
Lessons this week will cover Chapter 15 in the textbook. 

Lesson 1: Covariance and Correlation 

Key Takeaways 
By the end of this lesson you should be able to: 

• Solve and interpret the covariance between two random variables, X and Y 

• Solve and interpret the correlation between two random variables, X and Y. 

Introduction to Simple Linear Regression 
Regression analysis is used when investigators are interested in exploring a possible relationship 

between two quantitative (numeric) random variables. These variables are typically categorised as 

being a: 

• Response (Dependent) Variable (Y): Outcome of interest 

• Explanatory (Independent) Variable(s) (𝑿𝟏, 𝑿𝟐, … ): Variable(s) to help predict the response. 

Before moving into Simple Linear regression, we take a step back and review simpler ways of measuring 

linear relationships between two quantitative random variables: 

• Covariance 

• Correlation 

• Slope 

Covariance 

Notation: The Covariance is denoted by Cov(X,Y) = sxy  

Purpose: Covariance is more useful from a statisticians perspective because we use sxy to calculate the 

correlation.   

Interpretation: No Magnitude, Just Direction. With covariance the magnitude (size of the value) is NOT 

important.  It can have values from minus infinity to positive infinity and the size of the number is 

meaningless.  Only the direction of the relationship can be determined and is based on the sign: 

• A positive covariance suggests a positive association (as X increases, Y increases) 

• A negative covariance suggests a negative association (as X increases, Y decreases or vice-versa) 

Formula: 𝑪𝒐𝒗(𝑿, 𝒀) = 𝒔𝒙𝒚 =
∑ (𝒙𝒊−𝒙̅)(𝒚𝒊−𝒚̅)𝒏

𝒊=𝟏

𝒏−𝟏
=

(∑ 𝒙𝒊𝒚𝒊)−𝒏𝒙̅𝒚̅𝒏
𝒊=𝟏

𝒏−𝟏
 . The terms in the sum are positive if xi 

and yi are larger than their means together or smaller than their means together (as X increases, Y 

increases). The terms are negative when xi is smaller than its mean but yi is larger than its mean, or vice 

versa (as X increases, Y decreases or vice-versa). 



The Pearson Correlation Coefficient 
What if we also want to understand the strength of the relationship? 
Examples: 

Figure 3: Variety of correlations 

What Do You Notice? 

In Figure 3 the correlation coefficient appears to change in 

1. Magnitude (Size) and, 

2. Sign (positive or negative) 

Depending on how X and Y are related. 

Interpretation: The correlation coefficient (r) is a number between -1 and 1. There are 2 important 

features about this number.   

1. Magnitude – the size of the number 

The closer |r| is to 1, the stronger the linear relationship.  Graphically this is indicated by a 

tightness in the data about a line. If |r|=1 we call it a perfectly linear relationship. The closer |r| 

is to zero, the less linear the graph. 

2. Direction – the sign of the number 

The sign of r indicates the direction.   

• A positive r indicates that the points have a positive slope. 



• A negative r indicates that the points have a negative slope. 

Note: The Pearson correlation coefficient is checking for a linear relationship only, i.e. can we fit 

a straight line to the data. It is not accurate when other types relationships, say quadratic, exist. 

This is why it is always important to plot your data. This way you can see the relationship and 

make proper sense of the correlation value obtained. Other examples can be found below: 

 

Formula: 𝝆 = 𝒓𝒙𝒚 =
𝒔𝒙𝒚

𝒔𝒙𝒔𝒚
=

∑(𝑿𝒊−𝑿̅)(𝒀𝒊−𝒀̅)

√∑(𝑿𝒊−𝑿̅)𝟐 ∑(𝒀𝒊−𝒀̅)𝟐
, where: 

• 𝑠𝑥𝑦 is the covariance between X and Y 

• 𝑠𝑥 is the standard deviation of X 

• 𝑠𝑦 is the standard deviation of Y 

Example 1 
Many factors affect the length of a professional football game, for example the number of running plays 

versus the number of passing plays. A study was conducted to determine the relationship between the 

total number of penalty yards (x) and the time required to complete a game (y, in hours). The table 

below provides the data.  

Total # of penalty yards (X) 196 164 167 35 111 78 150 121 40 

Time to complete game (Y) 4.2 4.1 3.5 3.2 3.2 3.6 4.0 3.1 1.9 

 

1. Solve and interpret the covariance 

2. Solve and interpret the correlation coefficient 

 

Soln: 

1. Using the data we can solve for 𝑥̅ = 118 and 

𝑦̅ = 3.422 

𝐶𝑜𝑣(𝑋, 𝑌) =
(∑ 𝑥𝑖𝑦𝑖) − 9𝑥̅𝑦̅9

𝑖=1

9 − 1
=

[(196 × 4.2) + ⋯ + (40 × 1.9)] − [9 × 118 × 3.422]

9 − 1
= 30.6 



This value suggests a positive association between total # of penalty yards (X) and the time to complete 

the game (Y). 

2. To solve for the correlation coefficient we will also need the standard deviations where: 

𝑠𝑋 = √
(∑ 𝑥𝑖

29
𝑖=1 ) − 9𝑥̅2

9 − 1
= √

[1962 + ⋯ + 402] − (9 × 1182)

9 − 1
= 57.2887 

Similarly we can solve for 𝑠𝑌 = 0.7032, hence 𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

𝑠𝑋𝑠𝑌
=

30.6

57.2887×0.7032
= 0.7596 

This value suggests that we have a strong, positive, linear association between total # of penalty yards 

(X) and the time to complete the game (Y). 

Example 2 
A new graduate is thinking ahead and wanting to better understand what goes in to a good credit score. 

They manage to collect a random sample of annual income (in 100’s of thousands) and Credit score 

values for 10 people. Help this new graduate check for a possible association by 

1. Solving for and interpreting the covariance 

2. Solving for and interpreting the correlation coefficient 

Income (X) 1.3 1.1 0.8 1.2 1.4 0.9 0.9 1.4 1.2 1.0 

Credit Score (Y) 756 728 635 599 760 722 743 726 694 726 

 

Soln: 

1. Using the data we can solve for 𝑥̅ = 1.12 and 𝑦̅ = 708.9 

𝐶𝑜𝑣(𝑋, 𝑌) =
(∑ 𝑥𝑖𝑦𝑖) − 10𝑥̅𝑦̅10

𝑖=1

10 − 1
=

[(1.3 × 756) + ⋯ + (1.0 × 726)] − [10 × 1.12 × 708.9]

10 − 1
= 3.15778 

This value suggests a positive association between annual income (X) and credit score(Y). 

2. To solve for the correlation coefficient, we will also need the standard deviations where: 

𝑠𝑋 = √
(∑ 𝑥𝑖

210
𝑖=1 ) − 10𝑥̅2

10 − 1
= √

[1.32 + ⋯ + 1.02] − (10 × 1.122)

10 − 1
= 0.214994 

Similarly, we can solve for 𝑠𝑌 = 52.5726, hence 𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

𝑠𝑋𝑠𝑌
=

3.15778

0.214994×52.5726
= 0.27938. 



This value suggests that we have a fairly weak, positive, linear association between annual income (X) 

and credit score(Y). 

Reminders: 

• Correlation measures the strength of the linear relationship between 2 quantitative variables. 

• Like the mean and the standard deviation, the correlation is not robust to outliers. 

You Try 1 
While browsing through the magazine rack at a bookstore, a statistician decides to examine the 

relationship between the price of a magazine and the percentage of the magazine space that contains 

advertisements.  

% containing ads (X) 37 43 58 49 70 28 65 32 

Price in $ (Y) 5.50 6.95 4.95 5.75 3.95 8.25 5.50 6.75 

 

Solve for and interpret the covariance. Solve for and interpret the correlation coefficient. Do these 

values agree with what’s shown on the graph? Feel free to use R to calculate the covariance and 

correlation coefficient using cov() and cor(). If using another language eg Numpy in Python to calculate 

these values, please make sure the functions use n-1 and not n in the denominator! 

Causation 
Often we want to use data collected from an study to asses whether or not there is evidence that X 

affects Y, i.e. Do changes in X cause changes in Y. This is called Causation.  

e.g. Smoking Causes Lung Cance; Lack of sleep causes poor grades. 

Correlation is NOT Causation 

Correlation only tells us that as X increases, Y increases or as X increases, Y decreases, i.e. it defines a 

trend. It does NOT imply that changes in X induce changes in Y. Correlation ONLY allows us to make 

conclusions of Association. 

Practice 
Chapter 15: 1, 2, 3, 17, 18, 29  



Lesson 2: Slope and Line of Best Fit 

Key Takeaways 
By the end of this lesson, you should be able to: 

• Solve for the line of best fit. 

• Make predictions using your line of best fit 

Line of best fit - Slope  
So far, we have spoken about determining the direction and strength of the linear association between 

two quantitative variables. What about the actual size of the association, i.e effect of X on Y? 

To quantify the actual size of the association we want to solve for the Slope.  

When a scatter plot shows a linear relationship between two quantitative random variables we can try 

and summarize the overall pattern by drawing a line of best fit. 

In simple linear regression there is only one explanatory variable and the notation used is as follows: 

• Response Variable, Y 

• Explanatory Variable, X 

We are interested in estimating the line of best fit, where a straight-line relating y (response variable) to 

x (explanatory variable) has an equation of the form: 𝝁𝒀|𝑿 = 𝜷𝟎 + 𝜷𝟏𝒙, where: 

• 𝝁𝒀|𝑿 = 𝑬(𝒀|𝑿) and represents the true mean value of Y for a given value of X. 

• 𝝁𝒀|𝑿 is typically referred to as the deterministic part of the model and captures the known 

variation. 

Visualising the line of best fit: 

 

More conventionally we write the model as:𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿 + 𝝐 , which can be interpreted as Total 

Variation = known variation + unknown variation 

• Y is the response variable (observed) – This represents the total variation 

• X is the explanatory variable (observed) 

• 𝛽0 is the Y-intercept (unknown parameter and needs to be estimated) 

• 𝛽1 is the slope (unknown parameter and needs to be estimated) 



o 𝜷𝟎 + 𝜷𝟏𝑿 represents the known variation 

• 𝜖 is a random error term (residual), and represents the unknown variation 

Once the unknown parameters are estimated using the data collected, we can use our estimated 

regression line to make predictions on the response variable: 𝑌̂ = 𝛽̂0 + 𝛽̂1𝑋, where 

• 𝑌̂ represents the predicted value of Y for a given value of X, strictly speaking is captures 𝜇̂𝑌|𝑋 

• 𝛽̂0 and 𝛽̂1 represent the statistics that estimate 𝛽0 and 𝛽1 respectively. 

• Interpreting the parameter estimates 𝛽̂0 and 𝛽̂1: 

𝜷̂𝟎 is the estimated average response when X=0 (may not be of interest depending on whether X=0 has 

meaning or not), and 𝜷̂𝟏 is the estimated change in the average response for a one unit increase in X.  

The Least Squares Regression Line 
The formula’s we use fit what is called the Least Squares Regression line. It estimates 𝜷𝟎 and 𝜷𝟏 by 

trying to minimize the sum of the squares of the vertical distances between each of the observed Y and 

predicted Y (𝒀̂) values. Each one of these distances represent a residual term: 𝒆𝒊 = 𝒀𝒊 − 𝒀̂𝒊. Residual = 

Observed Y- Predicted Y. 

 

This residual term is calculated for every unit in the study and a sum of the squared residuals (error sum 

of squares) is calculated. Using this and some additional mathematics we find that the parameter 

estimates to minimise our error sum of squares and hence produce the line of best fit is given by:    

𝜷̂𝟎 = 𝒀̅ − 𝜷̂𝟏𝑿̅, and 𝜷̂𝟏 =
𝑺𝑷𝑿𝒀

𝑺𝑺𝑿𝑿
=

𝑪𝒐𝒗(𝑿,𝒀)

𝑽𝒂𝒓(𝑿)
= 𝒓 ×

𝒔𝒚

𝒔𝒙
. 

Where: 

• 𝑆𝑆𝑋𝑋 = ∑ (𝑋𝑖 − 𝑋̅)2
𝑖 = (𝑛 − 1)𝑠𝑥

2 

• 𝑆𝑆𝑌𝑌 = ∑ (𝑌𝑖 − 𝑌̅)2
𝑖 = (𝑛 − 1)𝑠𝑦

2 

• 𝑆𝑃𝑋𝑌 = ∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅𝑖 ) = (𝑛 − 1)𝐶𝑜𝑣(𝑋, 𝑌) 

Example 1 
Many factors affect the length of a professional football game, for example the number of running plays 

versus the number of passing plays. A study was conducted to determine the relationship between the 

𝑒𝑖 = 

𝑒𝑗 = 



total number of penalty yards (x) and the time required to complete a game (y, in hours). The table 

below provides the data.  

Total # of penalty yards (X) 196 164 167 35 111 78 150 121 40 

Time to complete game (Y) 4.2 4.1 3.5 3.2 3.2 3.6 4.0 3.1 1.9 

 

1. Solve for the line of best fit. 

2. Interpret your intercept and slope. 

3. Use your model to predict the time to complete a game if the number of penalty yards is 180. 

Do you think this is a good estimate? 

Soln: 

1. Previously we found that 𝑟 = 0.75961, 𝑥̅ = 118, 𝑠𝑋 = 57.28874, 𝑦̅ = 3.422, 𝑠𝑌 = 0.70317.  

Hence we have 𝛽̂1 = 𝑟 ×
𝑠𝑌

𝑠𝑋
= 0.75961 × (

0.70317

57.28874
) = 0.0093 and 𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ = 3.422 −

(0.0093 × 118) = 2.322 Thus, the line of best fit is given by 𝑦̂ = 2.322 + 0.0093𝑥 

2. 𝛽̂0 = 2.322 which implies that on average we will complete the game in 2.322 hours when the 

total # of penalty yards is 0. 

𝛽̂1 = 0.0093 which implies that on average the time to complete the game increases by 0.0093 

for every 1 unit increase in the total # of penalty yards. 

R output to check: 

 

 

 

 

 

 

 

➢ model<-lm(time~py)  
➢ > summary(model)  
➢ Call: lm(formula = time ~ py)  
➢ Residuals:  
➢ Min 1Q Median 3Q Max  
➢ -0.79498 -0.35019 0.05054 0.27942 0.55164  
➢ Coefficients:  
➢             Estimate Std. Error t value Pr(>|t|)  
➢ (Intercept) 2.322039  0.391554   5.93   0.000581 ***  
➢  py         0.009324  0.003017   3.09   0.017563 *  
➢ ---  
➢ Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  

➢ Residual standard error: 0.4889 on 7 degrees of freedom  
➢ Multiple R-squared: 0.577, Adjusted R-squared: 0.5166  
➢ F-statistic: 9.549 on 1 and 7 DF, p-value: 0.01756  



3. Our prediction is 𝑦̂ = 2.322 + (0.0093 × 180) = 3.996. This estimate is likely not very accurate 

for two reasons: 

a. The dataset used is quite small leading to a model that is likely not very accurate. 

b. The X-value being used is far larger than the maximum value observed in the dataset, 

i.e. we are trying to extrapolate. This is likely reducing the accuracy of the prediction 

even more.  

Extrapolation 
Using the line of best fit for prediction or estimation outside of the range of the observed values of the 
explanatory variable (X) is known as extrapolation and it should be avoided. The line of best fit comes 
about from the observed values and so does the best job when looking within that range. Once we 
move outside that range it can result in very misleading estimates. 
 

Example 2 
A new graduate is thinking ahead and wanting to better understand what goes in to a good credit score. 
They manage to collect a random sample of annual income (in 100’s of thousands) and Credit score 
values for 10 people. Help this new graduate check for a possible association by: 

1. Solve for the line of best fit. 
2. Interpreting your intercept and slope. 

Income (X) 1.3 1.1 0.8 1.2 1.4 0.9 0.9 1.4 1.2 1.0 

Credit Score (Y) 756 728 635 599 760 722 743 726 694 726 

 

Soln: 

1. Previously we found that 𝐶𝑜𝑣(𝑋, 𝑌) = 3.15778, 𝑟 = 0.27928, 𝑥̅ = 1.12, 𝑠𝑋 = 0.215, 𝑦̅ =

708.9, 𝑠𝑌 = 52.57. Hence, we have 𝛽̂1 =
𝐶𝑜𝑣(𝑋,𝑌)

𝑉𝑎𝑟(𝑋)
=

3.15778

0.2152 = 68.32 and 𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ =

708.9 − (68.32 × 1.12) = 632.38. Line of best fit is given by 𝑦̂ = 632.38 + 68.32𝑥 

2. 𝛽̂0 = 632.38 which implies that for a person with $0 income the average credit score is 632.28. 

𝛽̂1 = 68.32 which implies that on average the credit score increases by 68.32 for every 1 unit 

increase in annual income. 



R output to check: 

 

 

 

 

 

 

 

 

 

You Try 1 
While browsing through the magazine rack at a bookstore, a statistician decides to examine the 
relationship between the price of a magazine and the percentage of the magazine space that contains 
advertisements.  

% containing ads (X) 37 43 58 49 70 28 65 32 

Price in $ (Y) 5.50 6.95 4.95 5.75 3.95 8.25 5.50 6.75 

 

1. Solve for the line of best fit. 
2. Interpret your intercept and slope. 

 

Practice 
Chapter 15: 4, 5, 7, 8, 9a)-c) 

 

 

 

 

  

model<-lm(creditScore~income) #fitting a simple linear model  

➢ summary(model) #provide output of model  
➢ Call: lm(formula = creditScore ~ income)  
➢ Residuals:  
➢ Min 1Q Median 3Q Max  
➢ -115.36 -15.78 22.88 31.01 49.13  
➢ Coefficients:  
➢            Estimate Std. Error t value Pr(>|t|)  
➢ (Intercept) 632.38     94.50    6.692  0.000154 ***  
➢ income      68.32      83.01    0.823  0.434364  
➢ ---  
➢ Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
➢  Residual standard error: 53.54 on 8 degrees of freedom  
➢ Multiple R-squared: 0.07805, Adjusted R-squared: -0.03719  
➢ F-statistic: 0.6773 on 1 and 8 DF, p-value: 0.4344 



Lesson 3: Coefficient of Determination, Outliers and Influential points 

Key takeaways 
By the end of this lesson you should be able to: 

• Solve for and interpret the coefficient of determination 

• Identify outliers and influential points 

Coefficient of Determination 
When a linear relationship exists between two variables some of the variation observed in the response 

variable (𝑌) is accounted for by the explanatory variable (𝑋) of interest. The rest of the variation is 

attributed to unknown factors that were not considered. 

Question of interest: “How do we determine just how much of the variation in 𝑦 is accounted for by 𝑋?” 

Under simple linear regression, the strength of the relationship between 𝑌 and 𝑋 gives us an idea of 

how much of the variation in 𝑌 is explained by the explanatory variable 𝑋. Recall that this strength in 

relationship is captured by the correlation coefficient, 𝒓. After some manipulation we come to find that: 

𝒓𝟐 captures the fraction of the variation in 𝒀 that is explained by the line of best fit. 𝒓𝟐 is called the 

Coefficient of Determination. 

Example 1 

Interpret the 𝒓𝟐 values from our previous examples: 

• Time to complete football game, we found that 𝑟 = 0.76 

• Credit Score example, we found that 𝑟 = 0.28  

Soln: 

Time to complete football game we have that  𝑟2 = (0.76)2 = 0.5776. In words this is to say that the 

model explains ~57.76% of the variation in Y. (Note: This is fair value suggesting that on its own the total 

# of penalty yards does ok at predicting the length of the game but there is room to improve the model.) 

Credit Score example we have that 𝑟2 = (0.28)2 = 0.0784. In words this is to say that the model 

explains ~7.84% of the variation in Y. (Note: This is extremely low again suggesting that income, on its 

own, is not a good predictor of Credit Score.) 

In the R outputs above, this value is the Multiple R-squared value. They are slightly different 

because we rounded our values.   

You Try 1 
While browsing through the magazine rack at a bookstore, a statistician decides to examine the 

relationship between the price of a magazine and the percentage of the magazine space that contains 

advertisements.  

% containing ads (X) 37 43 58 49 70 28 65 32 

Price in $ (Y) 5.50 6.95 4.95 5.75 3.95 8.25 5.50 6.75 

In “You Try 1” you should have solved for 𝑟 = −0.84. Use this value to solve for the coefficient of 

determination and interpret the value. 



Outliers and Influential points 
An influential point is an observation that has a large influence on the statistical calculations being 

done. Both the correlation coefficient and parameter estimates in the regression line are typically 

affected by influential points. Under linear regression such a point is identified as one where if removing 

it from the data it would cause our line of best fit to change markedly. 

Typically, outliers in either the 𝑋 or 𝑌 direction are influential points. If such points exist, the 

investigator should make an effort to see if this due to an error that occurred while capturing the data 

or if there is some other factor surrounding the unit from which this point was collected e.t.c. Under 

certain scenarios the investigator may choose to remove such points from the analysis. 

Example 2 
Many factors affect the length of a professional football game, for example the number of running plays 

versus the number of passing plays. A study was conducted to determine the relationship between the 

total number of penalty yards (x) and the time required to complete a game (y, in hours). The table 

below provides the data.  

Total # of penalty yards (X) 196 164 167 35 111 78 150 121 40 

Time to complete game (Y) 4.2 4.1 3.5 3.2 3.2 3.6 4.0 3.1 1.9 

 

In Example 3 we solved for the line of best fit defining it as: 𝑦̂ = 2.322 + 0.0093𝑥 

But notice that the one (circled) point seems a little odd compared to the rest. The time to complete the 

game seems a lot lower for its corresponding X co-ordinate. Investigate whether this point is influential 

by solving for the line of best fit when that point is removed. 

Soln: 

This odd point corresponds to the last data point in the table above, i.e co-ordinates (40, 1.9). If we 

remove it from the dataset and re-calculate our line of best fit we obtain: 

Hence we have: 𝛽̂1 = 𝑟 ×
𝑠𝑌

𝑠𝑋
= 0.68739 × (

0.43895

52.660
) = 0.00573,  

and 𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ = 3.6125 − (0.00573 × 127.75) = 2.88.  

Then, the line of best fit is given by 𝑦̂ = 2.88 + 0.00573𝑥. 



X Y   

196 4.2   

164 4.1   

167 3.5   

35 3.2   

111 3.2   

78 3.6   

150 4   

121 3.1   

127.75 3.6125 Mean 

52.65996039 0.438951673 Std. Dev 

0.687396217   Correlation 

Notice that in removing this “suspicious” point the correlation coefficient got a little weaker 

(0.75961 𝑣𝑠. 0.68729). The variability in Y decreased and the slope estimate changed a lot 

(0.0093 𝑡𝑜 0.00573). Hence this point appears to be influential and needs to be further investigated.  

Example 3 
A random sample of eight drivers selected from a small town insured with a company and having similar 

minimum required auto insurance policies was selected.  The interest is in investigating the relationship 

between Driving experience (years) and Monthly auto insurance premium ($). 

The data is presented in the table: 

 

1. Use the data to solve for the 

line of best fit. 

2. Use your model to predict the 

monthly auto insurance premium for 

a driver with 12 years of driving 

experience. 

3. Solve for the estimated residual 

for a driver with 12 years of driving 

experience who pays $50 of 

premium monthly. What does this 

value suggest? 

 
Driving Experience 
(Years), X 

Monthly Auto 
Insurance Premium ($), 
Y  

5 64  
2 87  
12 50  
9 71  
15 44  
6 56  
25 42  
16 60 

Mean 11.25 59.25 

Std. Dev 7.40 14.92 



 

Soln: 

1. We can use our data to find 𝑟 = −0.76793. This suggests a strong, negative linear association. 

Hence we have 𝛽̂1 = 𝑟 ×
𝑠𝑌

𝑠𝑋
= −0.76793 × (

14.92

59.25
) = −1.548 

And 𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ = 59.25 − (−1.548 × 11.25) = 76.67 

The line of best fit is given by 𝑦̂ = 76.67 − 1.548𝑥 

2. Our predicted response is given by 𝑦̂ = 76.67 − (1.548 × 12) = $58.09 

3. Our estimated residual is given by, 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 = 50 − 58.094 = −8.094. Since the residual is 

negative it suggests that the line overfit the true premium the driver is paying. 

Statistical Inference in Simple Linear Regression 
To make valid statistical inference procedures in regression we must make a few assumptions: 

To start it is assumed that observations are independent of each other, i.e., when collecting information 

from our units and/or objects it is assumed that each response is unrelated (not dependent) on any 

other unit or objects response. Mathematically, this assumption is stating that the Yis are independent.   

The residuals are assumed to be random variables that: 

• Have a mean of 0 

• Have a constant variance (𝝈𝟐) 

• Are independent of each other 

• Are normally distributed 

Summarising these: 𝒆𝒊~𝑵(𝟎, 𝝈𝟐) 

Before concluding that a model is adequate these assumptions must be tested for and shown to be 

satisfied.  Various plots as well as statistics can be looked at to determine whether these assumptions 

have been satisfied or violated. We will consider these plots once we have a firmer understanding of 

random variables and the Normal distribution. 

Practice 
Chapter 15: 24 (a), d)-e)), 25(a), b), d)), 26a), 27, 30, 31(a), b)), 37, 40, 41b)  



R component 
Will be covered in Tutorial. We will cover simple linear regression – the lm() function and how to 

interpret output. How to interpret R output for linear regression WILL be tested.  

 

Fun fact: Linear regression is one of the coolest parts of statistics! In fact, even a lot of what Machine 

Learning practitioners do ends up being a regression model of some kind. I currently work at the SSO at 

UW, and quite a lot of my analysis is done with linear regression, so even something covered in an 

introductory course can have loads of real life applications and be useful!  
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