Definition X1.1 (Implication $A \Rightarrow B$ table	efinition X1.1 (Implication $A \Rightarrow B$). The truth value for ble					
	A	B	$A \Rightarrow B$			
	T	T				
	T	F				
	F	T		1		

We refer to A as the

and B as the

 $F \mid F$

Example X1.2 (Implication). If you are in Ontario, then you are in Canada.

Question: What truth values for A, B are inconsistent with $A \Rightarrow B$?

Answer:

Statement X1.3. If x is a positive number, then x + 10 is a positive number.

Question: What is the hypothesis of this statement?

Answer:

Question: What is the conclusion?

Answer:

Question: Consider a negative number x. Does Statement X1.3 tell us whether the value of x + 10 is positive or negative?

Answer:

Example X1.4. Both the implications

and

are

Note: see Remarks on text p 28.

Negating Implications

Question: What is the negation of $A \Rightarrow B$?

A	B	$A \Rightarrow B$	$\neg(A \Rightarrow B)$
T	T	T	
T	F	F	_
F	T	Т	_
F	F	Т	_

Answer:

Try Exercise X1.5. Write down the negation of the following:

(a) If 7 is odd and $5 \le 6$, then 24 is a perfect square.

(b) If 7 is odd, then $5 \le 6$ or 24 is a perfect square.

- (a)
- (b)

Example X1.6. Complete the truth table to determine whether $((A \Rightarrow C) \lor (B \Rightarrow C)) \equiv ((A \land B) \Rightarrow C).$

A	B	C	$A \Rightarrow C$	$B \Rightarrow C$	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$A \wedge B$	$((A \land B) \Rightarrow C)$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

Try After Class

Try Exercise X1.7. Construct a truth table for $A \Rightarrow (B \land C)$.

Definition X1.8 (Converse).

Try Exercise X1.9 (Converse). Write the converse of the following statement. Statement C: For all $x \in \mathbb{R}$, if x > 0 then $x^2 > 0$. Converse of C:

Question: Is Statement C true or false?

Answer:

Question: Is the converse of C true or false?

Answer:

Example X1.10 $(A \Rightarrow B \text{ does not tell us whether } B \Rightarrow A)$.

Definition X1.11 (Contrapositive). The <u>contrapositive</u> of $A \Rightarrow B$ is

Try Exercise X1.12 (Contrapositive). Write the contrapositive of "If you are in Ontario, then you are in Canada". Contrapositive:

Example X1.13 (Implication equivalent to its Contrapositive). Show that $(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$.

 Definition
 X1.14 ($A \Leftrightarrow B$). The definition of \underline{A} if and only if \underline{B} , written
 or

 is
 $\overline{A} \ \overline{B} \ \overline{A} \Leftrightarrow \overline{B}$ $\overline{T} \ \overline{T}$ \overline{T}
 $\overline{T} \ \overline{T}$ \overline{T} \overline{T} \overline{T}
 $\overline{T} \ \overline{F}$ \overline{F} \overline{F} \overline{F}

 Note that
 Note that
 $\overline{T} \ \overline{T}$ $\overline{T} \ \overline{T}$ $\overline{T} \ \overline{T}$

Statement X1.15. For all integers x, x is even if and only if $x^2 + 5x + 6$.

Try Exercise X1.16. Is Statement X1.15 is true or false? Convince me.

Try Exercise X1.17. Determine whether the statement $(P \land \neg Q) \lor (R \Leftrightarrow P)$ is equivalent to $Q \Leftrightarrow R$.