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Abstract

Consider the polynomial mapping defined by the projection to the first coordinate on a real, smooth
and compact hypersurface. The critical points of this mapping in generic coordinates have several
applications in real algebraic geometry. We provide bit complexity estimates for computing them.

Generic coordinates are obtained by applying a randomly chosen linear change of variables to the
polynomial defining the hypersurface. The coordinates are sufficiently generic when the Jacobian matrix
of the system under study has full rank at the critical points and when the number of critical points
is finite. We have proven a new quantitative extension of Thom’s weak transversality theorem [1]. By
applying this extension, we are able to choose sufficiently generic changes of variables with arbitrarily
high probability.

1 Introduction

1.1 Notation and problem statement

Let f ∈ Q[X1, . . . , Xn] be squarefree with total degree d and V (f) smooth. Let ϑ ∈ Qn2
be a linear change

of variables that we apply to f obtaining fϑ(x) = f(ϑx). We provide bit size estimates for computing the
critical points x ∈ V (fϑ) ∩ Rn of the projection (x1, . . . , xn) 7→ x1 denoted by Π1 : Cn → C.

The point x is a critical point if dim Π1(TxV (fϑ)) = 0 with TxV (fϑ) denoting the Zariski-tangent space
defined by the equations ∂g

∂X1
(x)v1 + . . .+ ∂g

∂Xn
(x)vn = 0, for all polynomials g ∈ I(V (fϑ)). Hence, a point

is a critical point when the dimension of the tangent space at the point drops from 1 to 0. We show that

the set of all critical points is defined by the vanishing of the polynomials fϑ, ∂f
ϑ

∂X2
, . . . , ∂fϑ

∂Xn
. A critical value

is the image of a critical point. Points that are not critical points are called regular points and a regular
value is the image of a regular point.

For a = u
v in Q− {0} the height of a is the maximum of log(|u|) and log(|v|), where u ∈ Z and v ∈ N

are coprime. If v is the minimal common denominator of all non zero coefficients of f , then the height of
f is defined as the maximum of the logarithms of v and of the absolute values of the coefficients of vf .

1.2 Main results

Notice that we are computing the critical points in generic coordinates by applying the linear change of
variables ϑ to the input polynomial f . These critical points have applications in real algebraic geometry
which we discuss in Section 2.1.

Our main result is the following theorem.
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Theorem 1 Suppose that f satisfies deg f ≤ d, height f ≤ s, with f given by a straight-line program Γ of
size L with integer constants of height at most b. There exists a randomized algorithm that takes L, d, and
s as input and produces a zero-dimensional parameterization of the critical points

V (fϑ,
∂fϑ

∂X2
, . . . ,

∂fϑ

∂Xn
),

with probability at least 18/32, where ϑ ∈ Qn2
is a linear change of variables chosen randomly by the

algorithm. Otherwise the algorithm either produces a subset of the critical points or FAIL. In any case, the
algorithm uses

O∼(Lb+ d2n(s+ d)(L+ d))

boolean operations.

Hence, the algorithm is Monte Carlo and can error on one side by producing a proper subset of the critical
points. Running the algorithm k times gives a list of outputs among which the highest cardinality set
includes all critical points with probability at least 1− (14/32)k.

The algorithm requires some genericity properties which essentially imply that the Jacobian of the

system of polynomials fϑ, ∂f
ϑ

∂X2
, . . . , ∂fϑ

∂Xn
has full rank at the critical points and that the number of critical

points is finite. If ϑ is sufficiently generic, these properties will hold. In Section 3.2, we show how to choose
ϑ so that the properties hold with arbitrarily high probability.

2 Motivation

2.1 Applications

2.1.1 Computing roadmaps of semi-algebraic sets

Computing the real critical points of Π1 in generic coordinates is an important step in computing a roadmap
of a semi-algebraic set, as for instance in [1]. A roadmap R of a semi-algebraic set S is a curve with non-
empty and connected intersection with each connected component of S. Hence, roadmaps can be used for
deciding connectivity properties in semi-algebraic sets while reducing these problems to computations in
dimension 1. Roadmaps were introduced by Canny for solving motion planning problems in robotics [6].

2.1.2 More applications in real algebraic geometry

The set of real critical points of Π1 in generic coordinates is finite and gives one point on each connected
component of V (f) ∩ Rn, assuming V (f) ∩ Rn is smooth and compact. Hence, computing the critical
points determines an upper bound on the number of connected components and determines whether real
solutions exist [2, 3].

2.2 Bit complexity

Bit complexity provides a more realistic model of computation compared to algebraic complexity, which
only counts each operation at unit cost. Bit estimates provide more information for both time and space
resources that are needed in practice.

3 Methods

3.1 Genericity properties

We assume our input polynomial f is squarefree with V (f) ∩ Rn smooth and compact. Given these
assumptions, the critical points are defined by the vanishing of f, ∂f

∂X2
, . . . , ∂f

∂Xn
. When ϑ is sufficiently

generic, the Jacobian of the system of polynomials fϑ, ∂f
ϑ

∂X2
, . . . , ∂fϑ

∂Xn
will have full rank at all x ∈ V (fϑ)∩Rn.

It then follows by the Jacobian criterion [4, Theorem 16.19] that
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1. the set of critical points in generic coordinates V (fϑ, ∂f
ϑ

∂X2
, . . . , ∂fϑ

∂Xn
) is finite, and

2. the ideal 〈fϑ, ∂fϑ

∂X2
, . . . , ∂fϑ

∂Xn
〉 is radical.

The algorithm requires that properties 1 and 2 hold.

Definition. We say that ϑ ∈ Qn2
is lucky if the Jacobian of the system of polynomials fϑ, ∂f

ϑ

∂X2
, . . . , ∂fϑ

∂Xn

has full rank at all x ∈ V (fϑ) ∩ Rn. Otherwise we say that ϑ is unlucky.

3.2 Transverslaity results

We prove the following theorem.

Theorem 2 The unlucky changes of variables are contained in a hypersurface of degree at most (d+ 1)n.

Using Theorem 2 and the Schwartz-Zippel lemma, we then go on and prove the following corollary.

Corollary 1 Fix S ⊂ Q with |S| ≥ ε−1(d+ 1)n and ε > 0. Then for ϑ randomly chosen from Sn2
,

P r[ϑ is lucky ] ≥ 1− ε.

3.3 Explanation and summary of proof techniques for Theorem 2

3.3.1 Finding a hypersurface ∆ that contains the unlucky changes of variables

Let Φ : Cn × Cd̃ → Cm be a polynomial mapping where n, d̃, and m are positive integers. Assume the

total degree of Φ is bounded by an integer d. For ϑ ∈ Cd̃, let Φϑ : Cn → Cm be the induced mapping
x 7→ Φ(x, ϑ). It follows from Thom’s weak transversality [1] that, when Φ is transverse to 0, which means

that 0 is a regular value of Φ, an open dense set U ⊂ Cd̃ exists with the property that for ϑ ∈ U , Φϑ is
transverse to 0. Hence, if ϑ is such that 0 is not a regular value of Φϑ then ϑ is contained in the hypersurface

∆ = Cd̃ −U .
Put X = Φ−1(0) and denote by π : Cn × Cd̃ → Cd̃ the projection (x, ϑ) 7→ ϑ. The classical proof of

Thom’s weak transversality goes by showing that if ϑ ∈ Cd̃ is such that 0 is not a regular value of Φϑ

then ϑ is a critical value of π|X . It then follows from Sard’s lemma [1] that the critical values of π|X are
contained in a hypersurface.

We take d̃ to be n2 and m to be n − i + 1, and we take Φ to be the polynomial mapping (x, ϑ) 7→
(fϑ(x), ∂f

ϑ

∂X2
(x), . . . , ∂fϑ

∂Xn
(x)) so that Φ−1(0) defines the critical points in generic coordinates. We show that

0 is a regular value of Φ and thus by Thom’s weak transversality there exists a hypersurface ∆ ⊂ Cn2
with

the property that, if ϑ ∈ Cn2
is such that 0 is not a regular value of Φϑ, so that there exists an x ∈ V (fϑ)

where jacxΦϑ does not have full rank and therefore ϑ is unlucky, then ϑ is contained in the hypersurface
∆.

3.3.2 Bounding the degree of the hypersurface ∆

We first bound the degree of an algebraic set ∆
′

containing the critical points (x, ϑ) of π|X . We show that

deg ∆ ≤ deg ∆
′ ≤ (d+ 1)n.

We bound the degree of ∆
′

as follows. Denote by M the matrix of polynomials

M =

[
jac(π|X)
jac(Φ)

]
.
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We prove that M(x, ϑ) has full rank d̃ + m if and only if (x, ϑ) is a regular point of π|X . Hence, ∆
′

is
defined by the minors of M(x, ϑ) of order d̃+m. Next, we observe that

M(x, ϑ) =

[
jac(x,ϑ)(π|X)

jac(x,ϑ)(Φ)

]
=

[
0
n×d̃ I

d̃

jac(x,ϑ)(Φ)

]
=

[
0
n×d̃ I

d̃

jac(x,ϑ)(Φ)[; 1, n] jac(x,ϑ)(Φ)[;n+ 1, d̃]

]
,

and we show that ∆
′

is also defined by the minors of the sub-matrix J = jac(x,ϑ)(Φ)[; 1, n] of order
min{n,m}. We then introduce Lagrange multipliers L = (L1, . . . , Lm) and let G1, . . . , Gn be the equations
defined by the Lagrange system

[L1, . . . , Lm] J(x, ϑ) = [G1(x, ϑ, L), . . . , Gn(x, ϑ, L)] = [0, . . . , 0].

We let Z denote the algebraic set defined by the vanishing of G1, . . . , Gn, and show that

deg ∆
′ ≤ deg Z ≤ (d+ 1)n.

4 Conclusion

4.1 Summary of main results

We have provided bit size estimates for computing the critical points x ∈ V (fϑ) ∩ Rn of the projection
Π1 : Cn → C. These critical points arise in several applications in real algebraic geometry. Furthermore,
we have proven a new quantitative extension of Thom’s weak transversality theorem. By applying this
extension, we are able to choose sufficiently generic changes of variables with arbitrarily high probability.

4.2 Next steps and further work

Our ultimate goal is to determine the bit complexity of the algorithm in [1] which computes a roadmap of
a semi-algebraic set. This algorithm requires some additional genericity properties. We need to prove that
these additional properties hold for generic cases and we need to develop quantitative versions of these
statements. Furthermore, we need to remove the compactness assumption using the methods from [5].
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