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David R. Cheriton School of Computer Science, University of Waterloo

Bit complexity for critical point computation in smooth
and compact real hypersurfaces

Jesse Elliott and Éric Schost
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Problem statement

Let f ∈ Q[X1, . . . , Xn] be squarefree with total degree d and V (f) ∩Rn

smooth and compact. Let A ∈ Qn2 be a linear change of variables that
we apply to f obtaining fA(x) = f(Ax). We provide bit size estimates
for computing the critical points in generic coordinates x ∈ V (fA) ∩Rn

of the projection Π1 : (x1, . . . , xn) ∈ Cn 7→ x1 ∈ C. The critical points are

defined by the vanishing of fA, ∂f
A

∂X2
, . . . , ∂f

A

∂Xn
.

An example of the critical points

Let f = X2
1 + X2

2 + X2
3 − 1 and consider

V (X2
1 + X2

2 + X2
3 − 1) ⊂ C3.

The real critical points of Π1 are defined by

X2
1 + X2

2 + X2
3 − 1 = X2 = X3 = 0

and thus define the algebraic set

V (f,X2, X3) = V (f,
∂f

∂X2
,
∂f

∂X3
).

Applications

Computing the real critical points of Π1 in generic coordinates is an
important step in computing a roadmap of a semi-algebraic set, as for
instance in [1]. Roadmaps are used for deciding connectivity properties
in semi-algebraic sets.

The set of real critical points of Π1 in generic coordinates is finite and
gives one point on each connected component of V (f) ∩Rn, assuming
V (f)∩Rn is smooth and compact. Hence, computing the critical points
determines an upper bound on the number of connected components
and determines whether real solutions exist [2, 3].

Generic coordinates

When A is sufficiently generic, the Jacobian of the system of polynomials

fA, ∂f
A

∂X2
, . . . , ∂f

A

∂Xn
will have full rank at all x ∈ V (fA)∩Rn. It then follows by the Ja-

cobian criterion [4, Theorem 16.19] that the set of critical points V (fA, ∂f
A

∂X2
, . . . , ∂f

A

∂Xn
)

is finite, and the ideal 〈fA, ∂f
A

∂X2
, . . . , ∂f

A

∂Xn
〉 is radical. In this case we say A is good.

Otherwise we say that A is bad.

Theorem 1. The bad changes of variables are contained in a
hypersurface ∆ ⊂ Cn2 of degree at most (d+ 1)n.

Corollary 2. Fix S ⊂Q with |S| ≥ ε−1(d+ 1)n and ε > 0. Then for
A in Sn

2
chosen randomly, Pr[A is good ] ≥ 1− ε.

Bit complexity

Theorem 3. Suppose that f satisfies deg f ≤ d, height f ≤ s, with f given
by a straight-line program Γ of size L with integer constants of height at most
b. There exists a randomized algorithm that takes Γ, d, and s as input and
produces a zero-dimensional parameterization of the critical points

V (fA,
∂fA

∂X2
, . . . ,

∂fA

∂Xn
),

with probability at least 9/16, where A ∈ Qn2 is a linear change of variables
chosen randomly by the algorithm. Otherwise the algorithm either produces
a subset of the critical points or FAIL. In any case, the algorithm uses

O∼(Lb+ d2n(s+ d)(L+ d))

boolean operations.

Running the algorithm k times gives a list of outputs among which the highest
cardinality set includes all critical points with probability at least 1− (7/16)k.

Transversality

We prove Theorem 1 by developing a quantitative extension of Thom’s weak
transversality [1, Proposition B.3], specialized to the particular case of transver-
sality to a point which can be rephrased entirely in terms of critical and regular
values: f is transverse to a point {a} if and only if {a} is a regular value of f,
where regular /critical values are images of respectively regular /critical points.

Let Φ : Cn×Cd̃ → Cm be a polynomial mapping where n, d̃, and m are positive
integers. Assume the total degree of Φ is bounded by an integer d. For A ∈ Cd̃,
let ΦA : Cn→ Cm be the induced mapping x 7→ Φ(x,A).

Theorem 4. Suppose that 0 is a regular value of Φ. Then there exists a
hypersurface ∆ ⊂ Cd̃ of degree bounded by (d+ 1)n for which, if A ∈ Cd̃ −∆
then 0 is a regular value of ΦA.

We use Theorem 4 to show that ∆ contains that bad changes of variables.

An example of Thom’s weak transversality

Let Φ(x, ϑ1, ϑ2) = x2 +ϑ2
1 +ϑ2

2− 1 so that Φ−1(0)
is a smooth variety which implies that Φ is trans-
verse to 0. Now, Thom’s theorem tells us that,
for a generic choice of A = [A1, A2], the poly-
nomial Φ(x,A1, A2) = ΦA(x) is transverse to 0.
ΦA(x) is univariate and transverse to zero when
x ∈ Φ−1

A (0)⇒ gradxΦA 6= 0. Hence, when square-
free. The green points correspond to a generic
choice of A1 and A2 whereas the red point corre-
sponds to a double root which is an unlucky choice.

The bad ϑ are contained in ∆

We let Φ be the mapping (x, ϑ) 7→ (fϑ(x), ∂f
ϑ

∂X2
(x), . . . , ∂f

ϑ

∂Xn
(x)) so that

Φ−1(0) defines the critical points in generic coordinates.

We show that 0 is a regular value of Φ and thus, by Theorem 4, a
hypersurface ∆ ⊂ Cn2 exists with the property that, if A ∈ Cn2 −∆,

then 0 is a regular value of ΦA, which means that jacxΦA has full rank
for all x ∈ V (fA) and therefore A is good. Hence, ∆ contains the bad
changes of variables.

Proving Theorem 4

Put X = Φ−1(0) and let π : (x, ϑ) ∈ Cn ×Cd̃ 7→ ϑ ∈ Cd̃.

The classical proof of Thom’s weak transversality goes by showing that
if ϑ ∈ Cd̃ is such that 0 is not a regular value of Φϑ then ϑ is a critical
value of π|X . It then follows from Sard’s lemma [1] that the critical

values of π|X are contained in a hypersurface ∆ ⊂ Cd̃.

We first bound the degree of an algebraic set ∆
′
containing the critical

points (x, ϑ) of π|X. We show that deg ∆ ≤ deg ∆
′ ≤ (d+ 1)n.

Let M =

[
jac(π|X)
jac(Φ)

]
. We prove that M(x, ϑ) has full rank d̃ + m if

and only if (x, ϑ) is a regular point of π|X . Hence, ∆
′
is defined by the

minors of M(x, ϑ) of order d̃+m.

Next, we observe that

M(x, ϑ) =

[
jac(x,ϑ)(π|X)
jac(x,ϑ)(Φ)

]
=

[
0
d̃×n I

d̃

jac(x,ϑ)(Φ)[; 1, n] jac(x,ϑ)(Φ)[;n+ 1, d̃]

]
,

and we show that ∆
′
is also defined by the minors of the sub-matrix J =

jac(x,ϑ)(Φ)[; 1, n] of order m. We then introduce Lagrange multipliers
L = (L1, . . . , Lm) and let G1, . . . , Gn be the equations defined by the
Lagrange system

[L1, . . . , Lm] J(x, ϑ) = [G1(x, ϑ, L), . . . , Gn(x, ϑ, L)].

We let Z denote the algebraic set defined by the vanishing of G1, . . . , Gn,

and show that deg ∆ ≤ deg ∆
′ ≤ degZ ≤ (d+ 1)n.
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