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Abstract—Historically, sea ice concentration has been mea-
sured through use of passive microwave sensors, as well as human
interpretation of synthetic-aperture radar (SAR). Although pas-
sive microwave data is processed automatically, it suffers from
poor spatial resolution and the higher frequency channels are
sensitive to weather conditions. Deep learning has demonstrated
its ability to perform complex, accurate, analysis of images;
here, we apply deep learning to estimate ice concentration from
SAR scenes. We developed a deep convolutional neural network
(CNN) that predicts sea ice concentration from SAR, trained
upon passive microwave data. The model achieves a 5.24%/7.87 %
error on its train and test set respectively. To assess the real-
world applicability, we performed an independent validation
on 18 SAR scenes (from two distinct geographical regions),
not previously seen during training or test. Comparing against
human generated ice analysis charts, we achieved an L1 error of
0.2059, competitive with passive microwave (11 = 0.1863) for
the Canadian Arctic Archipelago. For the Gulf of Saint Lawrence
region, we achieved an L1 error of 0.2653, significantly better
than the passive microwave result (£, = 0.3593). By using novel
techniques for model training, as well as training entirely upon
passive microwave data, we present an accessible and robust
method of developing similar systems for processing SAR
Our results suggest that with further post processing, CNNs are
accurate and robust enough to be used for operational tasks.

Index Terms—Sea Ice, Neural Networks, Synthetic Aperture
Radar, Remote Sensing, Image Processing

I. INTRODUCTION

Sea ice concentration is the proportion of a given area in the
ocean that is covered by sea ice. Satellite sensors are the key
instruments through which observations are made of sea ice
concentration in the Arctic. These sensors differ in terms of
their imaging properties, which impacts the spatial resolution
of the data as well as the sensitivity of the data to atmospheric
and surface conditions. The calculation of ice concentration
from satellite imagery uses knowledge of physical properties
of the observed signal, such as brightness and temperature
from passive microwave data [[1]] or albedo from an optical
sensor [2]]. The observed signal can then be used to deduce if
a given pixel is likely ice-covered, open water, or a mixture
of the two, which would correspond to an intermediate ice
concentration.

The most widely used sea ice concentration estimates are
those from passive microwave radiometers, due to their relative
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insensitivity to atmospheric moisture (at low frequencies), and
solar illumination. However, a drawback of these observations
is the trade-off between the spatial resolution and atmospheric
contamination. The smallest available instrument field of view
(IFOV) on a passive microwave sensor that is typically used
for sea ice imaging is 3 x 5 km for the 89GHz channels on the
AMSR?2 sensor. At this frequency the satellite measurement
is sensitive to atmospheric water vapour, cloud liquid water,
wind-roughening of open water regions, and variable sea
ice emissivity/temperature leading to difficulties accurately
estimating ice concentration in the marginal ice zone (MIZ).
[, 13} 4]. As an alternative to passive microwave imagery,
data from active microwave sensors, such as synthetic aperture
radars (SARs) can be used to provide information of the ice
conditions during all weather conditions. The spatial resolution
of these images is much higher (approx 50m) than that of
passive microwave data. However, it is more challenging to
use SAR imagery for the task of ice concentration estimation
than passive microwave imagery. This is due to the sensitivity
of the signal to the imaging geometry and small-scale details of
the surface conditions (e.g., variations in moisture, salinity and
roughness). Typically, SAR images are manually interpreted
at operational ice services by image analysis experts. This
provides information on ice type and ice concentration over
regions of the image, or polygons, that the analysts consider
as having relatively homogeneous conditions through visual
inspection of the imagery.

Preparation of image analysis charts is time-consuming, and
it is highly desirable to automate this process. This issue is one
of concern for operational ice centres due to increasing vol-
umes of SAR data from the Sentinel missions, and anticipated
data volumes from the RADARSAT constellation mission
(RCM). Even at the present time, the large volume of SAR
imagery precludes the preparation of an image analyses chart
for every SAR image. The images are usually only generated
for specific regions and seasons where there is known ship
traffic. This may not seem like a significant limitation, but
it means that the data are underutilised. For example, SAR
sea ice imagery is not routinely used in operational data
assimilation systems, unlike sea ice concentration from passive
microwave sensors, which is widely used.

The task of estimating sea ice concentration from SAR
imagery is an excellent example of one that can benefit from
recent developments in deep learning, in particular the use of
deep convolutional neural networks (CNNs). A CNN makes
use of the convolution operation to learn features from images
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Figure 1.

Geographic locations of SAR images used in the study. Blue symbols are images used in training, black symbols are test images, red symbols are

evaluation images in the Canadian Arctic Archipelago, green symbols are evaluation images in the Gulf of Saint Lawrence.

and uses these features in a classification or regression task.
A typical CNN consists of sequential layers of convolutional
filters. It is common to place down-sampling operators after
each convolutional layer to reduce the amount of information
in the network. The outputs from this series of filtering
operations are weighted to evaluate their relative importance
with regards to the regression or classification task. This
is achieved through one or several fully connected layers,
typically with a rectified linear activation. The output of this
weighting is the classification or regression result, either a
probability vector or a scalar output. A broad review of deep
neural networks as well as their applications and performance
can be found in [5]].

The method presented in this paper follows and extends
two proof of concept studies [6, [7] that successfully esti-
mated sea ice concentration from SAR using a CNN with
ice concentration from image analysis charts as training data.
This type of training data is very common in methods for
supervised classification or regression from SAR sea ice
imagery [8, 9L [10} [11}, 12} 13} [14} [15} 16} [17]. However, the
training data, image analysis charts, may not be well-suited
to task of learning ice concentration. These charts contain a
single ice concentration label for a region considered by an ice
analyst as containing homogeneous ice conditions. The data
are categorical, with labels in increments of 10% [10] or 20%
[18]. When using these data in regression, it is commonly
assumed that they are continuous valued [10} [12]. Another
challenge with the use of image analysis charts is the fact that
they are not available over a wide range of seasons or regions,
as mentioned earlier.

For these reasons, the present study investigates the use

of passive microwave sea ice concentration to provide the
labels for the neural network approach. This type of data is
readily available on a daily basis over the entire Arctic region.
However, one challenge with using this sea ice concentration
is that passive microwave data is noisier than image analysis
charts. This, in combination, with the noise present in SAR
images, can lead to poor results. In the present study this
is addressed using a novel approach to train the CNN. The
proposed method is shown to be robust to noise through the
use of a two-step training procedure that can be considered an
example of curriculum learning [[19] in the sense that the CNN
is given a slightly easier problem to solve initially, followed by
a more difficult one. It is also similar to the approach used in
[20]], where a two-step procedure was used to classify remote
sensing images of urban areas.

The specific research questions addressed in this study are
as follows:

1) Can we obtain a reasonable estimate of sea ice con-
centration from dual-polarization SAR imagery using a
CNN with passive microwave sea ice concentration as
training data?

2) How well does our method work when applied to images
that contain ice conditions outside of the train/test data
set?

3) What is the added value of ice concentration from SAR
as compared to that from passive microwave data?

We evaluate the sea ice concentration (SIC) estimates from
our CNN on a set of SAR images covering a wide range of
geographic locations and seasons, including the challenging
conditions of freeze up, and demonstrate SIC errors on two



independent evaluation data-sets that are comparable to, or
better than, those from other studies. The data used in the study
are described in Section II, methodology and experimental set-
up are given in Sections III and IV and results and conclusions
are in Sections V and VI respectively.

II. DATA
A. SAR imagery

The image dataset used for training and testing consists
of 24 RADARSAT2 SAR scenes (Table [I). An additional 18
RADARSAT2 SAR scenes were used for evaluation of the
CNN SIC (Table [I). Each scene consists of an HH (hori-
zontal transmit polarization, horizontal receive polarization),
and an HV (horizontal transmit polarization, vertical receive
polarization) image. The images were obtained at an imaging
frequency of 5.404 GHz over incidence angles ranging from
20 to 49 degrees in ScanSAR wide mode. The swath width
is approximately 500km with nominal pixel spacing of 50m.
These images are of the type currently used by operational
ice services to produce ice charts for navigation. The available
SAR images were captured from the regions shown in Figure
[I] Image acquisition dates, central latitude and longitude, and
general ice conditions for each image are given in Table [I|
Note the SAR images were obtained over a wide range of ice
conditions, covering regions of first-year and multi-year ice,
with some images during the freeze-up and melt seasons. This
lends itself to a challenging problem, because both active and
passive microwave sea ice signatures (e.g., typical values of
brightness temperature or backscatter for a given ice condition)
overlap with open water signatures over such a wide range
of ice conditions [1, 21, 22. The SAR images were geo-
referenced to the earth’s surface using code specifically written
for this purpose following the documentation provided in [23]].
Selected geo-referenced images were compared with those
geo-referenced using the European Space Agency toolbox,
SNAP, and were found to be equivalent.

B. Passive microwave sea ice concentration data

Sea ice concentration estimated using the Artist Sea ice
(ASI) algorithm [24] was used to provide the labels for the
CNN. The ASI algorithm fits the polarisation difference of the
89GHz channels to ice and water tie points assuming a cubic
relationship. In the ASI algorithm, weather filters based on the
lower frequency channels of the AMSR-E sensor are applied
to remove spurious ice over open water that can result due
to atmospheric water vapour or cloud moisture, which have
spectral signatures close to those of sea ice. The objective
of the first filter is to remove spurious ice concentration
values due to cloud water. This is done by setting the ice
concentration to zero for all points for which the 36.5/18 GHz
gradient ratio (vertical polarization) is greater than 0.045. The
objective of the second weather filter is to remove spurious
ice concentration values due to water vapour, which is done
by setting points for which the 23.8/18.7 gradient ratio is
greater than 0.04. This weather filters has been found to
remove ice concentrations less than 15% [24]. This means,
these weather filters often lead to significant reduction of sea

ice concentration in the marginal ice zone, as can be seen when
results are compared visually with other data sources, such as
SAR imagery, optical data or ship observations [25] [2, 26].
The ASI SIC has errors that are comparable to other passive
microwave retrieval algorithms, and was chosen because of its
high spatial resolution (6.25km when brightness temperatures
from AMSR-E are used, and 3.25km when brightness temper-
atures from AMSR?2 are used) in comparison to other passive
microwave SIC products (typical spatial resolution 10-25km).
Since we are interested in navigable waters around Canada,
such as the Labrador Coast and Canadian Arctic Archipelago,
this high spatial resolution was critical to resolve the regions
in narrow channels and bays.

C. Image Analysis Charts

For evaluation of the CNN output, SIC from operational
image analysis charts is used. To prepare these charts, ice an-
alysts draw polygons indicating areas where the ice conditions
appear to be homogeneous. An ice concentration label is then
assigned to each homogeneous region given in increments of
0.1. The preparation of image analyses is subjective [27]], with
errors in the position of the ice edge and polygon boundaries
(£ 500m) as well as possible errors due to the interpretation
of the SAR imagery. However, image analysis charts are
considered an accurate source of information pertaining to
sea ice conditions corresponding to SAR imagery [28]. For
the present study rasterized image analysis charts were used,
with a pixel spacing of ~ Skm.

III. METHODOLOGY
A. Working with Large Scale Information

The ScanSAR wide images used consist of approximately
10,000 x 10,000 pixels, over an order of magnitude greater
than the images that typical CNNs are designed to use. Thus
we cannot process an image in its entirety without down-
sampling, a process that would obliterate many important
details. In addition, a single label or regression result for
the scene as a whole is of no interest. The images contain
measurements of radar back-scatter, with each measurement
corresponding precisely to a spatial position on the surface of
the earth. It is the mapping from the back-scatter at a spatial
location to a geophysical quantity, (e.g., ice concentration),
that is of interest. To produce a map of this geophysical
quantity, a process is required that enables processing of entire
images, without significant decrease in spatial resolution or
reduction in quality of results. Due to the speckle noise present
in SAR images, both back-scatter and spatial context are
needed to provide information of what is being imaged. Hence,
pixelwise processing of the image information is not optimal.

Following [6], we utilised a patchwise processing method,
where overlapping, square sections of the scene are extracted
and processed individually. After processing, the results were
re-combined and joined into a regression result for the entire
scene. This method is similar to two dimensional convolution,
but instead of performing matrix multiplication, each image
patch is evaluated with the trained deep convolutional neural
network (CNN) to estimate the ice concentration. Following



RADARSAT-2 IMAGE DATA USED TO TRAIN AND TEST THE MODEL. FYI DENOTES FIRST-YEAR ICE, MYI DENOTES MULTIYEAR ICE, MIZ DENOTES

Table T

MARGINAL ICE ZONE AND OW DENOTES OPEN WATER.

Acquisition date

Central coordinate

Ice conditions

January 31, 2010

48.65°N, -67.90°W

Thin FYI and OW, freeze-up

April 3, 2010

70.64°N, -132.10°W

Primarily FYI, some MYI

April 5, 2010

71.10°N, -142.27°W

Primarily FYI, some MYI

October 7, 2010

72.773°N, -116.70°W

FYI and MYI

October 9, 2010

71.29°N, -78.06°W

MYI

October 13, 2010

68.94°N,-100.73°W

Primarily OW

December 5, 2010

60.92°N, -93.27°W

FYI with some OW

December 13, 2010  73.09°N, -77.63°W MYI
Training February 13, 2011 60.1°N,-57.9°W MIZ and wind roughened OW
February 16, 2011 57.29°N, -62.11°W MIZ and OW
February 20, 2011 55.47°N, -58.53°W MIZ and OW
March 19, 2011 57.8°N, -60.88°W MIZ and OW
July 2, 2011 69.85°N, 69.85°W Primarily FYI
July 5, 2011 57.48°N, -74.99°W oW
July 17 , 2011 78.87°N, -118.2°W MYI
July 30, 2011 72.97°N, -108.09°W MYI and OW
September 3, 2011  77.56°N,-147.52°W FYILMYI and OW
September 3, 2011 73.36°N,-152.86°W FYILMYI and OW
September 3, 2011  75.78°N,-124.95°W FYIMYI and OW
September 3, 2011 71.55°N,-129.28°W MYI and OW
October 9, 2010 71.29°N, -78.06°W ow
Testing February 17, 2011 53.18°N, -56.08°W MIZ and OW
February 23, 2011 48.79°N, -63.66°W primarily OW
April 4, 2011 61.62°N, -60.43°W MIZ and OW

estimation we reconstructed the scene and performed spatially-
aware post-processing. This process is outlined in Figure

B. Assigning labels to the SAR image backscatter

For a typical image classification problem a single label
for each input image is given (e.g., dog, tree, car). In contrast,
for the present application, the labels, which correspond to ice
concentration, are continuous-valued data, with a range of val-
ues over the image space. Hence we must both transform the
learning problem from classification to regression (discussed
in Section III-D) and we must transform the map of sea ice
concentration data to fit the given SAR scene. For maximum
flexibility we construct an ice concentration representation of
the SAR scene, the same aspect ratio as the input SAR scene
(although at a lower spatial resolution). Thus, when we look
to see the concentration of a point within the scene, we can
reference this representation directly in grid space.

To construct this representation, we iterate over equally
spaced pixels in the SAR scene and calculate the correspond-
ing ice concentration at the pixel using Algorithm [I] an inverse
weighting of the ice concentration values of the four nearest
neighbours in the corresponding passive microwave image.
This provides a label for each pixel of the SAR image and
theoretically allows for the resolution of the output to be the
same as that of the input.

Algorithm 1: Interpolation Scheme

Data: SAR data-point, PMW data-points
Result: Concentration value for SAR data-point
LatLongagr = getLatLon(datasar)
LatLonpyw = getLatLon(datappyrw)
distspyrw = norm(LatLongar — LatLonppyw)
indicesppw = argsort(distspyw)
concentration = 0
total Distance = 0
for each i in [0,1,2,3] do
concentration += giErreniecs e i
total Distance += distspprw [indicespprw |[i]]
end
concentration = %
return concentration

C. Masking of land pixels

Note that because our focus is on images through navigable
Canadian waters, many of the images used to both train and
test the CNN model had significant land cover. To work with
this land and still produce accurate results a land mask was
used to identify image patches containing land. Patches that
were entirely, or centred, on land were excluded from the
dataset. For the remaining patches, a value of one was used
to mask over all land within an image patch. In this way the
model was trained with a consistent representation of land.
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Image processing pipeline: Original SAR scene is broken up into patches and run through the deep convolutional neural network (CNN). Following

this processing, the scene is reconstructed to form an image of the same aspect ratio, but with a smaller overall size, containing the concentration information.
This image is post-processed with a spatially-aware post-processing scheme to provide the final result.

D. Convolutional Neural Network Usage

The CNN chosen for use in the present task is DenseNet
[29]. This CNN performs extremely well on the challenging
ImageNet database, which is a database consisting of mil-
lions of images, primarily of everyday objects and entities.
DenseNet achieves a similar classification accuracy as other
leading CNNgs, but uses less than half the number of parame-
ters. This is due to the unique architecture of DenseNet. In a
typical sequential convolutional neural network (where there
is a single pathway for information) multiscale information
is passed sequentially through layers of convolutional fil-
ters, rectified linear activations and down-sampling operations
[30 10, 31]]. In DenseNet, skip connections (direct connections
that skip over sequential blocks of layers) are used to directly
pass the information from each layer to a concatenation layer,
allowing the network to use features of multiple scales easily.
These connections are an especially important attribute in
remote sensing where important features are seen at all scales.
For sea ice SAR imagery, this range of scales spans the
fine grained texture of open water, to larger, linear features
(that may be ridges) or openings (e.g., leads) within the
consolidated ice cover. The simultaneous use of information at
all scales is also similar to the manner in which ice operators
carry out the manual analysis of SAR sea ice imagery, and
more generally to the manner in which humans interpret SAR
images [32]. Another advantage of DenseNet in comparison
to other CNN architectures, in particular for remote sensing
applications where training data sets are limited in size, is
that the direct skip connections allow more efficient use of
the training data, since the gradients computed during back-
propagation are more accurate and less noisy.

Although DenseNet was designed for image classification,
it is easily modified to perform regression. The final softmax
classification layer in DenseNet is removed and replaced with
a single non-linear activation (sigmoid). The three channel
input (typically RGB) is replaced with a two channel im-
age, consisting of HH and HV channels. An input shape of
221 x 221 x 2 was initially used, with further tests carried out
using 321 x 321 x 2. When training this network, we seek
to minimise absolute error, which is the absolute value of the
difference between the target label and the model output.

IV. EXPERIMENTAL DESIGN
A. Chosen Patch Size

No filtering or averaging was done over the SAR images;
hence each patch contributes to a single 1 x 1 output, centred
within its corresponding patch. When there is no overlap
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Figure 3. Sample output results for the various patch spacings tested: Note
that as the patch spacing decreases the details of the ice cover become finer,
but overall the impact on the results is not significant. This indicates smaller
or larger spacing could be chosen based upon the application.

between the patches, this yields ice concentration with a
spacing of 11 km x 11 km for the patches of size 221 x 221,
and a spacing of 16 km x 16 km for the patches of size
321 x 321. To achieve a higher resolution output we used
a spacing between patch centers of 73 pixels and 64 pixels
respectively for the 221 x 221 and 321 x 321 patch sizes.
This corresponds to an output at intervals of 3.68 km for
the 221 x 221 patch, and 3.21 km for the 321 x 321. This
is similar to the spacing of recent 89GHz ice concentration
estimates from AMSR2 (3.25km), and finer than the AMSR-
E ice concentration used here for training data (6.25km) [24]
to provide the labels. We observed that the accuracy of the
output was insensitive to patch spacing (Figure [3), suggesting
a higher resolution output could be achieved, although we did
not pursue this due to computational constraints.

B. Test/Train Split

We split the data into a training set and a test set using
roughly a 4:1 ratio, resulting in 19000 training samples and
5000 test samples. To allow for truly independent samples
in the test set we took a subset of the full SAR scenes and
used them to develop the test set, see Table 1. These scenes
were not included in the training set. The test set scenes
were drawn randomly from the available set, however the
scenes were validated to represent a variety of ice and water
conditions. Although splitting the data into train/test in this
manner is useful for gauging generalisation during training,
we simultaneously lose some perspective into the progress of
the model. This is due to inherent within-image bias that leads
to over or under representation of features for a given scene.
Here, this issue was minimised by choosing a test set that
contained new, thin ice and thicker multiyear ice, in addition to
calm and rough water. Table [[] outlines the general distribution
of ice conditions throughout our chosen dataset as well as the
conditions represented within the test set.



C. Training Procedure

The training of the CNN model used in this study presented
unique challenges. Upon training using the standard approach,
where the image patches are fed directly into the CNN, it
was found the model over exploited the correlation between
the image texture and ice concentration present in some of
the images, and falsely generalised this concept. This led to
spurious ice over open water, and a noisy ice cover in regions
of consolidated ice. This was a sign that the model may have
been over-fitting and that either additional data or a suitable
alternative to it was necessary.

As the DenseNet model had shown itself to be highly adept
on challenging tasks prior; we chose to focus on the training
to fix the over exploitation of texture. There are two typical
methods of modifying the training to fix over-fitting: increase
the size of the dataset, or augment the current data set [33}
34]. We chose data augmentation, and applied additive, zero
centred, Gaussian noise to the input patches at training time.

In typical cases of data augmentation, the final model results
directly from training on the augmented data, however in
our case the augmentation process made the problem harder.
While the results sometimes showed improvement from the
previous iteration (no augmentation), the results were sub-
optimal in certain circumstances. For example, in some cases
the CNN ignored texture to the point of labelling smooth
ice as open water (results will be shown in Section [V)). To
improve upon these preliminary results, we applied a novel
technique: after the augmented model had converged, we
removed the augmentation (i.e., noise), reduced the learning
rate and brought the model to a new minimum, forming a
two-stage training procedure. This procedure allows the model
to use the texture of the image whilst preventing over fitting
upon it. It takes advantage of the regularisation provided by
the additive noise in the early stages of training, which allows
the model to learn with little risk of over exploitation of
the texture, without removing the relevance of this concept
entirely. The results of this procedure is described in Section

Y|

V. RESULTS

A. Training results

With our best model (Prime-Large) we were able to achieve
an average absolute error of 5.25% on the training set and
7.87% on the test set, which is comparable to errors of 7-
8% in other similar studies [[12} |6]. To arrive at this result we
underwent several iterations of training the model, in particular
with regard to the amount of noise used and the size of the
input patch. We will reference each iteration, including the
iteration with no augmentation, with names shown in Table
Select results for each iteration are displayed in Figure []

Table II
SUMMARY OF TRAINED MODELS WITH CONDITIONS THAT WERE USED IN
THE DEVELOPMENT OF THE PROPOSED METHOD.
*MODELS USED FOR EVALUATION

H Name Training Conditions Patch Size H
Base No Augmentation 221x221
Base-Large No Augmentation 321x321
Noise-A Gaussian Noise (0 = 0.15)  221x221
Noise-B Gaussian Noise (o0 = 0.10) 221x221
Noise-Large  Gaussian Noise (o = 0.10)  321x321
Prime-A Initialised with Noise-A 221x221
Prime-B* Initialised with Noise-B 221x221
Prime-Large* Initialised with Noise-Large  321x321

1) Base Models: We trained two base models using recom-
mended procedures of early stopping [35]], coupled with learn-
ing rate reduction [36]. These models obtained respectable
results, however showed signs of failing to generalise and
possibly over-exploiting aspects of the training set. This led to
noisy ice cover in some cases, and complete misinterpretation
of ice as water in others. The move from a patch size of
221 x 221 to 321 x 321 showed significant improvement but
still did not yield satisfactory results. Figure 4| row 3 (Base)
highlights a strong water prediction but a significant low bias.
Figure ff] row 4 (Base-Large) fixes the low bias but still yields
patchy results within the largely consolidated ice.

2) Noise Models: We trained three models, with the same
training set as the Base models however we augmented the
images with Gaussian noise. The Gaussian noise was applied
in a dynamic manner, meaning it is drawn from a distribution
at the training time such that different noise is applied to each
image patch, and different noise is applied each time the patch
was processed (e.g., each epoch). This was done to prevent the
model from memorising or over-fitting to irrelevant details. We
experimented with two noise levels, ¢ = 0.15 and ¢ = 0.10
(image channels were normalised to have pixel values between
0 and 1). The higher noise level led to a complete irrelevance
of texture information within the images in the context of ice
concentration estimation. The regression often yields a value
of 0 (indicating water) over consolidated ice, while the lower
noise level showed partial salience (row 5 vs. row 6 in Figure
). When we combined the lower noise level (o = 0.10) with
a larger patch size we saw a further improvement (rows 6 vs.
row 7 in Figure [). Shown in row’s 6 and 7 we also see that
the model lacks the ability to predict medium concentrations
well, often outputting values at the extremes (values of zero
and one).

3) Prime Models: Following each of the three noise models
we developed a pretrained noiseless model. This was done by
using the weights of the relevant model trained with noise
to initialise a new network. This new network was then re-
trained without noise injection and a reduced learning rate.
Throughout all models we see partial to full recovery of
texture relevance. For Prime-A there are still many instances
of inaccurate regressions for large swaths of the scenes. For
Prime-B we see mostly accurate regressions, however the ice
cover is noisy and contains small "holes" of ice misclassified
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Figure 4. Select results of model iterations. Similar results are found for other training images. Moving from left to right for each column we see first year
ice with some open water (A), majority multi-year ice (B), primarily first year ice with some multi-year ice (C), majority multi-year ice (D), a marginal ice
zone as well as open water(E), and a mix of first year ice, multi-year ice and open water (F). Calling attention to column E we can see that two of the models
(Base and Prime-B) detect an ice eddy absent off the coast. This ice eddy is absent in the passive microwave version of the scene, and not represented in the
training data However, the eddy can be seen in both the SAR imagery and the manual image analysis chart.



as water. For the final model, Prime-Large, we combined the
successes of Prime-B with a large patch size. These final
results showed significantly smoother ice cover combined with
accurate regressions over all inputs. We selected both Prime-B
and Prime-Large for independent evaluation.

B. Spatially Aware Post Processing

As shown in the Prime-B and Prime-Large rows of Figure
[ in some cases the the ice cover for these results is noisy,
with holes over large regions of what is likely consolidated
ice. These holes may arise because the method does not take
into account spatial context; without information about the
space surrounding each input patch, the model has no way to
relate information about adjacent patches. This could be more
obvious in the present study than Wang et al. |6, [7] because
the training data, ASI ice concentration, is much noisier than
the ice analysis charts used in previous studies.

To obtain a smoother ice cover post-processing was applied
to the ice concentration estimated by the CNN. This consisted
of a median filter acting over a region of 5 x5 pixels (excluding
sections of the result that were covered by the land mask).
Examples of the post processed images are shown in Figure
It can be seen that the method reduces the incidence of
holes in the ice cover while maintaining a crisp ice edge and
excellent features. For example, the ice eddy that can be clearly
seen in the SAR imagery off the coast of Labrador (and is
identified in the manual image analysis chart) is retained with
post processing (see column 5 in Fig. [5).

C. Model Evaluation

For the proposed method to be useful for a wide variety of
applications, the model must generalise to a wide variety of ice
conditions, some of which may not be represented well within
the training set. To evaluate this capability of our method, we
ran the CNN in test mode over two additional sets of SAR
sea ice imagery that are distinct from the images used in the
training or test procedure. We refer to these as our evaluation
data sets. The first set of images were acquired in the Canadian
Arctic Archipelago during September and November of 2013,
while the second are a set of SAR images acquired during
freeze-up in the Gulf of Saint Lawrence, 2014. Locations of
the image acquisitions are shown in Figure

For both sets of test results, the ice concentration from
the CNN was compared with that from image analysis charts
provided by the Canadian Ice Service. The statistics used for
comparison were the mean (Fy;,5), mean absolute difference,
(E'r1) and standard deviation of the difference, (Eg;q), where
the difference is between the ice concentration from image
analyses and the ice concentration of either the CNN or
ASI dataset. The sums used in the statistics were taken by
generating a single vector of differences for each dataset (i.e.
concatenating the differences for each day). Note that some of
the differences between the CNN or ASI ice concentration and
that from the image analyses is due to the fact that the image
analyses have homogeneous ice regions within polygons, with
abrupt changes at polygon boundaries. These abrupt changes
can accentuate measures that are sensitive to outliers, such as
the Estd-

1) Arctic Images 2013: The CNN model was evaluated
using six SAR scenes acquired in the Canadian Arctic in
September-November, 2013. Overall scores for all six scenes
are shown in Table It can be seen that the post processing
has little impact on FEjp;,s but decreases Er; and Eg 4. For
the data-sets with post processing the overall differences are
similar to those from the ASI data, with lower Fj;,, and larger
FE.;q and E1. However, visualisation of the results shows
some interesting differences, as can be seen in Figures [6]
and [] representing good, medium and slightly poorer CNN
results.

For the first set of results (Figure E]), it can be seen that the
CNN ice concentration is very similar to that from the ASI,
and both are close to the image analysis chart, although all
methods miss the region of lower ice concentration close to
the north-west corner of Banks Island (red circle in Figure [6p).
A close inspection of the SAR image showed this region is
sparsely covered by isolated floes, which were not present in
the training images. For the second set of images (Figure [7)), it
can be seen the CNN tends to misrepresent some of the dark
tones in the SAR image as regions of low ice concentration, an
aspect that is improved with post-processing. The CNN does
a good job capturing the ice cover close to the ice edge (green
circles in Figure[7h). Again, all methods fail to capture the thin
new ice (red circle in Figure [7h). For the third set of images,
shown in Figure [8] it can be seen the CNN does an excellent
job capturing the ice on the north side of Prince of Whales
Island, but misses a great deal of the low concentration ice,
in particular the isolated floes in the top right of the image,
and some of the diffuse ice cover the the bottom right (latter
indicated by the red circles in Figure[§). Note that CNN output
is not sensitive to the banding in the HV image, which is
different from previous results using a similar method [7]].

2) Gulf of Saint Lawrence, freeze-up 2014: The Gulf of
Saint Lawrence (GSL) dataset is particularly challenging be-
cause the ice conditions represent freeze-up, with large regions
of thin new ice. It is also a challenging regime for passive
microwave retrieval algorithms, which typically underestimate
the ice concentration for thin ice due to the fact that the
emissivity of thin ice at high ice concentration is similar
to that corresponding to thicker ice of an intermediate ice
concentration. Overall scores for the GSL dataset are given in
Table[V] It is very impressive that the CNN is able to improve
upon the ASI SIC, having both a lower standard deviation
and lower bias of differences with the image analyses both
with and without post processing. Note that these errors are
comparable to, or lower than, those in [37], where ice/water
observations from the SAR data were combined with ASI SIC
using a data assimilation approach.

Some sample results are shown in Figures [9] and In
Figure [9] it can be seen that ASI significantly underestimates
the ice concentration over a larger portion of the domain
than the CNN. On this date the ice cover is primarily new
ice and thin ice, but the dynamic features in the ice cover
(such as ice eddies and ice filaments) allow the CNN to do a
reasonable job estimating ice concentration, in particular the
ice edge (green circle in Figure [Op). In Figure [I0|both methods
show generally good agreement with the image analysis, with
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Impact of spatially aware post processing on the results: It can be seen that although the post processing reduces the noise in the results it does not

radically change them. While this denoising is visually attractive and allows the resultant representation to be more easily interpreted it does not substantially

change the accuracy of the result for any important metric.

the CNN producing better estimates north-east of Anticosti
Island (green circle in Figure [TO). Both underestimate the
ice concentration for the thin, new, ice that is in the region
northwest of Prince Edward Island (red circle in Figure [I0h),
which appears as dark in both the HH and HV images with
little texture.

3) Summary of Model Evaluation: Overall these results
demonstrate the added value of ice concentration from SAR
imagery as compared to that from passive microwave data:
the CNN output contains a better representation of the ice
edge, and a clean representation of water without the use of
a weather filter. Such a filter is sometimes necessary in the
retrieval of information from SAR sea ice imagery due to the
similarity of the appearance of wind-roughened open water
and some sea ice conditions [22]]. The holes in the ice cover

seen in some CNN results are reduced when a larger patch size
is used. In addition, we note that features not well represented
in ASI data used to provide labels to the CNN (out-of-sample
data), such as isolated floes and in some cases, thin, new ice,
are not as well represented by the CNN as other features.

VI. DISCUSSION
A. Advantages

The method presented, training a convolutional neural net-
work (CNN) with passive microwave data, is able to predict
SIC at a higher spatial resolution than the training data: a
unique aspect of the design. As shown Figure [I0] we are
able to accurately show fine details of the ice edge without
any examples of such edges within the training set. This



Table III

RADARSAT-2 IMAGE DATA USED TO EVALUATE THE MODEL. FYI DENOTES FIRST-YEAR ICE, MYI DENOTES MULTIYEAR ICE, MIZ DENOTES

MARGINAL ICE ZONE AND OW DENOTES OPEN WATER.

Acquisition date

Central coordinate

Ice conditions

GSL 2014

January 17, 2014

48.76°N, -65.39°W

NI and OW

January 22, 2014

54.32 °N, -53.40°W

Thin FYI, MIZ and OW

January 23, 2014

49.01°N, -67.36°W

Thin FYI and OW

January 24, 2014

48.59°N, -64.51°W

NI, thin FYI and OW

January 24, 2014

48.19°N, -61.59°W

NI, thin FYI and OW

January 27, 2014

49.21°N,-66.96°W

NI, thin FYT and OW

January 31, 2014

48.10°N, -63.76°W

NI, thin FYI

January 31, 2014

48.26°N, -60.81°W

thin FYI and wind-roughened OW

February 7, 2014

48.33°N,-62.89°W

NI, thin FYI

February 8, 2014

49.22°N, -66.96°W

MIZ and wind roughened OW

February 9, 2014

48.80°N, -68.22°W

thin FYI and OW

February 10, 2014

47.66°N, -62.14°W

NI and thin FYI

Canadian Arctic 2013

September 10, 2013

72.89°N, -96.23°W

FYI, MYIL, OW

September 11, 2013

74.13°N, -112.16°W

FYI, MYL, OW

September 13, 2013

72.20°N, -99.53°W

FYI, MYIL, OW

September 13, 2013

72.50°N, -126.12°W

OW and MYI

November 12, 2013

64.80°N, -65.71°W

FYI, MYI and OW

November 12, 2013

64.80°N,-65.71°W

FYI, MYI and OW

Figure 6.

Results from scene acquired September 13th, 2013 in the Beaufort Sea near Banks Island. Central latitude and longitude of the image,

64.3 N

and -139.7 W. Panel a) SIC from image analysis chart b) SIC from ASI, ¢) SIC from CNN - Prime B d) SIC from CNN - Prime B with post-processing.

The HH SAR image is shown in the far left panel. The red circle indicates an ice detail not represented within the SIC from ASI or CNN.

Figure 7.

Results from scene acquired November 12th, 2013 in Baffin Bay. Central latitude and longitude of the image, 64.8 N and -65.7 W. Panel a) SIC
from image analysis chart b) SIC from ASI, c¢) SIC from CNN - Prime B d) SIC from CNN - Prime B with post-processing. The HH SAR image is shown
in the far left panel. The red circle indicates an ice detail not represented within the SIC from ASI or CNN. The green circle represents a detail replicated
by the CNN and not the ASI.

is a testament to the flexibility of the parchwise method
used. In our implementation of this method, the stride is a
runtime parameter, which allows arbitrary spatial resolution
on the output. For the present implementation, the stride was
fixed over the domain, but in the future it could be made
variable, which would allow for finer spatial resolution in
regions of interest. In addition, for the images used in this
study, we used no auxiliary information, such as wind-speed,
to reduce spurious ice concentration retrievals over wind-
roughened open water. This is important because wind-speed
is very difficult to estimate accurately in the MIZ.

The method uses popular open source software, that is easy
to configure for use with other SAR images, such as those
from Sentinel-1; thus all data sources necessary to run the
algorithm (passive microwave ice concentration, SAR imagery
and DenseNet) are freely available. To encourage others to
use this method, we have made the Python code used to
generate the results in the paper available for download (URL
will be provided in final manuscript). The method made use
of GPU accelerated software, enabling the prediction of a
10,000x10,000 pixel SAR Scene in 160s by a mid-tier NVidia
Quadro P5000 GPU.



Figure 8.

11

Results from scene acquired September 10th, 2013, near Prince of Wales Island, Canadian Arctic Archipelago. Central latitude and longitude of

the image, 72.5 N and -102.5 W. Panel a) SIC from image analysis chart b) SIC from ASIL, c¢) SIC from CNN - Prime B d) SIC from CNN - Prime B with
post processing. The HH SAR image is shown in the far left panel. Note that the vertical stripes in the HV image are not reproduced by the CNN. The red

circle indicates an ice detail not represented within the SIC from ASI or CNN.

-64 -62 -60

Figure 9.

Ice concentration for SAR scene acquired on January 24, 2014 in the Gulf of Saint Lawrence. Panel a) SIC from image analysis chart b) SIC

from ASI, ¢) SIC from CNN - Prime B d) SIC from CNN - Prime large. The HH SAR image is shown in the far left panel. The green circle represents an

ice edge replicated well by the CNNs but not from the ASI.

-64 -62 -60

Figure 10.

Ice concentration for SAR scene acquired on February 7, 2014 in the Gulf of Saint Lawrence. Panel a) SIC from image analysis chart b) SIC

from ASI, ¢) SIC from CNN - Prime B d) SIC from CNN - Prime large. The HH SAR image is shown in the far left panel. The red circle indicates a
region of thin, new ice that is not represented in the ASI or CNN SIC. The green circle indicates a region of relative agreement between the ASI and CNN

representations, however the CNN is closer to the image analysis chart.

B. Potential Improvements

When predicting the concentration of sea ice, spatial context
is important and provides information regarding how features
should be interpreted. In this regard, sometimes a larger
patch size leads to better incorporation of spatial context
[7]. However, the drawback of a larger patch size is that
it becomes increasingly difficult to have accurate predictions
close to land. Instead of modifying the patch size, we propose
a simple post-processing method, consisting of a median filter.
A more sophisticated method would lead to better results, but
we leave this to a future study, as the emphasis here is on

presenting the two-step training approach. For example, our
results may benefit from historical data (e.g. climatology) to
ground the predictions of the CNN model in realistic, regional
expectations of ice patterns. Consider that a trained ice analyst
may readily assign a non-zero ice concentration to a dark
region downwind of an island based on their experience that
it is probably new ice, whereas an automated analysis based
upon a single patch has no such information.

We found the surprising result that although the larger patch
size model (Prime-Large) performed better on the training
set (when compared to Prime-B), it performed worse upon
the evaluation set. This difference in performance may be



Table IV
TEST SCORES FOR IMAGES FROM THE CANADIAN ARCTIC ARCHIPELAGO,
2013. ERRORS ARE COMPUTED USING IMAGE ANALYSIS CHARTS AS
VERIFICATION DATA. STATISTICS ARE CALCULATED USING 6 SAR SCENES
ACQUIRED BETWEEN SEPTEMBER 10TH AND NOVEMBER 12TH, 2013.
LOCATIONS OF THESE SCENES ARE SHOWN BY THE RED DOTS IN FIGURE[T]

Dataset FEpias Erq FEgq
Prime B 0.1033 0.2173 0.3377
Prime B (post) 0.1126  0.2059 0.3159
Prime large 0.1127 0.2327 0.3472
Prime large (post) 0.1153 0.2278 0.3385
ASI 0.1401 0.1863 0.2689
Table V

TEST SCORES FOR IMAGES FROM THE GULF OF SAINT LAWRENCE, 2014.
THE SCENES CHOSEN WERE DURING THE FREEZE-UP PERIOD. ERRORS
ARE COMPUTED USING IMAGE ANALYSIS CHARTS AS VERIFICATION DATA.
STATISTICS ARE CALCULATED USING 12 SAR SCENES FROM THE PERIOD
OF JANUARY 21ST TO FEBRUARY 10TH, 2014. LOCATIONS OF THESE
SCENES ARE INDICATED BY THE GREEN DOTS IN FIGURE[I]

H Dataset Ebias Erq FEstq H
Prime B 0.1147 0.2721 0.3858
Prime B (post) 0.1227 0.2653 0.3680
Prime large 0.1580 0.2983 0.3838
Prime large (post) 0.1660 0.2980 0.3773
ASI 0.3065 0.3593 0.3744

explained by the passive microwave data itself being worse
than the Prime-B model upon the evaluation set; meaning if
the Prime-Large model fits the passive microwave data more
it also learns its flaws. We hypothesise that this difference
could be remedied by fine-tuning the Prime-Large model
with ice analysis charts as training data. Fine-tuning involves
modifying the weights of the final layers in the model (the
concatenation layers) to efficiently tune the model to a new
dataset (in this case ice concentration charts). This would also
help in the representation of new thin ice, which is represented
fairly accurately on these charts. To emphasise the results that
can obtained without this method, we leave the examination
of such fine-tuning to future studies.

In addition to possible post-processing, further computa-
tional resources could be committed to the prediction phase
of the modelling, allowing for higher resolution outputs to be
obtained. Although in some parts of the scene this may not
hold any relevance, the method developed allows for variable
resolution throughout the evaluation of the scene. This could
be done iteratively, automatically refining the ice edge and
other features of the evaluated scene.

VII. CONCLUSIONS

We have shown that sea ice concentration can reliably be
estimated from SAR imagery using a CNN with only passive
microwave data as training data. This is different than previous
studies [0, [12] that have used ice charts as training data.
We have found the use of ASI ice concentration can lead
to a noisy or completely incorrect ice cover, and have de-
veloped a novel approach to reduce this noise. Dynamic, zero
centred, Gaussian noise allowed aggressive pre-training with

little risk of over-fitting. The use of a patchwise evaluation
method allows for variable output resolution, only restricted
by the (meaningful) resolution of the input data. Finally, the
CNN model developed in this study achieved competitive
performance on ice conditions outside of its training and test
conditions, providing an entirely independent evaluation of
its performance. However, we did note that some specific
ice features (e.g., isolated floes and thin new ice) that were
not well represented in the training dataset, were not well
captured by the CNN. Hence, there is a sensitivity to the
training dataset, which is not surprising given the relatively
broad range of conditions represented here, and the limited
dataset used.

We suggest that with further, context aware, post processing
and training on a more extensive dataset, these results could
be made even better. At the same time, they represent a
strong step forward in the use of CNNs for automated ice
concentration from SAR that does not use manual image
analysis charts. While a method has been presented in the
literature to estimate SIC from Global Navigation Satellite
System Reflectometry data also using a CNN using passive
microwave data as training data [38], to our knowledge this
the first doing this for SAR data. This can allow automated use
of SAR data in the increasingly important task of monitoring
sea ice in high traffic areas of the Canadian Arctic. In addition,
the SIC estimated from the CNN is independent of data from
atmospheric or ice-ocean models (e.g. ice temperature and
wind-speed). Hence, it may be a useful observational dataset
for assimilation into coupled ice-ocean or ice-atmosphere data
assimilation systems. We suggest that with proper tuning and
training, deep convolutional neural networks could become an
integral part of large scale ice monitoring.
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