingsley, 1968) to a standard Brownian bridge

{B(t), 0 ≤ t ≤ 1}.

The proof of Theorem 1 is provided in Appendix A. As a consequence of the continuous
mapping theorem, we obtain the following corollary:

Corollary 1. Under H0, TN

−→ sup0≤t≤1 |B(t)|.

Corollary 1 shows that a test of H0 with asymptotic size 𝛼 is to reject if TN > Ξ1−𝛼 , where Ξq
is the 100q% quantile of sup0≤t≤1 ∣ B(t) ∣. This is the test we will study further.

3.1. Consistency of TN under HA,𝜃, and Estimation of Change Point
We now turn to the asymptotic consistency of the test under the at-most-one change alternative.
Under HA,𝜃 and the assumed independence of the observations, it is evident that the empirical
distribution function F̂N based on the whole sample is converging in sup-norm by the

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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422 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

Glivenko-Cantelli theorem to
F∗ = 𝜃F1 + (1 − 𝜃)F2.

Since the test statistic TN is based on the depth-ranks, the condition for consistency naturally
depends on the distribution of the depths themselves. We define H1(u) = Pr(D(Y,F∗) ≤ u) and
H2(u) = Pr(D(Z,F∗) ≤ u), where Y ∼ F1, and Z ∼ F2. We assume the following continuity
conditions on the distributions H1 and H2, and the depth function D.

Assumption 1. H1(u) and H2(u) are each Lipschitz with constant C, meaning that for all
u, v ∈ ℝ we have |Hi(u) − Hi(v) | ≤ C |u − v| i = 1, 2 .

Assumption 2. E
[
supx∈ℝp ∣ D(x ; F̂N) − D(x ; F∗) ∣

]
= O(N−1∕2).

Assumptions 1 and 2 coincide with Assumptions A1 and A3 in Zuo & He (2006). Assump-
tion 2 is satisfied for many depth functions, see Section 4 of Zuo & He (2006), as long as

sup
x∈ℝp

|F̂N(x) − F∗(x)| = OP(N−1∕2). (3.2)

This follows from the multivariate Dvoretzky-Kiefer-Wolfowitz inequality when the data satisfy
HA,𝜃 and are independent. See Alexander (1984) and Massart (1986).

Theorem 2. Suppose HA,𝜃 , and Assumptions 1 and 2 hold. If

∫
∞

−∞

{
𝜃H1(u) + (1 − 𝜃)H2(u)

}
dH1(u) ≠ 1

2
, (3.3)

then TN
P
→ ∞.

The consistency condition (3.3) comes as a result of the Chernoff-Savage theorem (Chernoff
& Savage, 1958), which implies that a necessary and sufficient condition for ZN(𝜃) to have an
asymptotically nonzero mean is (3.3) under HA,𝜃 . Terms akin to the left-hand side of (3.3) are
often used in power and sample size calculations for tests based on linear rank statistics, see
Shieh, Jan & Randles (2006) for an example.

The proof of Theorem 2 is provided in Appendix A. Next, we provide an analysis of the
condition (3.3) in the simple case of normal observations and Mahalonobis depth.

Example 1. Suppose that

Y,X1,… ,X⌊N𝜃⌋ ∼ Np(𝝁1,𝚺1), and Z,X⌊N𝜃⌋+1,… ,XN ∼ Np(𝝁2,𝚺2), (3.4)

where Np(𝝁,𝚺) denotes a p-variate normal random vector with mean 𝝁 and covariance matrix
𝚺. A simple calculation shows that

MHD(x ; F∗) =
1

1 + ‖ x − 𝝁∗‖Σ−1
∗

,

where 𝝁∗ = 𝜃 𝝁1 + (1 − 𝜃)𝝁2, and

𝚺∗ = 𝜃 𝚺1 + (1 − 𝜃)𝚺2 + 𝜃 (𝝁1 − 𝝁∗)(𝝁1 − 𝝁∗)⊤ + (1 − 𝜃) (𝝁2 − 𝝁∗)(𝝁2 − 𝝁∗)⊤.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 423

First we consider a simple location shift alternative, i.e. when

𝚺1 = 𝚺2 = 𝚺, and 𝝁1 = 0, 𝝁2 = 𝝁.

In this case, 𝝁∗ = (1 − 𝜃)𝝁, and 𝚺∗ = 𝚺 + 𝜃 (1 − 𝜃)𝝁𝝁
⊤. It follows that ‖Y − 𝝁∗ ‖Σ−1

∗
and‖Z − 𝝁∗ ‖Σ−1

∗
are each weighted noncentral 𝜒2 random variables with equal weights, and

noncentrality parameters (1 − 𝜃)2𝝁⊤
𝝁 and 𝜃2

𝝁
⊤
𝝁, respectively. In particular, if 𝜃 = 1 − 𝜃 =

1∕2, then H1 = H2, and (3.3) is not satisfied.
With regard to a change in the scale parameter, consider Y ∼ Np(0, 𝜎2

1 I), and Z ∼ Np(0,
𝜎2

2 I), where 0 is the zero vector and I is the identity matrix. Then 𝝁∗ = 0, and 𝚺∗ = 𝜎2
∗I, where

𝜎2
∗ = 𝜃𝜎2

1 + (1 − 𝜃)𝜎2
2 . It follows that

‖Y − 𝝁∗ ‖Σ−1
∗

D
=

𝜎2
1

𝜎2
∗
𝜒2

p , and ‖Z − 𝝁∗ ‖Σ−1
∗

D
=

𝜎2
2

𝜎2
∗
𝜒2

p .

Elementary calculations then show that in this case, (3.3) holds if and only if

∫
∞

0
F𝜒2(p)

(
𝜎2

1

𝜎2
2

u

)
𝑓𝜒2(p)(u) du ≠ 1

2
,

where F𝜒2(p) and 𝑓𝜒2(p) denote the cumulative distribution function and density function of a 𝜒2
p

random variable, respectively. This holds if and only if 𝜎2
1 ≠ 𝜎2

2 , and hence the test is consistent
under this assumption.

Under HA,𝜃 , it is often of interest to estimate the change point k∗, or equivalently the break
fraction 𝜃. This may be because the change point might indicate an important event related to the
observed data. In addition, one may use an estimator k̂∗ of k∗ to test for the presence of additional
change points through the binary segmentation procedure, in which after an initial change point
k̂∗ is estimated, one may segment the data into two subsamples X1, ...,Xk̂∗ and Xk̂∗+1, ...,XN ,
and further apply change point testing and estimation to these samples. See Csörgő & Horváth
(1997) and the introduction of Fryzlewicz (2014) for a review of the procedure. We utilize this
procedure in our analysis of acid rain data in Section 5. Natural estimators of k∗ and 𝜃 are

k̂∗ = min
{

k ∶ ∣ ZN(⌊k∕N⌋) ∣= sup
0≤t≤1

∣ ZN(t) ∣
}

, and 𝜃 = k̂∗

N
,

the latter of which is remarkably a consistent estimator under Assumptions 1, 2 and Equation (3.3).

Theorem 3. Under the conditions of Theorem 2, | 𝜃 − 𝜃 | = oP(1).

The proof of Theorem 3 is provided in Appendix A.

4. SIMULATION STUDY

We now present the results of a Monte Carlo simulation study in which we investigated the finite
sample properties of TN . All simulations were carried out in version 3.2.3 of the R programming
language (R Core Team, 2019). From each data generating process (DGP) considered, we
generated 1,000 independent samples, and from each sample we computed the test statistic TN
using the depths MHD, MHD75, MHD50, HSD, SPD, and, in the case when the dimension

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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424 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

p = 2, the simplicial depth of Liu (Liu, 1990), SLD, and the Oja depth (Oja, 1983), OD. See also
Zuo & Serfling (2000). We also compared these results to the test proposed by Aue et al. (2009)
to test for changes in the covariance matrix, which is based on maximizing a CUSUM process
based on vectorized versions of XiX

⊤
i . We call this method simply “MCUSUM”. The percentage

of trials in which TN exceeded the 5% critical value of the distribution of sup0≤t≤1 |B(t)| are
reported in the following, as well as the percentage of times the MCUSUM statistic of Aue et al.
(2009) exceeds the 5% critical value of its asymptotic distribution. We now turn to the specific
definitions of the DGP’s, starting with examples satisfying the null hypothesis of no change, and
a study of the empirical size.

4.1. Empirical Size
We let 0 and I denote the zero vector and identity matrix, respectively. We further let 1 denote a
vector of 1’s. We consider the following six DGP’s in this case:

• Np(0, I): Xi has a p-variate normal distribution with mean vector 0, and covariance matrix I.
• Cp(0, I): Xi has a p-variate Cauchy distribution with location vector 0, and dispersion matrix I.
• Up(1): Xi is uniformly distributed on the interior of the unit sphere in p dimensions.
• SNp(0, I, 3 × 1): Xi has a p-variate skewed normal distribution with mean vector 0, covariance

matrix I, and skewness vector 3 × 1.
• SNp(0, I, 10 × 1): Xi has a p-variate skewed normal distribution with mean vector 0, covariance

matrix I, and skewness vector 10 × 1.
• STp(0, I, 5 × 1, 4): Xi has a p-variate skewed t-distribution with 4 degrees of freedom, mean

vector 0, covariance matrix I, and skewness vector 5 × 1.

We considered two basic simulations:

(1) With the dimension p fixed and small (p = 2) and increasing N from 25 to 200, and
(2) with increasing p from 5 to 25 for N = 25, N = 100, and N = 200.

Due to the computational complexity of HSD, SLD and OD in high dimensions, we omitted
those depth functions from the simulations when the dimension exceeded two. For computing
HSD, there is an exact algorithm for p ≤ 3 and an approximate algorithm for higher dimensions;
see Rousseeuw and Ruts (1998) and Struyf & Rousseeuw (2000). Algorithms also exist to
calculate Oja depth for dimension p ≤ N, however these are prohibitively slow. For SLD,
computational algorithms have only been implemented for dimension p = 2. Nice discussions of
these limitations are given in the documentations of the R packages depth of Genest, Masse &
Plante (2017) and mrfDepth of Segaert et al. (2018). The results for p = 2 and increasing N are
reported in Table 1, and for larger values of p the results are reported in Table 2. We summarize
these results as follows:

• With the dimension p = 2, the depth-based tests exhibited a good size for all values of N and
for all DGP’s, including the heavy tailed and skewed distributions, with the exception of the
HSD and SLD for small values of N (N = 25), which is due to producing many ties in ranks.

• In low-dimension p = 2, the MCUSUM test tended to be undersized, and this coincides
with the simulations presented in Aue et al. (2009) for small to moderate values of N. The
MCUSUM test relies on, among other conditions, the assumption that E‖Xi‖4 < ∞, and so is
not expected to perform well in the case of Cp(0, I). In this particular case we observed that
the test was quite undersized.

• Increasing the dimension has some effect on the depth based tests that rely on robustly
estimating the covariance matrix (MHD50, MHD75), and in these cases the test was oversized
for large p (p = 20).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 425

TABLE 1: Empirical size based on 1,000 trials with the nominal level of 5% for 2-dimensional DGP’s, and
sample sizes 25, 100 and 200.

DGP Methods N = 25 N = 100 N = 200 DGP Methods N = 25 N = 100 N = 200

MHD 0.045 0.058 0.039 MHD 0.044 0.058 0.043

MHD75 0.048 0.047 0.039 MHD75 0.046 0.053 0.039

MHD50 0.048 0.047 0.040 MHD50 0.046 0.052 0.039

Np(0, I) SPD 0.045 0.055 0.036 Cp(0, I) SPD 0.046 0.053 0.040

HSD 0.071 0.054 0.039 HSD 0.066 0.057 0.041

SLD 0.067 0.050 0.033 SLD 0.062 0.056 0.045

OD 0.043 0.058 0.035 OD 0.038 0.054 0.042

MCUSUM 0.002 0.022 0.047 MCUSUM 0.001 0.005 0.002

MHD 0.038 0.042 0.043 MHD 0.046 0.042 0.037

MHD75 0.038 0.050 0.038 MHD75 0.046 0.052 0.044

MHD50 0.038 0.050 0.041 MHD50 0.046 0.052 0.043

Up(1) SPD 0.041 0.042 0.042 SNp(0, I, 31) SPD 0.048 0.039 0.046

HSD 0.070 0.043 0.043 HSD 0.072 0.036 0.035

SLD 0.066 0.043 0.042 SLD 0.063 0.034 0.035

OD 0.036 0.044 0.045 OD 0.046 0.042 0.037

MCUSUM 0.005 0.032 0.038 MCUSUM 0.001 0.027 0.029

MHD 0.037 0.042 0.043 MHD 0.044 0.050 0.038

MHD75 0.037 0.046 0.043 MHD75 0.061 0.055 0.054

MHD50 0.037 0.046 0.044 MHD50 0.061 0.055 0.054

SNp(0, I, 101) SPD 0.040 0.039 0.044 STp(0, I, 51, 4) SPD 0.053 0.049 0.048

HSD 0.075 0.040 0.044 HSD 0.074 0.050 0.038

SLD 0.068 0.041 0.046 SLD 0.070 0.049 0.041

OD 0.042 0.041 0.046 OD 0.046 0.053 0.046

MCUSUM 0.007 0.022 0.032 MCUSUM 0.003 0.009 0.010

• In contrast, the test based on spatial depth SPD had good size for all dimensions and DGPs.
• The MCUSUM test is sensitive to the dimension of the underlying data, and in contrast to the

low dimensional case tends to be oversized. The reason for this seems to be that this test relies
on estimating the covariance matrix of vech(XiX

⊤
i ), which is often singular or nearly singular

in high dimensions.
• In summary, in low-dimensions the test of H0 based on TN exhibited good size for all DGPs

and depths considered. In high dimensions (p > 10) we recommend using TN with spatial
depth in order to perform the test.

4.2. Empirical Power
For evaluating the empirical power of the proposed method, we generated data with the same
underlying distributions as in the previous section, but with a change in scale introduced at
𝜃 = 0.5 so that the data follow HA,0.5. In particular, we generated data as in (3.1) with:

• X1,… ,X⌊N 𝜃⌋ ∼ Np(0, I) and X⌊N 𝜃⌋+1,… ,XN ∼ Np(0, 𝜎2I).
• X1,… ,X⌊N 𝜃⌋ ∼ Cp(0, I) and X⌊N 𝜃⌋+1,… ,XN ∼ Cp(0, 𝜎2I).
• X1,… ,X⌊N 𝜃⌋ ∼ Up(1) and X⌊N 𝜃⌋+1,… ,XN ∼ Up(𝜎2).
• X1,… ,X⌊N 𝜃⌋ ∼ SNp(0, I, 3 × 1) and X⌊N 𝜃⌋+1,… ,XN ∼ SNp(0, 𝜎2I, 3 × 1).

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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426 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

TABLE 2: Empirical size based on 1,000 trials with the nominal level of 5% for 5, 10 and 20 dimensional
DGP’s, and sample sizes 25, 100 and 200.

N = 25 N = 100 N = 200

DGP Methods p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

MHD 0.041 0.045 0.046 0.041 0.059 0.054 0.032 0.039 0.045

MHD75 0.048 0.079 0.037 0.043 0.074 0.142 0.046 0.058 0.071

Np(0, I) MHD50 0.044 0.073 0.037 0.044 0.078 0.159 0.051 0.051 0.081

SPD 0.043 0.054 0.051 0.038 0.050 0.048 0.034 0.038 0.044

MCUSUM 0.000 ∗ ∗ 0.013 0.000 ∗ 0.026 0.005 ∗

MHD 0.052 0.050 0.043 0.041 0.047 0.040 0.041 0.047 0.043

MHD75 0.057 0.057 0.047 0.042 0.043 0.048 0.042 0.047 0.045

Cp(0, I) MHD50 0.057 0.052 0.047 0.042 0.045 0.047 0.041 0.048 0.041

SPD 0.052 0.054 0.058 0.042 0.037 0.045 0.045 0.048 0.043

MCUSUM 0.000 ∗ ∗ 0.001 0.000 ∗ 0.000 0.000 ∗

MHD 0.050 0.044 0.038 0.053 0.046 0.042 0.052 0.044 0.047

MHD75 0.055 0.072 0.043 0.052 0.048 0.069 0.054 0.054 0.049

Up(1) MHD50 0.055 0.067 0.043 0.047 0.045 0.068 0.055 0.047 0.052

SPD 0.045 0.040 0.047 0.053 0.050 0.040 0.056 0.047 0.049

MCUSUM 0.000 ∗ ∗ 0.008 0.000 ∗ 0.018 0.000 ∗

MHD 0.044 0.044 0.043 0.054 0.036 0.042 0.043 0.040 0.042

MHD75 0.046 0.079 0.043 0.061 0.072 0.134 0.058 0.049 0.068

SNp(0, I, 31) MHD50 0.045 0.079 0.043 0.049 0.069 0.137 0.059 0.048 0.077

SPD 0.047 0.051 0.038 0.047 0.037 0.048 0.039 0.041 0.041

MCUSUM 0.000 ∗ ∗ 0.007 0.000 ∗ 0.018 0.006 ∗

MHD 0.034 0.038 0.047 0.056 0.053 0.046 0.047 0.029 0.049

MHD75 0.052 0.091 0.046 0.060 0.079 0.113 0.050 0.043 0.065

SNp(0, I, 101) MHD50 0.051 0.084 0.045 0.062 0.077 0.114 0.055 0.045 0.079

SPD 0.034 0.050 0.042 0.047 0.055 0.043 0.046 0.033 0.043

MCUSUM 0.000 ∗ ∗ 0.010 0.000 ∗ 0.016 0.003 ∗

MHD 0.040 0.059 0.050 0.046 0.041 0.044 0.043 0.040 0.040

MHD75 0.046 0.093 0.043 0.042 0.061 0.070 0.054 0.041 0.047

STp(0, I, 51, 4) MHD50 0.045 0.093 0.043 0.044 0.066 0.077 0.052 0.045 0.049

SPD 0.048 0.054 0.052 0.047 0.050 0.044 0.047 0.039 0.042

MCUSUM 0.000 ∗ ∗ 0.003 0.000 ∗ 0.002 0.000 ∗

* The test is infeasible due to the fact that the covariance matrix estimates of vech(XiX
⊤
i ) are not invertible.

• X1,… ,X⌊N 𝜃⌋ ∼ SNp(0, I, 10 × 1) and X⌊N 𝜃⌋+1,… ,XN ∼ SNp(0, 𝜎2I, 10 × 1).
• X1,… ,X⌊N 𝜃⌋ ∼ STp(0, I, 5 × 1, 4) and X⌊N 𝜃⌋+1,… ,XN ∼ STp(0, 𝜎2I, 5 × 1, 4).

In each of these cases, the parameter 𝜎2 defines the magnitude by which the scale of the data
changes. Similarly as above, we evaluated the empirical power when p = 2 and sample sizes
N = 25, N = 100, and N = 200 for all depths considered and for increasing values of 𝜎2. Also,
in the case of higher dimensions we only considered the Mahalonobis-type depths and spatial
depths. These results were again compared to the MCUSUM method of Aue et al. (2009). For

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 427

FIGURE 1: The empirical power based on 1,000 independent simulations with nominal level of
5% as a function of 𝜎2 when N = 100 for Gaussian, Cauchy, Skewed-t and Uniform data.

the sake of brevity, in the case of p = 2 we have summarized the results with power curves
in Figure 1, and complete simulation results are reported in the tables in Appendix B.1. For
increasing p the results are reported in Table 3 when the scale shift is 𝜎2 = 1.25. We summarize
the results as follows:

• When p = 2 and for Gaussian data the tests based on TN exhibited power that exceeded that
of the MCUSUM method in the case of normal data. We found this surprising since the
MCUSUM method is related to the maximally selected likelihood ratio test for a change in
the covariance matrix under the assumption of normality, and hence is in a sense optimal in

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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428 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

TABLE 3: Empirical power based on 1,000 trials with nominal level of 5% for 5, 10 and 20 dimensional
DGPs, sample sizes ranging from 25 to 200, and scale shift 𝜎2 = 1.25.

N = 25 N = 100 N = 200

DGP Methods p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

MHD 0.301 0.398 0.261 0.852 0.986 1 0.988 1 1
MHD75 0.185 0.244 0.151 0.738 0.937 0.993 0.975 1 1

Np(0, I) MHD50 0.192 0.232 0.151 0.729 0.940 0.997 0.973 1 1
SPD 0.333 0.559 0.859 0.864 0.990 1 0.991 1 1
MCUSUM 0.000 ∗ ∗ 0.158 0.001 ∗ 0.676 0.532 ∗

MHD 0.076 0.095 0.118 0.156 0.191 0.202 0.235 0.301 0.332

MHD75 0.078 0.087 0.096 0.174 0.200 0.212 0.287 0.308 0.336

Cp(0, I) MHD50 0.078 0.091 0.096 0.174 0.204 0.204 0.290 0.309 0.338

SPD 0.084 0.096 0.120 0.173 0.204 0.214 0.297 0.311 0.341
MCUSUM 0.000 ∗ ∗ 0.001 0.000 ∗ 0.002 0.000 ∗

MHD 0.146 0.155 0.129 0.379 0.371 0.357 0.618 0.627 0.643

MHD75 0.125 0.124 0.109 0.320 0.342 0.318 0.593 0.612 0.625

Up(1) MHD50 0.125 0.120 0.110 0.313 0.333 0.321 0.585 0.610 0.616

SPD 0.171 0.175 0.170 0.388 0.391 0.384 0.624 0.649 0.663
MCUSUM 0.000 ∗ ∗ 0.035 0.000 ∗ 0.188 0.004 ∗

MHD 0.238 0.401 0.253 0.829 0.978 1 0.989 1 1
MHD75 0.199 0.237 0.163 0.744 0.929 0.989 0.969 1 1

SNp(0, I, 31) MHD50 0.202 0.246 0.163 0.722 0.937 0.993 0.971 1 1
SPD 0.285 0.540 0.841 0.827 0.990 1 0.983 1 1
MCUSUM 0.000 ∗ ∗ 0.137 0.002 ∗ 0.641 0.488 ∗

MHD 0.291 0.999 0.277 0.802 0.982 0.999 0.981 1 1
MHD75 0.227 0.365 0.151 0.716 0.925 1 0.976 0.999 1

SNp(0, I, 101) MHD50 0.225 0.238 0.151 0.715 0.928 0.994 0.973 0.999 1
SPD 0.332 0.242 0.846 0.817 0.989 0.998 0.981 1 1
MCUSUM 0.000 ∗ ∗ 0.137 0.000 ∗ 0.652 0.473 ∗

MHD 0.112 0.105 0.153 0.172 0.203 0.174 0.313 0.283 0.312
MHD75 0.105 0.109 0.110 0.180 0.202 0.183 0.312 0.281 0.304

STp(0, I, 51, 4) MHD50 0.105 0.109 0.110 0.180 0.202 0.183 0.312 0.281 0.304

SPD 0.105 0.104 0.252 0.181 0.203 0.180 0.313 0.282 0.307

MCUSUM 0.000 ∗ ∗ 0.011 0.000 ∗ 0.069 0.018 ∗

* The test is infeasible due to the fact that the covariance matrix estimates of vech(XiX
⊤
i ) are not invertible. Bold values

indicate the tests with the highest empirical power.

this situation. We investigated this further and think this can be attributed to the phenomenon
of “nonmonotonic power” (Vogelsang, 1999), which arises due to estimating the covariance
matrix of vech(XiX

⊤
i ) under HA,𝜃 . With simulations reported in Appendix B.2, we show that

when this covariance matrix estimate is replaced by its theoretical value, we call this modified
procedure MCUSUM∗, then the MCUSUM test is indeed the best among those considered in
this situation.

• For skewed and/or heavy tailed data the test based on SPD and MHD75 performed best, and all
methods performed very similarly in terms of detecting scale changes in uniformly distributed
data.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

 1708945x, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11541 by U

niversity O
f W

aterloo D
ana Porter L

ibrary, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 429

• In higher-dimensions, SPD often exhibited the highest power (see Table 2).
• In summary, the tests which seemed to balance size with power the best in both low and

high dimensions were the tests based on TN derived from the spatial depth SPD and robust
Mahalonobis depth MHD75.

To evaluate the computational time required to calculate the test statistic for each of the
considered depth functions, we carried out a numerical study in two extreme scenarios with
Normal data: p = 2 and N = 25, and p = 20 and N = 200. The run time for the calculation of test
statistics for MHD, MHD75, MHD50, SPD, HSD, SLD and OD are (in seconds) 1.274, 0.189,
0.173, 1.426, 0.290, 0.294 and 0.247 s respectively, when p = 2 and N = 25. When p = 20 and
N = 200, the computation times for the same depths except SLD and OD, which are infeasible
to compute in this dimension, are 11.954, 0.236, 0.241, 23.130 1.176, respectively. Generally
we found that the simulations based on MHD and SPD depths required somewhat more time
to complete, whereas the other depths considered generally required similar amounts of time to
compute.

It is important, especially in practice, to address how the choice of depth function impacts
the detection of change points. From the simulation results in dimension p = 2, as can be seen
from Table 2 that all depth functions perform generally more or less the same in terms of type
I error of detection. There is a slight inflation seen in the cases of HSD, SLD for small samples
(N = 25) that is due to the ranks of data points with tied depth values been averaged rather than
randomly broken. This disappears as the sample increases to N = 100 and N = 200. In terms
of power of detection, Figure 1 indicates that both SPD and MHD75 perform the best overall
distributional settings for p = 2. This observation holds true for higher dimensions in the case of
SPD for all sample sizes.

4.3. Changes in the Direction of Variability
In this subsection we intend to illustrate one weakness of the proposed method. The simulations in
Section 4.2 show that the depth-based change point statistic TN is capable of detecting changes in
the variability of vector-valued data that can be generally described as “expansions/contractions"
of the distribution. However, if the nature of the change of the variability of the distribution
is that the scale remains the same but the direction changes, then in general we expect the
depths before and after the change to be similar, and hence we do not expect TN to be capable
of detecting the change in distribution. To further investigate and illustrate this issue, we
conducted a simulation with normal data following HA,0.5 in which X1,… ,X⌊N 𝜃⌋ ∼ N2(0,𝚺1)
and X⌊N 𝜃⌋+1,… ,XN ∼ N2(0,𝚺2), where 𝚺1 and 𝚺2 are defined as

𝚺1 =
[
𝜎2 0
0 1

]
, 𝚺2 =

[
1 0
0 𝜎2

]
.

An illustration of this data is given in Figure 2. Table 4 contains the results from applying the
tests under study to the simulated data generated as above. As expected, in this case MCUSUM
and MCUSUM∗ outperform the depth-based methods. Among different variants of the depth
measures, it seems that MHD50 and MHD75 can pick up the change in the direction of variability
to some extent.

5. APPLICATION TO ACID RAIN DATA

In this section we consider an application of the proposed change point detection procedure to
analyze measurements of pollutants associated with acid rain. Acid rain is an offensive natural
phenomenon that can adversely affect plants, fresh water lakes and soils, and can also harm

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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430 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

TABLE 4: Empirical power based on 1,000 trials with the nominal level of 5% for change in the direction
of variability test for bivariate distributions with different scale shifts, and sample sizes 25, 100 and 200.

Methods 𝜎 = 1.25 𝜎 = 1.5 𝜎 = 1.75 𝜎 = 2 𝜎 = 2.25 𝜎 = 2.5 𝜎 = 2.75 𝜎 = 3

N = 25

MHD 0.042 0.042 0.021 0.030 0.018 0.018 0.018 0.018

MHD75 0.035 0.062 0.059 0.096 0.105 0.107 0.124 0.146

MHD50 0.035 0.062 0.059 0.096 0.105 0.107 0.124 0.146

SPD 0.044 0.048 0.034 0.049 0.043 0.049 0.040 0.048

HSD 0.066 0.070 0.047 0.057 0.035 0.040 0.031 0.044

SLD 0.061 0.061 0.042 0.051 0.031 0.036 0.031 0.038

OD 0.042 0.046 0.025 0.031 0.020 0.020 0.016 0.017

MCUSUM 0.009 0.011 0.026 0.040 0.062 0.072 0.102 0.119

MCUSUM∗ 0.142 0.413 0.656 0.824 0.925 0.944 0.975 0.989

N = 100

MHD 0.051 0.033 0.034 0.020 0.023 0.021 0.009 0.016

MHD75 0.061 0.102 0.112 0.169 0.206 0.241 0.286 0.327

MHD50 0.062 0.106 0.112 0.167 0.205 0.239 0.283 0.330

SPD 0.050 0.043 0.042 0.034 0.049 0.043 0.031 0.044

HSD 0.052 0.033 0.031 0.017 0.025 0.018 0.010 0.011

SLD 0.049 0.039 0.031 0.023 0.028 0.022 0.016 0.017

OD 0.050 0.037 0.035 0.020 0.026 0.022 0.010 0.017

MCUSUM 0.199 0.724 0.966 1 1 1 1 1

MCUSUM∗ 0.458 0.946 0.998 1 1 1 1 1

N = 200

MHD 0.041 0.040 0.029 0.025 0.017 0.020 0.016 0.011

MHD75 0.060 0.095 0.146 0.182 0.202 0.264 0.327 0.354

MHD50 0.057 0.098 0.139 0.184 0.205 0.267 0.325 0.351

SPD 0.046 0.047 0.045 0.042 0.041 0.054 0.039 0.033

HSD 0.038 0.036 0.032 0.025 0.021 0.017 0.011 0.007

SLD 0.042 0.036 0.032 0.020 0.023 0.024 0.014 0.010

OD 0.040 0.038 0.030 0.023 0.020 0.023 0.012 0.009

MCUSUM 0.568 0.997 1 1 1 1 1 1

MCUSUM∗ 0.775 0.998 1 1 1 1 1 1
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 431

FIGURE 2: A plot of change in the direction of variability for 400 data points, 𝜃 = 0.5 and 𝜎 = 3.

insects and aquatic animals. Due to these adverse effects, acid rain has been the focus of a
number of policies adopted in Canada and the US that aim to limit emissions of sulphur dioxide
and nitrogen oxide, including the Eastern Canada Acid Rain Program, which was established in
1985, and major amendments to the US Clean Air Act in 1990. The goal of this analysis is to
determine if the rate of change in acid rain levels remained stable following these efforts to curb
emissions, or if they changed one or more times.

The specific data that we consider came from Turkey Lake, which is a large freshwater
lake located in central Ontario (Algoma District) Canada, and consists of approximately
biweekly (twice per month) measurements of pH, sulphate concentration (SO4 (meq/L)),
calcium concentration (Ca (mg/L)) and alkalinity (meq/L) taken between 15 February 1980
and 22 December 2003. We linearly interpolated the original measurements and evaluated this
interpolation biweekly in order to obtain a biweekly time series of length 573. Figure 3 shows
the resulting first differenced time series. One notable feature of these series is that they each
contain a few outlying points.

We note again here that the test proposed above is developed assuming the data under the
null hypothesis are independent and identically distributed, and should be used with caution
when applied to time series that might be serially dependent. The autocorrelation functions of
each first differenced series are shown in Appendix B.3, which suggest that these series are at
least approximately weak white noises.

To this multivariate sequence we applied the change point test based on TN using the depth
measures SPD and MHD75 as well as the MCUSUM method of Aue et al. (2009). A plot of the
process |ZN(t) | against the 95% quantile of sup0≤t≤1 |B(t)| for both depth measures as well as
the MCUSUM process defined in Aue et al. (2009) is plotted in Figures 4 and 5, from which
it is clear that each test provides strong evidence against the hypothesis that the scale/variance
of these series remains constant throughout the sample. The fact that the tests agree suggests
that the MCUSUM test is not strongly affected by the outliers present in the series. Using k̂∗,
we estimate that the change in scale in these series occurred in late 1989, which is consistent
with the adoption of clean air policies and reduced emissions in Canada and the US at the
end of the 1980s. In order to identify potential additional change points, we applied binary
segmentation with Bonferroni correction, which entailed applying the change point tests again
to the data before and after this estimated change point. Using TN for each subsample we could
not reject H0 at level 0.05, indicating the rate of change of these series appears to be stable

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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432 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

FIGURE 3: First differenced pH, SO4, Ca and alkalinity series.

FIGURE 4: Plots of ∣ ZN(t) ∣ based on MHD75 and SPD depth measures. The top panels show
∣ ZN(t) ∣ computed from the whole sample, and the bottom panels show ∣ ZN(t) ∣ calculated from
the subsamples after binary segmentation. The horizontal lines indicate the Bonferroni corrected

confidence limits.

before and after 1989/1990. Also, when we applied the binary segmentation procedure with
Bonferroni correction using the MCUSUM method, a similar result was observed, which shows
the agreement between the outcome of the proposed method with that of Aue et al. (2009). Given
that each of these procedures has power when the nature of the change is a change in scale, these

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 433

FIGURE 5: Plots of the MCUSUM process defined in Aue et al. (2009) applied to the whole
sample as well as subsamples determined using binary segmentation. The horizontal lines

indicate the Bonferroni corrected confidence limits.

results suggest that the distribution of the rate of change of these series contracts after the change
point in 1989/1990.

6. CONCLUSION

In the current investigation, a multivariate nonparametric change point detection test was
proposed based on the ranks of data depths. Through a comprehensive comparative study, it
was demonstrated that the method can work very well with different types of depth functions,
and also detect changes in the stochastic structure of data with various dimensions, and sample
sizes, especially when the nature of the change is an expansion or contraction of the distribution.
Also, by theoretical investigation of the asymptotic properties of the proposed test, it was
proven that the changes can be consistently detected, and estimated based on data depth ranking.
Simulations and a data application indicate that the proposed method improves over standard
approaches based on covariance matrix estimation when the underlying distribution is heavy
tailed or skewed, and/or when the dimensionality of the data is large.
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APPENDIX

A. Proofs of Theorems in Section 3
Proof of Theorem 1. Define

Ui =
R̂i − (N + 1)∕2√

N (N2 − 1)∕12
, i = 1,… ,N .

Evidently ZN(t) =
∑⌊Nt⌋

i=1 Ui. Under H0, the random variables U1,… ,UN are exchangeable, and∑N
i=1 Ui = 0 while also

∑N
i=1 U2

i = 1. In addition,

max
1≤i≤N

|Ui | = N − (N + 1)∕2√
N (N2 − 1)∕12

= N − 1√
N(N2 − 1)∕3

→ 0 , as N → ∞ .

This shows that the conditions of Theorem 24.1 of Billingsley (1968) are satisfied for the process
ZN(t) =

∑⌊Nt⌋
i=1 Ui, from which the theorem follows. ◼

Proof of Theorem 2. Throughout the proof we let ci, i ≥ 0, denote unimportant numerical

constants. Clearly TN ≥∣ ZN(𝜃) ∣, and so the theorem follows if ∣ ZN(𝜃) ∣
P
→ ∞, as N → ∞. For
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436 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

0 ≤ t ≤ 1, let

Z̃N(t) =
1√
N

⌊Nt⌋∑
i=1

Ri − (N + 1)∕2√
(N2 − 1)∕12

,

where
Ri = #{X𝑗 ; D(X𝑗 ; F∗) ≤ D(Xi ; F∗), 𝑗 = 1,…N} . (A1)

Evidently

ZN(𝜃) = GN + Z̃N(𝜃), (A2)

with GN = ZN(𝜃) − Z̃N(𝜃). By the triangle inequality

∣ GN ∣≤ 1√
N

(
N2 − 1

12

)−1∕2 ⌊N𝜃⌋∑
i=1

∣ R̂i − Ri ∣≤ c0 N−3∕2
⌊N𝜃⌋∑
i=1

| R̂i − Ri | .
Let

Ai, 𝑗 = {D(X𝑗 , F∗) ≤ D(Xi, F∗)} ∩ {D(X𝑗 , F̂N) > D(Xi, F̂N)} ,

Bi, 𝑗 = {D(X𝑗 , F∗) > D(Xi, F∗)} ∩ {D(X𝑗 , F̂N) ≤ D(Xi, F̂N)} .

Then clearly

∣ R̂i − Ri ∣≤
N∑
𝑗=1

𝟙(Ai,𝑗) +
N∑
𝑗=1

𝟙(Bi,𝑗), (A3)

where 𝟙(A) denotes the indicator of the event A. It follows according to the definition of Ai,𝑗 that
if 𝛾N = max1≤𝑗≤N |D(X𝑗 , F∗) − D(X𝑗 , F̂N) |, then

Ai, 𝑗 ⊂ {|D(Xi, F∗) − D(X𝑗 , F∗) | ≤ 2𝛾N} .

Moreover, by the definitions of D(Xi, F∗) and D(Xi, F̂N), it follows that

𝛾N ≤ sup
x∈ℝp

|D(x, F̂N) − D(x, F∗) | ,
and hence

𝟙(Ai,𝑗) ≤ 𝟙({|D(Xi, F∗) − D(X𝑗 , F∗) | ≤ 2 sup
x∈ℝp

|D(x, F̂N) − D(x, F∗) |}). (A4)

According to Assumption 1, and since D(Xi, F∗) and D(X𝑗 , F∗) are independent for i ≠ 𝑗, the
random variable |D(Xi, F∗) − D(X𝑗 , F∗) | has a Lipschitz distribution function for i ≠ 𝑗, from
which it follows that for any 1 ≤ i, 𝑗 ≤ N,

E[𝟙({|D(Xi, F∗) − D(X𝑗 , F∗) | ≤ 2 sup
x∈ℝp

|D(x, F̂N) − D(x, F∗) |})]
= E[E[𝟙({|D(Xi, F∗) − D(X𝑗 , F∗) |

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 437

≤ 2 sup
x∈ℝp

|D(x, F̂N) − D(x, F∗)|})| sup
x∈ℝp

|D(x, F̂N) − D(x, F∗) |]]
≤ c1E[ sup

x∈ℝp
|D(x, F̂N) − D(x, F∗) |] = O(N−1∕2),

where in the last line we applied Assumption 1. This combined with (A4) gives that

E

(
N∑
𝑗=1

𝟙(Ai,𝑗)

)
= O(N1∕2).

The same arguments imply that the above bound also holds for the sum of the Bi,𝑗 terms in (A3),
which gives that

E | R̂i − Ri | = O(N1∕2). (A5)

This along with (A3) implies that E|GN| = O(1), and hence GN = OP(1) by Markov’s inequality.
The random variables D(Xi, F∗), 1 ≤ i ≤ N satisfy the conditions of the Chernoff and Savage
Theorem on page 234 of Hájek & Šidák (1967), from which it follows that Z̃N(𝜃) is asymptotically
Gaussian with bounded variance and asymptotic mean

√
N𝜃

[
∫
∞

−∞
𝜃H1(u) + (1 − 𝜃)H2(u)dH1(u) −

1
2

]
,

which tends in absolute value to positive infinity under (3.3). This implies that | Z̃N(𝜃) | P
→ ∞,

which, along with (A2) and the fact that GN = OP(1), proves the result. ◼

Proof of Theorem 3. Let

Zk = ZN(k) =
1√
N

k∑
i=1

R̂i − (N + 1)∕2√
(N2 − 1)∕12

,

Z̃k = Z̃N(k) =
1√
N

k∑
i=1

Ri − (N + 1)∕2√
(N2 − 1)∕12

,

Gk = Zk − Z̃k =
1√
N

k∑
i=1

Ri − R̂i√
(N2 − 1)∕12

.

Under these definitions, it is clear that according to the definition of k̂∗,

k̂∗ = min{k ∶ |Zk | = max
1≤i≤N

|Zi |}
= min{k ∶ |Zk |2 = max

1≤i≤N
|Zi |2}

= min{k ∶ |Zk |2 − |Z̃k∗ |2 = max
1≤i≤N

|Zi |2 − |Z̃k∗ |2}.
DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

 1708945x, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11541 by U

niversity O
f W

aterloo D
ana Porter L

ibrary, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



438 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

From the definition of 𝜃, the statement of Theorem 3 is equivalent with the existence of a
real-valued sequence aN satisfying aN → ∞, aN∕N → 0, and

Pr(| k̂∗ − k∗ | > aN) = Pr(k̂∗ < k∗ − aN) + Pr(k̂∗ > k∗ + aN) → 0, N → ∞. (A6)

We now show that for the sequence aN = N𝜅 , 1∕2 < 𝜅 < 1,

Pr(k̂∗ < k∗ − aN) → 0 , as N → ∞ .

The second term on the right-hand side of (A6) can be handled in a similar way, and so the
details are omitted. Evidently

Pr(k̂∗ < k∗ − aN) ≤ Pr
(

max
1≤i≤k∗−2aN

|Zi |2 − |Z̃k∗ |2 > max
k∗−aN≤i≤k∗

|Zi |2 − |Z̃k∗ |2) . (A7)

Since Zi = Z̃i + Gi, we have by some simple algebra that for 1 ≤ i ≤ k∗,

|Zi |2 − | Z̃k∗ |2 = Ai + Bi + Ci + G2
i + 2Z̃iGi,

where

Ai =
(

Z̃i −
i

k∗
Z̃k∗

)2
, Bi = 2

(
Z̃i −

i
k∗

Z̃k∗

) i
k∗

Z̃k∗ ,

and

Ci = Z̃2
k∗

(( i
k∗

)2
− 1

)
.

It follows under the conditions of Theorem 2 and the Chernoff-Savage theorem (Chernoff &
Savage, 1958) that there exists nonzero constants c0 and c1 > 0 so that Z̃2

k∗ = N c2
0 (1 + oP(1)),

and hence for each i ≤ k∗,

Ci = c2
0 N

(
i2 − (k∗)2

(k∗)2

)
(1 + oP(1)) = c1

(
i2 − (k∗)2

k∗

)
(1 + oP(1)). (A8)

Moreover, it follows by the definition of Ci that for all N, Ci < C𝑗 for all i < 𝑗, and by the
above property and the fact that k∗ = ⌊N𝜃⌋, if aN = N𝜅 for 1∕2 < 𝜅 < 1, we get with a little

algebra that Ck∗−aN
− Ck∗−2 aN

= 2 aN(1 + oP(aN))
P
→ ∞ , as N → ∞ . We now aim to show the

following four results:

max
1≤k≤k∗−2aN

Ak|Ck | = oP(1) , (A9)

max
1≤k≤k∗−2aN

Bk|Ck | = oP(1) , (A10)

max
1≤k≤k∗−2aN

G2
k|Ck | = oP(1) , (A11)

max
1≤k≤k∗−2aN

Z̃kGk|Ck | = oP(1) . (A12)
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 439

Towards establishing (A9), we note that for all k ≤ k∗,(
k∗

(k∗)2 − k2

)
≤ k∗

k(k∗ − k)
.

Since the ranks Rk, k < k∗, are the ranks of independent and identically distributed D(X1, F∗),… ,
D(Xk, F∗), and Z̃k is the partial sum of these ranks, it follows from equation (2.22) in Gombay
& Hušková (1997) that for all 𝜀 > 0,

Pr
(

max
1≤k≤k∗−2aN

k∗

k(k∗ − k)
Ak < 𝜀

)

= Pr
(

max
1≤k≤k∗−2aN

k∗

k(k∗ − k)

( k∑
i=1

Ri − (N + 1)∕2√
(N2 − 1)∕12

− k
k∗

k∗∑
i=1

Ri − (N + 1)∕2√
(N2 − 1)∕12)

)2

< 𝜀N
)

−→ 1 as N → ∞,

proving (A9). Equation (A10) can be established using a similar argument as that used to
establish (2.18) in Gombay & Hušková (1997), so the details are omitted here. In order to show
(A11), we note that according to the definition of Gk and the triangle inequality that

max
1≤k≤k∗−2aN

|Gk | = max
1≤k≤k∗−2aN

||||||
1√
N

k∑
i=1

Ri − R̂i√
(N2 − 1)∕12

|||||| (A13)

≤ max
1≤k≤k∗−2aN

1√
N

k∑
i=1

||||||
Ri − R̂i√

(N2 − 1)∕12

||||||
≤ 1√

N

N∑
i=1

||||||
Ri − R̂i√

(N2 − 1)∕12

|||||| = OP(1),

where the last line follows from (A5) and Chebyshev’s inequality. Evidently then max1≤k≤k∗−2 aN|Gk |2 = OP(1), and also for some positive constant c2 and for k < k∗,

||||| c2
0 N

(
k2 − (k∗)2

(k∗)2

) ||||| ≥ c2 N,

from which with (A8), (A11) now follows. Equation (A12) follows similarly. In addition to
(A9)–(A12), we also have that

max
k∗−aN≤k≤k∗

Ak = OP(1), (A14)

max
k∗−aN≤k≤k∗

Bk = OP(1), (A15)

max
k∗−aN≤k≤k∗

G2
k = OP(1), (A16)

max
k∗−aN≤k≤k∗

Z̃k Gk = oP(aN). (A17)
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440 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

Equations (A14) and (A15) follow from Lemma 2.1 in Gombay & Hušková (1997). Equation (A11)
follows from (A13), and the crude approximation that, with some positive constant c5,

max
1≤k≤N

| Z̃k | = max
1≤k≤N

||||| 1√
N

k∑
i=1

Ri − (N + 1)∕2√
(N2 − 1)∕12

|||||
≤ max

1≤k≤N

1√
N

k∑
i=1

|||||
Ri − (N + 1)∕2√

(N2 − 1)∕12

|||||
≤ 1√

N

N∑
i=1

|||||
Ri − (N + 1)∕2√

(N2 − 1)∕12

|||||
≤ c5

√
N,

where in the last line we used that |Ri − (N + 1)∕2 | ≤ N. Now combining the above results, we
have for all 𝜀 > 0 and N sufficiently large,

Pr
(

max
1≤k≤k∗−2 aN

|Zk |2 − | Z̃k∗ |2 > max
k∗−aN≤k≤k∗

|Zk |2 − | Z̃k∗ |2)

≤ Pr
(

max
1≤k≤k∗−2 aN

Ck

(
1 +

Ak|Ck | + Bk|Ck | + G2
k|Ck | + Z̃k Gk|Ck |

)

> max
k∗−aN≤k≤k∗

Ak + Bk + Ck + G2
k + 2Z̃k Gk

)
≤ Pr(Ck∗−aN

ΛN − Ck∗−2 aN
< max

k∗−aN≤k≤k∗
Ak + Bk + G2

k + 2Z̃kGk)

→ 0, as N → ∞,

sinceΛN = max1≤k≤k∗−2 aN
(1 + Ak|Ck | + Bk|Ck | + G2

k|Ck | )
P
→ 1 as N → ∞ by (A9)–(A12), which gives

the result. ◼
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B1. Additional Simulation Results

TABLE B.1: Empirical power based on 1,000 trials with the nominal level of 5% for 2-dimensional DGP’s
with different scale shifts and sample size N = 25.

DGP Methods 𝜎 = 1.25 𝜎 = 1.5 𝜎 = 1.75 𝜎 = 2 𝜎 = 2.25 𝜎 = 2.5 𝜎 = 2.75 𝜎 = 3

MHD 0.171 0.376 0.540 0.716 0.794 0.889 0.934 0.962

MHD75 0.140 0.277 0.438 0.598 0.701 0.803 0.870 0.924

MHD50 0.140 0.277 0.438 0.598 0.701 0.803 0.870 0.924

Np(0, I) SPD 0.163 0.385 0.574 0.744 0.830 0.908 0.947 0.969
HSD 0.218 0.408 0.579 0.741 0.807 0.880 0.918 0.954

SLD 0.189 0.373 0.542 0.706 0.769 0.860 0.908 0.942

OD 0.173 0.379 0.549 0.723 0.813 0.901 0.939 0.968

MCUSUM 0.010 0.023 0.058 0.100 0.153 0.191 0.223 0.252

MHD 0.097 0.131 0.161 0.194 0.250 0.324 0.360 0.391

MHD75 0.090 0.144 0.194 0.283 0.352 0.434 0.468 0.532

MHD50 0.090 0.144 0.194 0.283 0.352 0.434 0.468 0.532

Cp(0, I) SPD 0.104 0.149 0.213 0.302 0.372 0.445 0.488 0.571

HSD 0.123 0.170 0.242 0.330 0.378 0.455 0.505 0.579
SLD 0.116 0.156 0.216 0.305 0.349 0.429 0.473 0.551

OD 0.098 0.156 0.200 0.283 0.359 0.426 0.480 0.541

MCUSUM 0.000 0.002 0.002 0.002 0.003 0.003 0.007 0.007

MHD 0.152 0.307 0.432 0.559 0.664 0.753 0.789 0.837

MHD75 0.133 0.256 0.356 0.490 0.624 0.710 0.750 0.808

MHD50 0.133 0.256 0.356 0.490 0.624 0.710 0.750 0.808

Up(1) SPD 0.165 0.321 0.449 0.554 0.684 0.775 0.814 0.852
HSD 0.190 0.337 0.446 0.563 0.672 0.739 0.785 0.824

SLD 0.177 0.316 0.431 0.514 0.651 0.707 0.748 0.804

OD 0.160 0.304 0.433 0.549 0.685 0.759 0.801 0.843

MCUSUM 0.011 0.025 0.055 0.098 0.139 0.140 0.185 0.238

MHD 0.128 0.261 0.412 0.581 0.638 0.692 0.751 0.799

MHD75 0.138 0.285 0.448 0.600 0.739 0.824 0.886 0.931

MHD50 0.138 0.285 0.448 0.600 0.739 0.824 0.886 0.931

SNp(0, I, 31) SPD 0.141 0.312 0.475 0.637 0.747 0.826 0.885 0.933
HSD 0.162 0.267 0.383 0.501 0.556 0.587 0.624 0.664

SLD 0.142 0.245 0.355 0.480 0.525 0.548 0.608 0.637

OD 0.147 0.292 0.457 0.641 0.736 0.810 0.881 0.925

MCUSUM 0.005 0.010 0.023 0.032 0.052 0.082 0.096 0.109

MHD 0.133 0.250 0.411 0.546 0.637 0.712 0.727 0.786

MHD75 0.152 0.269 0.454 0.622 0.747 0.833 0.873 0.916

MHD50 0.152 0.269 0.453 0.622 0.747 0.833 0.873 0.916

SNp(0, I, 101) SPD 0.171 0.287 0.469 0.649 0.749 0.832 0.876 0.923
HSD 0.163 0.230 0.354 0.429 0.512 0.519 0.533 0.559

SLD 0.147 0.203 0.326 0.401 0.474 0.489 0.516 0.539

OD 0.155 0.271 0.461 0.633 0.736 0.828 0.863 0.922

MCUSUM 0.008 0.011 0.028 0.033 0.043 0.070 0.086 0.092

MHD 0.115 0.294 0.421 0.550 0.666 0.748 0.778 0.865

MHD75 0.106 0.259 0.381 0.508 0.631 0.700 0.787 0.862

MHD50 0.106 0.259 0.381 0.508 0.631 0.700 0.787 0.862

STp(0, I, 51, 4) SPD 0.119 0.301 0.440 0.585 0.711 0.783 0.841 0.906
HSD 0.151 0.326 0.473 0.599 0.692 0.767 0.822 0.878

SLD 0.146 0.310 0.442 0.564 0.667 0.747 0.790 0.859

OD 0.112 0.292 0.441 0.568 0.696 0.775 0.831 0.891

MCUSUM 0.002 0.006 0.008 0.019 0.021 0.034 0.043 0.042
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442 CHENOURI, MOZAFFARI AND RICE Vol. 48, No. 3

TABLE B.2: Empirical power based on 1,000 trials with the nominal level of 5% for 2-dimensional DGP’s
with different scale shifts and sample size N = 100.

DGP Methods 𝜎 = 1.25 𝜎 = 1.5 𝜎 = 1.75 𝜎 = 2 𝜎 = 2.25 𝜎 = 2.5 𝜎 = 2.75 𝜎 = 3

MHD 0.431 0.896 0.990 1 1 0.999 1 1
MHD75 0.362 0.830 0.977 0.999 1 1 1 1
MHD50 0.366 0.829 0.977 0.999 1 1 1 1

Np(0, I) SPD 0.438 0.898 0.989 1 1 1 1 1
HSD 0.426 0.883 0.991 1 1 1 1 1
SLD 0.416 0.873 0.989 1 1 1 1 1
OD 0.431 0.896 0.990 1 1 1 1 1
MCUSUM 0.203 0.743 0.970 0.999 1 0.803 1 1
MHD 0.106 0.251 0.410 0.545 0.654 0.734 0.787 0.836

MHD75 0.152 0.388 0.603 0.763 0.886 0.949 0.974 0.988
MHD50 0.151 0.387 0.599 0.763 0.886 0.950 0.974 0.988

Cp(0, I) SPD 0.162 0.401 0.611 0.770 0.902 0.953 0.983 0.988
HSD 0.157 0.381 0.589 0.756 0.887 0.948 0.979 0.983

SLD 0.155 0.383 0.593 0.761 0.879 0.950 0.981 0.984

OD 0.149 0.379 0.594 0.757 0.890 0.948 0.978 0.985

MCUSUM 0.002 0.005 0.007 0.009 0.009 0.017 0.012 0.021

MHD 0.362 0.779 0.953 0.994 0.998 1 1 1
MHD75 0.295 0.708 0.921 0.987 0.997 1 0.999 1
MHD50 0.295 0.707 0.919 0.988 0.997 1 0.999 1

Up(1) SPD 0.371 0.781 0.955 0.993 0.997 1 1 1
HSD 0.348 0.756 0.947 0.993 0.997 1 0.999 1
SLD 0.337 0.752 0.946 0.990 0.997 1 0.999 1
OD 0.367 0.776 0.953 0.992 0.997 1 1 1
MCUSUM 0.279 0.812 0.980 0.999 1 1 1 1
MHD 0.382 0.785 0.965 0.991 1 1 1 1
MHD75 0.399 0.839 0.977 0.999 1 1 1 1
MHD50 0.401 0.840 0.977 0.999 1 1 1 1

SNp(0, I, 31) SPD 0.404 0.822 0.979 0.997 1 1 1 1
HSD 0.344 0.693 0.918 0.961 0.995 0.996 0.999 1
SLD 0.329 0.678 0.916 0.960 0.994 0.995 0.999 1
OD 0.403 0.824 0.982 0.996 1 1 1 1
MCUSUM 0.164 0.594 0.905 0.977 0.998 0.999 0.999 0.998

MHD 0.331 0.743 0.947 0.990 0.998 1 0.999 1
MHD75 0.343 0.813 0.971 0.999 1 1 1 1
MHD50 0.345 0.813 0.971 0.999 1 1 1 1

SNp(0, I, 101) SPD 0.335 0.799 0.968 0.996 1 1 1 1
HSD 0.258 0.618 0.833 0.932 0.965 0.986 0.991 0.994

SLD 0.252 0.610 0.829 0.933 0.960 0.986 0.989 0.995

OD 0.358 0.805 0.971 0.998 1 1 1 1
MCUSUM 0.159 0.565 0.894 0.971 0.992 1 0.998 0.999

MHD 0.213 0.512 0.717 0.878 0.937 0.976 0.983 0.995

MHD75 0.306 0.692 0.912 0.987 0.998 1 1 1
MHD50 0.305 0.688 0.912 0.987 0.998 1 1 1

STp(0, I, 51, 4) SPD 0.266 0.640 0.880 0.967 0.988 1 0.999 1
HSD 0.160 0.400 0.615 0.745 0.850 0.916 0.943 0.968

SLD 0.156 0.398 0.603 0.735 0.837 0.906 0.939 0.965

OD 0.264 0.632 0.873 0.965 0.986 1 0.999 1
MCUSUM 0.041 0.114 0.265 0.430 0.595 0.707 0.764 0.803
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2020 ROBUST MULTIVARIATE CHANGE POINT ANALYSIS 443

TABLE B.3: Empirical power based on 1,000 trials with the nominal level of 5% for 2-dimensional DGP’s
with different scale shifts and sample size N = 200.

DGP Methods 𝜎 = 1.25 𝜎 = 1.5 𝜎 = 1.75 𝜎 = 2 𝜎 = 2.25 𝜎 = 2.5 𝜎 = 2.75 𝜎 = 3

MHD 0.692 0.997 1 1 1 1 1 1
MHD75 0.642 0.991 1 1 1 1 1 1
MHD50 0.640 0.991 1 1 1 1 1 1

Np(0, I) SPD 0.693 0.997 1 1 1 1 1 1
HSD 0.680 0.996 1 1 1 1 1 1
SLD 0.683 0.996 1 1 1 1 1 1
OD 0.693 0.997 1 1 1 1 1 1
MCUSUM 0.564 0.994 1 1 1 1 1 1
MHD 0.175 0.423 0.628 0.781 0.849 0.910 0.935 0.918

MHD75 0.240 0.641 0.861 0.969 0.993 1 1 1
MHD50 0.240 0.641 0.860 0.969 0.993 1 1 1

Cp(0, I) SPD 0.243 0.658 0.880 0.971 0.993 1 1 1
HSD 0.246 0.648 0.877 0.966 0.993 1 1 1
SLD 0.247 0.648 0.877 0.967 0.992 1 1 1
OD 0.250 0.649 0.870 0.967 0.993 1 1 1
MCUSUM 0.002 0.002 0.005 0.016 0.007 0.020 0.022 0.027

MHD 0.637 0.977 0.999 1 1 1 1 1
MHD75 0.558 0.955 0.999 1 1 1 1 1
MHD50 0.557 0.954 0.999 1 1 1 1 1

Up(1) SPD 0.632 0.980 0.999 1 1 1 1 1
HSD 0.617 0.976 0.999 1 1 1 1 1
SLD 0.605 0.976 0.999 1 1 1 1 1
OD 0.633 0.978 0.999 1 1 1 1 1
MCUSUM 0.690 0.999 0.998 1 1 1 1 1
MHD 0.578 0.981 1 1 1 1 1 1
MHD75 0.638 0.993 1 1 1 1 1 1
MHD50 0.636 0.994 1 1 1 1 1 1

SNp(0, I, 31) SPD 0.605 0.988 1 1 1 1 1 1
HSD 0.513 0.958 0.998 1 1 1 1 1
SLD 0.511 0.954 0.998 1 1 1 1 1
OD 0.613 0.989 1 1 1 1 1 1
MCUSUM 0.503 0.982 1 1 1 1 1 1
MHD 0.538 0.964 0.999 1 1 1 1 1
MHD75 0.653 0.992 1 1 1 1 1 1
MHD50 0.653 0.992 1 1 1 1 1 1

SNp(0, I, 101) SPD 0.588 0.980 1 1 1 1 1 1
HSD 0.440 0.900 0.988 1 1 1 1 1
SLD 0.426 0.886 0.988 1 1 1 1 1
OD 0.590 0.985 1 1 1 1 1 1
MCUSUM 0.471 0.973 1 1 1 1 1 1
MHD 0.295 0.731 0.947 0.994 0.998 1 1 1
MHD75 0.465 0.935 0.997 1 1 1 1 1
MHD50 0.465 0.934 0.996 1 1 1 1 1

STp(0, I, 51, 4) SPD 0.398 0.864 0.992 1 1 1 1 1
HSD 0.240 0.626 0.883 0.970 0.990 0.999 0.998 1
SLD 0.224 0.614 0.867 0.959 0.987 0.998 0.998 1
OD 0.391 0.859 0.988 0.999 1 1 1 1
MCUSUM 0.091 0.342 0.665 0.830 0.920 0.955 0.946 0.972
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TABLE B.4: Empirical power based on 1,000 trials with the nominal level of 5% for p = 5, 10 and 20
dimensional DGP’s, sample sizes ranging from N = 25 to N = 200, and a scale shift of 2.

N = 25 N = 100 N = 200

DGP Methods p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

MHD 0.968 0.997 0.935 1 1 1 1 1 1

MHD75 0.871 0.936 0.668 1 1 1 1 1 1

Np(0, I) MHD50 0.868 0.948 0.668 1 1 1 1 1 1

SPD 0.994 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 0.863 ∗ 1 1 ∗

MHD 0.288 0.360 0.347 0.815 0.889 0.910 0.967 0.995 0.994

MHD75 0.304 0.381 0.291 0.878 0.912 0.914 0.994 0.998 0.995

Cp(0, I) MHD50 0.304 0.367 0.291 0.873 0.910 0.928 0.993 0.998 0.996

SPD 0.364 0.407 0.417 0.886 0.914 0.927 0.994 0.999 0.996

MCUSUM 0.000 ∗ ∗ 0.002 0.001 ∗ 0.006 0.007 ∗

MHD 0.546 0.533 0.457 0.993 0.989 0.989 1 1 1

MHD75 0.498 0.487 0.372 0.993 0.987 0.982 1 1 1

Up(1) MHD50 0.498 0.501 0.372 0.993 0.987 0.987 1 1 1

SPD 0.585 0.595 0.602 0.996 0.989 0.991 1 1 1

MCUSUM 0.000 ∗ ∗ 0.617 0.000 ∗ 1 0.421 ∗

MHD 0.961 0.993 0.944 1 1 1 1 1 1

MHD75 0.869 0.936 0.672 1 1 1 1 1 1

SNp(0, I, 31) MHD50 0.873 0.942 0.672 1 1 1 1 1 1

SPD 0.981 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 0.823 ∗ 1 1 ∗

MHD 0.941 0.997 0.947 1 1 1 1 1 1

MHD75 0.853 0.951 0.698 1 1 1 1 1 1

SNp(0, I, 101) MHD50 0.852 0.940 0.698 1 1 1 1 1 1

SPD 0.981 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 0.839 ∗ 1 1 ∗

MHD 0.321 0.316 0.744 0.883 1 1 1 1 1

MHD75 0.329 0.320 0.563 0.882 1 1 1 1 1

STp(0, I, 51, 4) MHD50 0.329 0.320 0.563 0.882 1 1 1 1 1

SPD 0.327 0.324 0.936 0.881 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 0.489 0.052 ∗ 0.963 0.924 ∗

* The test is not feasible in that dimension.
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TABLE B.5: Empirical power based on 1,000 trials with the nominal level of 5% for p = 5, 10 and 20
dimensional DGP’s, sample sizes ranging from N = 25 to N = 200, and a scale shift of 3.

N = 25 N = 100 N = 200

DGP Methods p = 5 p = 10 p = 20 p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

MHD 0.999 1 1 1 1 1 1 1 1

MHD75 0.997 1 0.957 1 1 1 1 1 1

Np(0, I) MHD50 0.997 1 0.957 1 1 1 1 1 1

SPD 1 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 0.999 ∗ 1 1 ∗

MHD 0.601 0.664 0.639 0.997 1 0.986 1 1 1

MHD75 0.638 0.634 0.562 0.997 1 0.999 1 1 1

Cp(0, I) MHD50 0.639 0.639 0.562 0.997 1 0.999 1 1 1

SPD 0.692 0.712 0.729 0.998 1 0.999 1 1 1

MCUSUM 0.000 ∗ ∗ 0.025 0.010 ∗ 0.037 0.117 ∗

MHD 0.835 0.815 0.749 1 1 1 1 1 1

MHD75 0.815 0.792 0.662 1 1 1 1 1 1

Up(1) MHD50 0.813 0.787 0.662 1 1 1 1 1 1

SPD 0.863 0.847 0.864 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 0.970 0.006 ∗ 1 0.963 ∗

MHD 1 1 0.999 1 1 1 1 1 1

MHD75 1 1 0.955 1 1 1 1 1 1

SNp(0, I, 31) MHD50 1 1 0.955 1 1 1 1 1 1

SPD 1 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 1 ∗ 1 1 ∗

MHD 1 1 0.999 1 1 1 1 1 1

MHD75 0.998 0.998 0.952 1 1 1 1 1 1

SNp(0, I, 101) MHD50 0.998 0.999 0.952 1 1 1 1 1 1

SPD 1 1 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 1 1 ∗ 1 1 ∗

MHD 0.586 0.617 0.981 1 1 1 1 1 1

MHD75 0.652 0.672 0.896 1 1 1 1 1 1

STp(0, I, 51, 4) MHD50 0.652 0.672 0.896 1 1 1 1 1 1

SPD 0.640 0.685 1 1 1 1 1 1 1

MCUSUM 0.000 ∗ ∗ 0.954 0.668 ∗ 1 1 ∗

* The test is not feasible in that dimension.
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TABLE B.6: Comparison of MCUSUM and MCUSUM∗ on 1,000 trials with the nominal level of 5% for
N2(0, I) with different scale shifts, and sample sizes N = 25, 100, and 200.

Methods 𝜎 = 1 𝜎 = 1.25 𝜎 = 1.5 𝜎 = 1.75 𝜎 = 2 𝜎 = 2.25 𝜎 = 2.5 𝜎 = 2.75 𝜎 = 3

N = 25

MCUSUM 0.002 0.010 0.023 0.058 0.100 0.153 0.191 0.223 0.252

MCUSUM∗ 0.052 0.127 0.293 0.514 0.699 0.808 0.898 0.954 0.961

N = 100

MCUSUM 0.022 0.203 0.743 0.970 0.999 1 0.803 1 1

MCUSUM∗ 0.064 0.353 0.866 0.994 1 1 1 1 1

N = 200

MCUSUM 0.047 0.564 0.994 1 1 1 1 1 1

MCUSUM∗ 0.042 0.659 0.995 1 1 1 1 1 1

B2. Nonmonotonic power of the MCUSUM method
One possibility that might explain the poor performance of the MCUSUM method even for
normal data could be the inaccuracy of estimated covariance of vech(XiX

⊤
i ) under HA,𝜃 . To

examine this, we implemented an idealized version, denoted by MCUSUM∗, which replaces the
estimator of the covariance of vech(XiX

⊤
i ) with its theoretical value calculated under the known

distribution of the data in the Gaussian case. A comparison between MCUSUM and MCUSUM∗

is provided in Table B.6, in which we observe that this adjustment seems to explain both why
the MCUSUM test tends to be undersized, and why it underperforms the depth based tests even
under Gaussianity of the underlying data generating process.

B3. Autocorrelation plots of first differenced acid rain series

FIGURE B.1: ACF plots of first differenced pH, SO4, Ca and alkalinity series.
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