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Problem statement

Problem 1
Suppose that F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]

p is a sequence of polynomials.

Suppose that the ideal ⟨f1, . . . , fp⟩ is radical and that V = V (F ) ⊂ Cn is smooth
and equidimensional with dimension n− p.

Compute at least one point in each connected component of V (F ) ∩ Rn.

Applications
Used in higher level algorithms.

Decide if V (F ) ∩ Rn has solutions.

Determine an upper bound on the number of connected components of V (F ) ∩ Rn.
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Introduction

Starting point
An algorithm by [Safey El Din, Schost, 2003]

▶ Uses random changes of variables that are proven to generically ensure certain
desirable geometric properties.

▶ Cost given in an algebraic complexity model.

Contributions
We determine the bit complexity and error probability.
We provide a quantitative analysis of the genericity properties:

▶ Weak transversality.
▶ Noether normalization for polar varieties.

Future work
Reuse the techniques in the analysis of other algorithms.

▶ Randomized algorithms for deciding connectivity queries on smooth and bounded real
hypersurfaces.
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Main result

Let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]
p with deg(fi) ≤ d and ht(fi) ≤ b. Suppose

⟨f1, . . . , fp⟩ is radical and V = V (F ) ⊂ Cn is smooth and equidimensional with
dimension n− p.

▶ The height of a polynomial f ∈ Z[X1, . . . , Xn] is the maximum of the logarithms of
the absolute values of the coefficients of f .

Theorem
For 0 < ϵ < 1, there exists a randomized algorithm that takes F and ϵ as input and
returns a finite set including at least one point on each connected component of
V (F ) ∩ Rn.

The algorithm succeeds with probability at least 1− ϵ, and otherwise returns a
proper subset of the points or FAIL.

The algorithm uses
O∼(d3n+2p+1(log 1/ϵ)(b+ log 1/ϵ))

bit operations. The polynomials in the output have degree at most dn+p, and height

O∼(dn+p+1(b+ log 1/ϵ)).
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Main result

The algorithm uses
O∼(d3n+2p+1(log 1/ϵ)(b+ log 1/ϵ))

bit operations. The polynomials in the output have degree at most dn+p, and height

O∼(dn+p+1(b+ log 1/ϵ)).

Roughly optimal: equal to the output bit-size times the algebraic complexity.

Close to matching what is implemented in practice, in Maple, available through
RAGlib.
A different algorithm with bit complexity dO(n) [Basu, Pollack, Roy, 2003].

▶ This algorithm is general and makes no assumptions on the input polynomials.
▶ Given the generality of the algorithm, the constant in the exponent is large

(not used in practice).

7 / 48



Outline

1 Computing one point in each connected component of a smooth real algebraic set
Problem statement
Polar varieties
The algorithm
Weak transversality
Quantitative genericity statements
Proving the main result

2 Deciding connectivity queries in smooth and bounded real hypersurfaces
Problem statement
Other work on roadmap computation
Estimating the height of the output

8 / 48



Polar varieties

Let TxV denote the Zariski-tangent space to V at x ∈ V . And for
i ∈ {1, . . . , n− p+ 1}, denote by πi the projection

Cn → Ci

(x1, . . . , xn) 7→ (x1, . . . , xi).

The i-th polar variety

W (i, V ) := {x ∈ V | dimπi(TxV ) < i}

is the set of critical points of πi on V .
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Determinantal modeling of polar varieties

Let jac(F, i) denote the truncated Jacobian matrix
∂f1

∂Xi+1
. . . ∂f1

∂Xn

...
...

∂fp
∂Xi+1

. . .
∂fp
∂Xn

 .

▶ W (i, V (F )) = {x ∈ Cn | F (x) = 0 and rank(jacx(F, i)) < p} .

Let Mi,1, . . . ,Mi,Si be the p-minors of jac(F, i).

▶ W (i, V (F )) = V
(
F,Mi,1, . . . ,Mi,Si

)
.

When V = V (F ) = V (f) is a hypersurface, then

W (i, V (f)) = V

(
f,

∂f

∂Xi+1
, . . . ,

∂f

∂Xn

)
.
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Example

Let f = X2
1 +X2

2 +X2
3 − 1 and consider

V = V (X2
1 +X2

2 +X2
3 − 1) ⊂ C3.

The critical points of the projection

π2 : (x1, x2, x3) 7→ (x1, x2)

on V (f) are defined by V
(
f, ∂f

∂X3

)
. Hence,

the polar variety is defined by those points
where

X2
1 +X2

2 +X2
3 − 1 = X3 = 0. Image from

[Safey El Din, Schost, 2017]
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Lagrangian modeling of polar varieties

Due to the relations between minors of a matrix, the equations(
F,Mi,1, . . . ,Mi,Si

)
are in general not a complete intersection.

For both the polynomial system algorithm we use, and an effective Nullstellensatz
application, we want equations that define a complete intersection.

By introducing new indeterminates (L1, . . . , Lp), we can model polar varieties as
projections of Lagrange systems:

V

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)
.

The existence of a solution characterizes the set where jac(F, i) is rank deficient.
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Example

Consider f = X2
1 +X2

2 +X2
3 − 1 and V (X2

1 +X2
2 +X2

3 − 1) ⊂ C3, then

jac(X2
1 +X2

2 +X2
3 − 1, 2) = 2X3.

The Lagrangian modeling gives

V (X2
1 +X2

2 +X2
3 − 1, LX3, L− 1) = V (X2

1 +X2
2 − 1, X3, L− 1).

The equations on the right hand side are a lexicographically ordered Gröebner basis
of the ideal ⟨X2

1 +X2
2 +X2

3 − 1, LX3, L− 1⟩.
πX

(
V (X2

1 +X2
2 − 1, X3, L− 1)

)
describes W (2, V (f)) :
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The algorithm

If we apply a generic change of coordinates A ∈ Zn×n to F = (f1, . . . , fp) :

FA =
(
f1(AX), . . . , fp(AX)

)
,

then W (i, V (FA) is known to be equidimensional of dimension (i− 1) or empty
[Bank, Giusti, Heintz, Mbakop, 1997]
and to be in Noether position.

It then suffices to choose a generic σ = (σ1, . . . , σn−p) in Zn−p and solve the
systems defined by

X1 − σ1, . . . , Xi−1 − σi−1,
(
FA,MA

i,1, . . . ,M
A
i,Si

)
for i = 1, . . . , n− p+ 1.

▶ Computes the intersection of W (i, FA) with the fiber π−1
i (σ1, . . . , σi−1).

They all admit finitely many solutions.

The union of their solution sets contains one point on each connected component of
V (F ) ∩ Rn.
[Safey El Din, Schost, 2003]
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The algorithm

Since the equations (
F,Mi,1, . . . ,Mi,Si

)
are in general not a complete intersection, we instead use the Lagrangian modeling
of polar varieties and solve the equations

X1 − σ1, . . . , Xi−1 − σi−1,

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)
,

for i = 1, . . . , n− p+ 1, and then compute the projections of each solution set on
the X-space.
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The algorithm

Main contributions

We analyze precisely what conditions on our change of coordinates A ∈ Zn×n

guarantee success.

We revisit key ingredients in the proofs given in
[Bank, Giusti, Heintz, Mbakop, 1997],
[Safey El Din, Schost, 2003]
and we give quantitative versions of these results, bounding the degrees of the
hypersurfaces we have to avoid.

To solve the equations

X1 − σ1, . . . , Xi−1 − σi−1,

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)

we use the algorithm in [Safey El Din, Schost, 2018] for which a complete bit
complexity analysis is available.
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Weak transversality

Thom’s weak transversality theorem
Generalizes Sard’s lemma: the set of critical values of a smooth function Rn → Rm

have measure zero.
▶ Algebraic versions exist for which the sets of critical values are contained in algebraic

sets in the codomain.

We develop a quantitative version which allows us to bound the degrees of the
hypersurfaces we have to avoid.

The bad parameters show up as the critical values of a smooth function.
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Weak transversality

Let n, s, and m be positive integers, with m ≤ n, and let

Φ : Cn × Cs → Cm

be a mapping defined by polynomials in C[X,Θ].

For ϑ in Cs, let

Φϑ : Cn → Cm

x 7→ Φ(x,ϑ).

A point z is a regular value of Φ iff for all (y,ϑ) with Φ(y,ϑ) = z, the Jacobian of
Φ has full rank at (y,ϑ).

Proposition (weak transversality)

Suppose that 0 is a regular value of Φ. Then there exists a non-zero polynomial
Γ ∈ C[Θ] of degree at most dm+n such that for ϑ in Cs, if Γ(ϑ) ̸= 0, then 0 is a
regular value of Φϑ.

Our contribution is the degree estimate.
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Example

Consider f ∈ C[X1, X2], squarefree, deg(f) ≤ d and V (f) ⊂ C2 smooth.

Let the mapping Φ : C2 × C → C2 be defined by

Φ(X1, X2,Θ) = (X1 −Θ, f(X1, X2)).

The Jacobian of Φ has rank two at any point in Φ−1(0):

jac(Φ) =

[
1 0 −1

∂f/∂X1 ∂f/∂X2 0

]
.

▶ The assumptions of the proposition apply.
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Example (continued)

Thus Γ ∈ C[Θ] exists, with deg(Γ) ≤ d4, such that when Γ(ϑ) ̸= 0 then 0 is a
regular value of

Φϑ(X1, X2) = (X1 − ϑ, f(X1, X2)).

The Jacobian of Φϑ has rank two at any point in Φ−1
ϑ (0) :

jac(Φϑ) =

[
1 0

∂f/∂X1 ∂f/∂X2

]
.

By the Jacobian Criterion, the ideal (X1 − ϑ, f(X1, X2)) is radical; equivalently,
f(ϑ,X2) is squarefree.

▶ For all ϑ in C except at most d4 values.

Note that using the discriminant of f with respect to X2 produces the same result.

This examples illustrates how we apply the result when solving the equations in the
main algorithm.

22 / 48



Example (continued)

Compare with the equations solved in the main algorithm

In the example, Φ : C2 × C → C2 is defined by the polynomials

X1 −Θ, f(X1, X2).

Compare with the equations we solve in the main algorithm:
(for i = 1 . . . , n− p+ 1)

X1 − σ1, . . . , Xi−1 − σi−1,

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)
.

Following the same steps as in the example, we bound the degree of a polynomial
such that if σ is not a zero then these equations have finitely many solutions.
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Genericity properties

Let F = (f1, . . . , fp) ∈ C[X1, . . . , Xn]
p.

For i = 1, . . . , n− p+ 1,

F satisfies Hi if
1 W (i, V (F )) is either empty or (i− 1)-equidimensional.
2 The Jacobian matrix of the polynomials(

F, [L1 · · ·Lp] · jac(F, i)
)

has full rank at any (x, l) that cancels equations.
3 W (i, V (F )) is either empty or in Noether position for πi−1.
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Noether position

An equidimensional algebraic set X ⊂ Cn of dimension d is in Noether position for
the projection

πd : (x1, . . . , xn) 7→ (x1, . . . , xd)

when the extension

C[X1, . . . , Xd] → C[X1, . . . , Xn]/I(X)

is integral.
Consequently, for any x ∈ Cd, the fiber X ∩ π−1

d (x) has dimension zero (so it is
finite and not empty).

Figure 1: X is in Noether position for π1 on the left, but not on the right.
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Genericity properties

Let F = (f1, . . . , fp) ∈ C[X1, . . . , Xn]
p.

For i = 1, . . . , n− p+ 1,

F satisfies Hi if
1 W (i, V (F )) is either empty or (i− 1)-equidimensional.
2 The Jacobian matrix of the polynomials(

F, [L1 . . . Lp] · jac(F, i)
)

has full rank at any (x, l) that cancels equations.
3 W (i, V (F )) is either empty or in Noether position for πi−1.

Note that W (i, V (FA)) may not equal W (i, V (F ))A, as, for instance, their dimensions
may vary.
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Genericity properties

For i = 1, . . . , n− p+ 1, if F satisfies Hi, then given σ in Zi−1, we further say

F and σ satisfy H
′

i if
1 0 is a regular value of the polynomials(

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · ·Lp] · jac(F, i)
)
,

in the open set defined by (L1 · · ·Lp) ̸= (0 · · · 0).
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Genericity properties

For i = 1, . . . , n− p+ 1, if F satisfies Hi, and F and σ satisfy H ′
i, then given

u ∈ Cp we further say

u satisfies H
′′

i if
1 u is such that the projections on the X-space of the solutions of

X1 − σ1, . . . , Xi−1 − σi−1,

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)
(1)

are the solutions of

X1 − σ1, . . . , Xi−1 − σi−1,
(
F,Mi,1, . . . ,Mi,Si

)
. (2)
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Genericity statements

Proposition
There exists a polynomial

∆1 ∈ C[(Aj,k)1≤j,k≤n]

of degree at most 5n3(2d)5n such that if A ∈ Cn×n does not cancel ∆1, then A is
invertible and FA = F (AX) satisfies Hi :

1 W (i, V (F )) is either empty or (i− 1)-equidimensional.
2 The Jacobian matrix of (

F, [L1 · · ·Lp] · jac(F, i)
)

has full rank at any (x, l) that cancels equations.
3 W (i, V (F )) is either empty or in Noether position for πi−1.

For all i ∈ {1, . . . , n− p+ 1}.
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Genericity statements

Proposition
Suppose that F = (f1, . . . , fp) satisfies Hi for all i = 1, . . . , n− p+ 1.

There exists a polynomial
∆2 ∈ C[S1, . . . , Si−1]

of degree at most nd4n such that if σ ∈ Ci−1 does not cancel ∆2, then F and σ
satisfy H ′

i:
1 0 is a regular value of the polynomials(

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · ·Lp] · jac(F, i)
)
,

in the open set defined by [L1 · · ·Ls] ̸= [0 · · · 0].
For all i ∈ {1, . . . , n− p+ 1}.
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Genericity statements

Proposition

Suppose that F satisfies Hi and F and σ satisfy H
′
i , for all i ∈ {1, . . . , n− p+ 1}.

There exists a polynomial
∆3 ∈ C[T1, . . . , Tp]

of degree at most n(n(d− 1))n such that if u ∈ Cp does not cancel ∆3, then u
satisfies Hi

′′:
1 u is such that the projections on the X-space of the solutions of

X1 − σ1, . . . , Xi−1 − σi−1,

(
F, [L1 · · ·Lp] · jac(F, i),

p∑
i=1

uiLi − 1

)
(1)

are the solutions of

X1 − σ1, . . . , Xi−1 − σi−1,
(
F,Mi,1, . . . ,Mi,Si

)
. (2)

For all i ∈ {1, . . . , n− p+ 1}.
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Proving the main result

1 The algorithm first randomly chooses A ∈ Zn×n. Using the degree bound for ∆1,
the entries of A are chosen from a sufficiently large set so that by the
Schwartz–Zippel lemma

P[∆1(A) = 0] ≤ 1− ϵ.

2 Next, the algorithm chooses σ ∈ Zn−p at random and we again quantify using the
Schwartz–Zippel lemma: we bound

P[∆2(σ) = 0 | ∆1(A) ̸= 0] ≤ 1− ϵ.

3 Finally, the algorithm randomly chooses u ∈ Zp and we quantify once more using
the Schwartz–Zippel lemma: we bound

P[∆3(u) = 0 | ∆1(A)∆2(σ) ̸= 0] ≤ 1− ϵ.
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Problem statement

Roadmaps
A roadmap R for an algebraic set X is a curve with non-empty and connected
intersection with all connected components of X.

Applications
Deciding connectivity queries.

Robot motion planning.

Problem 2
Let f be a squarefree polynomial in Q[X1, . . . , Xn] such that V (f) has a finite
number of singular points and V (f) ∩ Rn is bounded.

Compute a roadmap R of V (f) ∩ Rn.
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Introduction

Starting point
Another algorithm by [Safey El Din, Schost, 2011].

▶ Also uses random changes of variables proven to generically ensure weak transversality
and Noether position.

▶ Recursive algorithm based on calculating polar curves of polar varieties.
▶ Cost given in an algebraic complexity model:

(nd)O(n1.5) operations in Q.

Contributions (ongoing)

Determining the bit complexity and error probability.
Giving a quantitative analysis of the genericity properties.

▶ Weak transversality (reusing techniques from previous analysis).
▶ Noether normalization for polar varieties (reusing techniques from previous analysis).
▶ Additional genericity properties.
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Another genericity property

Let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]
p with degree fi ≤ d. Suppose the F defines

a radical ideal and V (F ) is equidimensional of dimension n− p with a finite number
of singular points and V (F ) ∩ Rn bounded.

For i = 2, . . . , (n− p+ 3)/2,

F satisfies Gi if
W (1,W (i, V (F ))) is finite.

▶ Proven to hold generically in [Safey El Din, Schost, 2011].

Proposition
There exists a hypersurface ∆ ⊂ C[(Aj,k)1≤j,k≤n] with degree at most

n(p+ n)n(2d)p+n

with the property that if ∆(A) ̸= 0 then FA = F (AX) satisfies Gi, for all
i ∈ {2, . . . , (n− p+ 3)/2}.
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), deterministic, semi-algebraic sets, no assumptions
[Basu, Pollack, Roy, 1999]
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), deterministic, semi-algebraic sets, no assumptions
[Basu, Pollack, Roy, 1999]

(nd)O(n1.5), randomized, real hypersurfaces, smooth and bounded
[Safey El Din, Schost, 2011]

dO(n1.5), deterministic, real algebraic sets, no assumptions
[Basu, Roy, Safey El Din, Schost, 2014]
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), deterministic, semi-algebraic sets, no assumptions
[Basu, Pollack, Roy, 1999]

(nd)O(n1.5), randomized, real hypersurfaces, smooth and bounded
[Safey El Din, Schost, 2011]

dO(n1.5), deterministic, real algebraic sets, no assumptions
[Basu, Roy, Safey El Din, Schost, 2014]

(nd)O
∼(n), deterministic, real hypersurfaces, no assumptions

[Basu, Roy, 2014]
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), deterministic, semi-algebraic sets, no assumptions
[Basu, Pollack, Roy, 1999]

(nd)O(n1.5), randomized, real hypersurfaces, smooth and bounded
[Safey El Din, Schost, 2011]

dO(n1.5), deterministic, real algebraic sets, no assumptions
[Basu, Roy, Safey El Din, Schost, 2014]

(nd)O
∼(n), deterministic, real hypersurfaces, no assumptions

[Basu, Roy, 2014]

(nd)O(n log d), real algebraic sets, smooth and bounded
[Safey El Din, Schost, 2017]
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Other work on roadmap computation

dO(n4), deterministic, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), randomized, semi-algebraic sets, no assumptions
[Canny, 1987]

dO(n2), deterministic, semi-algebraic sets, no assumptions
[Basu, Pollack, Roy, 1999]

(nd)O(n1.5), randomized, real hypersurfaces, smooth and bounded
[Safey El Din, Schost, 2011]

dO(n1.5), deterministic, real algebraic sets, no assumptions
[Basu, Roy, Safey El Din, Schost, 2014]

(nd)O
∼(n), deterministic, real hypersurfaces, no assumptions

[Basu, Roy, 2014]

(nd)O(n log d), real algebraic sets, smooth and bounded
[Safey El Din, Schost, 2017]

(nd)O(n log d), real algebraic sets, smooth (unbounded)
[Prebet, Safey El Din, Schost, 2022]
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Height of the output

Algebraic complexity and degree of the output: (nd)O(n1.5).

Expect height to be (nd)O(n1.5).

Difficulties
Need to solve polynomial equations with a special shape.
Two blocks of variables subject to different constraints:

▶ X1, . . . , Xi, high degree and bit-size.
▶ Xi+1, . . . , Xn, low degree and bit-size.

Classical arithmetic Bézout gives height (nd)O(n2).

Solutions
Multi-projective height techniques that involve the arithmetic Chow ring
[Krick, Sombra, D’Andrea, 2012]
precisely allow you to handle the two blocks separately.

We get height (nd)O(n1.5).
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Thank you.
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