David R. Cheriton School of Computer Science, University of Waterloo

Problem statement

Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be squarefree with total degree d and $V(f) \cap \mathbb{R}^{n}$ smooth and compact. Let $A \in \mathbb{Q}^{n^{2}}$ be a linear change of variables that we apply to f obtaining $f^{A}(x)=f(A x)$. We provide bit size estimates for computing the critical points in generic coordinates $x \in V\left(f^{A}\right) \cap \mathbb{R}^{n}$ of the projection $\Pi_{1}:\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mapsto x_{1} \in \mathbb{C}$. The critical points are defined by the vanishing of $f^{A}, \frac{\partial f^{A}}{\partial X_{2}}, \ldots, \frac{\partial f^{A}}{\partial X_{n}}$.

An example of the critical points

Let $f=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1$ and consider
$V\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1\right) \subset \mathbb{C}^{3}$.
The real critical points of Π_{1} are defined by
$X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1=X_{2}=X_{3}=0$
and thus define the algebraic set
$V\left(f, X_{2}, X_{3}\right)=V\left(f, \frac{\partial f}{\partial X_{2}}, \frac{\partial f}{\partial X_{3}}\right)$.

Applications

Computing the real critical points of Π_{1} in generic coordinates is an important step in computing a roadmap of a semi-algebraic set, as for instance in [1]. Roadmaps are used for deciding connectivity properties in semi-algebraic sets.
The set of real critical points of Π_{1} in generic coordinates is finite and gives one point on each connected component of $V(f) \cap \mathbb{R}^{n}$, assuming $V(f) \cap \mathbb{R}^{n}$ is smooth and compact. Hence, computing the critical points determines an upper bound on the number of connected components and determines whether real solutions exist $[2,3]$.

Generic coordinates

When A is sufficiently generic, the Jacobian of the system of polynomials $f^{A}, \frac{\partial f^{A}}{\partial X_{2}}, \ldots, \frac{\partial f^{A}}{\partial X_{n}}$ will have full rank at all $x \in V\left(f^{A}\right) \cap \mathbb{R}^{n}$. It then follows by the Jacobian criterion [4, Theorem 16.19] that the set of critical points $V\left(f^{A}, \frac{\partial f^{A}}{\partial X_{2}}, \ldots, \frac{\partial f^{A}}{\partial X_{n}}\right)$ is finite, and the ideal $\left\langle f^{A}, \frac{\partial f^{A}}{\partial X_{2}}, \ldots, \frac{\partial f^{A}}{\partial X_{n}}\right\rangle$ is radical. In this case we say A is good. Otherwise we say that A is bad.

Theorem 1. The bad changes of variables are contained in a hypersurface $\Delta \subset \mathbb{C}^{n^{2}}$ of degree at most $(d+1)^{n}$.
Corollary 2. Fix $S \subset \mathbb{Q}$ with $|S| \geq \epsilon^{-1}(d+1)^{n}$ and $\epsilon>0$. Then for
A in $S^{n^{2}}$ chosen randomly, $\operatorname{Pr}[A$ is good $] \geq 1-\epsilon$.

Bit complexity

Theorem 3. Suppose that f satisfies $\operatorname{deg} f \leq d$, height $f \leq s$, with f given by a straight-line program Γ of size L with integer constants of height at most b. There exists a randomized algorithm that takes Γ, d, and s as input and produces a zero-dimensional parameterization of the critical points

$$
V\left(f^{A}, \frac{\partial f^{A}}{\partial X_{2}}, \ldots, \frac{\partial f^{A}}{\partial X_{n}}\right),
$$

with probability at least $9 / 16$, where $A \in \mathbb{Q}^{n^{2}}$ is a linear change of variables chosen randomly by the algorithm. Otherwise the algorithm either produces a subset of the critical points or FAIL. In any case, the algorithm uses
$O^{\sim}\left(L b+d^{2 n}(s+d)(L+d)\right)$
boolean operations.
Running the algorithm k times gives a list of outputs among which the highest cardinality set includes all critical points with probability at least $1-(7 / 16)^{k}$.

Transversality

We prove Theorem 1 by developing a quantitative extension of Thom's weak transversality [1, Proposition B.3], specialized to the particular case of transversality to a point which can be rephrased entirely in terms of critical and regular values: f is transverse to a point $\{a\}$ if and only if $\{a\}$ is a regular value of f, where regular /critical values are images of respectively regular /critical points. Let $\Phi: \mathbb{C}^{n} \times \mathbb{C}^{\tilde{d}} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping where n, \tilde{d}, and m are positive integers. Assume the total degree of Φ is bounded by an integer d. For $A \in \mathbb{C}^{\widetilde{d}}$, let $\Phi_{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be the induced mapping $x \mapsto \Phi(x, A)$.

Theorem 4. Suppose that 0 is a regular value of Φ. Then there exists a hypersurface $\Delta \subset \mathbb{C}^{\widehat{d}}$ of degree bounded by $(d+1)^{n}$ for which, if $A \in \mathbb{C}^{\widetilde{d}}-\Delta$ then 0 is a regular value of Φ_{A}.
We use Theorem 4 to show that Δ contains that bad changes of variables.

An example of Thom's weak transversality

Let $\Phi\left(x, \vartheta_{1}, \vartheta_{2}\right)=x^{2}+\vartheta_{1}^{2}+\vartheta_{2}^{2}-1$ so that $\Phi^{-1}(0)$ is a smooth variety which implies that Φ is trans-
verse to 0 . Now, Thom's theorem tells us that, verse to 0 . Now, Thom s theorem tells us that,
for a generic choice of $A=\left[A_{1}, A_{2}\right]$, the polyfor a generic choice of $A=\left[A_{1}, A_{2}\right]$, the poly-
nomial $\Phi\left(x, A_{1}, A_{2}\right)=\Phi_{A}(x)$ is transverse to 0 . $\Phi_{A}(x)$ is univariate and transverse to zero when $\Phi_{A} \in \Phi_{A}^{-1}(0) \Rightarrow \operatorname{grad}_{x} \Phi_{A} \neq 0$. Hence, when square$x \in \Phi_{A}^{1}(0) \Rightarrow \operatorname{grad}_{x} \Phi_{A} \neq 0$. Hence, when square-
free. The green points correspond to a generic choice of A_{1} and A_{2} whereas the red point correchoice of A_{1} and A_{2} whereas the red point corre-
sponds to a double root which is an unlucky choice.

The bad ϑ are contained in \triangle

We let Φ be the mapping $(x, \vartheta) \mapsto\left(f^{\vartheta}(x), \frac{\partial f^{\vartheta}}{\partial X_{2}}(x), \ldots, \frac{\partial f^{\vartheta}}{\partial X_{n}}(x)\right)$ so that $\Phi^{-1}(0)$ defines the critical points in generic coordinates.
We show that 0 is a regular value of Φ and thus, by Theorem 4, a hypersurface $\Delta \subset \mathbb{C}^{n^{2}}$ exists with the property that, if $A \in \mathbb{C}^{n^{2}}-\Delta$, then 0 is a regular value of Φ_{A}, which means that jac ${ }_{x} \Phi_{A}$ has full rank for all $x \in V\left(f^{A}\right)$ and therefore A is good. Hence, Δ contains the bad changes of variables

Proving Theorem 4

Put $X=\Phi^{-1}(0)$ and let $\pi:(x, \vartheta) \in \mathbb{C}^{n} \times \mathbb{C}^{\widetilde{d}} \mapsto \vartheta \in \mathbb{C}^{\tilde{d}}$.
The classical proof of Thom's weak transversality goes by showing that if $\vartheta \in \mathbb{C}^{\tilde{d}}$ is such that 0 is not a regular value of Φ_{ϑ} then ϑ is a critical value of $\left.\pi\right|_{X}$. It then follows from Sard's lemma [1] that the critical values of $\left.\pi\right|_{X}$ are contained in a hypersurface $\Delta \subset \mathbb{C}^{\tilde{d}}$.
We first bound the degree of an algebraic set Δ^{\prime} containing the critical points (x, ϑ) of $\left.\pi\right|_{X}$. We show that $\operatorname{deg} \Delta \leq \operatorname{deg} \Delta^{\prime} \leq(d+1)^{n}$.
Let $M=\left[\begin{array}{c}\operatorname{jac}\left(\left.\pi\right|_{X}\right) \\ \operatorname{jac}(\Phi)\end{array}\right]$. We prove that $M(x, \vartheta)$ has full rank $\widetilde{d}+m$ if and only if (x, ϑ) is a regular point of $\left.\pi\right|_{X}$. Hence, Δ^{\prime} is defined by the minors of $M(x, \vartheta)$ of order $\widetilde{d}+m$.
Next, we observe that
$M(x, \vartheta)=\left[\begin{array}{c}\operatorname{jac}_{(x, \vartheta)}\left(\left.\pi\right|_{X}\right) \\ \operatorname{jac}_{(x, \vartheta)}(\Phi)\end{array}\right]=\left[\begin{array}{cc}\mathbf{0}_{\widetilde{d} \times n} & \mathbf{I}_{\widetilde{d}} \\ \operatorname{jac}_{(x, \vartheta)}(\Phi)[; 1, n] & \operatorname{jac}_{(x, \vartheta)}(\Phi)[; n+1, \widetilde{d}]\end{array}\right]$,
and we show that Δ^{\prime} is also defined by the minors of the sub-matrix $J=$ $\operatorname{jac}_{(x, \vartheta)}(\Phi)[; 1, n]$ of order m. We then introduce Lagrange multipliers $L=\left(L_{1}, \ldots, L_{m}\right)$ and let G_{1}, \ldots, G_{n} be the equations defined by the Lagrange system

$$
\left[L_{1}, \ldots, L_{m}\right] J(x, \vartheta)=\left[G_{1}(x, \vartheta, L), \ldots, G_{n}(x, \vartheta, L)\right]
$$

We let \mathfrak{Z} denote the algebraic set defined by the vanishing of G_{1}, \ldots, G_{n}, and show that $\operatorname{deg} \Delta \leq \operatorname{deg} \Delta^{\prime} \leq \operatorname{deg} \mathfrak{Z} \leq(d+1)^{n}$.

References

[1] M. Safey El Din and É. Schost. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. Journal of the ACM $63(6): 1-14,2017$
[2] B. Bank, M. Ci wi, Jeis and G.M. Mbakop Pobr varietios. 2017. solving: the hypersurface case. Journal of Complexity, 13(1):5-27, 1997
Solving: the hypersurface case. Journal of Complexity, 13(1):5-27, 1997 .
3] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient real elimination. [3] B. Bank, M. Giusti, J. Heintz, and G-M-M. Mba
Mathematische Zeitschrift, 238(1):115-144, 2001.
44] D. Eisenbud. Commutative Algebra With a View Toward Algebraic Geometry, volume 150 of

