Convergence Acceleration for Nonlinear Fixed-Point Methods

Hans De Sterck

University of Waterloo, Canada

joint work with:

Yunhui He (postdoc) and Dawei Wang (graduate student)

(1) introduction

 we will consider fixed-point (FP) iterative methods to numerically compute approximate solutions of scientific computing or optimization problems

$$|\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)|$$
 $\{\mathbf{x}_0, \mathbf{x}_1, \ldots\}$ \mathbf{x}^*

- for difficult (ill-conditioned) problems, (asymptotic) FP convergence may be (very) slow
- we will consider nonlinear acceleration methods to improve the (asymptotic) convergence, e.g., Anderson Acceleration (AA): m_{k-1}

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

3 applications

- (A) solving linear equation systems: $A\mathbf{x} = \mathbf{b}$ $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ affine iteration: $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$
- (B) machine learning optimization problems

nonlinear iteration: $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$ (Alternating Direction Method of Multipliers, ADMM)

(C) canonical tensor decomposition:

nonlinear iteration: $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$ (Alternating Least Squares, ALS)

solving linear equation systems:

• linear system
$$A\mathbf{x} = \mathbf{b}$$
 $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$

• FP iteration:
$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

we choose:
$$\mathbf{q}(\mathbf{x}) = M\mathbf{x} + P\mathbf{b}$$
 $M = I - PA$

fixed point:
$$\mathbf{x} = \mathbf{q}(\mathbf{x}) = (I - PA)\mathbf{x} + P\mathbf{b}$$

 $\iff PA\mathbf{x} = P\mathbf{b}$
 $\iff A\mathbf{x} = \mathbf{b}$

ullet P is called the preconditiong matrix (Jacobi, Gauss-Seidel, ...)

• FP method:
$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

$$\mathbf{q}(\mathbf{x}) = M\mathbf{x} + P\mathbf{b}$$

$$\mathbf{q}(\mathbf{x}) = (I - PA)\mathbf{x} + P\mathbf{b}$$

• error:
$$\mathbf{e}_k = \mathbf{x}^* - \mathbf{x}_k$$

$$PA\mathbf{x} = P\mathbf{b}$$

error propagation equation:

$$\mathbf{x}^* - \mathbf{x}_{k+1} = \mathbf{x}^* - (I - PA)\mathbf{x}_k - P\mathbf{b}$$

$$\mathbf{e}_{k+1} = M\mathbf{e}_k$$

- asymptotic convergence factor: $\rho(M)$
- in the nonlinear case: $\rho(\mathbf{q}'(\mathbf{x}^*))$

• FP method may converge slowly:

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

accelerate convergence by Anderson Acceleration (AA):

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$\mathbf{r}(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{q}(\mathbf{x}_k)$$

$$\{\beta_i^{(k)}\} = \underset{\{\beta_i\}}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{r}(\mathbf{x}_{k-i}) - \mathbf{r}(\mathbf{x}_{k-i-1})\right)||^2$$

Convergence Acceleration for Nonlinea hdesterck@uwaterloo.ca

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

accelerate convergence by Anderson Acceleration (AA):

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$\mathbf{r}(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{q}(\mathbf{x}_k)$$

$$\{\beta_i^{(k)}\} = \underset{\{\beta_i\}}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{r}(\mathbf{x}_{k-i}) - \mathbf{r}(\mathbf{x}_{k-i-1})\right)||^2$$

- in the linear case, AA is equivalent to the "Generalized minimal residual method" (GMRES)
- GMRES minimizes polynomials over a "Krylov space", which facilitates convergence analysis

PAGE 9

GMRES convergence result:

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

Theorem 5.5

Let $A \in \mathbb{R}^{n \times n}$, nonsingular, be diagonalisable, $A = V\Lambda V^{-1}$. Then the residuals generated in the GMRES method satisfy

$$\frac{\|\vec{r}_i\|}{\|\vec{r}_0\|} \le \kappa_2(V) \min_{p_i(x) \in \mathcal{P}_i} \max_{\Sigma(A)} |p_i(\lambda)|.$$

Here, $p_i(x)$ is a polynomial of degree at most i in \mathcal{P}_i , the set of polynomials of degree at most i which satisfy $p_i(0) = 1$. $\Sigma(A)$ is the eigenvalue spectrum of A, i.e., the set of eigenvalues of A.

$$\frac{\|r_k\|}{\|r_0\|} \le c\rho^k$$

in more general cases, convergence analysis is hard ...

• nonlinear FP iteration: $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$

• Anderson Acceleration (AA) is usually done in a "windowed" fashion, window size m: $m_k = \min\{m, k\}$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$\{\beta_i^{(k)}\} = \underset{\{\beta_i\}}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{r}(\mathbf{x}_{k-i}) - \mathbf{r}(\mathbf{x}_{k-i-1})\right)||^2$$

 we cannot rely on optimal polynomials, so convergence analysis is hard

$$\mathbf{r}(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{q}(\mathbf{x}_k)$$

(B) Alternating Direction Method of Multipliers– optimization for machine learning

• ADMM:

$$\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x},\mathbf{z}) = f_1(\mathbf{x}) + f_2(\mathbf{z}),$$
s.t. $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{b},$

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f_1(\mathbf{x}) + f_2(\mathbf{z}) + \mathbf{y}^T(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{b}) + \frac{\rho}{2}||\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{b}||_2^2$$

$$\begin{cases} \mathbf{x}_{k+1} = \operatorname{argmin}_{\mathbf{x}} f_1(\mathbf{x}) + \frac{\rho}{2} || \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}_k - \mathbf{b} + \mathbf{u}_k ||_2^2, \\ \mathbf{z}_{k+1} = \operatorname{argmin}_{\mathbf{z}} f_2(\mathbf{z}) + \frac{\rho}{2} || \mathbf{A}\mathbf{x}_{k+1} + \mathbf{B}\mathbf{z} - \mathbf{b} + \mathbf{u}_k ||_2^2, \\ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{A}\mathbf{x}_{k+1} + \mathbf{B}\mathbf{z}_{k+1} - \mathbf{b}, \end{cases}$$

• ADMM as fixed-point method:

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

accelerating ADMM as a fixed-point method

• ADMM as fixed-point method:

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

$$\begin{cases} \mathbf{x}_{k+1} = \operatorname{argmin}_{\mathbf{x}} f_1(\mathbf{x}) + \frac{\rho}{2} || \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}_k - \mathbf{b} + \mathbf{u}_k ||_2^2, \\ \mathbf{z}_{k+1} = \operatorname{argmin}_{\mathbf{z}} f_2(\mathbf{z}) + \frac{\rho}{2} || \mathbf{A}\mathbf{x}_{k+1} + \mathbf{B}\mathbf{z} - \mathbf{b} + \mathbf{u}_k ||_2^2, \\ \mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{A}\mathbf{x}_{k+1} + \mathbf{B}\mathbf{z}_{k+1} - \mathbf{b}, \end{cases}$$

- we consider problems where ADMM converges linearly, in particular, where q(x) is differentiable at x^*
- we accelerate ADMM with Anderson Acceleration (AA):

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$m_k = \min\{m, k\}$$

$$\{\beta_i^{(k)}\} = \underset{\{\beta_i\}}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{r}(\mathbf{x}_{k-i}) - \mathbf{r}(\mathbf{x}_{k-i-1})\right)||^2$$

$$\mathbf{r}(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{q}(\mathbf{x}_k)$$

ADMM accelerated by AA: LASSO example

$$\min_{\mathbf{x}, \mathbf{z}} \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{z}||_1,$$

s.t. $\mathbf{x} - \mathbf{z} = 0.$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$$

convergence:

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

 our contribution: we consider optimal stationary version of AA (sAA)

$$\rho_{sAA-ADMM,\mathbf{x}^*} = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$$

(least absolute shrinkage and selection operator)

Zhang, J., Peng, Y., Ouyang, W., Deng, B.: Accelerating ADMM for efficient simulation and optimization. ACM Transactions on Graphics (TOG) **38**(6), 1–21 (2019)

(C) canonical tensor decomposition

OPTIMIZATION PROBLEM

given tensor $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$, find rank-R canonical tensor $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$ that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \| \mathcal{T} - \mathcal{A}_R \|_F^2.$$

FIRST-ORDER OPTIMALITY EQUATIONS

$$\nabla f(\mathcal{A}_R) = \mathbf{g}(\mathcal{A}_R) = 0.$$

(problem is non-convex, multiple (local) minima, solution may not exist (ill-posed), ...; but smooth, and we assume there is a local minimum)

[de Silva and Lim, 2009]

tensor approximation applications

"Discussion Tracking in Enron Email Using PARAFAC" by Bader, Berry and Browne (2008) (sparse, nonnegative)

'workhorse' algorithm: alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R \, a_r^{(1)} \circ rac{a_r^{(2)} \circ a_r^{(3)}}{r}
ight\|_F^2$$

- (1) freeze all $a_r^{(2)}$, $a_r^{(3)}$, compute optimal $a_r^{(1)}$ via a least-squares solution (linear, overdetermined)
- (2) freeze $a_r^{(1)}$, $a_r^{(3)}$, compute $a_r^{(2)}$
- (3) freeze $a_r^{(1)}$, $a_r^{(2)}$, compute $a_r^{(3)}$
- repeat

alternating least squares (ALS)

(block nonlinear Gauss-Seidel)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R a_r^{(1)} \circ a_r^{(2)} \circ a_r^{(3)} \right\|_F^2$$

fast case

slow case

can we accelerate ALS using AA (in this nonlinear case), just like SSOR is accelerated by GMRES?

(2) convergence acceleration methods

Anderson Acceleration: Anderson, D.G.: Iterative procedures for nonlinear integral equations. Journal of the ACM (JACM) 12(4), 547–560 (1965)

$$x_{k+1} = q(x_k) + \sum_{i=1}^{\min(k,m)} \beta_i^{(k)}(q(x_k) - q(x_{k-i}))$$

Nonlinear GMRES (NGMRES):

T. Washio and C. W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes, Electronic Transactions on Numerical Analysis, 6 (1997), pp. 3–1.

$$x_{k+1} = q(x_k) + \sum_{i=0}^{\min(k,m)} \beta_i^{(k)} (q(x_k) - x_{k-i})$$

- both AA and NGMRES reduce to GMRES if q(x) is linear
- also, other acceleration methods can be used for $x_{k+1} = q(x_k)$: NCG, LBFGS, Nesterov with restart, adaptive algebraic multigrid (not considered here) (De Sterck et al., 2012a, 2012b, 2013, 2015a, 2015b, 2016, 2017, 2020; applied to ALS for tensor decomposition)
- $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$ can be seen as a nonlinear preconditioner for AA or NGMRES

(3) convergence theory: linear convergence factors $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$

Definition 2.2 (r-linear convergence). Let $\{x_k\}$ be any sequence that converges to x^* . Define

$$\rho_{\{x_k\}} = \limsup_{k \to \infty} \|x_k - x^*\|^{\frac{1}{k}}.$$

We say $\{x_k\}$ converges r-linearly with r-linear convergence factor $\rho_{\{x_k\}}$ if $\rho_{\{x_k\}} \in (0,1)$ and r-superlinearly if $\rho_{\{x_k\}} = 0$. The "r-" prefix stands for "root".

Definition 3.1. Assume that q is a fixed-point iterative process with limit point x^* . We define the set of iteration sequences that converge to x^* as

$$C(q, x^*) = \{ \{x_k\}_{k=0}^{\infty} | x_{k+1} = q(x_k), \forall k = 0, 1, \dots, \lim_{k \to \infty} x_k = x^* \},$$

and the worst-case r-linear convergence factor over $C(q, x^*)$ as

$$\rho_{q,x^*} = \sup \Big\{ \rho_{\{x_k\}} | \{x_k\} \in C(q,x^*) \Big\}.$$
(3.1)

We say that the FP method converges r-linearly if $\rho_{q,x^*} \in (0,1)$.

root-linear convergence theorem for differentiable $\mathbf{q}(\mathbf{x})$ $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$

Theorem 3.1. [4, Chapter 10] [Ostrowski Theorem] Suppose that $q: D \subset \mathbb{R}^n \to \mathbb{R}^n$ has a fixed point x^* , an interior point of D, and is differentiable at x^* . If the spectral radius of $q'(x^*)$ satisfies $0 < \rho(q'(x^*)) < 1$, then the FP method converges r-linearly with $\rho_{q,x^*} = \rho(q'(x^*))$.

• so for ADMM with differentiable q(x):

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

- same for ALS
- but: the iteration function for AA(m) is not differentiable

AA convergence theory

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k - 1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$\{\beta_i^{(k)}\} = \underset{\{\beta_i\}}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{x}_k) + \sum_{i=0}^{m_k - 1} \beta_i \left(\mathbf{r}(\mathbf{x}_{k-i}) - \mathbf{r}(\mathbf{x}_{k-i-1}) \right)||^2$$

• first convergence proof for AA in 2015:

$$||e_k|| \le \frac{1+c}{1-c}c^k||e_0||$$

Toth, A., Kelley, C.: Convergence analysis for Anderson acceleration. SIAM Journal on Numerical Analysis **53**(2), 805–819 (2015)

- AA-ADMM converges (at least) r-linearly with an r-linear convergence factor that is not worse than the convergence factor of ADMM; proof requires boundedness assumption on the beta coefficients, and q'(x*) Lipschitz
- convergence improvement results (quantifies convergence gain in each iteration):
 - C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, A proof that anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically), SIAM Journal on Numerical Analysis, 58 (2020), pp. 788–810.
- no general results exist on improved AA r-linear asymptotic convergence factor

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

(4) our contributions: stationary AA(m) and NGMRES(m)

- [1] "On the Asymptotic Linear Convergence Speed of Anderson Acceleration, Nesterov Acceleration, and Nonlinear GMRES", *De Sterck* and *He, SIAM J. Sci. Comp. 2021* (and *arXiv:2007.01996*)
 - introduces stationary AA (sAA), and derives optimal convergence theory for sAA
 - ALS for Canonical Tensor Decomposition
- [2] "On the Asymptotic Linear Convergence Speed of Anderson Acceleration Applied to ADMM", *Wang*, *He* and *De Sterck*, submitted, *arXiv:2007.02916*
 - ADMM

(optimal) stationary AA (sAA): convergence factor can be analyzed

• AA:
$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

• no analysis exists: $\rho_{AA-ADMM,\mathbf{x}^*} = ?$

• our sAA:
$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

• analyzable:
$$\rho_{sAA-ADMM,\mathbf{x}^*} = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$$

• e.g., sAA(1):
$$\mathbf{x}_{k+1} = (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1})$$

$$\mathbf{X}_{k+1} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{x}_k \end{bmatrix} = \begin{bmatrix} (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1}) \\ \mathbf{x}_k \end{bmatrix} = \mathbf{\Psi}(\mathbf{X}_k)$$

- sAA with optimal coefficients:
 - given $\mathbf{q}'(\mathbf{x}^*)$, find the optimal β that minimizes $\rho_{sAA-ADMM,\mathbf{x}^*}^* = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$
 - not a practical method, but useful to understand how and to which extent sAA can improve the spectrum of ADMM

theoretical results from [1] on optimal sAA(1) weights $\mathbf{x}_{k+1} = (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1})$

$$\mathbf{X}_{k+1} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{x}_k \end{bmatrix} = \begin{bmatrix} (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1}) \\ \mathbf{x}_k \end{bmatrix} = \mathbf{\Psi}(\mathbf{X}_k)$$

• optimal β :

$$\beta^* = \underset{\beta \in \mathbb{R}}{\operatorname{arg\,min\,max}} \{ |\lambda| : \lambda^2 - (1+\beta)\mu\lambda + \beta\mu = 0, \ \mu \in \sigma(\mathbf{q}'(\mathbf{x}^*)) \}$$

• first result from [1]: if $q'(x^*)$ has real spectrum

Proposition 3 (Extension of [6], Theorem 3.4].) When $\sigma(\mathbf{q}'(\mathbf{x}^*)) \subset [0,1)$, the optimal weight is

$$\beta^* = \frac{1 - \sqrt{1 - \sigma_{\text{max}}}}{1 + \sqrt{1 - \sigma_{\text{max}}}},$$

and the optimal convergence factor is $\rho_{sAA(1)}^* = 1 - \sqrt{1 - \sigma_{max}}$.

theoretical results from [1] on optimal sAA(1) weights $\mathbf{x}_{k+1} = (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1})$

$$\mathbf{X}_{k+1} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{x}_k \end{bmatrix} = \begin{bmatrix} (1+\beta)\mathbf{q}(\mathbf{x}_k) - \beta\mathbf{q}(\mathbf{x}_{k-1}) \\ \mathbf{x}_k \end{bmatrix} = \mathbf{\Psi}(\mathbf{X}_k)$$

• second result from [1]: if $q'(x^*)$ has complex spectrum

Proposition 4 [6] Let the spectral radius of $\mathbf{q}'(\mathbf{x}^*)$ be $\rho_{q'}^*$ and assume $\rho_{q'}^* < 1$. If there exists a real eigenvalue μ of $\mathbf{q}'(\mathbf{x}^*)$ such that $\rho_{q'}^* = \mu$, then the optimal asymptotic convergence rate of sAA(1), $\rho_{sAA(1)}^*$, is bounded below by

$$\rho_{sAA(1)}^* \ge 1 - \sqrt{1 - \rho_{q'}^*},$$

and if the equality holds,

$$\beta^* = \frac{1 - \sqrt{1 - \rho_{q'}^*}}{1 + \sqrt{1 - \rho_{q'}^*}}.$$

results from [1] on optimal sAA(m) weights

 sAA(2) and higher: use numerical optimization to find optimal betas

$$\mathbf{x}_{k+1} = (1 + \beta_1 + \beta_2)\mathbf{q}(x_k) - \beta_1\mathbf{q}(x_{k-1}) - \beta_2\mathbf{q}(x_{k-2})$$

$$\{\beta_1^*, \beta_2^*\} = \underset{\beta_1, \beta_2 \in \mathbb{R}}{\operatorname{arg\,min}} \max_{\lambda} \{|\lambda| : \lambda^3 - (1 + \beta_1 + \beta_2)\mu\lambda^2 + \beta_1\mu\lambda + \beta_2\mu = 0, \ \mu \in \sigma(\mathbf{q}'(\mathbf{x}^*))\}$$

(5) application to ADMM

• regularized logistic regression (nonlinear, fully smooth, $q'(x^*)$

has real spectrum)

$$\min_{\mathbf{x}, \mathbf{z}} \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-y_i(\mathbf{a}_i^T \mathbf{w} + \mathbf{c}))) + \lambda ||\mathbf{z}||_2^2,$$
s.t. $\mathbf{x} - \mathbf{z} = 0$.

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

$$\rho_{sAA-ADMM,\mathbf{x}^*}^* = \rho(\mathbf{\Psi}'(\mathbf{x}^*)) \frac{1}{\frac{n}{n}}$$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i^{(k)} \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k-1} \beta_i \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

Convergence Acceleration for Nonlinear Fixed-F hdesterck@uwaterloo.ca

numerical results – logistic regression

Proposition 1 Assume $\mu \in \mathbb{R}$. Any complex eigenvalues λ of $\Psi'(\mathbf{x}^*)$ lie on a circle of radius $\left|\frac{\beta}{1+\beta}\right|$ centered at $\left(\frac{\beta}{1+\beta},0\right)$ in the complex plane.

numerical results - LASSO

$$\min_{\mathbf{x}, \mathbf{z}} \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{z}||_1,$$

s.t. $\mathbf{x} - \mathbf{z} = 0.$

nonlinear, not fully smooth, complex spectrum

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

$$\rho_{sAA-ADMM,\mathbf{x}^*}^* = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$$

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k - 1} \beta_i \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

LASSO with increasing density

numerical results – nonnegative least squares

• inequality constraint, real spectrum

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

$$\rho_{sAA-ADMM,\mathbf{x}^*}^* = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$$

$$\min_{\mathbf{x}} ||\mathbf{F}\mathbf{x} - \mathbf{g}||_2^2, \quad \text{s.t.} \quad \mathbf{x} \ge 0.$$

$$\min_{\mathbf{x}, \mathbf{z}} ||\mathbf{F}\mathbf{x} - \mathbf{g}||_2^2 + \mathcal{I}_{\mathbb{R}^n_+}(\mathbf{z}),$$

s.t. $\mathbf{x} - \mathbf{z} = 0$,

$$\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k) + \sum_{i=0}^{m_k - 1} \beta_i \left(\mathbf{q}(\mathbf{x}_{k-i}) - \mathbf{q}(\mathbf{x}_{k-i-1}) \right)$$

(6) application to canonical tensor decomposition

• tensor decomposition problem

$$\begin{split} & [[A^{(1)},A^{(2)},\cdots,A^{(N)}]] = \sum_{j=1}^r a_j^{(1)} \circ a_j^{(2)} \circ \cdots a_j^{(N)} \\ & \min f(A^{(1)},A^{(2)},\cdots,A^{(N)}) := \frac{1}{2} \left\| \mathcal{Z} - [[A^{(1)},A^{(2)},\cdots,A^{(N)}]] \right\| \end{split}$$

- steepest descent: $x_{k+1} = q_{SD}(x_k) = x_k \alpha \nabla f(x_k)$ $q'_{SD}(x) = I - \alpha H(x)$
- ALS: $\mathbf{x}_{k+1} = \mathbf{q}(\mathbf{x}_k)$ $q'_{ALS}(x^*) = I M^{-1}(x^*)H(x^*)$

canonical tensor decomposition

- Hessian has eigenvalues o (scaling degeneracy)
- modified Hessian condition number: $\bar{\kappa} = \frac{\lambda_{\text{max}}}{\lambda_{\text{i}}} = \frac{L}{\ell}$
- synthetic test problem:

factor matrices have collinearity c + noise

ill-conditioned when collinearity close to 1

canonical tensor decomposition (c=0.5)

spectrum of q'(x) and sAA(1) Ψ '(x), for SD (top) and ALS (bottom)

-0.5

-0.5

-0.5

0.5

canonical tensor decomposition

ALS (right) is a better nonlinear preconditioner than SD (left)

FIG. 4. Tensor problem with c = 0.5. (left) Eigenvalue distribution of $H(x^*)$; the (modified) 2-norm condition number $\bar{\kappa}_2(H(x^*)) = 22.76$. (right) Eigenvalue distribution of $M^{-1}(x^*)H(x^*)$; $\bar{\kappa}_2(M^{-1}(x^*)H(x^*)) = 7.39$.

Fig. 5. Tensor problem with c = 0.5. (left) Modulus of the eigenvalues of $H(x^*)$. (right) Modulus of the eigenvalues of $M^{-1}(x^*)H(x^*)$.

canonical tensor decomposition

optimal sAA(1) convergence factor gives good estimate of

AA(1) factor

Fig. S.5. Comparison of the nonstationary AA(1)-ALS, NGMRES(1)-ALS, and Nesterov-Convergence Acceleration for Nonline ALS methods with theoretical asymptotic convergence factors for optimal stationary methods, for a tensor problem with c=0.9. The vertical axis represents $f(x_k)-f(x^*)$, the convergence towards the minimum value of f(x).

(7) conclusions

- we have introduced stationary AA and NGMRES, which have computable r-linear convergence factors
- we have derived results on optimal weights for sAA(1) and sNGMRES(1), which allow to understand how and to which extent sAA(1) can improve the spectrum of $\mathbf{q}'(\mathbf{x}^*)$ to obtain faster r-linear converge
- AA or NGMRES with finite window size show similar r-linear convergence improvements as sAA and sNGMRES, but the AA/NGMRES r-linear convergence factors are so far too hard to determine or bound

$$\rho_{ADMM,\mathbf{x}^*} = \rho(\mathbf{q}'(\mathbf{x}^*))$$

$$\rho_{AA-ADMM,\mathbf{x}^*} = ?$$

$$\rho_{sAA-ADMM,\mathbf{x}^*}^* = \rho(\mathbf{\Psi}'(\mathbf{x}^*))$$

conclusions

- the AA/NGMRES r-linear convergence factor (bound) for <u>finite window</u> <u>size</u> is expected to depend on the spectral properties of $\mathbf{q}'(\mathbf{x}^*)$ (like for GMRES; e.g. field of values, normality, complex eigenvalues, ...)
- for *infinite window size*, from [1]:

Conjecture 5.1. Consider $GMRES(\infty)$ applied to linearized fixed-point problem (5.1) with fixed point x^* . If the GMRES residuals satisfy

$$\frac{\|r_k\|}{\|r_0\|} \le c_1 \rho^k \quad \text{for any } r_0,$$

then the nonlinear residuals of applying $NGMRES(\infty)$ and $AA(\infty)$ to the nonlinear fixed-point iteration (1.1) associated with (5.1) satisfy

$$\frac{\|r_k\|}{\|r_0\|} \le c_2 \rho^k,$$

provided x_0 is chosen such that the nonlinear methods converge to x^* , and x_0 is chosen sufficiently close to x^* .

$$(I - q'(x^*)) x = (I - q'(x^*)) x^*$$

interesting GMRES results for linear ADMM iteration with infinite

window size:

Zhang, R.Y., White, J.K.: GMRES-accelerated ADMM for quadratic objectives. SIAM Journal on Optimization **28**(4), 3025–3056 (2018)

Thanks! Questions?

- [1] "On the Asymptotic Linear Convergence Speed of Anderson Acceleration, Nesterov Acceleration, and Nonlinear GMRES", De Sterck and He, SIAM J. Sci. Comp. 2021 (and arXiv:2007.01996)
- [2] "On the Asymptotic Linear Convergence Speed of Anderson Acceleration Applied to ADMM", Wang, He and De Sterck, submitted, arXiv:2007.02916
- Matlab code, acceleration of ALS for tensor problems:
 https://github.com/hansdesterck/nonlinear-preconditioning-for-optimization
- Python code, acceleration of ADMM: https://github.com/dw-wang/AA-ADMM

