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Abstract— Algorithms designed for ice–water classification of
synthetic aperture radar (SAR) sea ice imagery produce only
binary (ice and water) output typically using manually labeled
samples for assessment. This is limiting because only a small
subset of labeled samples are used, which, given the nonstationary
nature of the ice and water classes, will likely not reflect the full
scene. To address this, we implement a binary ice–water classifi-
cation in a more informative manner considering the uncertainty
associated with each pixel in the scene. To accomplish this,
we have implemented a Bayesian convolutional neural network
(CNN) with variational inference to produce both aleatoric (data-
based) and epistemic (model-based) uncertainty. This valuable
information provides feedback as to regions that have pixels
more likely to be misclassified and provides improved scene inter-
pretation. Testing was performed on a set of 21 RADARSAT-2
dual-polarization SAR scenes covering a region in the Beaufort
Sea captured regularly from April to December. The model is
validated by demonstrating: 1) a positive correlation between
misclassification rate and model uncertainty and 2) a higher
uncertainty during the melt and freeze-up transition periods,
which are more challenging to classify. By incorporating the
iterative region growing with semantics (IRGS) segmentation
algorithm and an uncertainty value-based thresholding algo-
rithm, the Bayesian CNN classification outputs are improved
significantly via both numerical analysis and visual inspection.

Index Terms— Classification, ice maps, iterative region growing
with semantics (IRGS), segmentation, uncertainty maps.

I. INTRODUCTION

THE monitoring of Arctic sea ice plays a crucial role in
ship navigation, the safety of transportation in northern

communities, and understanding climate change. Over the past
few decades, different types of satellite remote sensing data
have been employed for sea ice monitoring, such as optical [1],
infrared [2], and microwave (passive and active) [3], [4].
Among these, the spaceborne synthetic aperture radar (SAR)
is advantageous due to its high spatial resolution, polarimetric
capability, and flexible imaging modes [5], [6]. Since the
microwave energy radiated and received by SAR is able to
pass through clouds, the measurements are highly independent
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of atmospheric moisture [7]. In addition, as the imaging
mechanism is triggered by surface roughness and subsurface
physical properties, different ice types can be distinguished.
Starting from 1978, more than a dozen satellite-based SAR
observing systems have been developed by different countries
that are useful for sea ice monitoring.

Among different sea ice monitoring tasks (e.g., ice con-
centration measurements and classification of sea ice types),
the discrimination of open water from sea ice provides key
information to both marine forecasting on synoptic scales
and longer climate-scale simulations [8]. In the past two
decades, multiple machine learning (ML) and deep learning
(DL)-based methods, which can map high-dimensional data
to an array of outputs, have been proposed for automated
ice–water classification using dual-polarized SAR imagery.
Methods include neural networks (NNs) [9], Markov random
fields (MRFs) [10], support vector machines (SVMs) [11],
[12], random forests [13], [14], [15], conditional random fields
(CRFs) [16], and convolutional NNs (CNNs) with different
structures [17], [18], [19], [20], [21], [22]. Besides, in recent
years, CNNs have also been widely applied to sea ice con-
centration (SIC) estimation [23], [24], [25], [26]. Although
relatively high classification accuracies have been reported in
these studies, the predictions are not always dependable due
to the ambiguous correlations between radar backscatter and
ice/water features, especially during the melt season where
ice and water can be difficult to distinguish based on visual
interpretation. In fact, only three of the studies mentioned
above [11], [16], [21] have considered data obtained during the
melt season. Wind roughened area of water bodies can often be
misclassified as ice as well [27]. In addition, the performance
evaluation of the model on the whole scene is normally limited
to visual inspection and comparison with the sea ice chart.
Therefore, to obtain more reliable and in-depth interpretation
of classification results, investigating the uncertainty in the
model prediction is warranted.

In Bayesian modeling, predictive uncertainty can be decom-
posed into two different sources, namely, aleatoric and epis-
temic uncertainties. Aleatoric uncertainty (also known as data
uncertainty) arises from the inherent variability of the data
distribution, which is irreducible [28]. In contrast, epistemic
uncertainty (also known as model uncertainty) refers to uncer-
tainty caused by the model, which can in principle be reduced
based on additional information [29]. In general, the uncer-
tainty decomposition and quantification help us locate errors
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Fig. 1. Locations of the 21 RADARSAT-2 scenes used in this study.

inherent in the observations and evaluate the confidence of
the model when making predictions for different scenarios,
which has been applied in multiple remote sensing tasks [30],
[31]. Uncertainties are also especially important when Earth
observation (EO)-derived estimates are assimilated to numeri-
cal ice or weather models. For operational sea ice mapping, the
uncertainties may be useful to flag regions in the predictions
that should be checked manually by an analyst and reduce
misclassification rates [32].

In this article, a model based on a Bayesian CNN is
proposed to classify sea ice and water in dual-polarized
SAR imagery while providing uncertainty maps along with
predictions. Iterative region growing with semantics (IRGS)
algorithm and an uncertainty value thresholding algorithm
are later incorporated to further improve the classification
results. The rest of this article is organized as follows. The
SAR imagery dataset used in this work is introduced in
Section II. Section III illustrates the Bayesian CNN model for
predictions and uncertainty quantification, together with the
IRGS algorithm for image segmentation. Experimental results
with analysis, as well as the uncertainty value thresholding
algorithm for reducing misclassification rates, are presented
in Section IV. Finally, conclusion and future work of this
research are given in Section V.

II. DATA OVERVIEW

The dataset used in this study for model training and testing
is provided by MacDonald, Dettwiler and Associates (MDA)
Ltd. It consists of 21 scenes obtained from the C-band SAR
satellite RADARSAT-2 in the Beaufort Sea, north of Alaska,
as shown in Fig. 1. They were all captured in the ScanSAR
wide mode with HH- and HV-polarizations being provided
and an incidence angle ranging from 20◦ to 49◦. Since the
images were collected from April to December in the year
2010, the model and results can be evaluated under a variety
of conditions (e.g., different seasons and ice concentrations).
The pixel spacing is 50 m and the size of each image is around
10 000 × 10 000 pixels. To improve computational efficiency,
the original images are downsampled using 4 × 4 block
averaging. The 4 × 4 pixel block size is selected because it
reaches an optimal balance between mapping resolution and
operational efficiency. Nevertheless, a block with a similar size
(e.g., 3 × 3 or 5 × 5) can also achieve similar results. The

Fig. 2. Example of the RADARSAT-2 SAR scene (scene of data: 20100623)
in (a) HH and (b) HV channels. (c) Land mask of the scene. (d) Image analysis
chart of the scene. Different colors indicate different SIC levels. For example,
the light blue and red represent open water and 90%+ SIC, respectively.

image analysis charts that cover the locations of SAR imagery
provided by a Canada Ice Service (CIS)-trained analyst are
used to obtain a reference for the labeling of training samples.
For each scene, a land mask is provided to exclude pixels of
the land from the study. An example of an SAR scene in HH
and HV channels with its land mask and ice chart is shown
in Fig. 2. More information about the dataset can be found in
prior publications [21], [33], [34].

III. METHODOLOGY

The flowchart in Fig. 3 gives an overview of the pro-
posed method. First, the pixel-based predictions from the
Bayesian CNN are combined with the segmentation results
performed by the IRGS algorithm to produce polygon-based
ice–water classification results via the majority voting scheme.
Then, by analyzing the uncertainty maps, an uncertainty value
thresholding algorithm is proposed to reduce misclassification
rates and provide more informative scene predictions. In this
section, the Bayesian CNN and the IRGS algorithm will be
introduced, while the uncertainty value thresholding algorithm
will be described in Section IV after the uncertainty analysis.

A. Bayesian CNN With Variational Inference

Previous studies have shown that given an NN, model
uncertainty can be obtained by representing the network
weights probabilistically. These models are called Bayesian
NNs (BNNs) [35]. To make these models operationally practi-
cal, several techniques have been incorporated into the training
of a BNN, such as variational inference (VI) [36], local
reparameterization trick (LRT) [37], and Monte Carlo (MC)
estimates. Based on these techniques, the Bayesian CNN was
first developed by Gal and Ghahramani [38], which models a

Authorized licensed use limited to: University of Waterloo. Downloaded on March 29,2023 at 05:49:40 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: UNCERTAINTY-INCORPORATED ICE AND OPEN WATER DETECTION 5201213

Fig. 3. Flowchart of the proposed method for uncertainty-incorporated ice and water detection on SAR imagery.

distribution over each kernel. The LRT was then introduced
to Bayesian CNN by Shridhar et al. [39] to make it more
computable. Here, the main techniques and workflow of our
classification model based on the Bayesian CNN will be
described.

Suppose that the weights in our Bayesian CNN model are
denoted as w, where w j represents each individual weight
in w. The modeling of distributions over w refers to the learn-
ing of the posterior probability distribution p(w|D), where
D represents a set of training examples with image patches
and their corresponding labels. However, due to the large
number of weights, p(w|D) is intractable. Therefore, the VI
technique is applied, which uses an approximate distribution
qθ (w|D) to be as similar as possible to p(w|D) by minimiz-
ing their Kullback–Leibler (KL) divergence. In our Bayesian
CNN model, the distributions of w are assumed to conform
to Gaussian distributions, which means that qθ (w|D) =∏

j N (w j |μ, σ 2). Finding the optimized parameters θopt (i.e.,
consisting of μopt and σ 2

opt ) can be approximated by minimiz-
ing the following tractable cost function [40]:

F(D, θ)

≈
n∑

i=1

log qθ (w(i)|D) − log p(w(i)) − log p(D|w(i))

≈
n∑

i=1

log
∏

j

N
(
w

(i)
j

∣∣μ, σ 2
)

+ log
∏

j

N
(
w

(i)
j

∣∣0, σ 2
p

)

− log p(D|w(i)) (1)

where w(i) denotes the i th MC sample of weights drawn from
the variational posterior qθ (w|D) and n is the number of

draws. As illustrated in [40], to introduce L2 regularization,
a Gaussian prior is placed on p(w(i)) and the distribution
of each weight can be expressed as p(w

(i)
j ) ∼ N (0, σ 2

0 ).
The final term is the likelihood term. Following the research
by Shridhar et al. [41] to calculate the activations of each
layer in the Bayesian CNN, the LRT proposed by Kingma
and Welling [42] is implemented to sample layer activations
directly, which is more computationally efficient than sampling
on the weights. Thus, the convolution operation is represented
in a probabilistic form as

b = A ∗ Wμ + � �
√

A2 ∗ W 2
σ (2)

where A represents a certain input receptive field and b
represents the corresponding convolution layer activations.
The means and variances of the weights in a certain kernel
filter are denoted as Wμ and W 2

σ , respectively. The term
“∗” indicates convolution operation, � ∼ N (0, 1), and �
represents elementwise multiplication. Similarly, the output of
the fully connected layer can be sampled by introducing � as
well. To ensure that the variance is positive, an unconstrained
parameter ρ is used to generate σ as σ = softplus(ρ) [41].
The softplus function is defined as

softplus(ρ) = 1

β
× log(1 + exp(β × ρ)) (3)

where β is set to 1 by default.
In this research, the network architecture of the Bayesian

CNN used is based on AlexNet proposed by Krizhevsky
et al. [43] as it is able to produce accurate classification results
with a relatively simple architecture (as shown in Table III).
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B. Uncertainty Estimation

Since the output from the Bayesian CNN after the fully
connected layer is probabilistic, the ice–water classification
output is therefore a predictive distribution. Given a certain
sample w(i), the corresponding predictive distribution can be
expressed as pw(i) (y∗|x∗), where x∗ is a new image patch data
and y∗ is its predicted class. To estimate the expectation of
the predictive distribution from all w drawn from qθ (w|D),
pw(y∗|x∗) should be integrated over the infinite combinations
of w. This can be approximated by taking an average on a
finite number of samplings, i.e., w(i). This can be summarized
by the following expression:

Eqθ (w|D)[pw(y∗|x∗)] =
∫

qθ (w|D)pw(y∗|x∗)dw

≈ 1

T

T∑
t=1

pw(t) (y∗|x∗) (4)

where T is the predefined number of samples. In classification
tasks, the overall predictive uncertainty can be obtained from
predictive variance Varq(p(y∗|x∗)). To decompose the overall
predictive uncertainty into aleatoric and epistemic uncertainty,
two main methods have been proposed [44], [45]. Here, the
decomposition method proposed by Kwon et al. [45] is used
due to its direct computation from predictive probabilities and
direct interpretation of the predictive variance. In contrast, the
method proposed by Kendall and Gal [44] requires the pertur-
bation of the logits to compute two types of uncertainty, which
may lead to numerical instability [46]. The decomposition of
predictive variance [45] can be expressed as

Varq(p(y∗|x∗)) = Eq [y∗y∗T ] − Eq [y∗]Eq[y∗]T

= 1

T

T∑
t=1

diag( p̂t) − p̂t p̂T
t

︸ ︷︷ ︸
aleatoric

+ 1

T

T∑
t=1

( p̂t − p̄)( p̂t − p̄)T

︸ ︷︷ ︸
epistemic

(5)

where p̂t = Softmax( fw(t) (x∗)) ( fw(t) (x∗) is the output before
the softmax layer) and p̄ = (1/T )

∑T
t=1 p̂t . Let z = fw(t) (x∗),

and the softmax function can be defined as

Softmax(z)i = ezi∑K
j=1 ez j

(6)

where i = 1, . . . , K and z = [z1, . . . , zK ]. K is the number
of classes, which is 2 here.

The detailed derivation of the decomposition can be found
in the Appendix of Kwon et al. [45]. It can be observed
from (5) that each uncertainty can be interpreted meaningfully.
For example, in our binary ice–water classification task, if the
output probability of being classified as ice and the probability
of being classified as water are close to each other, which
means that the uncertainty mainly comes from the data itself
and will result in relatively large values in the aleatoric part
of (5). In contrast, if the model is uncertain about the clas-
sification result, its predictive probabilities in each sampling

may have a relatively large variance, which leads to relatively
large element values in the epistemic part of (5). In addition,
to generate uncertainty quantification result for each pixel,
the diagonal elements in each part are summed together
(nondiagonal terms are either close to zero or negative), which
results in one value for aleatoric uncertainty and a separate
value for epistemic uncertainty.

C. Combination With IRGS Algorithm

Although the pixel-based classification results can be
obtained directly from the Bayesian CNN, they are susceptible
to local noise and do not preserve the ice–water boundary
information well. Hence, similar to previous implementa-
tions [11], [21], [47], the unsupervised IRGS segmentation
algorithm proposed by Yu and Clausi [48] and Yu et al. [49]
is performed to identify homogeneous regions using an unsu-
pervised hierarchical approach, which will be illustrated in the
following. Then, each region is labeled as either ice or water
class by taking a majority voting scheme on the Bayesian CNN
classification results of all pixels within that region. As shown
in the top of Fig. 3, first, the watershed segmentation proposed
by Vincent and Soille [50] is applied to the HV channel,
which segments the image into a number of autopolygons. For
each autopolygon, the IRGS algorithm is then performed on
a local scale and clusters the region into six arbitrary classes.
As illustrated in [48], IRGS is an extension of the traditional
MRF spatial context model in which the objective functions
are formulated by gradually increased edge penalty (GIEP)
functions. Those objective functions can be optimized by a
novel region growing (merging) scheme. Finally, the region
merging scheme is conducted on a global scale to the whole
scene, which first converts autopolygon boundaries into region
boundaries and then merges regions in different autopolygons
into 12 arbitrary classes. The implementation of IRGS on
both local and global scales can be regarded as a “glocal”
segmentation scheme. Nevertheless, since whether each class
belongs to either ice or water is still unknown, the Bayesian
CNN pixel-based ice–water classification results of the whole
scene are introduced to label each glocal autopolygon based on
a majority voting scheme, which produces the polygon-based
classification results. In this study, the IRGS algorithm is
implemented on the MAp-Guided Ice Classification (MAGIC)
system developed by Clausi et al. [51].

D. Incorporating Uncertainty Maps for Misclassification
Reduction

Given the uncertainty values, it would be desirable to
further improve the classification accuracy by utilizing that
uncertainty information. It has been observed that most of the
misclassifications correspond to the misclassification of water
polygons as ice possibly caused by wind-roughened water
texture and the blurry boundaries of melting ice. Besides, given
the fact that misclassification rates increase as uncertainty
values increase, a thresholding-based method is proposed to
correct those misclassified polygons based on uncertainty val-
ues, as summarized in Table I. In sum, for a given uncertainty
interval, if the range of ice pixel percentage is within the right
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TABLE I

SUMMARIZATION OF THE THRESHOLDING-BASED ALGORITHM

column, the region is given a label of water. For example,
as indicated by the second row of the table, for a certain region,
if the percentage of pixels that are classified as ice by Bayesian
CNN is below 70% and the mean aleatoric and epistemic
values of all pixels are within the given ranges, the region will
be corrected as water; otherwise, the region is still classified
as ice by following the majority voting scheme. Hence, as the
values of average uncertainty increase, the polygon is more
likely to be classified as water, which is manifested by the
following rows (criteria) in Table I. Finally, when the average
aleatoric and epistemic uncertainty are no smaller than 0.3 and
0.03 (which are very large values in terms of uncertainty),
all polygons will be corrected as water regardless of the
classification results. Note that those thresholds of uncertainty
values and ice pixel percentages are determined empirically
based on the uncertainty analysis (which are illustrated in
Section IV-C) as there is no rule to find optimal values.

IV. EXPERIMENTAL RESULTS

A. CNN Model Training

Based on sea ice charts and visual observation, we label
certain numbers of data points in each scene manually for
training and validating the Bayesian CNN model. Specifically,
instead of simply labeling on certain regions, scribble-based
annotations are drawn in both ice and water regions. The 10th
point of every ten data points is included in the training set,
which minimizes labeled samples from being highly correlated
with each other due to spatial proximity. The number of
labeled points for each scene is given in Table II. Similar
to Leigh et al. [11], the leave-one-out training scheme is
adopted for model training and testing. Specifically, to test
the performance of the model on the labeled samples in a
certain scene, all samples in the other 20 scenes are used for
model training, with a percentage of 80% and 20% samples
for training and validation, respectively. In this way, a total
of 21 CNN models are trained. The Adam optimizer proposed
by Kingma and Ba [52] is used to optimize all the parameters.
In particular, the variational parameters θ are optimized by
taking the gradient of the cost function with respect to μ
and σ . The input patch size of the network is set to be 33,
indicating that each patch covers an area of around 6.6 ×
6.6 km. The label of each patch corresponds to the label of
the data point located at its center. Therefore, to make pixel-
based predictions on the whole SAR scene, the input patches
are overlapping with each other with a stride of 1.

B. Bayesian CNN Classification Results

The testing accuracy of labeled samples using different com-
binations of models is presented in Table III. Results obtained

TABLE II

NUMBERS OF LABELED SAMPLES FOR EACH SCENE

from the typical deterministic CNN with the same network
architecture are also presented for comparison. As shown in
the second and third columns of Table III, both the determin-
istic and the Bayesian CNNs are able to perform accurate
classification on most of the labeled samples with average
testing accuracy very close to each other (i.e., 97% and 97.2%,
respectively). Note that there are still three scenes with clas-
sification accuracy lower than 90%, which will be discussed
in the following. The classification rates are still similar for
the deterministic and Bayesian CNN after introducing IRGS,
as presented in the fourth and fifth columns of Table III.
Although the overall testing accuracy only improves around
1%, many misclassified samples obtained in the melting
seasons have been corrected, especially in scene 20100730,
where the classification accuracy is improved by 7.8%. While a
testing accuracy of 98.1% is only around 1.7 percentage points
higher than that obtained by Leigh et al. [11] using the same
dataset, one scene (scene of data 20100816) was removed
from the study in this previous work due to the challenges
associated with classifying this scene. In this work, this scene
is still retained since it was obtained in the melt season with
complex ice–water boundaries and would be important for the
study concerning uncertainty.

Nevertheless, since the labeled data points only consist of
a small portion of all the pixels in the scenes, it is necessary
to further evaluate the performance of the model by visually
inspecting the classification results of the whole scene. A few
examples of scene classification results consisting of both ice
and water samples are shown in Fig. 4. It can be observed from
the first and second scenes that the classification results pro-
duced by the Bayesian CNN (i.e., the second row of Fig. 4) do
not delineate the complex ice–water boundaries and surround-
ing details (e.g., small floes and wispy looking ice) very well.
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Fig. 4. First and second columns: examples of SAR scenes (scene of data from top to bottom: 20100807, 20101027, 20100730, 20100816, and 20101021)
in HH and HV channels, respectively. The contrast of the HV images has been enhanced for better observation. Third column: image analysis charts for
each scene. Fourth column: classification results of the scenes on the same rows using Bayesian CNNs, with ice and water indicated by yellow and blue,
respectively. Fifth column: polygon-based classification results after combining IRGS algorithm with Bayesian CNN outputs. The classification accuracy of
the labeled samples is listed on each scene.

In addition, the misclassification of small clusters of pixels can
be found in the regions of both ice and open water. For exam-
ple, for the scene in the first row of Fig. 4, the misclassification
of water pixels as ice with patterns similar to salt and pepper
noise can be clearly observed. In contrast, after introducing
IRGS segmentation results (as shown in the fifth column of

Fig. 4), the detailed ice–water boundaries with wispy ice
and small floes surrounded are well preserved. Most of the
noise-like misclassifications have been eliminated. Therefore,
it can be concluded that combining the IRGS algorithm with
Bayesian CNN significantly improves the classification results
visually.
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Fig. 5. Aleatoric (top row) and epistemic (bottom row) uncertainty maps of the scenes presented in Fig. 4 calculated from Bayesian CNN predictions. First
to fifth columns: uncertainty maps of scene of data 20100807, 20101027, 20100730, 20100816, and 20101021, respectively. Regions with high uncertainty
that are misclassified are outlined in red. Note that the color scales of aleatoric uncertainty and epistemic uncertainty are different.

However, limitations still exist. For better illustration, three
scenes with the lowest testing accuracy are presented in the
third, fourth, and fifth rows of Fig. 4. First, for misclassi-
fied pixels within large homogeneous regions, which can be
observed in the scenes in the last two rows of Fig. 4, introduc-
ing IRGS cannot correct all those misclassifications effectively.
In particular, the misclassification of open water as ice in the
scene in the fourth row (scene of data 20100816) is probably
caused by the blurry ice–water boundaries. In contrast, the
open water region of the scene in the last row (scene of
data 20101021) consists of rough textures caused by high
wind speeds, which looks totally different from the relatively
smooth water surface in the other scenes and eventually leads
to the worst classification results among the whole dataset.
However, classification results can be improved significantly
if some data points of water are added to model training. The
second limitation that cannot be lifted by combining IRGS
is that for scenes obtained in the melt season, it is difficult
to distinguish between ice and water samples in regions with
intermediate SICs (e.g., regions in the middle top of the scene
of data: 20100807), which makes it unreliable to evaluate and
compare the performance of the proposed models only based
on labeled points in either open water (regions with 0 SIC) or
regions with 90%+ SIC.

C. Uncertainty Analysis

Uncertainty maps of the five scenes in Fig. 4 calculated
from the Bayesian CNN outputs are presented in Fig. 5 for
analysis. Note that the color scales of aleatoric uncertainty
and epistemic uncertainty are different. The sampling number
T in (5) is set to be 5. Although a larger T can be more
accurate in approximating the real predictive variance, it will
be very time-consuming in computation. We also find that
by choosing a larger T , the uncertainty values stay basically
the same. Misclassified pixels/regions (e.g., regions outlined
in red in Fig. 5) tend to have high uncertainty values in
both aleatoric and epistemic maps. High uncertainty can also
be observed in regions with intermediate SICs where it is
difficult to determine the exact class label. Besides, most of

Fig. 6. Relationship between aleatoric/epistemic uncertainty and misclassifi-
cation rate calculated from the labeled data points using different combinations
of models.

the ice–water boundaries can be well delineated in uncertainty
maps as pixels on and beside the boundaries tend to have
brighter intensities. Even in the scenes with large areas of mis-
classifications (e.g., scene of data 20100816 and 20101021),
a strong contrast of uncertainty values on the two sides of the
“true” ice–water boundaries helps users know where the model
makes either confident or probably erroneous predictions.

To study the relationship between uncertainty values and
misclassification rates, Fig. 6 shows the numerical relationship
between aleatoric/epistemic uncertainty and misclassification
rates calculated from labeled data points. Also, the misclas-
sification rates using different combinations of algorithms are
compared with each other. For Bayesian CNN outputs, the
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Fig. 7. Average uncertainty values for each scene. Note that the y-axis scales of aleatoric uncertainty and epistemic uncertainty are different.

Fig. 8. Bivariate box plot for aleatoric and epistemic uncertainties among the top 5% data points in terms of the aleatoric uncertainty.

misclassification rates (i.e., the blue bars) increase linearly
with aleatoric uncertainty. In contrast, there is a significant
increase in the misclassification rate when epistemic uncer-
tainty exceeds 0.001, followed by a linear increase, gradually
flattening out after around 0.03. Although similar patterns can
be observed after combining the IRGS algorithm, the misclas-
sification rates have been decreased effectively, as indicated
by the orange bars. For example, when aleatoric uncertainty
is higher than 0.25, the misclassification rates decrease by
around 10%. Therefore, compared to the slight improvement
in average classification accuracy, the IRGS algorithm is
crucial in reducing misclassification rates in regions with high
uncertainty.

An overview of uncertainty values for all scenes is shown
in Fig. 7 to investigate the change of uncertainty values
under different ice conditions. It is obvious that the main
source of uncertainty comes from the aleatoric part as the
values of aleatoric uncertainty are nearly ten times larger
than those of epistemic uncertainty, which is consistent with
other studies concerning uncertainty quantification in com-
puter vision tasks [44], [45]. This can also be accounted for by
the complex backscattering mechanisms on different surface
conditions across different incidence angles. The average

Fig. 9. Mean uncertainty value under different SIC levels. The numbers of
different scenes contributed to each SCI level (from 0 to 90+ are: 15, 6, 5,
4, 5, 8, 4, 3, 6, and 16). Note that the y-axis scales of aleatoric uncertainty
and epistemic uncertainty are different.

uncertainty values in the melting season are much higher
compared to other times of the year, especially for scene of
data 20100712, 20100730, 20100807, and 20100816. While
the results of the other three scenes have been presented in

Authorized licensed use limited to: University of Waterloo. Downloaded on March 29,2023 at 05:49:40 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: UNCERTAINTY-INCORPORATED ICE AND OPEN WATER DETECTION 5201213

Fig. 10. (Top) (a)–(e) Scene examples presented in Fig. 4 (scene of data from left to right: 20100807, 20101027, 20100730, 20100816, and 20101021)
in HH channel. (f)–(j) Second row: corresponding manually labeled label maps for visual evaluation. The gray, black, and white colors represent ice, water,
and land, respectively. (k)–(o) Third row: examples of the classification results with uncertainty thresholding algorithm incorporated. (Bottom) (p)–(t) More
informative representation of the classification results on the top. Regions in different ranges of average aleatoric uncertainty values are indicated by different
colors.

Fig. 5, the high uncertainty values in scene 20100712 are
mainly caused by regions with thin ice. Despite the high
uncertainty, the model manages to classify most of these
regions correctly, as shown in Table III. The low uncertainty
values for the scene obtained on scene 20100907 are due to
the fact that only pure water is present in that scene. As ice
began to freeze up again in fall, the uncertainty values decrease
gradually (except for the scene obtained on scene 20101021,
which has been explained in Section IV-B), which is plausible
as the ice is forming and no longer wet yet still shares complex
boundaries with open water. By looking back to Table III,
it can be concluded low uncertainty values normally indicate
accurate classification, while misclassification or unconfident

predictions can be inferred by high uncertainty. The relation-
ship between incidence angle values and average uncertainty
values across different incidence angles is also investigated and
it is found that there is no direct correlation between those two
quantities.

To further investigate the spatial correlation between
aleatoric and epistemic uncertainty, a bivariate box plot is
shown in Fig. 8. Following [45], only the top 5% of data points
in terms of the aleatoric uncertainty are selected for analysis
since most of the pixels have uncertainty values very close
to zero. It can be observed that the median value (indicated
by the red line in Fig. 8) of epistemic uncertainty generally
increases as the aleatoric uncertainty increases. For data points
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TABLE III

TESTING ACCURACY OF LABELED SAMPLES FOR EACH SCENE USING
DIFFERENT COMBINATIONS OF MODELS (UNIT: %)

with aleatoric uncertainty values larger than 0.4, the mean
epistemic values stay the same or decrease. Nevertheless, since
the number of those data points only consists of a very tiny
portion of the top 5% data points, it can still be inferred that the
model tends to give more uncertain predictions as the aleatoric
uncertainty increases.

In addition, the relationship between uncertainty and SIC
is also studied based on the ice charts provided. For faster
computation, 1% of the data points in each scene is randomly
selected to obtain their corresponding ice concentrations in
the ice chart for analysis. In consequence, the number of data
points within open water or 90%+ ice concentration regions
are much greater than the others. As shown in Fig. 9, pixels
within the regions with intermediate SIC levels (i.e., from 20%
to 60%) have relatively high aleatoric uncertainty values. This
is reasonable as regions with intermediate SIC levels mostly
appear in the melting season or ice–water boundaries. As for
the epistemic uncertainty, the pattern is similar except that the
value is also relatively high when SIC is 10%. Both aleatoric
and epistemic uncertainty values decrease significantly under
high SIC levels (larger than 70%). Note that the low uncer-
tainty of the 70% bin might be caused by insufficient areas of
study. In comparison, the mean uncertainty values for data
points in open water are slightly higher, which is mainly
caused by the blurry ice–water boundaries and rough water
surface under high wind speeds.

D. Uncertainty Map-Incorporated Classification Results

The thresholding parameters presented in Table I are deter-
mined after the uncertainty presented in Fig. 6. Specifically,
we adopt the minimum and maximum values of each aleatoric
and epistemic uncertainty value interval in Fig. 6 as the
threshold values. Based on the predefined uncertainty thresh-
old values, different combinations of ice pixel percentage

Fig. 11. Comparison between prediction results with and without incorpo-
rating the uncertainty value thresholding algorithm for scenes 20100816 and
20101021. (Top) Results without incorporating uncertainty information. (Mid-
dle) Results after incorporating uncertainty information. (Bottom) Correspond-
ing manually labeled label maps for visual evaluation.

threshold values are tested and it is found that the given
ones in Table I produce the highest classification accuracy.
Since all images are used to conduct the uncertainty analysis
shown in Fig. 6, the threshold values are determined by all
the images. We acknowledge that it would better maintain
the independence between the training and testing sets if the
leave-one-out scheme is also applied to the determination of
the thresholding parameters. Nevertheless, due to the limited
amount of data, some of the threshold values might not be well
determined, which might negatively affect the classification
results. A set of threshold parameters that receive optimal
performance among all the scenes facilitates us to apply them
to other images in future works.

The numerical results after combining the proposed algo-
rithm have been presented in the last column of Table III
and the yellow bars in Fig. 6. The average testing accuracy
is further improved by 1.1%, which is mainly attributed to
the significant improvement in scene 20101021. Most of the
pixels on the rough water surface that are misclassified as
ice have been corrected effectively, as shown in Fig. 10(o).
More importantly, the yellow bars in Fig. 6 show that the
misclassification rates under relatively high uncertainty values
have dropped significantly.

The final prediction results of the scenes presented in
Fig. 4 are shown in Fig. 10, with corresponding scenes in
the HH channel and manually labeled label maps attached.
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Although those maps are labeled mainly based on visual
observation and might not be 100% accurate, they can be
a good reference for visual evaluation of the classification
results. By referring to the HH imagery and reference label
maps, it can be observed that other than scene 20101021, the
large areas of misclassification in scenes 20100807 (in the
middle top with low SIC) and 20100816 (on the left side of the
ice–water boundaries) have been reduced significantly as well.
Examples of prediction results with and without incorporating
the uncertainty value thresholding algorithm are also given
in Fig. 11 for easier comparison. The prediction maps with
uncertainty information incorporated are given in the bottom
row of Fig. 10, in which different colors are assigned to
regions with different mean aleatoric uncertainty values. It can
be observed that the assigned color becomes darker as the
uncertainty value increases. This greatly facilitates us to flag
regions that might need to be checked manually by ice
analysts.

V. CONCLUSION

By assuming that each weight in a CNN follows a certain
Gaussian distribution, a Bayesian CNN is first built to conduct
pixelwise classification between sea ice and open water in
SAR imagery with both epistemic and aleatoric uncertainty.
The IRGS algorithm is then introduced into the workflow
to segment each SAR scene into homogeneous polygons,
which are then used to further improve the Bayesian CNN
classification result by preserving detailed ice–water bound-
aries and eliminating noise-like misclassifications. By analyz-
ing the uncertainty maps provided by the Bayesian CNN,
a thresholding-based algorithm is proposed to correct the
miscalssified polygons and significantly reduce misclassifi-
cation rates under high uncertainty values. The training and
testing of the proposed model are implemented on PyTorch
installed on a local PC running Ubuntu 22 with a 3.6-GHz
AMD Ryzen 7 eight-core CPU, 40-GB memory, and a 64-bit
operating system. The training times (a total of around 370 000
patches are input for training) for the Bayesian CNN and a
conventional AlexNet are 34 and 20 min, respectively. On the
other hand, the average execution times for the two networks
mentioned above to produce pixelwise classification results for
an SAR scene are 11 and 3 min. Therefore, the Bayesian CNN
fits in well with the time requirement for operational sea ice
monitoring.

Results generated from multiple dual-polarized SAR scenes
collected from RADARSAT-2 in the Beaufort Sea show that
while relatively high classification accuracy on labeled sam-
ples can be achieved, factors, such as the presence of melting
ice, rough water surface under high wind speeds, as well as
the blurry ice–water boundaries during the melting season,
degrade the accuracy and confidence of our model predictions
significantly. Therefore, apparently, it is not sufficient to evalu-
ate the reliability of model predictions only by looking into the
classification accuracy of labeled samples and visual inspec-
tion. Since it has been demonstrated that the misclassification
rate increases with the increase of uncertainty, the uncertainty
maps calculated from the Bayesian CNN outputs provide extra

information that facilitates us to locate the correct ice–water
boundaries and pixels that might be misclassified. Scenes that
are obtained during the melting season generally have the
highest mean uncertainty values, followed by scenes obtained
during freeze-up. The decomposition of predictive uncertainty
into aleatoric and epistemic uncertainty manifests that the
main source of uncertainty comes from the aleatoric part,
which is caused by the large variability in the patterns of both
ice and water under different circumstances (e.g., different
wind speeds, ice concentrations, and ice types). Although the
classification results might be further improved by techniques
such as data augmentation and changing the window size,
they cannot reduce the uncertainty values. The bivariate plot
between aleatoric and epistemic uncertainty indicates that the
model tends to be more uncertain about its predictions on
regions with higher data uncertainty values. In addition,
by referring to the sea ice charts, it is further validated that data
points in regions with intermediate ice concentrations tend to
have larger uncertainty values than those in regions of open
water or high ice concentration levels.

The proposed method that consists of the Bayesian
CNN, the IRGS algorithm, and the uncertainty value
thresholding-based algorithm is able to conduct accurate
polygon-based classification on more than 99% of the labeled
pixels. Regions with high uncertainty values are highlighted
to give more informative prediction maps. In the future,
an uncertainty-guided model can be developed to perform
better classification on those uncertain samples. Besides, since
in recent years, many advanced CNNs have been proposed for
more complex classification tasks, it is worthwhile to convert
them into Bayesian CNNs as well and see whether the clas-
sification performance can be further improved. In addition,
it is also necessary to introduce the uncertainty analysis to
sea ice typing, which is a more challenging classification task
in SAR-based sea ice monitoring. As ice charts derived from
manual analysis of SAR imagery typically ignore small details
within ice fields, it would be valuable to utilize classification
derived from other data (e.g., optical/IR/NIR) as additional and
more independent reference for evaluation in future studies.
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