
Predicting Sea Ice Concentration with Uncertainty
Quantification using Passive Microwave and

Reanalysis Data: A Case Study in Baffin Bay
Ray Valencia, Xinwei Chen, Armina Soleymani, K. Andrea Scott

Abstract—In recent years, the adoption of deep learning (DL)1

techniques for predicting sea ice concentration (SIC) given both2

passive microwave (PM) data and reanalysis data has seen a3

growing interest. For use in downstream services, these sea ice4

concentration estimates should be accompanied by uncertainty5

estimates. To provide these estimates, we utilize a heteroscedastic6

Bayesian neural network (HBNN), which can estimate both model7

(epistemic) and data (aleatoric) uncertainty. We use both PM8

and atmospheric data as our input features, and demonstrate9

that both are needed for accurate SIC estimates. Results show10

that over an annual cycle, the months of melt onset, such as11

April, May, and June produce the highest uncertainties relative12

to other months, with total (epistemic + aleatoric) uncertainties13

of approximately 20%, while areas in the marginal ice zone,14

contributed highest total uncertainty of 25% spatially. When15

considering an average over the test year, the level of uncertainty16

due to the data (aleatoric) is consistent with other studies, at 10%-17

15%. The advantage of our approach is that the uncertainties are18

specific to the data instance, and both model and data uncertainty19

are estimated.20

I. INTRODUCTION21

Sea ice concentration (SIC) is the measure of sea ice area22

relative to the total area in a particular region. The accurate23

estimation of SIC in the polar regions of the Arctic and Antarc-24

tic is necessary for studies concerning climate change [1],25

sustainability of local ecosystems [2], and human endeavors26

such as the shipment of goods, natural resource exploration,27

and fisheries [3]. Multiple remote sensing methodologies have28

been applied in SIC estimation, using approaches based on29

optical imagery, synthetic aperture radar (SAR) imagery [4],30

delay Doppler maps (DDMs) from Global Navigation Satellite31

System-Reflectometry (GNSS-R) [5], and passive microwave32

(PM) data [6], [7]. Optical imagery allows for a straight-33

forward interpretation of sea ice concentration due to the34

strong contrast in albedo between open water and sea ice.35

However this interpretation is only feasible when cloud-free36

images are available. SAR is an active sensor that measures37

a backscattered signal from the Earth’s surface generally in38

the low-frequency portion of the electromagnetic spectrum,39
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and thus is not affected by atmospheric moisture or cloud 40

cover. Data can be acquired from SAR sensors at a high 41

spatial resolution (approximately 50-100 m). Imagery from 42

SAR sensors can be difficult to interpret due to speckle noise 43

and the sensitivity of the SAR signal to both imaging geometry 44

and properties of the surface. 45

To the contrary, PM sensors measure microwave radiation 46

emitted from the earth’s surface and, at low frequencies, are 47

also less affected by cloud cover. Instead of measuring SIC 48

directly, PM sensors first measure the brightness temperatures 49

(TB) and then calculate SIC via retrieval algorithms such as 50

the bootstrap method [8] or the enhanced National Aeronautics 51

and Space Administration (NASA) team (NT2) algorithm [9]. 52

An excellent overview of PM SIC retrieval algorithms is given 53

in [10], [11]. PM-TB based SIC estimation data calculated 54

from these algorithms are freely available, allowing for great 55

accessibility, but can be negatively affected by many factors 56

that influence the SIC estimation accuracy. These include the 57

presence of melt on the ice surface, thin ice, atmospheric 58

moisture and wind-roughening of open water within the sensor 59

footprint [12]–[14]. These can be further complicated due to 60

seasonal/monthly changes of these factors [15]. To correct 61

for atmospheric moisture and wind-roughening, the algorithms 62

often use weather filters [16], [17] but these filters have been 63

shown to not only remove weather effects but the ice itself 64

[18]. An alternative approach is to correct the brightness 65

temperatures before using them in the retrieval algorithm [19], 66

[11], [15]. 67

Among methods in SIC estimation from remote sensing 68

imagery, there lies computational methods based on the ability 69

of an algorithm to adaptively learn from data. This field of 70

computational methods is known as machine learning (ML). 71

A specific subset of ML, known as deep learning (DL), has 72

garnered interest in the last few years. The concept of deep 73

refers to the model architecture being partially composed of 74

a series of layers where each layer has a set of weights that 75

need to be learned. With recent advancements in hardware 76

capabilities and increasing data volumes, developments in DL 77

have flourished, demonstrating their ability to solve difficult 78

problems and better learn spatio-temoporal patterns in data 79

as opposed to other ML approaches [20]. For this reason, 80

the use of deep neural networks (DNNs) in SIC estimation 81

has gained popularity. For example, deep convolutional neural 82

networks (CNNs) have been demonstrated to produce signif- 83
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icantly improved sea ice concentration estimates from SAR84

data during both melt and freeze-up, as compared to passive85

microwave data [4], [21]. While these studies used ice charts86

as training labels, the approach has also been investigated87

using PM data as training labels and using the CNN as88

change of scale operator [22], [23]. Among studies using ML89

or DNNs to estimate SIC from PM data, some have shown90

including atmospheric variables in the input features can lead91

to improved SIC estimates [24]–[26].92

In the domain of remote sensing and climate sciences,93

uncertainty quantification (UQ) of data products is needed94

to use the products to support decision-making and climate95

policy [27]. For sea and lake ice remote sensing, this endeavor96

has only been recently explored. Asadi et al. [28] proposed97

a methodology utilizing multilayer perceptron’s (MLP’s) to98

quantify uncertainty in detection of ice and water in SAR99

imagery. Results showed the uncertainty was increased in100

regions where atmospheric features would be expected to lead101

to confusion between ice and water, supporting interpretability102

of the results. Additionally, UQ from a convolutional neural103

network was incorporated for lake ice mapping and sea ice104

segmentation using SAR images in Saberi et al. [29] and Chen105

et al. [30], respectively.106

Previous studies on uncertainty quantification for sea ice107

concentration have shown uncertainty to originate from char-108

acteristics such as sensor noise, sensitivity of TB to surface109

properties, or spatial resolution limitations. This uncertainty110

has been quantified in previous methods to estimate SIC [19],111

[31], but related uncertainties in SIC retrieval within a DL112

framework have not been explored. Thus this study explores113

the use of a deep learning model to estimate SIC and quantify114

the uncertainty in these estimates, by leveraging both TB data115

and geophysical variables such as air temperature and wind116

speed. The deep learning model is implemented using an117

MLP architecture (or DNN), with methods for UQ [32], [33].118

The performance and results of the model are evaluated via119

spatial investigation and statistical analysis. We discuss the120

seasonal variation of uncertainty and consider the effect of121

using differing SIC labels in training. The main contributions122

of this study are,123

1) A proof of concept for a data driven approach using124

a DL model to estimate SIC and its uncertainty. The125

method allows seasonal and spatial variability of the126

uncertainties to be explored as a function of the input127

data, season and region.128

2) It is the first study of sea ice concentration uncertainty129

from PM data that considers separate uncertainties for130

both the model and the data [34] and is able to generate131

uncertainty maps specific to the data instance. The level132

of uncertainty due to data is consistent with that found133

in earlier studies [19].134

II. BACKGROUND135

Sea ice concentration can be estimated from TB data by136

exploiting the difference between horizontally and vertically137

polarized TBs, which is greater for water than for ice.138

Linear interpolation between tie points that express typical 139

values of polarization difference or its normalized equivalent 140

(polarization ratio) can be used, though in practice other 141

frequencies need to be considered to differentiate between dif- 142

ferent ice types. These methods are complicated by sensitivity 143

of TB to wind-roughening (across 6.9 GHz -89 GHz) and 144

atmospheric moisture, which is normally quantified through 145

integrated water vapor (WV) and integrated cloud liquid wa- 146

ter(LW) [11], [35]. Sensitivity to CW increases monotnoically 147

with frequency, whereas sensitivity to WV increases non- 148

monotonically with frequency, peaking at the water vapor 149

absorption line of 22.235 GHz [36]. These sensitivities impact 150

the upwelling and downwelling contributions of the brightness 151

temperature. Sensitivity to wind speed (WS) is polarization- 152

dependent and is due to wind-roughening of the surface, which 153

leads to surface scattering and impacts surface emission. Each 154

of these sensitivities can result in TB signatures over weather- 155

affected open water that are similar to those of intermediate 156

ice concentrations leading to spurious sea ice concentration 157

retrievals [18], [37]. Open water is more affected by atmo- 158

spheric contamination than consolidated sea ice [11] because 159

the surface contribution to the overall brightness temperature 160

is lower over open water than sea ice due to its lower 161

emissivity. In practice, to mitigate atmospheric contamination 162

and reduce spurious sea-ice concentration retrievals, different 163

weather filters are used in SIC retrieval algorithms. To correct 164

for WV, the gradient ratios of 19 and 22 GHz frequency are 165

used: GR(1922V) ≤ 0.04, and to correct for LW and WS, 166

the gradient ratios of 19 and 37 GHz frequency are used: 167

GR(1937V) ≤ 0.045 [37], [38]. An alternative approach is to 168

use a radiative transfer model (RTM) to correct the TB data 169

for atmospheric effects prior to their use in the interpolation 170

method [11], [18]. This correction consists of subtracting from 171

the observed TB the difference between one retrieved from 172

the RTM considering atmospheric effects, and one retrieved 173

from the RTM without atmospheric effects. These atmospheric 174

effects are included via data (WS, CLW and WV) typically 175

from weather prediction models or reanalyses. 176

Due to these atmospheric sensitivities, the problem of 177

estimating SIC from PM data can be described as a non 178

linear regression problem. In contrast to earlier studies, a 179

multilayer perceptron (MLP) model is used here for SIC 180

estimation. MLP models are a type of NN model and are a 181

popular choice for non linear regression problems due to their 182

flexibility [39]–[42]. MLP models are a type of feedforward 183

NN characterized by several layers of neurons, which at 184

minimum consist of an input layer, output layer, and a hidden 185

layer in between the input and output. When these NNs have 186

multiple hidden layers, they are considered subset of DNNs. 187

Although DNNs produce valuable results, they are often 188

taken with no consideration for the uncertainty of their esti- 189

mates. As DNNs are increasingly used in decision making, 190

the requirement to provide uncertainty estimates has seen a 191

rise of interest in various domains including health sciences 192

[43], computer vision [33], automated vehicles [44], remote 193

sensing [34], [45], [28] and others [46]. Additionally, if we can 194
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measure the uncertainty in our models, it brings the possibility195

of reducing uncertainty, producing higher confidence in the196

model estimates.197

Uncertainty in DL can be categorized into two types,198

epistemic and aleatoric uncertainty. Epistemic uncertainty is199

described as the uncertainty due to the model [33]. To reduce200

epistemic uncertainty one can either produce a model that201

encapsulates the problem better, or add more data. Methods202

to effectively measure epistemic uncertainty in NNs include203

Monte Carlo (MC) Dropout [47], Bayesian NNs [32], and204

Deep Ensembles [48].205

In contrast, aleatoric uncertainty is described as the un-206

certainty that originates from the intrinsic randomness of207

the input or data [33]. This typically cannot be reduced in208

the same manner as the epistemic uncertainty. The aleatoric209

uncertainty can be further categorized into heteroscedastic210

and homoscedastic uncertainty. In particular, homoscedastic211

uncertainty is the uncertainty when the noise is assumed to212

be identical for all points in the data, whereas heteroscedastic213

uncertainty is the uncertainty when the noise is assumed to be214

variable across the data.215

III. STUDY AREA AND DATA216

The area of interest for this study consists of Baffin Bay,217

Davis Strait, and most of Nares Strait towards the the Lincoln218

Sea (Figure 1). This area is primarily a seasonal ice zone.219

It is chosen because it is a region experiencing significant220

declines in SIC [49], and increases in shipping activity [50],221

and contains part of the Tallurutiup Imanga National Marine222

conservation area, which is an important habitat for marine223

mammals and seabirds [49], [51].224

The data utilizes the full years of 2014 and 2015 and225

is comprised of a total of six geophysical variables as our226

features, which are 10-meter wind speed (WS) (m/s), inte-227

grated total column water vapour (WV) (mm), integrated total228

column liquid water (LW) (mm), 2-meter air temperature (AT)229

(K), vertical brightness temperature (TBV) (K), and horizontal230

brightness temperature (TBH) (K). These are used as input231

during training, validation, and testing of the model. The 2014232

data is used solely in training/validation, with an 80/20 split,233

while all of 2015 is used in testing (inference).234

The variables WS, WV, and LW are commonly used to235

apply corrections to TBs in SIC retrieval methods [11]. AT236

was chosen because of its relationship on atmospheric emis-237

sion through CW and WV [36] as well as surface emission238

and melt. These atmospheric variables (WS, WV, LW, and239

AT) are acquired from the European Centre for Medium-240

Range Weather Forecasts (ECMWF) Reanalysis 5th Genera-241

tion (ERA5) data at the Copernicus climate data store [52].242

The WS is calculated by taking the magnitude of the 10-243

meter meridional-component and 10-m zonal-component. All244

variables in the ERA5 reanalysis data have a nominal spatial245

resolution of 31 km, and are provided hourly over a 24 hour246

period. For the present application, a single average over the247

full 24 hours of a given day is used.248

Brightness temperatures at both horizontal and vertical po- 249

larization from the Advanced Microwave Scanning Radiome- 250

ter 2 (AMSR2) are used in this study, with a nominal gridded 251

resolution of 12.5 km [53]. For choice of frequency band 252

to use as input to the MLP, we look to utilize one with a 253

smaller instrument field of view, corresponding to higher spa- 254

tial resolution of the data. AMSR2 has channels corresponding 255

to frequencies of 18.7, 36.5 and 89 GHz, with the higher 256

frequency 89 GHz channels having a finer spatial resolution 257

than the 18.7 and 36.5 GHz channels. However in addition 258

to scattering from rain and cloud ice particles, the emission 259

at 89 GHz is very sensitive to atmospheric water vapor and 260

cloud liquid water. Thus the frequencies of 18.7 and 36.5 261

GHz were chosen due to their lower sensitivity [35], consistent 262

with earlier studies [54]. Data from lower frequencies channels 263

are also available across historical passive microwave sensors, 264

enabling the method to be more easily extended to climate 265

data records. 266

Values of SIC are required as labels during training, and 267

thus for the first dataset used, the SIC values are calculated 268

by the NT2 algorithm using AMSR2 TBs. These SIC data are 269

used solely as training labels during training and validation 270

of the model, and are not used as an input feature. In the 271

NT2 algorithm [55], SICs are estimated using gradient ratios 272

(GRs), and polarization ratios (PRs) calculated using 19 H/V, 273

37 V, and 89 H/V GHz channels. In the Arctic, three types 274

of ice are treated separately (multi-year, first-year, and thin 275

ice). For each ice type, GRs and PRs are calculated for 12 276

representative atmospheric profiles using a radiative transfer 277

model to first calculate the brightness temperatures. A lookup 278

table is built from these GRs and PRs. The ice concentration 279

is calculated for a given pixel by choosing the concentration 280

value that matches the actual and estimated PR and GR. 281

This algorithm uses 89 GHz frequency to differentiate areas 282

with low ice concentrations from those with refreezing-related 283

surface effects (snow layering and glazing). It also allows 284

for a specific new ice tie point to be considered, depending 285

on GR37V19V, based on the emissivity difference at the 286

frequencies for new ice. 287

Finally, a nearest neighbor interpolation scheme is used to 288

upsample the ERA5 reanalysis data to respective brightness 289

temperature sets. Specifically, the ERA5 data is upsampled to 290

match the 12.5 km nominal spatial resolution of the AMSR2 291

brighness temperatures. As each feature has different ranges 292

of values, each feature is normalized to values between [0,1] 293

prior to input to the MLP. 294

295

IV. METHODOLOGY 296

The methodology of this paper is comprised of parts to 297

predict sea ice concentration, as well as the measurement of 298

epistemic and aleatoric uncertainty. As noted, the problem of 299

predicting SIC can be framed as solving a non-linear regres- 300

sion problem, from which an MLP architecture is appropriate 301

and chosen. Next, by utilizing Bayes by Backprop [32], we can 302
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Fig. 1: Study area map showing the monthly average SIC for
May 2015, where SIC is calculated by the NT2 algorithm,
having a nominal spatial resolution of 12.5 km. White regions
are land.

transform non-bayesian models like our MLP into bayesian303

models (i.e. BNN) such that the weights are represented as304

probabilistic distributions allowing us to measure the epis-305

temic uncertainty in our model, but preserving the original306

architecture. Following this, aleatoric uncertainty is captured307

by transforming a BNN into a heteroscedastic BNN (HBNN)308

while using the heteroscedastic loss function [33]. We point309

to the original papers for full technical details but provide a310

brief overview of each methodology here.311

A. Bayes by Backprop312

The weights and biases of a NN, such as an MLP, are gener-313

ally provided as deterministic values [39]. One way to quantify314

the uncertainty in the model is to instead use probabilistic315

distributions to represent the weights. For example, allowing316

each weight to assume a Gaussian distribution with a mean317

and variance that can be learned.318

Bayes by backprop (BBB) provides a method to achieve this319

utilizing variational inference [32]. Given the weights w of320

our model, to attain distributions over w requires the learning321

of the posterior predictive distribution (PPD) P (w|D), where322

D is the data characterized by (x, y). In the context of this323

study, x are the input features of geophysical variables, and y324

SIC training labels. Due to the number of weights in a neural325

network, to calculate the PPD would need immense computa-326

tional resources and is intractable. Thus, variational inference327

is used to reformulate the problem through minimization of328

the Kullback-Leibler (KL) divergence, requiring the use of an329

approximate distribution q(w|θ) instead of the PPD, P (w|D).330

To find the optimal θ, the following tractable loss function as331

minimized in BBB is used [32],332

LBBB =
1

NMC

NMC∑
j=1

[log q(wj |θ)−logP (wj)−logP (D|wj)].

(1)
Here NMC is the number of sample weight vectors wj drawn 333

from the variational posterior using a Monte Carlo (MC) 334

sampling scheme. In equation 1 the prior component is defined 335

to be a scaled mixture of Gaussian’s following [32] while 336

the likelihood is the MSE loss. The variational posterior is 337

parameterized by θ = (µ,ρ) where µ is the mean vector of 338

the distribution and ρ is a hyperparameter used to parameterize 339

the standard deviation vector of the weights σw, such that σw 340

is always non-negative. Here, σw is defined pointwise via the 341

softplus function as [32], 342

σw = log(1 + exp(ρ)). (2)

To achieve this parameterization, BBB utilizes the local 343

reparameterization trick. This technique allows for µ and ρ 344

to be incorporated into the weights w in the model. The 345

parameters µ and ρ are then updated via backpropagation to 346

find the optimal θ. 347

B. Heteroscedastic Loss 348

In BNNs, such as that constructed from BBB, the data 349

dependent portion of the loss function, i.e. the likelihood cost, 350

is measured by the MSE loss which corresponds to a Gaussian 351

distribution with homoscedastic variance. To estimate the 352

uncertainty, the variance is assumed to be non-constant, i.e. 353

heteroscedastic [33], [56], by replacing the MSE loss in the 354

likelihood with the heteroscedastic loss function. 355

LHNN =
1

N

N∑
i=1

1

2

( ||yi − ŷi||2

σ̂2
a(i)

+ log(σ̂2
a(i))

)
, (3)

where yi and ŷi represent elements of the vectors y and ŷ 356

respectively, and σ̂a is the aleatoric standard deviation of the 357

model. This term is obtained from a network that has two 358

output neurons, one value for the predicted mean ŷ, and the 359

other value for σ̂a. This value of σ̂a differs from σ̂w, since 360

σ̂w is the standard deviation that parameterizes the weight 361

uncertainty. NNs that produce this output are sometimes 362

referred to as Heteroscedastic NNs (HNN), and as we are 363

transforming the BNN from Bayes by backprop to include this 364

additional architecture, it is appropriate to distinguish it as a 365

heteroscedastic Bayesian NN (HBNN), or specifically HBBB. 366

As elaborated in [33], the epistemic and aleatoric uncertainty 367
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for a given testing sample x can be decomposed from the368

predictive uncertainty Var(x) as369

Var(x) ≈ 1

NMC

NMC∑
i=1

ŷ2i − (
1

NMC

NMC∑
i=1

ŷi)
2

︸ ︷︷ ︸
epistemic uncertainty

+
1

NMC

NMC∑
i=1

σ̂2
a(i).︸ ︷︷ ︸

aleatoric uncertainty

(4)

V. EXPERIMENTAL SETUP370

For our method, we follow [24] and define an MLP to have 4371

hidden layers between the input and output layers, with each372

hidden layer comprised of 10 neurons. Between each layer373

of the model, a rectified linear unit (ReLU) function is used374

and for choice of optimiser, we utilise Adam. Through trial375

and error, we found that a learning rate of 0.001 worked best376

combined with mini batches comprised of 1000 samples per377

batch. The data is split into train/validation/test sets and are378

described in the data section. Note that this MLP architecture379

is chosen for its efficiency and quality predictions of SIC [24].380

A summary of the MLP hyperparameters can be found in Table381

I.382

For BBB, hyperparameter tuning was also required. For383

Nmc it was found that values between 10-50 provided robust384

results, with any values greater than 50 only providing min-385

imal improvements, but greater computational requirements.386

Thus an appropriate value of Nmc to set to best balance387

computational efficiency and garner good results was 30. Prior388

parameters (σp1, σp2, π) were chosen, based on Blundell et389

al.. [32]. Subsequently, the mean µ of the variational posterior390

is initialized to be a vector of 0’s for all weight values, such391

that the distribution is centered, while ρ is set to -2 [32].392

A summary of the BBB hyperparameters can be found in393

Table II. To then measure aleatoric uncertainty, we replace the394

MSE loss of BBB, with the heteroscedastic loss, producing a395

HBNN, or HBBB specifically.396

Lastly, we perform experiments as analyzed in Section VI,397

with models using varying combinations of input features and398

training labels (Table III). Here MLP denotes models trained399

only on an MLP, with no capabilities to measure epistemic nor400

aleatoric uncertainty. Models denoted as BBB are Bayes by401

backprop based, which measure epistemic uncertainty. Models402

with the added H , as in HBBB utilize the heteroscedastic403

loss to produce a heteroscedastic neural network with different404

combinations of features. The full implementation of the405

model used in this study is programmed in Python, using the406

machine learning libraries scikit-learn, and PyTorch.407

VI. RESULTS & ANALYSIS408

The results for this study are subdivided into parts and409

are described as follows. We first explore the HBBB as410

it performs over the ice season for the test year of 2015411

with respect to the average uncertainty and average root mean412

TABLE I: Hyperparameter Summary for MLP Architecture

Input Dimensions 8
Hidden Layers 4
Neurons in each layer 10
Output Dimension 2
Learning Rate 0.001
Batch Size 1000
Activation Function ReLU
Optimizer Adam

TABLE II: Hyperparameter Summary for BNN

Initial Posterior Mean (µ) 0.0
Initial Posterior Rho (ρ) -2
Prior sigma 1 (σp1) 1.0 [32]
Prior sigma 2 (σp2) 0.01 [32]
Prior pi (π) 0.5 [32]
Monte Carlo Samples (Nmc) 30

square error (RMSE) per month, where the RMSE is a measure 413

of the differences between the predicted SIC and SIC labels 414

from the test year. We then compare HBBB inference capa- 415

bilities to other chosen methodologies for May of 2015, as this 416

month was found to have the highest uncertainty and second 417

high RMSE compared to other months. Spatial evaluation on 418

the HBBB model as also performed by producing maps 419

of average monthly predicted SIC, RMSE, and uncertainties 420

during the melting season (i.e., April, May, June, and July of 421

2015). The model is also tested an independent region, (i.e., 422

the Western Arctic, which was not in the training data), and 423

obtains consistent estimation accuracy. This region includes 424

the western part of the Canadian Arctic Archipelago and a 425

portion of the Beaufort Sea, correpsonding to the Western 426

Arctic ice charting region used by the Canadian Ice Service. 427

This region contains both first-year and multiyear ice. In 428

addition, we analyze combinations of input features using 429

the model of HBBB. In the last result subection, estimates 430

derived from the NT2 algorithm and the HBBB model are 431

compared with SIC retrieved from the Landsat sensor to 432

further validate the effectiveness of estimation accuracy and 433

uncertainties. 434

A. Monthly Observations 435

When observing the RMSE as produced by the HBBB 436

model in Fig. 2, a pattern is apparent that shows a gradual 437

increase of RMSE starting from January, peaking in May, 438

declining to the bottom in October, and slowly increasing 439

again in November and December. The lowest RMSE values 440

correspond to the months of October and September, while 441

the highest are found in the months of April and May. 442

Compared to the RMSE, a similar pattern can be observed for 443

the total uncertainty (where total uncertainty is equal to the 444

sum of epistemic and aleatoric uncertainty), but with smaller 445

differences in magnitude. Solely observing the epistemic un- 446

certainty, it is apparent that the highest epistemic uncertainty 447

(model uncertainty) falls within the months of March, April, 448

and May. The aleatoric uncertainty (data uncertainty) peaks in 449

April, and shows comparable peaks in May and December. It is 450
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TABLE III: Models and Data Summary

Model Name Uncertainty Measure SIC Label TB sensor Input Features
MLP N/A NT2 AMSR2 TBH, TBV, (both 18.7 and 36.5 GHz) AT, WS, WV, LW
BBB Epistemic NT2 AMSR2 TBH, TBV, (both 18.7 and 36.5 GHz) AT, WS, WV, LW
HBBB Epistemic + Aleatoric NT2 AMSR2 TBH, TBV, (both 18.7 and 36.5 GHz) AT, WS, WV, LW

HBBBonly−tb Epistemic + Aleatoric NT2 AMSR2 TBH, TBV (both 18.7 and 36.5 GHz)
HBBBno−tb Epistemic + Aleatoric NT2 N/A AT, WS, WV, LW

noteworthy that the highest values for RMSE and uncertainty451

are in April and May, respectively, which coincides with melt452

onset in this region [57], and the lowest values coincide with453

times of low SIC, even in the absence of weather filters or454

TB corrections, as used in other studies [11], [15]–[17], [19].455

We also observe that the aleatoric (data) uncertainty estimated456

by the model shows similarity amongst months in the same457

seasonal time frames (i.e. melt vs. freeze up periods), data for458

these groups of months may have comparable properties and459

noise.460

Fig. 2: Root mean squared error (RMSE), epistemic uncer-
tainty, aleatoric uncertainty using the HBBB model. The
aleatoric and epistemic uncertainty are shown as a stacked bar,
representing total uncertainty. The sea ice extent (SIE) values
averaged per month over the study region for the testing of
year of 2015 are also shown for reference to the seasonal
cycle. Note the RMSEs and uncertainties are highest during
May and April, respectively, which corresponds to melt onset
in this region [57].

461

B. Performance comparison between methods462

Across the methods used to estimate SIC, per Table IV463

(where best results are bolded), there is a gradual decrease464

in the RMSE with increasing model complexity. The RMSE465

is highest for the MLP model, and lowest for the HBBB466

model. This provides confidence that each methodology im-467

proves the accuracy of SIC. The epistemic uncertainty is nearly468

0.066 for the BBB or 6.6% in May, while HBBB with all469

the features as input reduces this uncertainty to 1.2%.470

C. Spatial evaluation of SIC and uncertainties471

The spatial distribution of predicted SIC from the HBBB472

model for April, May, June, and July 2015, shown in the473

second row Fig. 3, is in good agreement with the expected474

distribution (the first row of Fig. 3), with areas of consolidated 475

ice in the northern portion of Baffin Bay, and open water 476

farther south. It also captures the predicted SIC of the sea 477

ice in Nares Strait near 80◦N. 478

As shown in the RMSE maps in the third row of 3, where 479

the HBBB model predictions differ from the expected SIC is 480

in areas near the ice edge, such as in the southern portion of 481

Baffin Bay near Davis Strait, which can be defined to be areas 482

where SIC is between 15% and 85% [58]. The aleatoric uncer- 483

tainty of these areas (shown in the fifth row of 3) is relatively 484

high, corresponding to values in the range of 3-4%. As for the 485

epistemic uncertainty, regions dominated by open water with 486

very low SIC tend to have the lowest values. The distribution 487

patterns of uncertainty can be illustrated further when plotting 488

the epistemic and aleatoric uncertainties for various SIC bins, 489

as seen in Fig. 5. Both types of uncertainty are lowest in SIC 490

bins of 0 to 0.3, increasing in mean uncertainty as the SIC 491

increases. Aleatoric uncertainty values reach the highest in the 492

SIC bins of 0.7-0.8, and decrease for the SIC bin of 0.9-1.0. 493

SIC values of 0.9-1.0 have epistemic uncertainty and aleatoric 494

uncertainty values higher than those for SIC bins between 0.0 495

and 0.3, possibly reflecting the presence of leads in the ice 496

cover, or changing surface emissivity due to increased snow 497

wetness and melt. 498

From spatial patterns of the aleatoric uncertainty in the 499

HBBB algorithm observed in Fig. 3, the uncertainties are 500

highest along the MIZ and ice edge. Lastly, both aleatoric and 501

epistemic uncertainties have slightly elevated values along the 502

coastlines. When observing feature maps of TB (Fig. 6(a), (b), 503

(c), and (d)), these elevated uncertainties may be due to land 504

contamination from the TB data for pixels that overlap with 505

the land-ocean boundaries. In addition, to further validate the 506

generalization ability of the model, the model is also tested 507

on another region, i.e., Western Arctic area. Estimated SIC, 508

RMSE and uncertainties averaged over June, July, and August 509

in 2015 are presented in Fig. 4 below. The RMSE values 510

obtained from testing results on data collected from June, 511

July, and August are 0.124, 0.100, and 0.154, respectively. 512

The relatively low estimation error proves that the model is 513

able to perform well in another region. 514

515

516

517

518

519
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Fig. 3: Ground truth SIC, Estimated SIC, RMSE and uncertainties averaged over June, July, and August 2015 using data collected
in Western Arctic region. All models use HBBB model with all 8 features as input data. The first row corresponds to ground
truth SIC. The second row corresponds to predicted SIC. The third row corresponds to RMSE values as calculated between
the predicted SIC and ground truth SIC. The fourth and fifth rows correspond to the epistemic and aleatoric uncertainties.
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Fig. 4: Ground truth SIC, Estimated SIC, RMSE and uncertainties averaged over June, July, and August 2015 using data
collected in the Western Arctic region. All models use the HBBB model with all 8 features as input data. The first row
corresponds to ground truth SIC. The second row corresponds to predicted SIC. The third row corresponds to RMSE values as
calculated between the predicted SIC and ground truth SIC. The fourth and fifth rows correspond to the epistemic and aleatoric
uncertainties.
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TABLE IV: Results Summary Between Methods for May of 2015

Model RMSE Epistemic Aleatoric
May average Annual average May average Annual average May average Annual average

MLP 0.283 0.257 N/A N/A N/A N/A
BBB 0.260 0.237 0.066 0.042 N/A N/A
HBBB 0.127 0.105 0.012 0.0095 0.156 0.133

HBBBonly−tb 0.189 0.171 0.030 0.018 0.145 0.148
HBBBno−tb 0.510 0.439 0.080 0.080 0.448 0.441

Fig. 5: Box whisker plots of ground truth SIC (from NT2) vs
epistemic uncertainty (top) and aleatoric uncertainty (bottom)
from the HBBB model for May 2015. The ground truth SIC
is divided into 10 equal sized bins. The box whisker plots
show the mean, median, interquantile range, and extremes of
uncertainties for each SIC bin.

520

521

D. Analysis on the influence of input feature combinations 522

Results calculated from testing samples with HBBB using 523

different combinations of features are presented in Table IV. 524

It shows that compared to the model that only uses brightness 525

temperature as input features (i.e., HBBBonly−tb), incorpo- 526

rating atmospheric variables further improves estimation accu- 527

racy and decrease uncertainties. The figure illustration of SIC 528

prediction of HBBBonly−tb (Fig. 7(a)) shows the model can 529

predict the structure of the large ice covered region, although 530

there is also some SIC predicted in the southern portion of 531

the domain, which is expected to be open water. Observing 532

the brightness temperatures, TBH and TBV, in Fig. 6(a), (b), 533

(c), and (d), it can be seen there are TB signatures in the 534

open water that are similar to those in the marginal ice zone. 535

This overlap in feature space is why the model has difficulty 536

differentiating between intermediate ice concentrations and 537

weather-impacted TBs without the atmospheric data. 538

Following these observations from the model using only 539

TBs as input features, we turn to those from the model only 540

features from the reanalysis data, HBBBno−tb. In this case 541

the SIC prediction (Fig. 7(b)) shows the model cannot capture 542

the same detail as that of HBBB (Fig 3(b)), with high 543

levels of RMSE. As per Figs. 6(e)-(h), none of the features 544

from the reanalysis data delineate the SIC and open water 545

regions as clearly as the TBs (Figs. 6(a)-(d)). This is because 546

none of the atmospheric variables are direct measurements 547

from the sea ice, whereas TBs are. In addition to the high 548

RMSE, HBBBno−tb model also suffers from high epistemic 549

uncertainty values. 550

We now turn our attention to look at specific details of the 551

features as they are related to the monthly trends. Heatmaps 552

of TBH and TBV (Figs. 8(a)-(d)), show the monthly total 553

(epistemic and aleatoric) uncertainty over the test year. It can 554

be seen that the features have their highest total uncertainties 555

in the months of April, May, and June. WS values of 4.3- 556

6.4 m/s are associated with highest total uncertainty, while 557

WV has the highest total uncertainties for values between 0.4- 558

4.3 mm. The final two features of CW and AT have high 559

cumulative uncertainty in bins of 0-0.1 mm and 271-278 K 560

respectively. These observations suggest that these particular 561

values of features contribute to conditions where the AT is 562

around the freezing point in spring, or melt onset. Additionally, 563

all features, except CW, have some distribution of uncertainty 564

in various bins across months. Cloud water on the other hand, 565

9



Fig. 6: Maps of input features over the month of May 2015. The features are (a) Brightness Temperature (H) (TBH), (b)
Brightness Temperature (V) (TBV), (c) Windspeed (WS), (d) Water Vapour (WV), (e) Cloud Water (CW), (f) Air Temperature
(AT).

has highest uncertainty in the bins of 0-0.1 mm regardless566

of the month. This is consistent with the view [11] that CW567

is of limited use in TB corrections for sea ice concentration568

retrievals because CW estimates from reanalysis or numerical569

weather prediction are not yet sufficiently reliable in ice-570

covered regions.571

E. Comparison with Landsat SIC572

To further validate the effectiveness of estimation accu-573

racy and uncertainties, the estimates derived from the NT2574

algorithm and the HBBB model are compared with the high-575

resolution (30 m) binary sea ice cover maps estimated from576

satellite observations acquired in the visible frequency range577

by the joint NASA and United States Geological Survey578

(USGS) Landsat sensor (Landsat-8) [59]. To derive SIC mea-579

surements from Landsat scenes, the number of sea ice and580

open water pixels within the resolution of 12.5 km are first581

averaged. Then, a nearest neighbor interpolation scheme is582

used to downsample the HBBB SIC to the respective Landsat583

SIC for comparison. As shown by the examples in Fig. 9,584

the RMSE values calculated between NT2-derived SIC VS585

Landsat-derived SIC and HBBB-derived SIC VS Landsat-586

derived SIC are very close to each other. This demonstrates587

that the proposed model is capable of estimating reasonable588

SIC, compared with independent validation data (see Fig.9).589

VII. DISCUSSION 590

The analysis of predictions from HBBB over the annual 591

cycle shows the highest values for RMSE and uncertainty 592

are in May and April, respectively, which coincides with 593

melt onset in this region [57]. Within this period, significant 594

changes in brightness temperatures are known to lead to 595

problems with SIC retrievals [12], [18], reflected here as 596

higher RMSEs and greater uncertainties. The model also 597

showed promise in predicting SIC in thin ice periods, as 598

is the case for November and December. The lowest values 599

of SIC uncertainty coincide with times of low SIC, without 600

an apparent need for weather filters or TB corrections, as 601

used in other studies [11], [15]–[17], [19], A more thorough 602

investigation of weather impacts will be done in a future 603

study. The seasonal variability of uncertainty is consistent 604

with results from uncertainty in the NT2 algorithm [31]. At 605

these times the uncertainty is relatively high, but the RMSE is 606

around 10%. Estimated aleatoric uncertainties were higher for 607

intermediate ice concentration values, similar to an alternative 608

approach [19] in which SIC uncertainty is based on tie-point 609

standard deviations and smearing due to the large spatial 610

footprint associated with the PM measurements. 611

The comparison between methodologies showed the use of 612

heteroscedastic loss as opposed to homoscedastic loss in the 613

model produces lower model uncertainty as well as greater 614

accuracy to predictions. Other methods such as Monte Carlo 615
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Fig. 7: Spatial maps of results from the HBBB model averaged
over the month of May 2015 utilizing different combinations
of input features. The first row corresponds to predicted sea
ice concentrations (SIC), the second row corresponds to the
root mean squared error (RMSE) values as calculated between
the predicted SIC and ground truth SIC. Columns in the
figure correspond to the combinations of input features. The
first column are the results from the HBBBonly−TB model
using only TBH and TBV from AMSR2 as input. The second
column are the HBBBno−TB model results using WS, WV,
CW, and AT as input.

dropout for measuring epistemic uncertainty were explored616

but did not show capabilities to effectively predict SIC and617

estimate epistemic uncertainty for these predictions. Ensemble618

methods were also considered, but required greater computa-619

tional costs then that of a Bayesian neural network, and due620

to limited computational power were not used.621

The analysis on input feature combinations showed the 4622

features of wind speed, column water vapour, liquid water, and623

air temperature are able to correct the over-prediction of sea624

ice concentration in the open water regions as reflected by the625

reduction in RMSE. Both HBBBno−tb and HBBBonly−tb626

models have non-zero aleatoric uncertainty over the open627

water, which is reduced to zero when all 8 features are used628

as input.629

VIII. CONCLUSIONS630

This study has conveyed the capabilities of a MLP model631

using PM-TB and atmospheric variables to predict SIC, while632

quantifying both epistemic (model) and aleatoric (data) un-633

certainty. The model was evaluated over an annual cycle in634

a seasonal ice zone. It was found uncertainties vary sea-635

sonally, where highest uncertainties correspond to times of636

expected melt onset in the region. The spatial distribution637

of uncertainty showed highest values were in the MIZ and 638

along the land-ocean boundary. Both brightness temperatures 639

and atmospheric variables were found necessary to produce 640

realistic distributions of SIC. 641

An advantage of the approach presented in this study is 642

its data-driven nature. Given new data, uncertainty estimates 643

are specific to that data instance, which means the spatial 644

uncertainty maps reflect local conditions, such as changes in 645

surface conditions or local atmospheric moisture. Once the 646

model is trained, inference, which is the production of a SIC 647

estimate and its uncertainty, is very efficient, with daily results 648

produced for entire year of 2015 in minutes. Additionally, 649

the decomposition of uncertainty into an epistemic (model) 650

contribution and an aleatoric (data) term, is novel for this 651

application domain, though it has been used in related studies 652

[34] and is worth further investigation. In a future study we 653

will also compare this method to others in the literature to 654

better under the advantages and disadvantages of the approach 655

over a wider range of conditions, considering further validation 656

with independent data. The role of air temperature and its 657

correlation with ice concentration and surface melt will also 658

be considered. 659
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L. Copland, “The influence of declining sea ice on859

shipping activity in the Canadian Arctic,” Geophysical860

Research Letters, vol. 43, pp. 12, 146–12, 154, 23 2015.861

[51] W. Halliday, J. Dawson, D. Yurkowski, et al., “Vessel862

risks to marine wildlife in the Tallurutiup Imanga na-863

tional marine conservation area and the eastern entrance864

to the Northwest Passage,” Environmenal Science and865

Policy, vol. 127, pp. 181–192, 2022.866

[52] H. Hersbach, B. Bell, P. Berrisford, et al., ERA5 hourly867

data on single levels from 1979 to present, version 10-868

meter meridional-component windspeed, 10-m zonal-869

component windspeed, integrated total column water870

vapour, integrated total column liquid water, 2-meter air871

temperature, Copernicus Climate Change Service (C3S)872

Climate Data Store (CDS).873

[53] W. N. Meier, T. Markus, and J. C. Comiso, AMSRE874

AMSR2 unified l3 daily 25 km brightness temperatures,875

sea ice concentration, motion snow depth polar grids,876

version 1. NASA National Snow and Ice Data Center877

Distributed Active Archive Center, 2018.878

[54] R. Scarlat, G. Heygster, and L. Pedersen, “Experiences879

with an optimal estimation algorithm for surface and at-880

mospheric parameter retrieval from passive microwave881

data in the Arctic,” IEEE J. Sel. Top. Appl. Earth Obs.882

Remote Sens., vol. 10, no. 9, pp. 3934–3947, 2017.883

[55] T. Markus and D. J. Cavalieri, “An enhancement of the884

NASA Team sea ice algorithm,” IEEE Trans. Geosci.885

Remote Sens., vol. 38, no. 3, pp. 1387–1398, 2000. DOI:886

10.1109/36.843033.887

[56] Q. V. Le, A. J. Smola, and S. Canu, “Heteroscedastic888

gaussian process regression,” ser. ICML ’05, Bonn,889

Germany: Association for Computing Machinery, 2005,890

pp. 489–496, ISBN: 1595931805.891

[57] A. Bliss, M. Steele, G. Peng, W. Meier, and S. Dick-892

inson, “Regional variability of Arctic sea ice seasonal893

change climate indicators from a passive microwave894

climate data record,” Environmental Research Letters,895

vol. 14, Apr. 2019.896

[58] M. Leppranta, “Drift ice material,” in The Drift of897

Sea Ice. Berlin, Heidelberg: Springer Berlin Heidelberg,898

2011, pp. 11–63.899

[59] S. Kern, Landsat surface type over water from su-900

pervised classification of surface broadband albedo901

estimates, This is a data set created for the evaluation902

of sea-ice concentration products derived from satellite903

passive microwave observations., May 2021. DOI: 10.904

25592/uhhfdm.9181. [Online]. Available: https: / /doi .905

org/10.25592/uhhfdm.9181.906

15


