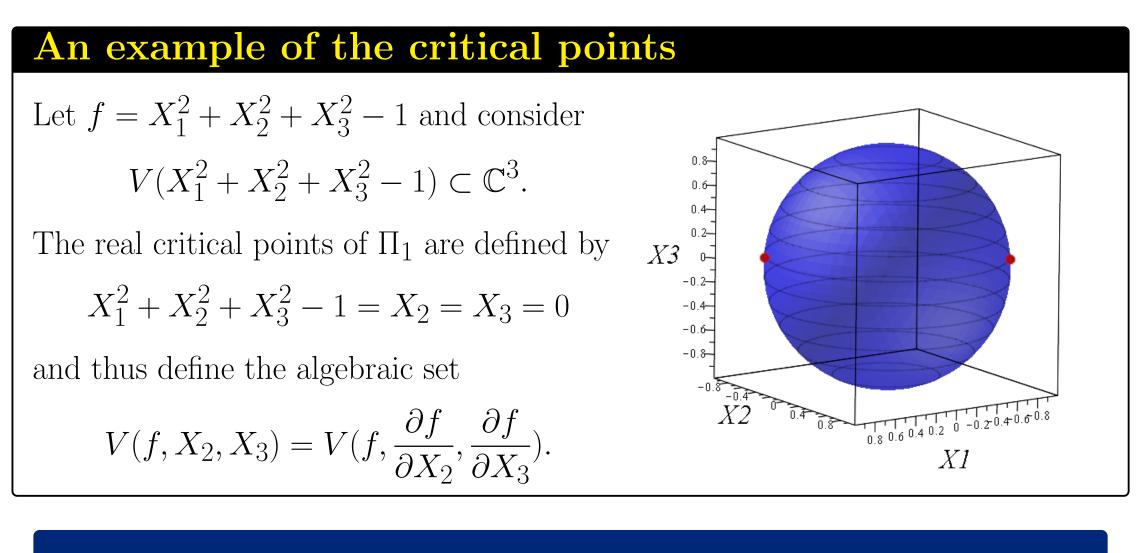


SYMBOLIC COMPUTATION GROUP

Problem statement

Let $f \in \mathbb{Q}[X_1, \ldots, X_n]$ be squarefree with total degree d and $V(f) \cap \mathbb{R}^n$ smooth and compact. Let $A \in \mathbb{Q}^{n^2}$ be a linear change of variables that we apply to f obtaining $f^A(x) = f(Ax)$. We provide bit size estimates for computing the critical points in generic coordinates $x \in V(f^A) \cap \mathbb{R}^n$ of the projection $\Pi_1 : (x_1, \ldots, x_n) \in \mathbb{C}^n \mapsto x_1 \in \mathbb{C}$. The critical points are defined by the vanishing of $f^A, \frac{\partial f^A}{\partial X_2}, \dots, \frac{\partial f^A}{\partial X_n}$.



Applications

Computing the real critical points of Π_1 in generic coordinates is an important step in computing a roadmap of a semi-algebraic set, as for instance in [1]. Roadmaps are used for deciding connectivity properties in semi-algebraic sets.

The set of real critical points of Π_1 in generic coordinates is finite and gives one point on each connected component of $V(f) \cap \mathbb{R}^n$, assuming $V(f) \cap \mathbb{R}^n$ is smooth and compact. Hence, computing the critical points determines an upper bound on the number of connected components and determines whether real solutions exist [2, 3].

Generic coordinates

When A is sufficiently generic, the Jacobian of the system of polynomials $f^A, \frac{\partial f^A}{\partial X_2}, \ldots, \frac{\partial f^A}{\partial X_n}$ will have full rank at all $x \in V(f^A) \cap \mathbb{R}^n$. It then follows by the Jacobian criterion [4, Theorem 16.19] that the set of critical points $V(f^A, \frac{\partial f^A}{\partial X_2}, \dots, \frac{\partial f^A}{\partial X_n})$ is finite, and the ideal $\langle f^A, \frac{\partial f^A}{\partial X_2}, \dots, \frac{\partial f^A}{\partial X_n} \rangle$ is radical. In this case we say A is good. Otherwise we say that A is bad.

Theorem 1. The bad changes of variables are contained in a hypersurface $\Delta \subset \mathbb{C}^{n^2}$ of degree at most $(d+1)^n$. **Corollary 2.** Fix $S \subset \mathbb{Q}$ with $|S| \ge \epsilon^{-1}(d+1)^n$ and $\epsilon > 0$. Then for

A in S^{n^2} chosen randomly, $Pr[A \text{ is good }] \geq 1 - \epsilon$.

BIT COMPLEXITY FOR CRITICAL POINT COMPUTATION IN SMOOTH AND COMPACT REAL HYPERSURFACES

Jesse Elliott and Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Bit complexity

Theorem 3. Suppose that f satisfies deg $f \le d$, height $f \le s$, with f given by a straight-line program Γ of size L with integer constants of height at most b. There exists a randomized algorithm that takes Γ, d , and s as input and produces a zero-dimensional parameterization of the critical points

$$V(f^A, \frac{\partial f^A}{\partial X_2}, \dots, \frac{\partial f^A}{\partial X_n}),$$

with probability at least 9/16, where $A \in \mathbb{Q}^{n^2}$ is a linear change of variables chosen randomly by the algorithm. Otherwise the algorithm either produces a subset of the critical points or FAIL. In any case, the algorithm uses

$$O^{\sim}(Lb+d^{2n}(s+d)(L+d))$$

boolean operations.

Running the algorithm k times gives a list of outputs among which the highest cardinality set includes all critical points with probability at least $1 - (7/16)^k$.

Transversality

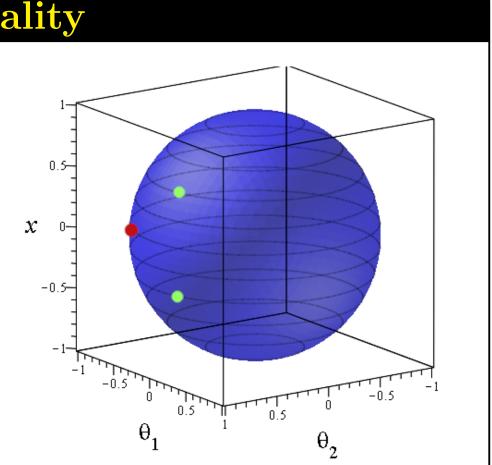
We prove Theorem 1 by developing a quantitative extension of Thom's weak transversality [1, Proposition B.3], specialized to the particular case of transversality to a point which can be rephrased entirely in terms of critical and regular values: f is transverse to a point $\{a\}$ if and only if $\{a\}$ is a regular value of f, where regular /critical values are images of respectively regular /critical points. Let Φ : $\mathbb{C}^n \times \mathbb{C}^{\widetilde{d}} \to \mathbb{C}^m$ be a polynomial mapping where n, \widetilde{d} , and m are positive integers. Assume the total degree of Φ is bounded by an integer d. For $A \in \mathbb{C}^d$, let $\Phi_A : \mathbb{C}^n \to \mathbb{C}^m$ be the induced mapping $x \mapsto \Phi(x, A)$.

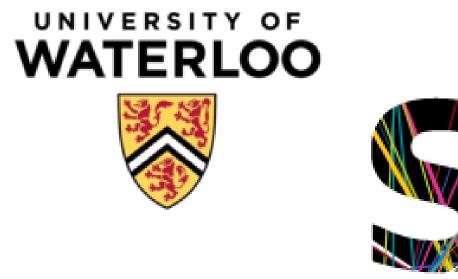
Theorem 4. Suppose that 0 is a regular value of Φ . Then hypersurface $\Delta \subset \mathbb{C}^d$ of degree bounded by $(d+1)^n$ for which, then 0 is a regular value of Φ_A .

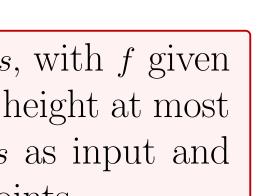
We use Theorem 4 to show that Δ contains that bad changes of variables.

An example of Thom's weak transversality

Let $\Phi(x, \vartheta_1, \vartheta_2) = x^2 + \vartheta_1^2 + \vartheta_2^2 - 1$ so that $\Phi^{-1}(0)$ is a smooth variety which implies that Φ is transverse to 0. Now, Thom's theorem tells us that, for a generic choice of $A = [A_1, A_2]$, the polynomial $\Phi(x, A_1, A_2) = \Phi_A(x)$ is transverse to 0. $\Phi_A(x)$ is univariate and transverse to zero when $x \in \Phi_A^{-1}(0) \Rightarrow \operatorname{grad}_x \Phi_A \neq 0$. Hence, when squarefree. The green points correspond to a generic choice of A_1 and A_2 whereas the red point corresponds to a double root which is an unlucky choice.







there exists a , if
$$A \in \mathbb{C}^{\widetilde{d}} - \Delta$$

The bad ϑ are contained in Δ

We let Φ be the mapping $(x,\vartheta) \mapsto (f^{\vartheta}(x), \frac{\partial f^{\vartheta}}{\partial X_2}(x), \dots, \frac{\partial f^{\vartheta}}{\partial X_n}(x))$ so that $\Phi^{-1}(0)$ defines the critical points in generic coordinates.

We show that 0 is a regular value of Φ and thus, by Theorem 4, a hypersurface $\Delta \subset \mathbb{C}^{n^2}$ exists with the property that, if $A \in \mathbb{C}^{n^2} - \Delta$, then 0 is a regular value of Φ_A , which means that $jac_x \Phi_A$ has full rank for all $x \in V(f^A)$ and therefore A is good. Hence, Δ contains the bad changes of variables.

Proving Theorem 4

Put $X = \Phi^{-1}(0)$ and let $\pi : (x, \vartheta) \in \mathbb{C}^n \times \mathbb{C}^{\widetilde{d}} \mapsto \vartheta \in \mathbb{C}^{\widetilde{d}}$.

The classical proof of Thom's weak transversality goes by showing that if $\vartheta \in \mathbb{C}^d$ is such that 0 is not a regular value of Φ_{ϑ} then ϑ is a critical value of $\pi|_X$. It then follows from Sard's lemma [1] that the critical values of $\pi|_X$ are contained in a hypersurface $\Delta \subset \mathbb{C}^d$.

We first bound the degree of an algebraic set Δ' containing the critical points (x, ϑ) of $\pi|_X$. We show that deg $\Delta \leq \deg \Delta' \leq (d+1)^n$.

Let $M = \begin{bmatrix} \operatorname{jac}(\pi|X) \\ \operatorname{jac}(\Phi) \end{bmatrix}$. We prove that $M(x, \vartheta)$ has full rank $\widetilde{d} + m$ if and only if (x, ϑ) is a regular point of $\pi|_X$. Hence, Δ' is defined by the minors of $M(x, \vartheta)$ of order d + m. Next, we observe that

$$M(x,\vartheta) = \begin{bmatrix} \operatorname{jac}_{(x,\vartheta)}(\pi|_X) \\ \operatorname{jac}_{(x,\vartheta)}(\Phi) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{\tilde{d} \times n} \\ \operatorname{jac}_{(x,\vartheta)}(\Phi) \end{bmatrix} \text{ jac}$$

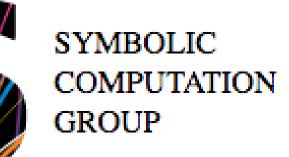
and we show that Δ' is also defined by the minors of the sub-matrix J = $jac_{(x,\vartheta)}(\Phi)[;1,n]$ of order m. We then introduce Lagrange multipliers $L = (L_1, \ldots, L_m)$ and let G_1, \ldots, G_n be the equations defined by the Lagrange system

$$[L_1, \ldots, L_m] J(x, \vartheta) = [G_1(x, \vartheta, L), \ldots, G_n]$$

We let \mathfrak{Z} denote the algebraic set defined by the vanishing of G_1, \ldots, G_n , and show that $\deg \Delta \leq \deg \Delta' \leq \deg \mathfrak{Z} \leq (d+1)^n$.

References

[1] M. Safey El Din and É. Schost. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. Journal of the ACM 63(6):1-48, 2017. [2] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient real equation solving: the hypersurface case. Journal of Complexity, 13(1):5–27, 1997. [3] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient real elimination. Mathematische Zeitschrift, 238(1):115–144, 2001. [4] D. Eisenbud. Commutative Algebra With a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.



 $\mathbf{L}_{\widetilde{d}} \\ \mathrm{LC}_{(x,\vartheta)}(\Phi)[;n+1,\widetilde{d}] \right],$

 $[x,\vartheta,L)].$