
Pisot numbers and the Spectra of Real numbers

by

Kevin Hare

B.Math, University of Waterloo, 1997.

M.Sc, Simon Fraser University, 1999.

a thesis submitted in partial fulfillment

of the requirements for the degree of

Ph.D.

in the Department

of

Mathematics.

c© Kevin Hare 2002

SIMON FRASER UNIVERSITY

June 2002

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Kevin Hare

Degree: Ph.D.

Title of thesis: Pisot numbers and the Spectra of Real numbers

Examining Committee: Dr. M. Trummer

Chair

Dr. P. Borwein

Senior Supervisor

Dr. P. Lisonek

Supervisory Committee

Dr. I. Chen

Supervisory Committee

Dr. S. Choi

Dr. C. Smyth

External Examiner

Date Approved:

ii

Abstract

It’s all nonsense, that stuff they fill your heads with, the Academy

and all of those books and primers and philosophy – all that five-

times-six – a curse on the lot of it!

Taras Bulba – Nikolai Gogol

Pisot numbers have a long history, being studied as early as 1912 by Thue [38].

Some simple examples of Pisot numbers are the golden ratio (approximately 1.6180339),

all integers greater than or equal to 2, and the real root of x3− x− 1 (approximately

1.324717957). Salem shows that the set of Pisot numbers is infinite and very struc-

tured [31]. Pisot numbers appear in a variety of different areas of mathematical

research, such as: β-expansions [24], disjoint coverings of the natural numbers [2],

robotics [11], quasilattices and quasicrystals [9], exceptional sets in harmonic anal-

ysis [31], and Salem numbers [31, 32]. A recent line of inquiry, initiated by Erdős,

Joó and Komornik [13], is the determination of l1(q) for Pisot numbers q. Here

lm(q) := inf{|y| : y = εnq
n+εn−1q

n−1+· · ·+ε0, εi ∈ {±m,±(m−1), · · · ,±1, 0}, y 6= 0}.
This line of inquiry is generalized by considering the spectra of any set of polynomials

evaluated at q, where the coefficients of the polynomials are restricted to a finite set

of integers. Some common generalizations include restricting the coefficients to {0, 1}
or {±1}.

An algorithm for computing lm(q) and its generalizations is given in this thesis.

Using this algorithm a systematic investigation of the spectra of {±1} polynomials is

done. This investigation results in the discovery of non-Pisot numbers with discrete

iii

spectra. Furthermore a complete description of lm(q) for all unit quadratic Pisot

numbers is given. A similar description appears to be possible for some cubic Pisot

numbers, but so far no proof is known. This class of cubic Pisot numbers is studied.

iv

Acknowledgments

Particular people and organizations that I would like to thank include:

• My Supervisory Committee, for a large number of useful comments and correc-

tion.

• Warren Hare, for such useful comments as: “This sentence is nonsensical.”

• Jeff Graham, for editing my thesis for grammar.

• Peter Borwein, for pointing out that proof reading comes naturally for some

people, and that I am not one of these people.

• Jason Loeppky, for reading a single sentence, finding a single misprint, and then

whining until he got listed in the acknowledgements.

• Idris Mercer, for complaining about a comma.

• NSERC, for funding (PGS A and PGS B).

• MITACS for funding as an RA, the Math Department as funding as a TA/SI,

SFU for funding in the form of fellowships and scholarships.

• The Weekly World News, for being a wonderful source of honest and informative

news.

v

Contents

Abstract . iii

Acknowledgments . v

List of Tables . ix

List of Figures . x

1 Introduction and Background . 1

1.1 Algebraic numbers . 1

1.2 Spectra . 6

1.3 Generalizations of Spectra . 10

2 An Algorithm for Computing Spectra 11

2.1 Background to the Algorithm 11

2.2 The Algorithm . 12

2.3 Implementation . 16

2.4 Running Time of the Algorithm 17

3 Explorations of Spectra . 22

3.1 Spectra of Λ(q) and A(q) for Pisot Numbers q 22

3.2 A(q) for Non-Pisot Numbers q 26

3.3 Salem Numbers and A(q) . 31

vi

3.4 Quadratic and Cubic Pisot numbers 34

4 Unit Quadratic Pisot Numbers . 35

4.1 Background on Quadratic Pisot Numbers 35

4.2 Description of the Proof . 36

4.3 Main Theorem . 39

4.4 Finding Height m Polynomials 46

4.5 Non-Unit Quadratic Pisot Numbers 48

4.6 Further Research . 48

5 Cubic Pisot Numbers . 51

5.1 Background on Cubic Pisot Numbers 51

5.2 Upper Bound for a Sequence of Quadratics 56

5.3 Lower Bound for all Quadratics 61

5.4 Proof that D(q) < 1 . 64

5.5 Bounds for the Height with Respect to ε 68

5.6 Further Research . 70

6 Some Conclusions and Open Questions 72

6.1 Open questions . 72

6.2 Generalizations . 74

Appendices

A Code . 77

A.1 Data Types . 77

A.2 Spectrum Algorithm . 87

A.3 Top Level Code . 90

A.4 Compiling Stuff . 96

vii

A.5 GNU Public License . 99

viii

List of Tables

3.1 Pisot numbers where l(q) = a(q) . 24

3.2 Pisot numbers that do not satisfy ±1 polynomials 25

3.3 Successful calculations of l(q) with a spectrum over 20 million 27

3.4 Successful calculations of a(q) with a spectrum over 20 million 28

3.5 Polynomials with non-uniformly discrete spectrum A(q) 30

3.6 Known Salem numbers q of degree ≤ 10, where A(q) is discrete . . . 31

4.1 Range for m when lm(q) = |Fk−1q − Fk| 45

4.2 Range for m when lm(q) = |Ek−1q − Ek| or |Gk−1q −Gk| 46

5.1 Relationship between Pn(q) and lm(q) for the first cubic Pisot number 53

5.2 Relationship between Pn(q) and lm(q) for the second cubic Pisot number 54

5.3 D(q) for various q . 65

ix

List of Figures

1.1 Roots of x3 − x− 1 . 3

1.2 Roots of x6 − x5 + x2 − x4 − 1 . 4

1.3 Roots of x4 − 2x3 + x− 1 . 4

2.1 Algorithm for finding the spectrum of a Pisot number q 14

4.1 (s, t) where sq + t ∈ Λ2(q), q satisfies x2 − 3x+ 1, |s| ≤ 20 37

4.2 (s, t) where sq + t ∈ Λ2(q) and bounding lines 38

4.3 (s, t) where sq + t ∈ Λ2(q), q satisfies x2 − 3x + 1, s ≤ 20, and lines

sr + t = ± 2
1−|r| . 38

4.4 (s, t) where sq + t ∈ Λ3(q) . 49

5.1 T1(x, y) on the region of x ≥ 0 . 67

5.2 T2(x, y) on the region of x ≤ 0 . 68

5.3 Regions where D1(q) and D2(q) are minimal 69

6.1 (x, y) ∈ ΛS(τ) for S ⊂ R2,
√
x2 + y2 ≤ 10 76

x

Chapter 1

Introduction and Background

I was at the mathematical school, where the master taught his pupils

after a method scarce imaginable to us in Europe. The proposition

and demonstration were fairly written on a thin wafer, with ink com-

posed of a cephalic tincture. This the student was to swallow upon a

fasting stomach, and for three days following eat nothing but bread

and water. As the wafer digested, the tincture mounted to his brain,

bearing the propositions along with it.

Gulliver’s Travels – Jonathan Swift

1.1 Algebraic numbers

Pisot numbers have a long history, being studied as early as 1912 by Thue [38]. Salem

first became interested in Pisot numbers q because of their property that qn → 0

(mod 1) as n → ∞ [32]. Moreover, Salem shows that Pisot numbers are the only

algebraic numbers that have this property. Recall that an algebraic number is a

root of a polynomial with integer coefficients, and an algebraic integer is a root of a

monic polynomial with integer coefficients. The conjugates of an algebraic number

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

are the other roots of the algebraic number’s minimal polynomial. (Note, this is non-

standard, as typically the conjugates of an algebraic number include itself.) Salem

gives a straightforward description of Pisot numbers that we give here as the definition:

Definition 1.1 (Pisot number). A Pisot number is a positive real algebraic integer

greater than 1, all of whose conjugates are of modulus strictly less than 1.

For completeness, we give definitions for two related sets of algebraic integers,

namely the Salem numbers and cyclotomic numbers.

Definition 1.2 (Salem number). A Salem number is a positive real algebraic in-

teger greater than 1, all of whose conjugates are of modulus less than or equal to 1.

At least one of the conjugates must be of modulus 1.

Definition 1.3 (Cyclotomic number). A cyclotomic number is an algebraic inte-

ger α such that αn = 1 for some n ∈ Z, n 6= 0.

In [32] Salem shows that the set of Pisot numbers is closed. Furthermore, Salem

shows that every Pisot number is a two sided limit of Salem numbers.

Recall:

Definition 1.4 (Mahler measure). The Mahler measure of a polynomial with in-

teger coefficients of the form:

anx
n + an−1x

n−1 + · · ·+ a0 = an

n∏
i=1

(x− αi)

is:

|an|
n∏
i=1

max(1, |αi|).

The Mahler measure of an algebraic number is the Mahler measure of the algebraic

number’s minimal polynomial.

Further recall:

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

Definition 1.5. The reciprocal of a polynomial P (x) is defined as

P ∗(x) := xdP

(
1

x

)
,

where d is the degree of P .

Smyth shows that if p is irreducible, and p(x) 6= ±p∗(x) then the minimal Mahler

measure is that for x3 − x− 1 [35].

Example 1. We consider three examples. These examples are x3 − x − 1 (Figure

1.1), x6−x5−x4 +x2−1 (Figure 1.2) and x4−2x3 +x−1 (Figure 1.3). The locations

of the roots of these polynomials are plotted, along with the unit circle. Notice that

for each example, all but one root is within the unit circle. The one root that is not

within the unit circle is a positive real algebraic integer, and hence a Pisot number.

F
i
g
u
r
e
s
/
P
i
s
o
t
1
.
p
s

Figure 1.1: Roots of x3 − x− 1

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

F
i
g
u
r
e
s
/
P
i
s
o
t
2
.
p
s

Figure 1.2: Roots of x6 − x5 + x2 − x4 − 1

F
i
g
u
r
e
s
/
P
i
s
o
t
3
.
p
s

Figure 1.3: Roots of x4 − 2x3 + x− 1

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

We define:

Definition 1.6 (Height). Let p(x) = anx
n+ · · ·+a0. The height of p(x) is denoted:

H(p(x)) = max{|a0|, · · · , |an|}.

A classic result, [8, 14, 18], shows that if q is a Pisot number, and p(x) is any height

m polynomial with integer coefficients, then either p(q) = 0 or p(q) is bounded away

from zero (where the bound is independent of p(x)). For completeness we include this

theorem here, using the presentation of Bugeaud [8] and Garsia [18].

Theorem 1.1 (Bugeaud/Garsia). If q is a Pisot number, and p(x) is a height m

polynomial with integer coefficients, then there exists a constant c(q,m) > 0 such

that either p(q) = 0, or |p(q)| ≥ c(q,m).

Proof. Assume p(q) 6= 0. Let q2, · · · , qn be the conjugates of q. As q is an

algebraic integer, we have that:

|p(q)p(q2) · · · p(qn)| ≥ 1.

From this it follows that:

|p(q)| ≥ 1

|p(q2) · · · p(qn)|
(1.1)

≥ 1∏n
i=2 |p(qi)|

(1.2)

≥ 1∏n
i=2

∑∞
j=0 m|qi|j

(1.3)

≥ 1∏n
i=2 m

1
1−|qi|

(1.4)

≥
∏n

i=2(1− |qi|)
mn−1

. (1.5)

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

So on setting c(q,m) :=
∏n
i=2(1−|qi|)
mn−1 > 0 we are done. It is worthing noting that

the inequality in on line 1.3 is strict, except if the product is empty (i.e. the Pisot

number is an integer).

1.2 Spectra

The proof for the existence of c(q,m) in Theorem 1.1 is constructive, but the construc-

tion is not the best possible. In fact, it is only the best possible for the case when the

Pisot number is also an integer. This raises the question of what is the best possible

construction of c(q,m) and how to calculate it. To determine an optimal value for

c(q,m) we need to perform a minimization of p(q) over all height m polynomials p(x)

with integer coefficients, where p(q) > 0.

The spectrum of q is the set of p(q) where p(x) ranges over all polynomials whose

coefficients are restricted to a finite set of integers. The structure of these spectra are

interesting beyond simply the study of their minimal positive values.

Erdős, Joó, and Komornik [13] are among the first to study the spectra of real

numbers. The spectra they study are with respect to the class of polynomials with

coefficients restricted to 0 and 1. Consider, for q ∈ (1, 2):

Y (q) := {εnqn + · · ·+ ε0 : n ∈ N, εi ∈ {0, 1}} = {0, 1, q, q + 1, q2, q2 + 1, q2 + q, · · ·}.

Order the set Y (q) as {y0 = 0 < y1 < y2 < y3 < · · ·}. Erdős, Joó, and Komornik

are concerned with the value of yk+1 − yk. They show that for q > τ (where τ is

the golden ratio, the larger root of x2 − x − 1), there exist infinitely many k where

yk+1−yk = 1. As well, if q < τ and q is a Pisot number they show that yk+1−yk 6→ 0.

It is further shown by Erdős, Joó, and Joó [16] that yk+1− yk ≤ 1 for all k. If q is the

Pisot number satisfying xn − xn−1 − · · · − 1 then lim inf{yk+1 − yk} = 1
q
. Erdős, Joó,

and Joó ask: for which other q is this infimum strictly greater than 0?

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

There is considerable study of this infimum, and it has its own notation:

l(q) := lim inf{yk+1 − yk}.

We define a wider class of spectra as:

Y m(q) := {εnqn + · · · ε1q + ε0, n ∈ N, εi ∈ {0, · · · ,m}}.

Order the set Y m(q) as {ym0 = 0 < ym1 < ym2 < ym3 < · · ·}. We extend the definition

of l(q) in the obvious way as:

lm(q) := lim inf{ymk+1 − ymk }.

It is clear that l(q) = l1(q) ≥ l2(q) ≥ l3(q) ≥ · · · ≥ 0.

The first partial answer to Erdős, Joó, and Joó’s question of when l(q) > 0 is given

by Erdős, Joó and Schnitzer [15]. Erdős, Joó and Schnitzer show that when q < τ

then l2(q) > 0 if and only if q is a Pisot number.

The question of when l(q) > 0 is answered more completely by Bugeaud [8] who

shows for q ∈ (1, 2) that lm(q) > 0 for all m if and only if q is a Pisot number.

Bugeaud also studies a problem related to lm(q), that of lim sup{yk+1 − yk}. For this

we introduce the notation:

L(q) := lim sup{yk+1 − yk}

and extended this in the obvious way to:

Lm(q) := lim sup{ymk+1 − ymk }.

Clearly L(q) = L1(q) ≥ L2(q) ≥ · · · ≥ 0 and Lm(q) ≥ lm(q). Bugeaud shows that

L(q) < 1 for all q < τ and L2(q) < 1 for all q ≥ τ . Also, Bugeaud shows that if q

does not satisfy a polynomial of height 1, then l(q) = 0 by a pigeon hole argument.

A good overview of problems relating to l(q) is provided in Joó and Schnitzer

[25]. They list a number of problems, two of which we include here. Both of these

problems, at the time this thesis was written, are still open. These problems are:

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

1. For q ∈ (1, 2), is l(q) > 0 if and only if q is a Pisot number?

2. For 1 < q < τ does l(q) = 0 imply L(q) = 0?

If we restrict our attention to lm(q), we notice that we are trying to find the

minimal positive value in Y m(q)−Y m(q). Since Y m(q)−Y m(q) is the set of all height

m polynomials evaluated at q, we are led to the definitions:

Λ(q) := {ε0 + ε1q
1 + · · ·+ εnq

n : εi ∈ {±1, 0}}

and

Λm(q) := {ε0 + ε1q
1 + · · ·+ εnq

n : εi ∈ {±m,±(m− 1), · · · ,±1, 0}}.

From this we can re-define l(q) and lm(q) as:

l(q) := inf{|y| : y ∈ Λ(q), y 6= 0}

and

lm(q) := inf{|y| : y ∈ Λm(q), y 6= 0}.

It is an easy exercise to show that these two definitions, l(q) and lm(q), are equivalent

to those given earlier. Further results by Erdős and Komornik [17] are:

1. If q is not a Pisot number and m ≥ q−q−1 then Λm(q) has a finite accumulation

point.

2. If q is not a Pisot number, then lm(q) = 0 for all m ≥ dq − q−1e+ dq − 1e.

3. If q ∈ (1, 21/4] and if q2 is not the first or second Pisot number, then lm(q) = 0

for all m.

Note that for q in (1, 2), Erdős and Komornik’s second result implies that l3(q) > 0

if and only if q is a Pisot number. Erdős, Joó and Komornik [14] show that if q is a

Pisot number then l(q) ≥ (1 + q)−1q(log(d−1) log(1+q) log(1−Q))/ log(Q) > 0 where d is the

degree of the minimal polynomial satisfied by q, and Q is the modulus of q’s largest

conjugate.

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

Komornik, Loreti and Pedicini [26] show that if q is the Pisot number satisfying

x3 − x2 − 1 then l(q) = q2 − 2. For general m, and τ the golden ratio, they give

a complete description for lm(τ). If Fk is the kth Fibonacci number (F0 = 0, F1 =

1, Fn = Fn−1 + Fn−2), and τ k−2 < m ≤ τ k−1 then lm(τ) = |Fkτ − Fk+1|.

Another spectrum that is studied is the class of ±1 polynomials evaluated at q,

defined as:

A(q) := {ε0 + ε1q
1 + · · ·+ εnq

n : εi ∈ {±1}}

with the minimal value a(q) defined as:

a(q) := inf{|y| : y ∈ A(q), y 6= 0}.

How and when A(q) is discrete is of interest. Some formal definitions are required:

Definition 1.7 (Discrete). A spectrum Λ is discrete if for any finite interval [a, b]

of the real line, Λ ∩ [a, b] has only a finite number of elements. Equivalently Λ is

discrete if it has no accumulations points.

Definition 1.8 (Uniformly discrete). A spectrum is uniformly discrete if there

exists an ε greater than zero such that any two distinct values in the spectrum are at

least ε apart.

Definition 1.9 (Non-uniformly discrete). A spectrum is non-uniformly discrete

if it is discrete, and it is not uniformly discrete.

It is clear that A(q) ⊆ Λ(q), hence results about Λ(q) extend to A(q). Peres and

Solomyak [29] show that if q is a Pisot number then A(q) is uniformly discrete. How-

ever, examples of q where A(q) is discrete, but not uniformly discrete are given in

Chapter 3. Peres and Solomyak also show that A(q) is dense in R for almost ev-

ery q ∈ (
√

2, 2). Furthermore, if q ∈ (1,
√

2) and q2 is not the root of a height 1

polynomial, then A(q) is dense.

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

1.3 Generalizations of Spectra

In light of the large variety of spectra that we study, we make the following general

definitions:

Definition 1.10 (ΛS(q)). Let S is a finite set of integers and q is a real number.

Define the spectrum of q with respect to S as:

ΛS(q) := {ε0 + ε1q
1 + · · ·+ εnq

n : εi ∈ S}.

We notice that using this definition we have that:

1. Λm(q) = Λ{−m,−m+1,···,m−1,m}(q),

2. Λ(q) = Λ{−1,0,1}(q),

3. A(q) = Λ{±1}(q),

4. Y m(q) = Λ{0,1,···,m}(q),

5. Y (q) = Λ{0,1}(q).

We further make the general definition:

Definition 1.11 (lS(q)). Define:

lS(q) := inf{|y| : y ∈ ΛS(q), y 6= 0}.

Similarly, we note that:

1. lm(q) = l{−m,−m+1,···,m−1,m}(q),

2. l(q) = l{−1,0,1}(q),

3. a(q) = l{±1}(q).

Chapter 2

An Algorithm for Computing

Spectra

... mathematicians stay away from actual, specific numbers as much

as possible. We like to talk about numbers without actually exposing

ourselves to them - that’s what computers are for.

Cryptonomicon – Neal Stephenson

2.1 Background to the Algorithm

Recall from Chapter 1 that we are interested in determining ΛS(q) for various sets

S ⊂ Z. Determining ΛS(q) is useful for calculating l(q), a(q) or general lS(q). In the

case of l(q) we would take S to be {−1, 0, 1} and determine the smallest positive value

in ΛS(q). An algorithm to determine Λ(q) ∩
[
−1
q−1

, 1
q−1

]
is given by Ka-Sing Lau in

[27]. In Lau’s paper the values of the size of the spectra in
[
−1
q−1

, 1
q−1

]
are determined

for the Pisot numbers satisfying the polynomials x3 − x2 − x − 1, x3 − 2x2 + x − 1,

x2 − x − 1, x3 − x2 − 1, x4 − x3 − 1 and x3 − x − 1. This algorithm is generalized

in Section 2.2. Section 2.3 discusses the implementation of this algorithm in C++.

Lastly, Section 2.4 gives an estimate of the running time of this algorithm.

11

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 12

2.2 The Algorithm

In this section an algorithm is given to find the spectrum of a real number in a

particular range. That is, this algorithm determines ΛS(q) ∩ [a, b] for a real number

q and a finite range [a, b]. If q is a Pisot number then this algorithm terminates.

Moreover, if this algorithm terminates then the spectrum is discrete over the entire

real line. In the case of Λ(q), this algorithm is similar to that given by Ka-Sing Lau

[27]. First, a lemma:

Lemma 2.1. Let S be a finite set of integers. Let p(x) be a degree n polynomial with

coefficients in S. Let sl := min{S}, su := max{S}, and let q > 1. Denote αu := sl
1−q

and αl := su
1−q . If p(q) 6∈ [αl, αu] then q × p(q) + s 6∈ [αl, αu] for all s ∈ S.

Proof. Assume that p > αu. Then:

qp+ s ≥ qp+ sl

> qαu + sl

≥ −slq
q − 1

+
slq − sl
q − 1

≥ −sl
q − 1

≥ αu.

A similar result shows that if p < αl the qp+ s < αl for all s ∈ S.

Consider a calculation of ΛS(q) ∩ [αl, αu]. From Lemma 2.1 it follows that, if

p(q) 6∈ [αl, αu], then the polynomial q × p(q) + s need not be considered, as it cannot

contribute to the spectrum in this range. Furthermore, if α∗l ≤ αl and α∗u ≥ αu, then

the same result holds that p(q) 6∈ [α∗l , α
∗
u] implies q × p(q) + s 6∈ [α∗l , α

∗
u] for all s ∈ S.

The next lemma ensures that if q is a Pisot number, then an exhaustive search

for all elements in a finite range for a given spectrum terminates. The algorithm will

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 13

keep running until it finds no more new elements, and if there are a finite number of

elements in a given range, then this condition will eventually be satisfied.

Lemma 2.2. If q is a Pisot number, S a finite set of integers and [a, b] a finite interval,

then
∣∣ΛS(q) ∩ [a, b]

∣∣ is finite.

Proof. Let r = max{|s| : s ∈ S}. Let y1, y2 ∈ ΛS(q), y1 6= y2. Then y1 − y2 ∈
Λ2r(q) hence |y1 − y2| ≥ l2r(q) > 0, where the last inequality comes from [8, 13, 17].

Thus
∣∣ΛS(q) ∩ [a, b]

∣∣ ≤ b−a
l2r(q)

+ 1 <∞.

In Figure 2.1 (page 14) an exhaustive search to determine ΛS(q)∩ [αl, αu] is given.

If we wish to find the spectra in a range [a, b] other than [αl, αu], we use in the

algorithm a lower bound of min{a, αl} and an upper bound of max{b, αu}, and then

restrict our attention to [a, b].

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 14

Spec(S, q)

alpha[u] := -min(s:s in S)/(q-1);

alpha[l] := -max(s:s in S)/(q-1);

L[0] := S;

d := 0;

repeat

L[d+1] := L[d];

for p in (L[d] minus L[d-1]), s in S do

if q * p + s in [alpha[l], alpha[u]] then

L[d+1] = L[d+1] union {q * p + s}
end if

end do

d := d + 1;

until L[d-1] = L[d];

RETURN(L[d]);

end;

Figure 2.1: Algorithm for finding the spectrum of a Pisot number q

Example 2. Let us compute Λ(q) ∩
[
−1
q−1

, 1
q−1

]
for the Pisot number q that satisfies

x3 − 2x2 + x − 1. We have q = 1.754877666, αl = −1.3247179 and αu = 1.3247179.

Printed below are the various values of Ld, where Ld is defined in Figure 2.1.

L0 = [−1, 0, 1],

L1 = [−1, −0.7548776, 0, 0.7548776, 1],

L2 = [−1.3247179, −1, −0.7548776, −0.3247179, 0, 0.3247179,

0.7548776, 1, 1.3247179],

L3 = [−1.3247179, −1, −0.7548776, −0.5698402, −0.4301597,

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 15

−0.3247179, 0, 0.3247179, 0.4301597, 0.5698402, 0.7548776,

1, 1.3247179],

L4 = [−1.3247179, −1, −0.7548776, −0.5698402, −0.4301597,

−0.3247179, −0.2451223, 0, 0.2451223, 0.3247179, 0.4301597,

0.5698402, 0.7548776, 1, 1.3247179],

L5 = [−1.3247179, −1, −0.7548776, −0.5698402, −0.4301597,

−0.3247179, −0.2451223, 0, 0.2451223, 0.3247179, 0.4301597,

0.5698402, 0.7548776, 1, 1.3247179],

= L4.

Since L5 = L4 we see that the algorithm has terminated. From this we find the

minimal element in the spectrum, l(q), is 0.245122334.

We know the spectrum of a Pisot number q is uniformly discrete [17, 18], and

hence
∣∣ΛS(q) ∩ [αl, αu]

∣∣ < ∞. The natural question is, do we know anything about

the converse?

Theorem 2.1. Let q > 1. Let αl and αu be defined as in Lemma 2.1. If
∣∣ΛS(q) ∩ [αl, αu]

∣∣ <
∞ then ΛS(q) is discrete.

Notice that in Theorem 2.1 q is not assumed to be a Pisot number. It is worth

noting that Theorem 2.1 only proves that ΛS(q) is discrete, and does not prove that

ΛS(q) is uniformly discrete. In fact there exist examples of spectra, described later in

Section 3.2, that satisfy Theorem 2.1 and are provably non-uniformly discrete.

Proof (Theorem 2.1). Let sl, su, αl and αu be defined as in Lemma 2.1. Define

λ1 = ΛS(q) ∩ [αl, αu]. Define αu,1 = min{qβ + s > αu : β ∈ λ1, s ∈ S}, and define αl,1

similarly to be the maximal element in the spectrum less than αl. From this, define

αu,n = q×αu,n−1+sl and αl,n = q×αl,n−1+su. Next, define λn = [αl,n−1, αu,n−1]∩ΛS(q).

Clearly, αu,n → ∞ and αl,n → −∞ as n → ∞. By assumption λ1 has only

a finite number of elements. Noticing that λn = λn−1 ∪ ({qβ + s : β ∈ λn−1, s ∈

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 16

S} ∩ [αl,n−1, αu,n−1]) gives by induction that λn has only a finite number of elements.

Thus, ΛS(q) is discrete, as required.

2.3 Implementation

The algorithm described in Section 2.2 has been implemented in C++ [5]. This

implementation is found at [23]. A complete list of the C++ code is also found in

Appendix A. This section summarizes some of the techniques used to improve the

efficiency of this code.

When calculating ΛS(q) a list of all polynomials examined must be kept. As the

degrees of these polynomials can be quite large, the list of polynomials examined

can take up a large amount of memory. To reduce space requirements, this C++

implementation stores the remainders of the polynomials when they are divided by the

minimal polynomial of q. This is advantageous because the degrees of the remainders

are bounded above. Furthermore, through experimentation it is noted that the heights

of these polynomials being stored do not grow larger than a “short int” in C++. (The

software tests whether the coefficients are small enough, and raises an error if they

grow larger than a “short int”.)

The storing of the remainders of the polynomials has a second advantage, if p1(q) =

p2(q), where p1 and p2 are polynomials, then the remainders of p1 and p2, when divided

by the minimal polynomial of q, are equal. Thus duplication within the spectrum is

easily recognized.

Keeping a list of all polynomials examined is done by storing these polynomials in

a red-black tree with a lexigraphical order on the coefficients. The lexigraphical order

is used, as it allows for easy comparisons to previously examined polynomials. Any

height regulating tree with any order would give similar results for time comparisons

of duplication recognition. For more information on red-black trees see [12].

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 17

The next observation to be made is that if S is symmetric, (i.e. s ∈ S implies

that −s ∈ S), then ΛS(q) is symmetric. Utilizing this symmetry eliminates half of

the calculations needed.

There exists further refinements to this algorithm, described in [5], that allow the

calculation of the spectra to be partitioned into multiple sub-calculations.

2.4 Running Time of the Algorithm

To analyze the running time of this algorithm, we need to make some estimates about

the size of ΛS(q) ∩ [αl, αu]. We assume that q is a Pisot number, as this is the only

known case when the algorithm must terminate for all finite subsets S of the integers.

If we set m = max(|s| : s ∈ S) then ΛS(q) ⊆ Λm(q). Hence the running time for ΛS(q)

is less than or equal to the running time for Λm(q). So without loss of generality, we

assume that we are determining the running time for spectra of the form Λm(q).

Let q be a Pisot number, with conjugates q = q1, q2, · · · , qn. We use q and q1

interchangeably throughout this section. Let the minimal polynomial of q be written

as xn−bn−1x
n−1−· · ·−b0. Define P(x) := {P (x)} to be the unique set of polynomials

of degree ≤ n − 1 such that P(q) = Λ(q) ∩
[
−1
q−1

, 1
q−1

]
. This set exists because if

p1(q) = p2(q) then upon division by the minimal polynomial of q, the remainders of

p1(x) and p2(x) are equal, and of degree at most n− 1.

Example 3. Consider the Pisot number q satisfying x3− 2x2 + x− 1. In Example 2

(page 14), we found that:

Λ(q) ∩
[
−1

q − 1
,

1

q − 1

]
= [−1.3247179, −1, −0.7548776, −0.5698402,

−0.4301597, −0.3247179, −0.2451223, 0,

0.2451223, 0.3247179, 0.4301597, 0.5698402,

0.7548776, 1, 1.3247179].

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 18

This gives:

Λ(q) ∩
[
−1

q − 1
,

1

q − 1

]
=

[
−q2 + q, −1, −q + 1, −q3 + q2 + q,

q3 − q2 − q − 1, −q2 + q + 1,

−q4 + q3 + q2 + q − 1, 0, q4 − q3 − q2 − q + 1,

q2 − q − 1, −q3 + q2 + q + 1,

q3 − q2 − q, q − 1, 1, q2 − q
]
.

Thus, we write:

P(q) = [−q2 + q, −1, −q + 1, −q2 + 2q − 1, q2 − 2q, −q2 + q + 1,

q − 2, 0, −q + 2, q2 − q − 1, −q2 + 2q, q2 − 2q + 1, q − 1,

1, q2 − q].

An upper bound for the number of elements in P(x) is needed to give an upper

bound to the running time of this algorithm.

Define ai,j such that:

xk ≡ ak,n−1x
n−1 + · · ·+ ak,0 (mod p(x)).

Now consider the polynomial ak,n−1x
n−1 + · · ·+ ak,0 as a point in n-space denoted

by
⇀
a := (ak,n−1, · · · , ak,0). The ak,j follow a recurrence of the form:

ak,j = bn−1ak−1,j + · · ·+ b0ak−n,j

and thus we write each ak,j as:

ak,j = αj,1q
k
1 + · · ·+ αj,nq

k
n.

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 19

Example 4. Let us again consider the example of the Pisot number q satisfying

x3 − 2x2 + x− 1 (Example 2, page 14). We see that:

x0 ≡ 0x2 + 0x+ 1 (mod x3 − 2x2 + x− 1),

x1 ≡ 0x2 + 1x+ 0 (mod x3 − 2x2 + x− 1),

x2 ≡ 1x2 + 0x+ 0 (mod x3 − 2x2 + x− 1),

x3 ≡ 2x2 − 1x+ 1 (mod x3 − 2x2 + x− 1),
...

xk ≡ ak,2x
2 + ak,1x+ ak,0 (mod x3 − 2x2 + x− 1),

where:

ak,2 = 2ak−1,2 − ak−2,2 + ak−3,2,

ak,1 = 2ak−1,1 − ak−2,1 + ak−3,1,

ak,0 = 2ak−1,0 − ak−2,0 + ak−3,0,

and has initial values:

a0,2 = 0, a1,2 = 0, a2,2 = 1,

a0,1 = 0, a1,1 = 1, a2,1 = 0,

a0,0 = 1, a1,0 = 0, a2,0 = 0.

Thus, we have:

ak,2 =
q1
k

(q1 − q3) (q1 − q2)
− q2

k

(−q3 + q2) (q1 − q2)
+

q3
k

−q1q3 + q2 q1 − q2 q3 + q3
2
,

ak,1 = − (q2 + q3) q1
k

(q1 − q3) (q1 − q2)
+

(q1 + q3) q2
k

(−q3 + q2) (q1 − q2)
− (q1 + q2) q3

k

−q1q3 + q2 q1 − q2 q3 + q3
2
,

ak,0 =
q2 q3 q1

k

(q1 − q3) (q1 − q2)
− q1q3 q2

k

(−q3 + q2) (q1 − q2)
+

q2 q1q3
k

−q1q3 + q2 q1 − q2 q3 + q3
2
.

We see that
⇀
a = (ak,n−1, · · · , ak,0) is (αn−1,1q

k
1 + · · · + αn−1,nq

k
n, · · · , α0,1q

k
1 + · · · +

α0,nq
k
n). As q2, · · · , qn are of modulus less than 1, we see that for large k that

⇀
a ≈

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 20

qk1(αn−1,1, · · · , α0,1). So xk is roughly on the line qk1(αn−1,1, · · · , α0,1). The maximum

deviation of
⇀
a from this line

⇀
α := (αn−1,1, · · · , α0,1) is:

n−1∑
j=0

n∑
i=2

|αj,i||qi|k.

So the maximum deviation for any term in Λ(q) from this line is:

R :=
∞∑
k=0

n−1∑
j=0

n∑
i=2

|αj,i||qi|k, (2.1)

=
n−1∑
j=0

n∑
i=2

|αj,i|
1

1− |qi|
. (2.2)

Notice that any polynomial p(x) ∈ P(x) for Λm(q), is such that p(q) is in the

range
[
−m
q−1

, m
q−1

]
. Further, any polynomial p(x) ∈ P(x) for Λm(q), when considered as

a point in n-space, is within a radius of mR from
⇀
α. Thus it is sufficient to determine

the number of integer points a radius mR from
⇀
α in the range [−m

q−1
, m
q−1

]. This gives

the number of terms in Λm(q) ∩
[
−m
q−1

, m
q−1

]
being bounded by:

2mn

q − 1
Rn−1.

An insertion into a set requires O(log(2mn

q−1
Rn−1)) time. For each element in Λ we

must examine qp + s for s ∈ {−m, · · · ,m}, (hence 2m + 1 possible neighbours). So

the running time of the algorithm is of order

O
(

2mn

q − 1
Rn−1 log

(
2mn

q − 1
Rn−1

)
(2m+ 1)

)
= O

(
mn+1

q − 1
Rn−1n log(mR)

)
.

Example 5. Let us again consider the example of the Pisot number q satisfying

x3 − 2x2 + x− 1 (Example 2, page 14). We have:

α0,2 = .4956083622, α0,3 = .4956083622,

α1,2 = .7556553486, α1,3 = .7556553486,

α2,2 = .3741236838, α2,3 = .3741236838.

CHAPTER 2. AN ALGORITHM FOR COMPUTING SPECTRA 21

This gives a value of R = 13.26184660. Thus in Λ(q) ∩
[
−1
q−1

, 1
q−1

]
the number of

elements is bounded by:

2

q1 − 1
Rn−1 = 465.

This is an overestimate, given that enumerating this set gives 15 elements.

We have just proved the following theorem:

Theorem 2.2. Let q be a degree n Pisot number. The algorithm to determine Λm(q)

runs in O(mn logm) time.

In practice memory is the constraint, not time. Any calculation that could be

completed in less than 2 gigabytes of RAM took less than 90 minutes to complete.

Chapter 3

Explorations of Spectra

The device also functioned as an ordinary calculator, but only to a

limited degree. It could handle any calculation which returned an

answer of anything up to “4”.

“1 + 1” it could manage (“2”), and “1 + 2” (“3”) and “2+2” (“4”) or

“tan 74” (“3.4874145”) but anything above “4” it represented as “A

Suffusion of Yellow”. Dirk was not certain if this was a programming

error or an insight beyond his ability to fathom...

The Long Dark Tea-Time of the Soul – Douglas Adams

3.1 Spectra of Λ(q) and A(q) for Pisot Numbers q

Specific values of lm(q) are calculated for some Pisot numbers q. If q is the Pisot

number satisfying x3 − x2 − 1, then l(q) = q2 − 2 [26]. If q is the Pisot number

satisfying xn − xn−1 − · · · − 1 then l(q) = qn−1 − qn−2 − · · · − 1 = 1
q

[16, 26]. If τ is

the golden ratio, then l2(τ) = τ 3 − 2τ 2 + 2τ − 2 = 2τ − 3 (this corrects a misprint in

[8], which used the notation u2 for l2(τ)).

The algorithm in Figure 2.1 (page 14) is used to calculate l(q) for all Pisot numbers

between 1 and 2, up to and including degree 9 (and most Pisot numbers of degree

22

CHAPTER 3. EXPLORATIONS OF SPECTRA 23

10) and a(q) for Pisot numbers up to and including degree 10. The methods of David

Boyd are used [7] to determine the Pisot numbers up to and including degree 10.

There are 232 Pisot numbers of degree less than or equal to 10 between 1 and 2 and

thus we do not include all of the results here. All of the results concerning l(q) and

a(q), as well as the code used to determine these results, are found at [23].

In the calculations of a(q) and l(q), there are only a few cases where a(q) =

l(q). Some of these Pisot numbers are enumerated in Table 3.1. The last column of

this table does not give the ±1 polynomial for a(q), this column instead gives the

polynomial’s canonical degree n − 1 representation, as described in Section 2.4 for

P(x) (see page 17). This shall be the practice with all tables within this thesis. We

know from [16, 26] that if q is the Pisot number satisfying xn − xn−1 − · · · − 1 then

l(q) = qn−1 − qn−2 − · · · − 1. Thus for Pisot numbers q satisfying xn − xn−1 − · · · − 1

it is clear that a(q) = l(q). Hence the set of Pisot numbers q, where l(q) = a(q), is

infinite.

A question of interest is for which Pisot numbers q does q satisfy a ±1 polynomial.

This is equivalent to asking for which Pisot numbers q is 0 ∈ A(q). Computationally

most Pisot numbers q are such that 0 ∈ A(q). Table 3.2 summarizes all failures

found. Thus, all of the Pisot numbers given in Table 3.2 provably do not satisfy a

±1 polynomial. The first known failure is a Pisot number with minimal polynomial

of degree 6. It is interesting to note that all of the failures found are such that q is

greater than 1.95. It would be interesting to know if this must always be the case.

Table 3.3 lists large calculations of l(q), and Table 3.4 lists large calculations of

a(q). Due to potential floating point error, a range slightly larger than [αl, αu] was

chosen. Hence an exact size of the spectrum in the range [αl, αu] cannot be given,

but only an approximation. Any calculation of l(q) or a(q) where Λ(q) ∩
[
−1
q−1

, 1
q−1

]
or A(q) ∩

[
−1
q−1

, 1
q−1

]
has an approximate spectrum size over 20 million is listed. Due

to the memory requirements of this program, any spectra of approximate size over

48 million could not be computed. The calculation is successful for all a(q) tested,

and for l(q), all but 16 of the 232 Pisot numbers tested. The timings listed in these

tables are for a MIPS R10000 Processor Chip Revision: 3.4 (Main memory size: 4096

CHAPTER 3. EXPLORATIONS OF SPECTRA 24

Minimal polynomial Pisot number q l(q) Exact representation
of ±l(q)

x2 − x− 1 1.618034 0.618034 q − 1
x3 − 2x2 + x− 1 1.754878 0.245122 q − 2
x3 − x2 − x− 1 1.839286 0.543689 q2 − q − 1
x4 − x3 − 1 1.380278 0.008993 q3 − 4q2 + 5
x4 − 2x3 + x− 1 1.866760 0.13324 q − 2
x4 − x3 − 2x2 + 1 1.905166 0.068706 q3 − 3q2 + q + 2
x4 − x3 − x2 − x− 1 1.927562 0.518790 q3 − q2 − q − 1
x5 − x4 − x3 + x2 − 1 1.443269 0.002292 4q2 − 3q − 4
x5 − x3 − x2 − x− 1 1.534158 0.002155 2q4 − 3q3 + q2 − 3q + 2
x5 − x4 − x2 − 1 1.570147 0.006992 q4 − 2q2 − 2q + 2
x5 − 2x4 + x3 − x2 1.673649 0.009705 q4 − q3 − q2 − 2q + 3

+x− 1
x5 − x4 − x3 − 1 1.704903 0.030844 2q3 − 3q3 − 2
x5 − x4 − x3 − x2 1.965948 0.508660 q4 − q3 − q2 − q − 1
−x− 1

x6 − x5 − x4 + x2 − 1 1.501595 0.0003491 q5 + 2q4 − 4q3 − 3q2

+3q − 2
x6 − 2x5 + x− 1 1.967168 0.032831 q − 2
x6 − x5 − x4 − x3 1.983583 0.504138 q5 − q4 − q3 − q2

−x2 − x− 1 −q − 1
x7 − x5 − x4 − x3 1.590005 0.0001137 4q6 − 5q5 − q4 − q3

−x2 − x− 1 +q − 6
x7 − x6 − x4 − x2 − 1 1.601347 0.0004642 2q5 − q4 − 3q3 − 1q2

−q + 2
x7 − 2x6 + x5 − x4 1.640728 0.0003030 2q6 − 2q5 − 2q4

+x3 − x2 + x− 1 −2q2 + q + 3
x7 − 2x6 + x5 − 2x4 1.790223 0.0006021 q6 − 3q5 + 5q4 − 4q3

+2x3 − x2 + x− 1 −4q + 1
x7 − 2x6 + x− 1 1.983861 0.016138 q − 2
x7 − x6 − x5 − x4u 1.991964 0.502017 q6 − q5 − q4 − q3

−x3 − x2 − x− 1 −q2 − q − 1

Table 3.1: Pisot numbers where l(q) = a(q)

CHAPTER 3. EXPLORATIONS OF SPECTRA 25

Minimal polynomial Pisot number
x6 − x5 − 2x4 + x2 − x− 1 1.979476326
x6 − 3x5 + 3x4 − 2x3 + x− 1 1.955451068
x8 − x7 − x6 − x5 − 2x4 + 1 1.995777793
x9 − x8 − x7 − 2x6 + x3 − x2 − x− 1 1.997784254
x9 − 2x8 + x5 − 2x4 + x− 1 1.996283920
x9 − x8 − x7 − x6 − x5 − x4 − x3 − x2 − 1 1.994016415
x9 − 2x7 − 3x6 − 2x5 + x3 − x− 1 1.992483962
x9 − x8 − x7 − x6 − x5 − x4 − x3 − x− 1 1.989944545
x9 − x8 − x7 − x6 − x5 − x4 + 1 1.963515789
x10 − x9 − x8 − x7 − x6 − 2x5 + 1 1.998987762
x10 − x9 − 2x8 + x6 − x5 − 2x4 + x2 − x− 1 1.998772685
x10 − 2x9 + x7 − 2x6 + x4 − 2x3 + x− 1 1.998277927
x10 − 2x9 + x5 − x4 − x+ 1 1.969456013
x10 − x9 − 2x8 + x6 − x5 − x4 + x3 + x2 − x− 1 1.966884957
x10 − x9 − x8 − x7 − x6 − x5 + 1 1.964715641
x10 − 2x8 − 3x7 − x6 − x3 + x+ 1 1.954062236

Table 3.2: Pisot numbers that do not satisfy ±1 polynomials

CHAPTER 3. EXPLORATIONS OF SPECTRA 26

Mbytes). The code to perform these calculations is written in C++, using the GNU

compiler. (See Section 2.3 for a discussion of the code, Appendix A for a listing of

the code, and [23] for a copy of the code.) Precise values of l(q) and a(q) in terms of

their polynomial evaluations at q can be found at [23].

3.2 A(q) for Non-Pisot Numbers q

Peres and Solomyak ask in [29], for which q ∈ (1, 2) is A(q) dense. In [29] they say

that the only known examples of q with the property that A(q) is not dense are the

Pisot numbers. This section finds examples that have this property, that are not Pisot

numbers.

A search of 1868 non-Pisot numbers q is done, to find examples where A(q) is

discrete. An additional test is made of 578 different Salem numbers. To explain how

these non-Pisot numbers are chosen consider the following theorem:

Theorem 3.1. Let q ∈ (1, 2). If q does not satisfy a polynomial of the form εnx
n +

..+ εmx
m + βm−1x

m−1 + · · ·+ β0 where εi ∈ {±1} and βi ∈ {±2, 0}, then A(q) is not

discrete.

Proof. Take P0 = 1. If q × Pn−1 > 1 then take Pn = q × Pn−1 − 1, and if

q×Pn−1 < 1 then take Pn = 1− q×Pn−1. Clearly Pi ∈ A(q) for all i and 0 ≤ Pi ≤ 1.

If this sequence of Pi repeats, then q satisfies the difference of two ±1 polynomials,

which is of the form described above. If this sequence does not repeat, then the

sequence of Pi is an infinite non-repeating sequence in [0,1], and thus A(q) is not

discrete.

Corollary 3.1. Let q ∈ (1, 2). If q does not satisfy a height 2 polynomial, then A(q)

is not discrete.

Lemma 3.1. If A(q) is discrete, then A(qn) is discrete for all n.

CHAPTER 3. EXPLORATIONS OF SPECTRA 27

Minimal polynomial Pisot number q l(q) Approximate CPU
size of secs
spectrum in
[αl, αu]

x10 − x9 − x8 − x7 1.742975573 1.18668e-07 26973910 39m50s
+x6 − x3 + 1

x10 − x9 − x7 − x6 1.746541923 7.04603e-08 41498130 58m41s
−x5 − x4 − x3

−x2 − 1
x10 − x9 − x8 − x7 1.795572823 3.5123e-08 43357472 1h1m7s

+x5 − x3 + 1
x10 − x9 − x8 − x7 1.852234868 8.17922e-08 25981420 34m38s
−x3 + 1

x10 − x9 − x8 − x7 1.860952864 3.80874e-07 24944436 35m22s
−x5 + x4 + 1

x10 − 2x9 + x8 − 2x7 1.870250440 4.44816e-08 46252634 1h4m56s
+x6 + x3 − x2

+x− 1
x10 − 2x9 + x7 − x6 1.881601063 2.57611e-07 27513576 35m35s
−x3 + x2 − 1

x10 − 2x8 − 3x7 − x6 1.890027098 2.67873e-07 20923016 29m43s
+x5 + 2x4 + x3

−x2 − 2x− 1
x10 − 2x9 + x8 − x7 1.903832902 2.22525e-07 22738454 28m42s
−x6 − x2 + x− 1

x10 − x9 − x8 − x7 1.921407084 3.12296e-08 41511868 57m5s
−x5 − x4 − x2

−x− 1
x10 − 2x9 + x8 − 2x7 1.957362809 2.22214e-07 22336604 29m7s

+x6 − x5 − x2 − 1
x10 − 2x9 + x7 − 2x6 1.998277927 2.447e-08 46943484 1h3m54s

+x4 − 2x3 + x− 1

Table 3.3: Successful calculations of l(q) with a spectrum over 20 million

CHAPTER 3. EXPLORATIONS OF SPECTRA 28

Minimal polynomial Pisot number q a(q) Approximate CPU
size of secs
spectrum in
[αl, αu]

x10 − x9 − x8 + x2 − 1 1.601755862 1.59445e-07 33921896 30m38s
x10 − x9 − x8 − x2 + 1 1.632690733 1.03354e-07 21835702 17m30s
x10 − 2x9 + x8 − x7 1.735143707 8.28149e-08 32342934 29m18s

+x3 − x2 + x− 1

Table 3.4: Successful calculations of a(q) with a spectrum over 20 million

Proof. Let α =
∑m

i=1±qni be an element in A(qn). Then (qn−1+qn−2+· · ·+q+1)α

is in A(q). Thus qn−1
q−1

A(qn) ⊂ A(q). Thus A(qn) is discrete.

Lemma 3.1 is of theoretical interest, but is not of much practical use, because

other than the two Pisot numbers, no q <
√

2, has been found where A(q) is discrete.

With the limits imposed by Theorem 3.1, the search is restricted to:

1. All irreducible polynomials dividing a height 1 polynomial of degree ≤ 7.

2. All polynomials dividing any ±1 polynomial up to degree 10.

3. All polynomials dividing a polynomial of the form εnx
n + εn−1x

n−1 + · · ·+ εmx
m

+ βm−1x
m−1 + · · ·+ β0 where εi ∈ {±1} and βi ∈ {±2, 0} up to degree 7.

4. A list of 578 Salem numbers, between 1 and 2, of degree less than or equal to

14.

Some observations made on the basis of this search are:

1. All examples found of q whereA(q) is discrete are Perron numbers (all conjugates

are of modulus less than q).

CHAPTER 3. EXPLORATIONS OF SPECTRA 29

2. There are 125 examples found of non-Pisot numbers q with discrete spectra

A(q).

3. There are 12 Salem numbers found, with discrete spectra. Some of these are

listed in Table 3.6.

4. The only non-Pisot numbers q found whose Mahler measure is less than 2 and

where A(q) is discrete are these 12 Salem numbers.

5. The smallest non-Pisot number found with discrete spectrum is the Salem num-

ber q satisfying x4 − x3 − x2 − x+ 1 (approximately 1.72208).

6. The largest root of xn − xn−1 − · · · − x + 1 is a Salem number with discrete

spectrum (Theorem 3.3 and Theorem 3.4), and the only Salem numbers found

of degree 14 or less with discrete spectrum satisfy a polynomial of this type.

7. All q found where A(q) is discrete and where q does not satisfy a height 1

polynomial, do not have zero in the spectrum.

8. The smallest degree minimal polynomial found of a non-Pisot number q such

that A(q) is discrete is x3 − 2x− 2.

It is worth noting here the distinction between discrete spectra and uniformly

discrete spectra. The examples found of non-Pisot numbers with discrete spectra

A(q) are “most probably” non-uniformly discrete, and some provably non-uniformly

discrete.

Theorem 3.2. If l(q) = 0 then A(q) is not uniformly discrete, and if A(q) is not

uniformly discrete, then l2(q) = 0.

Proof. The first part follows by noticing that:

2Λ(q) = Λ{±2,0}(q) ⊆ A(q)− A(q),

CHAPTER 3. EXPLORATIONS OF SPECTRA 30

Minimal polynomial Non-Pisot number
x3 − 2x− 2 1.769292354
x4 − x3 − 2x− 2 1.873708564
x4 − 2x2 − 2x− 2 1.899321089
x5 − x4 − 2x2 − 2 1.803707279
x5 − x4 − x3 − 2x2 + 2 1.917514202
x5 − x4 − 2x2 − 2x− 2 1.942887561
x5 − 2x3 − 2x2 − 2x− 2 1.953501637
x6 − 2x4 − 2x3 − 2 1.813277575
x6 − x5 − x4 − 2x3 + 2x+ 2 1.859080768
x6 − 2x4 − 2x3 − 2x2 + 2 1.865843123
x6 − x5 − x4 − 2x3 + 2 1.961038629
x6 − 2x4 − 2x3 − 2x2 − 2x− 2 1.977807115
x6 − x5 − x4 − x3 − 2x2 + 2 1.963984556
x7 − x6 − x5 − x4 + x3 − 2x2 + 2 1.815396315
x7 − x6 − x5 − 2x4 + 2x2 + 2 1.888840344
x7 − x6 − x5 − x4 − x3 + 2 1.903972308
x7 − x6 − x5 − 2x4 + 2x+ 2 1.937730036
x7 − x6 − x5 − x4 − x3 − 2x2 + 2x+ 2 1.945197233
x7 − x6 − x5 − 2x4 + 2 1.981204104
x7 − x6 − x5 − x4 − 2x3 + 2 1.982546502
x7 − x6 − x5 − x4 − x3 − 2x2 + 2 1.983151826

Table 3.5: Polynomials with non-uniformly discrete spectrum A(q)

and the second part follows by noticing that:

A(q)− A(q) ⊆ Λ2(q).

So if the conjecture is true that for q ∈ (1, 2), l(q) > 0 if and only if q is a Pisot

number (see for example [5, 25]), then all the non-Pisot numbers q with discrete A(q)

must be non-uniformly discrete.

The non-Pisot numbers in Table 3.5 are known to have non-uniformly discrete

spectra. By a simple calculation these numbers have discrete spectra. It is seen that

CHAPTER 3. EXPLORATIONS OF SPECTRA 31

Minimal polynomial Salem number q a(q) Size of
spectrum in
[αl, αu]

x4 − x3 − x2 − x+ 1 1.722083806 0.243489 11
x4 − 2x3 + x2 − 2x+ 1 1.883203506 0.249038 13
x6 − x5 − x4 − x3 1.946856268 0.249814 15
−x2 − x+ 1

x6 − 2x5 + x4 − 2x3 1.974818708 0.249959 17
+x2 − 2x+ 1

x6 − 2x4 − 3x3 − 2x2 + 1 1.987793167 0.249991 19
x8 − 2x7 + x6 − 2x5 1.994004199 0.249998 21

+x4 − 2x3 + x2

−2x+ 1
x10 − x9 − x8 − x7 1.997032367 0.249999 23
−x6 − x5 − x4

−x3 − x2 − x+ 1
x10 − 2x9 + x8 − 2x7 1.998524670 0.25 25

+x6 − 2x5 + x4

−2x3 + x2 − 2x+ 1

Table 3.6: Known Salem numbers q of degree ≤ 10, where A(q) is discrete

l(q) = 0 for these numbers as they do not satisfy a height 1 polynomial [8, 14]. Thus

by Theorem 3.2 these spectra are non-uniformly discrete.

3.3 Salem Numbers and A(q)

Consider the Salem numbers in Table 3.6. By noticing that x6 − 2x4 − 3x3 − 2x2 + 1

divides x8−x7−x6−x5−x4−x3−x2−x+1, and that x2n−2x2n−1+x2n−2−· · ·−2x+1

divides x2n+1−x2n−x2n−1− · · ·−x+ 1, it is noticed that all of these Salem numbers

satisfy a polynomial of the form xn − xn−1 − xn−2 − · · · − x+ 1 for n ≥ 4.

In this section we prove that if q is the positive real algebraic integer greater than

1 satisfying xn−xn−1−xn−2−· · ·−x+1, then q is a Salem number. We further prove

that if q is a Salem number of this form, then A(q) is discrete. It is still unknown

CHAPTER 3. EXPLORATIONS OF SPECTRA 32

if all Salem numbers q where A(q) is discrete satisfy a polynomial of this form, nor

is it known if these Salem numbers are the only non-Pisot numbers q where A(q) is

discrete and where their Mahler measure is less than 2.

Theorem 3.3. The root of the polynomial xn − xn−1 − · · · − x+ 1 between 1 and 2

is a Salem number, for n ≥ 4.

Proof. By [31] if P (x) is the minimal polynomial of a Pisot number and P ∗(x) :=

P (1
x
)xdeg(P (x)) is the reciprocal of P (x), then provided that (xnP (x)− P ∗(x))/(x− 1)

has a root greater than 1, then this root is a Salem number. Here we take P (x) = x−2.

To see that there is a root between 1 and 2, we use the intermediate value theorem.

Theorem 3.4. If 1 < q satisfies the polynomial xn− xn−1 − xn−2 − · · · − x+ 1, then

A(q) is discrete.

Proof. To see that A(q) is discrete, simply consider the algorithm and notice that

it must terminate. The following observations are needed.

1. qm − qm−1 − · · · − q + 1 > 1
q−1

for m < n.

2. qn − qn−1 − · · · − q − 1 < −1
q−1

.

Thus at each step of the algorithm there is only one choice, and the algorithm

must terminate after n steps. (The case of polynomials with negative lead coefficients

is equivalent by symmetry.)

It remains to prove these two observations.

1. First notice that the Salem numbers qn that satisfy xn−xn−1−· · ·−x+ 1 form

an increasing sequence bounded below by 1 and above by 2. (This follows as

qn+1
n −qnn−· · ·−qn+1 = qn+1

n −2qnn = qnn(qn−2) < 0 and 2n+1−2n−· · ·−2+1 =

3 > 0.)

CHAPTER 3. EXPLORATIONS OF SPECTRA 33

Thus for m ≤ n− 2:

qm+2
n − qm+1

n − · · · − qn + 1 ≥ 0,

which implies:

qm+2
n − qm+1

n − · · · − q2
n ≥ qn − 1.

Dividing by q2
n gives:

qmn − qm−1
n − · · · − 1 ≥ qn − 1

q2
n

> 0.

Adding 2 to each side gives:

qmn − qm−1
n − · · ·+ 1 > 2

>
1

q − 1
.

The last inequality, that 2 > 1
q−1

, follows as the smallest Salem number of this

form is approximately 1.72.

For m = n− 1 and qn = q > 3+
√

17
4
≈ 1.780 it follows that:

0 > −2q2 + 3q + 1.

Dividing by q − 1 gives:

0 >
−2q2 + 2q

q − 1
+
q + 1

q − 1
,

> −2q +
q

q − 1
+

1

q − 1
,

>
q

q − 1
− 2q + 1.

CHAPTER 3. EXPLORATIONS OF SPECTRA 34

Moving q
q−1

and flipping the sides gives:

q

q − 1
< 2q − 1

< (qn − qn−1 − · · · − q + 1) + 2q − 1

< qn − qn−1 − · · · − q2 + q

< q(qn−1 − · · · − q + 1)

< qn−1 − · · · − q + 1.

For the case of q < 1.780, we simply note that this is covered in Table 3.6.

2. Notice qn − qn−1 − · · · − q − 1 = qn − qn−1 − · · · − q + 1− 2 = −2 < −1
q−1

From this, we deduce:

Corollary 3.2. If q is the Salem number satisfying xn − xn−1 − xn−2 − · · · − x + 1,

then a(q) = q−1
q2 ≈ 1

4
.

3.4 Quadratic and Cubic Pisot numbers

For τ the golden ratio, there is a nice description of lm(τ). If Fk is the kth Fibonacci

number and τ k−2 < m ≤ τ k−1 then lm(τ) = |Fkτ − Fk+1| [26]. The algorithm of

Chapter 2 calculates lm(q) for any Pisot number q and any integer m, limited only by

the memory of the computer. Although this method makes calculations for any given

q or m, it has no predictive power for general m, or classes of Pisot numbers q. Using

this method of calculation, an examination of other Pisot numbers is performed in

the hopes of finding a similarly nice description of lm(q) for other q. The results of

this search are described in Chapters 4 and 5.

Chapter 4

Unit Quadratic Pisot Numbers

This made him a grad student, and grad students existed not to

learn things but to relieve the tenured faculty members of tiresome

burdens such as educating people or doing research.

Cryptonomicon – Neal Stephenson

4.1 Background on Quadratic Pisot Numbers

Chapter 3 explores various applications of the algorithm given in Chapter 2. Some

applications looked at include calculations of l(q) and a(q) for Pisot numbers q of

degree 10 or less. Thus we explore l(q) or a(q) as q ranges over various Pisot (or other

algebraic) numbers. In this chapter we instead fix q and explore lm(q) as m varies over

the positive integers. We base this exploration on the model of Komornik, Loreti and

Pedicini [26]. They give a complete description of all lm(τ) where τ is the golden ratio.

If Fk is the kth Fibonacci number and τ k−2 < m ≤ τ k−1 then lm(τ) = |Fkτ − Fk+1|.

The algorithm in Chapter 2 calculates lm(q) for any Pisot number q and any integer

m > 0, limited only by the memory of the computer. Although this algorithm makes

calculations for any given combination of m and q, it has no predictive power for

general m, or classes of Pisot numbers q. Using this method of calculation, examples

35

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 36

are found that suggest a relationship between all unit quadratic Pisot numbers and

their best approximations, similar to the relationship found by Komornik, Loreti and

Pedicini for the golden ratio. This chapter proves this relationship.

Recall that an algebraic integer α is a unit if the product of α with all of its

conjugates is ±1. It is convenient to adopt the following notation:

Definition 4.1 (Unit quadratic Pisot number). Let Ω be the set of Pisot num-

bers, such that these Pisot numbers are units, and they have minimal polynomials of

degree 2.

We see that these numbers satisfy polynomials of the form x2 − cx − 1 for c ∈
{1, 2, 3, · · ·}, or x2 − cx+ 1 for c ∈ {3, 4, 5, · · ·}.

Let q ∈ Ω . This chapter shows that lm(q) = |Dq − C| where C
D

is a best approx-

imation of q. A better description of which best approximations lm(q) is equal to is

given in Theorem 4.1, of. Section 4.3.

Section 4.2 gives a description of the proof of Theorem 4.1. The formal proof is

given in Section 4.3. An algorithmic implementation of one of the lemmas of Section

4.3 is given in Section 4.4. Section 4.5 demonstrates why Theorem 4.1 does not easily

extend to non-unit quadratic Pisot numbers. Section 4.6 gives some direction where

this research might be expanded upon.

4.2 Description of the Proof

The next section gives a description of lm(q) for all q ∈ Ω. However, we first give a

heuristic argument as to why the description in Section 4.3 should be true.

Example 6. Let q ∈ Ω be the Pisot number satisfying x2 − 3x + 1 (approximately

2.61803). Notice, for all y ∈ Λ2(q) there exists εi ∈ Z, |εi| ≤ 2 such that y =
∑
εiq

i.

Choose s and t such that sx+ t ≡
∑
εix

i (mod x2 − 3x+ 1). Figure 4.1 graphs the

ordered pair (s, t) where sq + t ∈ Λ2(q), and the line sq + t = 0. (Points close to the

line sq + t = 0 are small values in the spectra, and hence of interest.)

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 37

F
i
g
u
r
e
s
/
T
y
p
e
2
.
p
s

Figure 4.1: (s, t) where sq + t ∈ Λ2(q), q satisfies x2 − 3x+ 1, |s| ≤ 20

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 38

F
i
g
u
r
e
s
/
T
y
p
e
2
B
o
u
n
d
a
r
y
.
p
s

Figure 4.3: (s, t) where sq + t ∈ Λ2(q), q satisfies x2 − 3x + 1, s ≤ 20, and lines
sr + t = ± 2

1−|r|

We notice in Example 6 for m = 2 that all integer pairs (s, t) such that sq + t ∈
Λm(q) appear to be between two parallel lines. This is indeed the case, as is shown

in Lemma 4.2. Furthermore, all integer pairs (s′, t′) between these two parallel lines

are such that s′q + t′ ∈ Λm(q), as is shown in Corollary 4.1.

Example 7. Consider Example 6 (page 36) again, and let q be the Pisot number

satisfying x2 − 3x + 1. Let r be the conjugate of q. Figure 4.3 gives (s, t) where

sq + t ∈ Λ2(q) as well as the two bounding lines from Lemma 4.2, sr + t = ± 2
1−|r| .

By Lemmas 4.2 and 4.3 we have a description of Λm(q), as all sq + t where the

integer points (s, t) are bounded by the lines sr + t = ± m
1−|r| . Next it is an easy

matter to show that the minimal values of sq + t given the restrictions are the best

approximations (Definition 4.4). This then gives us the complete description of lm(q)

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 39

(Theorem 4.1).

4.3 Main Theorem

In this section we give a complete description of lm(q) for q ∈ Ω . Unfortunately this

description does not work for non-unit quadratic Pisot numbers, as shown in Section

4.5. Before proceeding we need a few lemmas and definitions. Here and throughout

this section let a and b be any two fixed integers.

Definition 4.2 (An, Bn). Define the sequences {An}∞n=0 and {Bn}∞n=0 as:

1. A0 = 0, A1 = 1, An = aAn−1 + bAn−2,

2. B0 = 1, B1 = 0, Bn = aBn−1 + bBn−2.

Lemma 4.1. Using the notation of Definition 4.2:

det

([
An An−1

Bn Bn−1

])
= (−b)n−1.

Proof. Notice that:

det

([
An An−1

Bn Bn−1

])
= det

([
aAn−1 + bAn−2 An−1

aBn−1 + bBn−2 Bn−1

])
,

= det

([
bAn−2 An−1

bBn−2 Bn−1

])
,

= −b det

([
An−1 An−2

Bn−1 Bn−2

])
.

Further, notice that: [
A1 A0

B1 B0

]
=

[
1 0

0 1

]

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 40

The result follows by induction.

Lemma 4.2. Let sq + t ∈ Λm(q) where q ∈ Ω and r is the conjugate of q . Then:

|sr + t| ≤ ± m

1− |r|
.

Proof. Let p(x) = x2−ax−b be the minimal polynomial of q. Notice by induction

that for n ≥ 0 we have

xn ≡ Anx+Bn (mod p(x)). (4.1)

Thus, from a standard result of recurrence relations (see for instance [22]), we have:

An =
1

q − r
qn +

1

r − q
rn (4.2)

and

Bn =
r

r − q
qn +

q

q − r
rn. (4.3)

Combining equations (4.1), (4.2) and (4.3) gives:

xn ≡ 1

q − r
qn(x− r) +

1

r − q
rn(x− q) (mod p(x)).

If sq + t ∈ Λm(q) then there exist εn ∈ Z with |εn| ≤ m, such that

sx+ t ≡
k∑

n=0

εnx
n (mod p(x))

and thus:

sx+ t ≡
k∑

n=0

εn
q − r

(qn(x− r)− rn(x− q)) (mod p(x)).

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 41

By evaluating at r we get:

|sr + t| =

∣∣∣∣∣
k∑

n=0

εn
q − r

(qn(r − r)− rn(r − q))

∣∣∣∣∣ ,
=

∣∣∣∣∣
k∑

n=0

−εn
q − r

rn(r − q)

∣∣∣∣∣ ,
≤

∣∣∣∣∣
∞∑
n=0

mrn

∣∣∣∣∣ ,
≤ m

1− |r|
.

This is the desired result.

The next lemma is similar to the ones described in Section 3 of [26], but the presen-

tation is different. For this lemma we need the observation that because lim
∣∣∣AnBn ∣∣∣ <∞

there exists an m such that |An| ≤ 2m|Bn| for all n ≥ 2. For this lemma we also need

the following definition:

Definition 4.3 (R). Define R := {ρnxn + · · ·+ ρ0 : n ∈ N, ρi ∈ R, |ρi| ≤ 1}.

Lemma 4.3. Let q ∈ Ω, let p(x) = x2 − ax± 1 be the minimal polynomial of q, and

let r be the conjugate of q . Let m ∈ N be such that |An| ≤ 2m|Bn| for all n ≥ 2.

Let y ∈ mR such that y ≡ cx + d (mod p(x)) where c, d ∈ Z. Then there exists a

y′ ∈ mR∩ Z[x] such that y′ ≡ cx+ d (mod p(x)).

Proof. Assume that y ≡ cx + d (mod p(x)) with c, d ∈ Z. We show here how

to find y′ such that y′ ≡ y (mod p(x)) and y′ ∈ Z[x] ∩mR. Let:

y = anx
n + · · ·+ a0

where ai ∈ R. If an ∈ Z then continue recursively on an−1x
n−1+· · ·+a0. If a0 ∈ Z then

continue recursively on anx
n−1+· · ·+a1. If neither a0 nor an is an integer, then use the

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 42

identity that xn−Anx−Bn ≡ 0 (mod p(x)) along with the fact that |An| ≤ m|Bn| to
solve for α where an+α ∈ Z or a0−αBn ∈ Z, and |an+α|, |a1−Anα|, |a0−Bnα| ≤ m.

Solving for α such that a0 − αBn = da0e or ba0c gives us two possible values, one

negative and one positive. These possible values have the property that their difference

is equal to 1
|Bn| . Similarly, by solving for α such that an + α = dane or banc we again

get two possible values, one negative and one positive. Now let αl be the maximal

of the two negative values, and αu be the minimal of the two positive values. So for

both α = αl and α = αu we have that an + α ∈ Z or a0 − αBn ∈ Z and further

|an + α|, |a0 − Bnα| ≤ m. By assumption |An| ≤ 2m|Bn| and further αu − αl ≤ 1
|Bn|

which gives that |αuAn − αlAn| ≤ 2m and hence at least one of these two values,

|a1 − αAn| ≤ m. Continue recursively on anx
n + · · ·+ a0 + α(xn − Anx−Bn).

By application of this recursion we see that y′ is such that all of the ai can be made

integers, with the possible exception of two consecutive terms, aj and aj−1. Notice

that:

anx
n + · · ·+ aj+1x

j+1 + aj−2x
j−2 + · · · a0 ≡ c′x+ d′ (mod p(x))

for some d′, c′ ∈ Z. Thus we see that:

ajx
j + aj−1x

j−1 ≡ (c− c′)x+ (d− d′) (mod p(x)),

where c− c′, d− d′ ∈ Z. By Lemma 4.2 we know that:

ajx
j + aj−1x

j−1 ≡ ajAjx+ aj−1Aj−1x+ ajBj + aj−1Bj−1 (mod p(x)).

Thus we have that: [
Aj Aj−1

Bj Bj−1

][
aj

aj−1

]
=

[
c− c′

d− d′

]
.

Noticing that the determinant of

[
Aj Aj−1

Bj Bj−1

]
is ±1, gives that the inverse of this

matrix has integer entries, and thus aj, aj−1 ∈ Z.

What is interesting here is that this proof is constructive, and a computer algo-

rithm can be designed to perform the steps of the induction in this proof. This is

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 43

described in Section 4.4.

Corollary 4.1. Let q ∈ Ω. Let m be such that |An| ≤ 2m|Bn| for all n ≥ 2. Let r

be the conjugate of q. Then sq + t ∈ Λm(q) if and only if

|sr + t| < ± m

1− |r|

Proof. From Lemma 4.2 we see that sq + t ∈ Λm(q) implies |sr + t| ≤ ± m
1−|r| .

If |sr + t| < ± m
1−|r| we see from the proof of Lemma 4.2 that we can find a choose

real numbers εn, where |ε| ≤ m such that sx + t ≡
∑k

n=0 εnx
n. From Lemma 4.3 we

can find an integer polynomial p(x), of height m such that sq + t = p(q). From this

it follows that sq + t ∈ Λm(q) and the result follows.

Lemma 4.4. Let q ∈ Ω satisfy a polynomial x2 − ax± 1. If |An| > 2m|Bn| for some

n ≥ 2 then lm(q) = 1.

Proof. Notice that A2 = a and B2 = b. Further notices that |An||Bn| are best

approximations of q. So we notice that if |An| > 2m|Bn| for some n ≥ 2 then

|A2| > 2m|B2|. This would happen if 2m < q. In this case lm(q) = 1.

We adopt the definition of [10] for best approximation:

Definition 4.4 (Best Approximation). A fraction C
D

, C,D ∈ Z, C > 0 gives a

best approximation to q if

|D′q − C ′| > |Dq − C| for all 0 < D′ < D.

It is noted in [10] (page 5, Theorem II) than C
D

are the convergents to q.

These results combine to give the final theorem:

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 44

Theorem 4.1. Let q ∈ Ω have a conjugate r . Let q have best approximations
{
Ck
Dk

}
and let k be the maximal integer such that:

|Dkr − Ck| ≤ m
1

1− |r|

then:

lm(q) = |Dkq − Ck|.

It is worth noting this is a generalization of Theorem 3.1 in [26], and gives the

equivalent result when it is restricted to the case when q is the golden ratio.

Proof (Theorem 4.1). By Lemma 4.4 we see that the Theorem is trivially true

for when |An| > 2m|Bn| for some n ≥ 2. Hence we may assume that |An| ≤ 2m|Bn|
for all n ≥ 2. Consider the best approximations of q,

{
Ck
Dk

}
. By Definition the

best linear approximations to zero are of the form Dkq − Ck. Corollary 4.1 indicates

that if Dkx − Ck ∈ mR (mod p(x)) then there exists a y ∈ Z[x] ∩ mR such that

y ≡ Dkx−Ck (mod p(x)). It follows that lm(q) = |Dkq−Ck| when Dkx−Ck ∈ mR
(mod p(x)) with k maximal. Thus if k is maximal such that |Dkr − Ck| ≤ m

1−|r| then

lm(q) = |Dkq − Ck| which is the desired result.

Corollary 4.2. Let Fn = aFn−1 +Fn−2 with F0 = 0 and F1 = 1 and let q be the Pisot

number satisfying x2−ax−1. If qk−1(q−1) ≤ m < qk(q−1) then lm(q) = |Fkq−Fk+1|.

Proof. It is easy to verify that
{
Fk+1

Fk

}
are the best approximations of q. A simple

calculation shows that:

Fk =
1

q − r
(qk − rk)

and that r = −1
q
. This yields that lm(q) = |Fkq−Fk+1| when k is maximal such that:

m

1− |r|
≥ |Fkr − Fk+1|

≥
∣∣∣∣ 1

q − r
((qk − rk)r − (qk+1 − rk+1))

∣∣∣∣

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 45

≥
∣∣∣∣ 1

q − r
(qkr − qk+1)

∣∣∣∣
≥

∣∣∣∣r − qq − r
qk
∣∣∣∣

≥ qk,

which implies:

(q − 1)qk−1 ≤ m,

and the result follows.

Table 4.1 gives the ranges that m is in, for lm(q) = Fk−1q − Fk.

Minimal polynomial

lm(q) x2 − x− 1 x2 − 2x− 1 x2 − 3x− 1 x2 − 4x− 1

|F0q − F1| [1,1] [1,2] [1,3]

|F1q − F2| [1,1] [2,3] [3,7] [4,13]

|F2q − F3| [4,8] [8,25] [14,58]

|F3q − F4| [2,2] [9,19] [26,82] [59,245]

|F4q − F5| [3,4] [20,48] [83,274] [246,1042]

|F5q − F6| [5,6] [49,115] [275,904] [1043,4413]

|F6q − F7| [7,11] [116,280] [905,2989] [4414,18698]

|F7q − F8| [12,17] [281,675] [2990,9871] [18699,79205]

Table 4.1: Range for m when lm(q) = |Fk−1q − Fk|

With a proof similar to that of Corollary 4.2, we get:

Corollary 4.3. Define En = aEn−1 − En−2 with E0 = 0 and E1 = 1. Define Gn =

aGn−1 − Gn−2 with G0 = 1 and G1 = 1. Let q be the Pisot number satisfying

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 46

x2 − ax + 1. If qk−3(q − 1)2 ≤ m < qk−2(q − 1) then lm(q) = |Gk−1q − Gk| and if

qk−2(q − 1) ≤ m < qk−2(q − 1)2 then lm(q) = |Ek−1q − Ek|.

Table 4.2 gives the ranges that m is in, for lm(q) = |Gk−1q − Gk| and lm(q) =

|Ek−1q − Ek|.

Minimal polynomial

lm(q) x2 − 3x+ 1 x2 − 4x+ 1 x2 − 5x+ 1 x2 − 6x+ 1

|G0q −G1|
|E0q − E1| [1,1] [1,2] [1,2] [1,3]

|G1q −G2| [3,3] [4,4]

|E1q − E2| [2,2] [3,7] [4,14] [5,23]

|G2q −G3| [3,4] [8,10] [15,18] [24,28]

|E2q − E3| [5,6] [11,27] [19,68] [29,135]

|G3q −G4| [7,11] [28,38] [69,87] [136,164]

|E3q − E4| [12,17] [39,103] [88,329] [165,791]

Table 4.2: Range for m when lm(q) = |Ek−1q − Ek| or |Gk−1q −Gk|

4.4 Finding Height m Polynomials

For q ∈ Ω we have lm(q) = |Dq − C| for some integers C and D where C
D

is a best

approximation of q . However, both C and D are often greater than m. This section

is interested in finding a particular height m polynomial equal to lm(q). We notice

that Lemma 4.3 can be implemented as an algorithm. Thus, if p(x) is the minimal

polynomial of q, then it is sufficient to find a t(x) ∈ mR such that t(x) ≡ Dx − C
(mod p(x)). For this we can use the simplex method [34]. Write:

Dx− C +

(
n∑
i=0

aix
i

)
p(x) =

n+2∑
k=0

bkx
k

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 47

for unknowns ak. We wish −m ≤ bk ≤ m for all k = 0, · · · , (n+ 2). So for the correct

value of n we minimize h with:

−h ≤ bk ≤ h (4.4)

and solve for the ak (and hence the bk). If h ≤ m then we are done. A careful

calculation (via Maple) yields the minimal value for n for which we can get h ≤ m is:

n =

⌊
ln

(
m+ |Dr − C| |r| − |Dr − C|

m |r|

)
(ln(|r|))−1

⌋
. (4.5)

Using the simplex method in this way works for any polynomial, although the value

for n given in equation (4.5) is specifically for q ∈ Ω . Thus, if we wish to implement

this algorithm for polynomials that are not minimal polynomials for some q ∈ Ω, we

simply increase n until we find one that works.

Example 8. Let q be the Pisot number satisfying p(x) = x2 − 3x + 1. A simple

calculation demonstrates that l7(q) = 5q − 13. Using equation (4.5) we discover that

the minimal value for n is 3. So minimizing h with respect to the constraints in

equation (4.4) and with n = 3 gives h = 305
44
< 7. This gives the polynomial:

17

4
x5 − 305

44
x4 − 305

44
x3 − 305

44
x2 − 305

44
x− 305

44
.

Here we use the techniques in Lemma 4.3 iteratively. Notice that at any step, only

three coefficients are altered.

17
4
x5 − 305

44
x4 − 305

44
x3 − 305

44
x2 − 305

44
x − 305

44
≡ 5x− 13,

327
77
x5 − 305

44
x4 − 305

44
x3 − 305

44
x2 − 520

77
x − 7 ≡ 5x− 13,

371
88
x5 − 305

44
x4 − 305

44
x3 − 553

88
x2 − 7x − 7 ≡ 5x− 13,

4x5 − 305
44
x4 − 229

44
x3 − 305

44
x2 − 7x − 7 ≡ 5x− 13,

4x5 − 7x4 − 5x3 − 7x2 − 7x − 7 ≡ 5x− 13.

Thus l7(q) = 5q − 13 = 4q5 − 7q4 − 5q3 − 7q2 − 7q − 7.

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 48

4.5 Non-Unit Quadratic Pisot Numbers

Note that Theorem 4.1 does not work for all quadratic Pisot numbers. The problem

is that Lemma 4.3 doesn’t work for Pisot numbers satisfying x2−ax−b when b 6= ±1.

This is demonstrated in Example 9.

Example 9. If q is the Pisot number satisfying x2−2x−2 (approximately 2.7320508)

then we see that 7
16
x8 − 2x7 + 3x6 − 3x5 + 3x4 − 3x3 + 3x2 − 3x + 3 ≡ 8 − 3x

(mod x2 − 2x− 2) is in 3R but is not in Z[x] ∩ 3R. Further we have that |8− 3q| =
0.196152424 < 0.267949192 = l3(q).

Figure 4.4 is a picture of (s, t) where sq + t ∈ Λ3(q). We have also included the

lines sr + t = ± m
1−|r| , and the line sq + t = 0. Notice that Λ3(q) does not contain

all sq + t such that the integer pairs (s, t) are between these two lines, as would be

expected from Corollary 4.1, and as would be necessary for this theorem to work.

Further note that the edges of Λ3(q) are irregular enough so that it is not possible to

find alternate lines that bound all the pairs (s, t), and such that all sq+ t are included

in the spectrum.

4.6 Further Research

The counter example of Section 4.5 shows that Theorem 4.1 does not work for all

quadratic Pisot numbers. Despite this, the spirit of Theorem 4.1 appears to be true.

Let
{
Ck
Dk

}
be the best approximations of a quadratic Pisot number q, with conjugate r,

not necessarily a unit. If Theorem 4.1 could be extended to this case, then lm(q) would

equal |Dkq−Ck|, where k is maximal such that |Dkr−Ck| ≤ m
1−|r| . Computationally,

it appears that lm(q) = |Dkq−Ck| or |Dk−1q−Ck−1|. It would be interesting to know

if lm(q) must be one of these two values.

It would also be of interest if a lemma similar to Lemma 4.3 could be found that

would work for all polynomials p where p(0) = ±1, regardless of the degree of p(x).

If something like this could be found then this could be used to prove: for q ∈ (1, 2),

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 49

F
i
g
u
r
e
s
/
T
y
p
e
3
.
p
s

Figure 4.4: (s, t) where sq + t ∈ Λ3(q)

CHAPTER 4. UNIT QUADRATIC PISOT NUMBERS 50

l(q) > 0 if and only if q is a Pisot number, (see Chapter 6 for details). This is believed

to be true by a number of people, see for example [5, 25]. The second part of this

Lemma easily extends to an arbitrary degree, but it is not clear that there is an

algorithm that forces all but d consecutive terms to be integers (where d is the degree

of p(x)).

Chapter 5

Cubic Pisot Numbers

MOSCOW – Five top Russian scientists have cooked up a bold, am-

bitious plan to transform the entire Earth into a paradise and ban-

ish their country’s harsh winters forever – by blowing the moon to

smithereens!

...

Dr. Khruinsky and his colleagues aren’t the first to tout the po-

tential benefits of blowing up the moon. As far back as 1991, Iowa

State University mathematics professor Alexander Abian proposed

the idea, as Weekly World News reported then.

New plan to blow up the moon! – Vickie York

5.1 Background on Cubic Pisot Numbers

Chapter 4 looks at lm(q) for unit quadratic Pisot numbers q. Chapter 4 shows that

lm(q) is |Dq − C| where C
D

is a best approximation of q Using the algorithm from

Chapter 2 other patterns are searched for, similar to the pattern for the unit quadratic

Pisot numbers.

51

CHAPTER 5. CUBIC PISOT NUMBERS 52

A pattern is found for the first and second cubic Pisot numbers satisfying x3−x−1

and x3−x2−1 respectively. It appears that lm(q) = Pn(q) := 1
qn

for some n dependent

on m and q. Here, Pn(q) is defined in Theorem 5.1. This relationship is verified up

to m = 39 for the first cubic Pisot number and up to m = 47 for the second cubic

Pisot number. These results are summarized in Tables 5.1 and 5.2. Both the first

and second cubic Pisot numbers are part of a larger class of Pisot numbers, called

Υ, (see Definition 5.1) . This chapter does not show that lm(q) = Pn(q) for q in this

larger class of Pisot numbers, but it does show some very special properties of Pn(q)

for these q, which may be useful in showing lm(q) = Pn(q).

Much as the study of quadratic Pisot numbers requires knowledge of good linear

approximations (i.e., best approximations), the study of cubic Pisot numbers requires

knowledge of good quadratic approximations. For an irrational number q, the idea

of finding good linear approximations to zero of the form anq − bn, [3, 10], can be

extended to the idea of finding good quadratic approximations to zero of the form

Anq
2 + Bnq + Cn. Clearly, if q is a quadratic number, then An, Bn and Cn can be

solved exactly as integers. Here we consider the case when q is a particular type of

cubic Pisot number. The class of cubic Pisot numbers that we consider is:

Definition 5.1. Let Υ be the set of Pisot numbers with minimal polynomials p(x)

such that:

1. p(0) = −1,

2. deg(p(x)) = 3,

3. p(x) has exactly one real root, and two non-real roots.

We see that requirement 3 does not follow directly from requirements 1 and 2,

as x3 − 3x2 − 4x − 1 satisfies the first two requirements, yet has three real roots of

approximately -0.6920214716, -0.3568958679 and 4.048917340. We easily see that this

class of Pisot numbers is non-trivial and infinite. Both the first and second cubic Pisot

numbers are members of Υ .

CHAPTER 5. CUBIC PISOT NUMBERS 53

n Pn(q) lm(q) where lm(q) = Pn(q)
0 1
...

...
...

10 −3q2 + q + 4 l1(q)
...

...
...

15 −7q2 + 4q + 7 l2(q)
...

...
...

18 −4q2 − 3q + 11 l3(q)
...

...
...

21 10q2 − 14q + 1 l4(q)
22 q2 + 10q − 15 l5(q)
23 −15q2 + q + 25 l6(q)
24 25q2 − 15q − 24 l7(q)
25 −24q2 + 25q + 9
26 9q2 − 24q + 16 l8(q), l9(q)
27 16q2 + 9q − 40 l10(q), l11(q)
28 −40q2 + 16q + 49 l12(q), l13(q)
29 49q2 − 40q − 33
30 −33q2 + 49q − 7 l14(q), l15(q)
31 −7q2 − 33q + 56 l16(q), · · · , l18(q)
32 56q2 − 7q − 89 l19(q), · · · , l22(q)
33 −89q2 + 56q + 82 l23(q), · · · , l25(q)
34 82q2 − 89q − 26 l26(q)
35 −26q2 + 82q − 63 l27(q), · · · , l32(q)
36 63q2 + 26q − 145 l23(q), · · · , l39(q)

Table 5.1: Relationship between Pn(q) and lm(q) for the first cubic Pisot number

CHAPTER 5. CUBIC PISOT NUMBERS 54

n Pn(q) lm(q) where lm(q) = Pn(q)
0 1
...

...
...

5 q2 − 2 l1(q)
...

...
...

10 −3q2 + q + 5 l2(q)
11 5q2 − 8q + 1
12 q2 + 4q − 8 l3(q)
13 −8q2 + 9q + 4 l4(q)
14 4q2 − 12q + 9
15 9q2 − 5q − 12 l5(q), l6(q)
16 −12q2 + 21q − 5
17 −5q2 − 7q + 21 l7(q), l8(q)
18 21q2 − 26q − 7 l9(q), l10(q)
19 −7q2 + 28q − 26 l11(q), l12(q)
20 −26q2 + 19q + 28 l13(q), · · · , l16(q)
21 28q2 − 54q + 19 l17(q)
22 19q2 + 9q − 54 l18(q), · · · , l23(q)
23 −54q2 + 73q + 9 l24(q), l25(q)
24 9q2 − 63q + 73 l26(q), · · · , l32(q)
25 73q2 − 64q − 63 l33(q), · · · , l40(q)
26 63q2 − 136q + 64 l31(q), · · · , l47(q)

Table 5.2: Relationship between Pn(q) and lm(q) for the second cubic Pisot number

CHAPTER 5. CUBIC PISOT NUMBERS 55

Let us again consider the case of linear approximations to zero as it arises in

the study of best approximations. It is known [3] that if α is an algebraic number

and A and B are integers such that |Bα − A| ≤ 1
2B

, then A/B is one of the best

approximations of α. From this it follows that for 0 < b < B we have |Bα − A| <
|aα−b|. In other words, P (x) = Bx−A is the best non-trivial linear approximation to

zero at α bounded by height max{A,B}. We prove a similar result here for quadratic

approximations to zero of q ∈ Υ .

A classic result known as Louiville’s inequality, (see for example [28]), shows that

if α is an algebraic number of degree d ≥ 2, then there exists a D(α) such that:∣∣∣∣α− p

q

∣∣∣∣ ≥ D(α)

qd
, p, q ∈ Z, q ≥ 1,

or equivalently:

|qα− p| ≥ D(α)

qd−1
.

Another result worth noting, by Schmidt [33], shows that for every ε > 0, and

for any algebraic number q where 1, q and q2 are independent, there are only a finite

number of integer quadratics P (x) such that:

|P (q)| ≤ 1

H(P (x))2+ε
,

where H(P (x)) is the height of the polynomial P (x). What Schmidt shows is actually

more general than this, demonstrating that if 1, α and β are linearly independent

algebraic numbers, then there are only a finite number of integer solutions to

|aα + bβ + c| < max{a, b}−2−ε.

Roth’s classic result [30] states that if α is an irrational algebraic number, then

for all ε > 0 the equation: ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2+ε

has only a finite number of integer solutions. The main open question with respect to

this result is whether an effective upper bound for q (dependent on ε) can be found.

CHAPTER 5. CUBIC PISOT NUMBERS 56

This chapter answers the equivalent question for quadratic approximations for q ∈ Υ.

An explicit upper bound is found for the height of P (x), dependent on ε, after which

there are no solutions to:

|P (q)| ≤ 1

H(P (x))2+ε
.

In Section 5.2 we prove the existence of a sequence of good quadratic approxima-

tions to zero for q ∈ Υ . Section 5.3 proves that the sequence described in Section 5.2

is the best possible. In Section 5.4 we show that D(q) < 1 for all q ∈ Υ, where D(q) is

a factor that indicates how good an approximation the sequence of quadratics gives.

Section 5.5 determines a bound on the height of a quadratics P (x) (dependent on ε)

after which there are no solutions to P (q) ≤ 1
H(P (x))2+ε . Lastly Section 5.6 gives some

conclusions and lists some open problems.

5.2 Upper Bound for a Sequence of Quadratics

This section proves the existence of a sequence of quadratics that give good approx-

imations to zero when evaluated at q. First we need to define D(q). Here τ is the

golden ratio.

Definition 5.2 (D(q)). Let q ∈ Υ, with conjugates q1 and q2 . If q > τ then:

D(q) = min

{
q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
,

q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)

}
and if q < τ then:

D(q) = min

{
q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
,

q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
,

q2

(q1q + 1)(q2q + 1)(q − q1)(q − q2)

}
.

CHAPTER 5. CUBIC PISOT NUMBERS 57

It is easy to observe that D(q) is always a positive real number. For convenience we

denote:

D1(q) =
q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)

and

D2(q) =
q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
.

Theorem 5.1. If q ∈ Υ then for all ε > 0 there exists a sequence of integer quadratics

Pn(x) = Anx
2 +Bnx+ Cn such that:

|Pn(q)| ≤ D(q) + ε

H(Pn(x))2
.

Proof. Let q ∈ Υ and p(x) be the minimal polynomial of q . Notice that p(x) is

of the form x3 + k2x
2 + k1x− 1. We notice in Z[x]/p(x), that x(x2 + k2x+ k1) = 1, or

equivalently 1
x

is in Z[x]/p(x). So we can define Pn(x) := Anx
2 + Bnx + Cn := 1

xn
in

the ring Z[x]/p(x). From a standard result of recurrence relations, (see for instance

[22]), An, Bn and Cn can be written as:

An = a1β
n + a2γ

n + a3γ̄
n (5.1)

Bn = b1β
n + b2γ

n + b3γ̄
n (5.2)

Cn = c1β
n + c2γ

n + c3γ̄
n (5.3)

where β = 1
q

and where γ and γ̄ are the conjugates of β. Explicitly solving for a2, a3,

b2, b3, c2 and c3 in equations (5.1), (5.2) and (5.3) gives:

a2 =
−1

(q1 − q2)(q − q1)
(5.4)

a3 =
1

(q1 − q2)(q − q2)
(5.5)

b2 =
(q + q2)

(q1 − q2)(q − q1)
(5.6)

b3 =
−(q + q1)

(q1 − q2)(q − q2)
(5.7)

CHAPTER 5. CUBIC PISOT NUMBERS 58

c2 =
−qq2

(q1 − q2)(q − q1)
(5.8)

c3 =
qq1

(q1 − q2)(q − q2)
(5.9)

where q1 and q2 are the conjugates of q. It is worth noting that a2 = ā3, b2 = b̄3 and

c2 = c̄3. As β < 1, for any ε > 0 there exists an N , such that for all n ≥ N we have

|a1β
n|, |b1β

n|, |c1β
n| < ε. (Thus, we can now ignore β.) Notice that if

(
γ
|γ|

)n
= 1

then
(
γγ
γγ̄

)n
= 1 which would imply γn = (γ̄)n ∈ R. As the number of conjugate of

γn is strictly less than the number of conjugate of γ, and the number of conjugates

of γn must divide the number of conjugates of γ we see that γn ∈ Z. But we known

that the norm of γ is 1 so γn must have norm 1. This contradicts |γ| > 1, which

comes from the definition of γ. Thus we know that γ
|γ| is not a cyclotomic number,

and hence we can get arbitrarily close to any angle in the complex plane with powers

of γ. Thus for n ≥ N the height of Pn(x) can be written as:

H(Pn(x)) = max{|An|, |Bn|, |Cn|}

≤ max{|a2γ
n + a3γ̄

n|, |b2γ
n + b3γ̄

n|, |c2γ
n + c3γ̄

n|}+ ε

≤ |γn|max

{∣∣∣∣a2

(
γ

|γ|

)n
+ a3

(
γ̄

|γ|

)n∣∣∣∣ ,∣∣∣∣b2

(
γ

|γ|

)n
+ b3

(
γ̄

|γ|

)n∣∣∣∣ , ∣∣∣∣c2

(
γ

|γ|

)n
+ c3

(
γ̄

|γ|

)n∣∣∣∣}+ ε

≤ |γn|max{|a2α
n + a3ᾱ

n|, |b2α
n + b3ᾱ

n|, |c2α
n + c3ᾱ

n|}+ ε.

Here α := γ
|γ| is a non-cyclotomic complex number of modulus 1. Thus for any ε > 0

we can choose a subsequence of the n, say ni, such that

H(Pni(x)) ≤ |γni|(min
|θ|=1
{max{|a2θ + a3θ̄|, |b2θ + b3θ̄|, |c2θ + c3θ̄|}}+ ε)

Define U(q) := min|θ|=1{max{|a2θ+a3θ̄|, |b2θ+ b3θ̄|, |c2θ+ c3θ̄|}}2. (We later show

that U(q) ≤ D(q).) On noticing that |γ|2 = q and that U(q) is a finite number, we

can redefine ε to get:

H(Pni(x))2 ≤ (U(q) + ε)|γ|2ni ,

CHAPTER 5. CUBIC PISOT NUMBERS 59

H(Pni(x))2 ≤ (U(q) + ε)qni ,

1

qni
≤ U(q) + ε

H(Pni(x))2
,

|Pni(q)| ≤
U(q) + ε

H(Pni(x))2
.

Consider the minimization:

min
|θ|=1
{max{|a2θ + a3θ̄|, |b2θ + b3θ̄|, |c2θ + c3θ̄|}}2. (5.10)

Consider a typical term |a2θ + a3θ̄|. Let us consider this term as a function of θ. By

noticing that a2 = ā3 we can rewrite this as |2R(a2θ)|. If we define the argument of

a2 as earg(a2)i = a2

|a2| . Then we can rewrite this term as 2| cos(arg(a2) + arg(θ))|. We

see that this function has two local minima for −π < arg(θ) ≤ π. At both of these

minima, the function has a value of 0. As arg(a2), arg(b2) and arg(c2) are all distinct,

we have that this minimization in equation 5.10 cannot occur at a local minimum

of any of these terms. This means that the minimization in equation 5.10 will be

satisfied for some θ when two of the values within the maximization are equal.

We now show that for q > τ the solution to

min
|θ|=1
{max{|a2θ + a3θ̄|, |b2θ + b3θ̄|, |c2θ + c3θ̄|}}2

occurs when |b2θ + b3θ̄| = |c2θ + c3θ̄| and |a2θ + a3θ̄| < |b2θ + b3θ̄|. This is done by

solving for θ such that |b2θ+b3θ̄| = |c2θ+c3θ̄| and showing that |a2θ+a3θ̄| < |b2θ+b3θ̄|
is a consequence of this. We see that a2θ + a3θ̄, b2θ + b3θ̄ and c2θ + c3θ̄ are all real.

Thus there are two cases to solve for when |b2θ + b3θ̄| = |c2θ + c3θ̄|. The first is

b2θ + b3θ̄ = c2θ + c3θ̄ and the second is b2θ + b3θ̄ = −c2θ − c3θ̄.

Consider the case when b2θ+ b3θ̄ = c2θ+ c3θ̄. We use the values for a2, a3, b2, b3, c2

and c3 given in equations (5.4) through (5.9). Solving for (b2θ+ b3θ̄)
2 (via Maple [19])

given that b2θ + b3θ̄ = c2θ + c3θ̄ with |θ| = 1 yields:

(b2θ + b3θ̄)
2 =

q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
= D1(q).

CHAPTER 5. CUBIC PISOT NUMBERS 60

Furthermore, for this θ we arrive at:

E1(q) := (a2θ + a3θ̄)
2 =

(q + 1)2

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
.

Next from:
E1(q)

D1(q)
=

(q + 1)2

q4

we see that for q > τ that D1(q) > E1(q) and hence D1(q) ≥ U(q).

Now consider the case when b2θ + b3θ̄ = −c2θ − c3θ̄. We use the values for

a2, a3, b2, b3, c2 and c3 given in equations (5.4) through (5.9). Solving for (b2θ + b3θ̄)
2

(again via Maple [19]) given that b2θ + b3θ̄ = −c2θ − c3θ̄ where |θ| = 1 yields:

(b2θ + b3θ̄)
2 =

q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
= D2(q).

Furthermore, for this θ we arrive at:

E2(q) := (a2θ + a3θ̄)
2 =

(q − 1)2

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
.

On noticing that:
E2(q)

D2(q)
=

(q − 1)2

q4

we see that D2(q) > E2(q) for q > 1 and hence D2(q) ≥ U(q).

So for q > τ we have D1(q) ≥ U(q) and D2(q) ≥ U(q), hence:

U(q) ≤ min{D1(q), D2(q)} = D(q).

For q < τ there are only two cases to consider. If q is the first cubic Pisot number,

satisfying x3 − x− 1, then:

U(q) = D(q) =
q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
= 0.3003453559.

If q is the second cubic Pisot number in Υ, satisfying x3 − x2 − 1, then:

U(q) = D(q) =
q2

(q1q + 1)(q2q + 1)(q − q1)(q − q2)
= 0.3429099932.

Thus we see that U(q) ≤ D(q) and the result follows.

CHAPTER 5. CUBIC PISOT NUMBERS 61

5.3 Lower Bound for all Quadratics

This section shows that the sequence of Pn described in Section 5.2 is the best possible.

Theorem 5.2. If q ∈ Υ and ε > 0, then |P (q)| ≥ D(q)−ε
H(P (x))2 , except for a finite num-

ber of quadratic polynomials with integers coefficients P (x), where H is the height

function, and D(q) is given in Definition 5.2 .

Proof. Let P (x) be a quadratic polynomial with integer coefficients, q ∈ Υ, and

q1 and q2 = q̄1 the two conjugates of q . As P (x) is a quadratic polynomial and q is of

degree 3 we know that P (q) 6= 0. As q is an algebraic integer, |P (q)P (q1)P (q2)| ≥ 1

and hence:

|P (q)| ≥
∣∣∣∣ 1

P (q1)P (q2)

∣∣∣∣ .
Since P (q1) = P (q2) we see that P (q1)P (q2) is a positive real number, hence:

|P (q)| ≥ 1

P (q1)P (q2)
.

We can rewrite this as:

|P (q)| ≥ 1

H(P (x))2 max{S(q1)S(q2) : H(S(x)) ≤ 1}
where S(x) is a quadratic polynomial with real coefficients. We know from Theorem

5.1 that we can find quadratic polynomials that evaluate arbitrarily close to zero at

q. Thus, except for finitely many exceptions:

|P (q)| ≥ 1− ε0
H(P (x))2 max{S(q1)S(q2) : H(S(x)) ≤ 1, S(q) = 0}

, (5.11)

where S(x) is a quadratic polynomial with real coefficients.

The problem of finding the maximum in equation (5.11) is the same as the problem

of finding the maximum magnitude on a convex polytope, and thus the maximal value

is attained on an extreme point (i.e. a corner point). We examine the equation:

max{S(q1)S(q2) : H(S(x)) ≤ 1, S(q) = 0, S(x) is an extreme point}, (5.12)

more carefully. We see that S(x) is an extreme point of this convex polytope if and

only if S(x) is of the form S(x) = ax2 + bx+ c where:

CHAPTER 5. CUBIC PISOT NUMBERS 62

1. at least two of a, b and c are ±1,

2. S(q) = 0,

3. −1 ≤ a, b, c ≤ 1.

We can eliminate half of the cases by noting the symmetry |S(q)| = | − S(q)|. We

examine the six remaining cases for a, b and c, when at least two of these three

variables are of ±1.

Case 1: Let S(x) = x2 + x+ c. By requirement 2 we deduce that c = −q2 − q. Next

we see that −q2 − q < −1 which violates requirement 3. Hence, this is not a

possible value for S(x).

Case 2: Let S(x) = x2 − x + c. By requirement 2 we deduce that c = −q2 + q. By

requirement 3 we deduce that −1 ≤ −q2 + q ≤ 1. Thus, we have that q ≤ τ .

Hence, for q > τ , this is not a possible value for S(x).

Case 3: Let S(x) = x2 + bx+ 1. By requirement 2 we deduce that b = −q − 1
q
. Next

we see that −q − 1
q
< −1 which violates requirement 3. Hence, this is not a

possible value for S(x).

Case 4: Let S(x) = x2 + bx − 1. By requirement 2 we deduce that b = −q + 1
q
. By

requirement 3 we have that −1 ≤ −q + 1
q
≤ 1. Thus, we have that q ≤ τ .

Hence, for q > τ , this is not a possible value for S(x).

Case 5: Let S(x) = ax2 + x + 1. By requirement 2 we deduce that a = −1
q
− 1

q2 . By

requirement 3 we have that −1 ≤ −1
q
− 1

q2 ≤ 1. Thus, we have that q ≥ τ .

Hence, for q < τ , this is not a possible value for S(x).

Case 6: Let S(x) = ax2 + x− 1. By requirement 2 we deduce that a = −1
q

+ 1
q2 . By

requirement 3 we have that −1 ≤ −1
q

+ 1
q2 ≤ 1. This is always true if q > 1.

If q > τ then cases 5 and 6 give that equation (5.12) is equal to:

max

{∣∣∣∣(−1

q
+

1

q2

)
q2

1 + q1 − 1

∣∣∣∣2 , ∣∣∣∣(−1

q
− 1

q2

)
q2

1 + q1 + 1

∣∣∣∣2
}
.

CHAPTER 5. CUBIC PISOT NUMBERS 63

If q ≤ τ then cases 2, 4 and 6 give that equation (5.12) is equal to:

max

{∣∣∣∣(−1

q
+

1

q2

)
q2

1 + q1 − 1

∣∣∣∣2 , ∣∣∣∣q2
1 +

(
−q +

1

q

)
q1 − 1

∣∣∣∣2 ,∣∣q2
1 − q1 +

(
−q2 + q

)∣∣2} .
Or equivalently, taking ε0 = ε

D(q)
and q > τ we have:

|P (q)| ≥ 1− ε0
H(P (x))2 max{S(q1)S(q2) : H(S(x)) ≤ 1, S(q) = 0}

,

=
1

max

{∣∣∣(−1
q

+ 1
q2

)
q2

1 + q1 − 1
∣∣∣2 , ∣∣∣(−1

q
− 1

q2

)
q2

1 + q1 + 1
∣∣∣2} ,

× 1− ε0
H(P (x))2

,

=
1− ε0

H(P (x))2
min

{
q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
,

q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)

}
,

=
D(q)− ε
H(P (x))2

.

Using a similar method, if q ≤ τ then:

|P (q)| ≥ 1− ε0
H(P (x))2 max{S(q1)S(q2) : H(S(x)) ≤ 1, S(q) = 0}

,

=
1− ε0

H(P (x))2
min

{
q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)
,

q2

(q1q + 1)(q2q + 1)(q − q1)(q − q2)
,

1

(q + q1 − 1)(q + q2 − 1)(q − q1)(q − q2)

}
,

=
D(q)− ε
H(P (x))2

.

Thus:

|P (q)| ≥ D(q)− ε
H(P (x))2

CHAPTER 5. CUBIC PISOT NUMBERS 64

for all but a finite number of quadratic polynomials with integer coefficients P (x),

which is the desired result.

It is worth pointing out that when q > τ , cases of D(q) = D1(q) and D(q) = D2(q)

both occur, as demonstrated in Table 5.3. This table lists all q ∈ Υ, q ∈ (τ, 5), along

with their minimal polynomials, D(q), and whether D(q) = D2(q) . These Pisot

numbers are found using the techniques of David Boyd, as described in [7]. In the

next section we discuss when D(q) = D1(q) and when D(q) = D2(q), as well as

showing that D(q) < 1.

5.4 Proof that D(q) < 1

From Table 5.3 we make the observation that D(q) < 1 for all q ∈ Υ, q ∈ (1, 5) . This

section proves for all q ∈ Υ that D(q) < 1 .

Theorem 5.3. If q ∈ Υ then D(q) < 1. Furthermore, D(q)→ 1 as q →∞ .

Proof. There are only two cases of q ∈ Υ where q < τ . We compute these

cases explicitly. For the first cubic Pisot number q, satisfying x3 − x − 1, we get

D(q) = 0.3003453559 < 1. For the second cubic Pisot number q, satisfying x3−x2−1,

we get D(q) = 0.3429099932 < 1.

So, without loss of generality, we assume that q > τ . Thus we have that:

D(q) = min

{
q4

(q1q + q + q1)(q2q + q + q2)(q − q1)(q − q2)
,

q4

(q1q − q − q1)(q2q − q − q2)(q − q1)(q − q2)

}
= min{D1(q), D2(q)}

CHAPTER 5. CUBIC PISOT NUMBERS 65

Minimal polynomial Pisot number q D(q) D1(q) or D2(q)
x3 − 2x2 + x− 1 1.754877666 0.3429800030 D1(q)
x3 − x2 − x− 1 1.839286755 0.4133318671 D2(q)
x3 − x2 − 2x− 1 2.147899036 0.3501354747 D2(q)
x3 − 2x2 − 1 2.205569430 0.5080747995 D1(q)
x3 − 3x2 + 2x− 1 2.324717957 0.4453345199 D1(q)
x3 − 2x2 − x− 1 2.546818277 0.5309353500 D2(q)
x3 − 3x2 + x− 1 2.769292354 0.5232405572 D1(q)
x3 − 2x2 − 2x− 1 2.831177207 0.4435746902 D2(q)
x3 − 2x2 − 3x− 1 3.079595623 0.3847011683 D2(q)
x3 − 3x2 − 1 3.103803403 0.6573022517 D1(q)
x3 − 4x2 + 3x− 1 3.147899036 0.4911183769 D1(q)
x3 − 3x2 − x− 1 3.382975768 0.6198187695 D2(q)
x3 − 4x2 + 2x− 1 3.511547142 0.5392925792 D1(q)
x3 − 3x2 − 2x− 1 3.627365085 0.5238048354 D2(q)
x3 − 4x2 + x− 1 3.806300717 0.6215030654 D1(q)
x3 − 3x2 − 3x− 1 3.847322102 0.4565756315 D2(q)
x3 − 4x2 − 1 4.060647028 0.7429688162 D1(q)
x3 − 5x2 + 4x− 1 4.079595623 0.5016713072 D1(q)
x3 − 4x2 − x− 1 4.287625262 0.6821435669 D2(q)
x3 − 5x2 + 3x− 1 4.365230013 0.5427050340 D1(q)
x3 − 4x2 − 2x− 1 4.494492837 0.5872601546 D2(q)
x3 − 5x2 + 2x− 1 4.613470268 0.6026317629 D1(q)
x3 − 4x2 − 3x− 1 4.685779526 0.5175073389 D2(q)
x3 − 5x2 + x− 1 4.835975919 0.6842306666 D1(q)
x3 − 4x2 − 4x− 1 4.864536512 0.4639992754 D2(q)

Table 5.3: D(q) for various q

CHAPTER 5. CUBIC PISOT NUMBERS 66

Next let us consider T (x, y) := 1
D(q)

, where q1 is x + yi, q2 is x − yi and q is
1

q1q2
= 1

x2+y2 . Simplifying T (x, y) (via Maple) gives:

T (x, y) := max
{
x12 + 6x10y2 + 15x8y4 + 20x6y6 + 15x4y8 + 6x2y10

+y12 + 2x10 + 10x8y2 + 20x6y4 + 20x4y6 + 10x2y8 + 2y10

+x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8 − 2x7 − 6x5y2 − 6x3y4

−2xy6 − 2x6 − 2x4y2 + 2x2y4 + 2y6 − 2x5 − 4x3y2 − 2xy4

−2x4 + 2y4 + x2 + y2 + 2x+ 1,

x12 + 6x10y2 + 15x8y4 + 20x6y6 + 15x4y8 + 6x2y10 + y12

−2x10 − 10x8y2 − 20x6y4 − 20x4y6 − 10x2y8 − 2y10 + x8

+4x6y2 + 6x4y4 + 4x2y6 + y8 + 2x7 + 6x5y2 + 6x3y4 + 2xy6

−2x6 − 2x4y2 + 2x2y4 + 2y6 − 2x5 − 4x3y2 − 2xy4 + 2x4

−2y4 + x2 + y2 − 2x+ 1
}
.

For convenience label the first polynomial as T1(x, y) = 1
D1(q)

and the second polyno-

mial as T2(x, y) = 1
D2(q)

. As we are assuming that q > τ , we have that −
√

1
τ
≤ x ≤√

1
τ

and −
√

1
τ
≤ y ≤

√
1
τ
.

Consider T1(x, y) on the region 0 ≤ x ≤
√

1
τ

and −
√

1
τ
≤ y ≤

√
1
τ
. On the line

x =
√

1
τ
, there is a local minimum at y = 0 of approximately 1.364498234. On the line

y = −
√

1
τ
, there are no local minima or maxima, but the boundary value of x = 0

gives approximately 3.236067980, and the other boundary value of x =
√

1
τ

gives

approximately 17.70723545. The line y =
√

1
τ

is symmetric to the line y = −
√

1
τ
.

On the line x = 0, there is only one local minimum at y = 0, giving the value of 1.

On the interior of this region there are no local minima or maxima (there is a saddle

point at y = 0, x = 0.5550360821 of approximately 2.047461577). Thus, T1(x, y) is

always greater than or equal to 1 on this region, and is equal to 1 only at x = y = 0.

(See Figure 5.1.)

CHAPTER 5. CUBIC PISOT NUMBERS 67

F
i
g
u
r
e
s
/
T
1
.
p
s

Figure 5.1: T1(x, y) on the region of x ≥ 0

Consider T2(x, y) on the region −
√

1
τ
≤ x ≤ 0 and −

√
1
τ
≤ y ≤

√
1
τ
. On the line

x = −
√

1
τ
, there is a local minimum at y = 0 of approximately 3.732814929. On the

line y = −
√

1
τ
, there are no local minima or maxima (in the correct range), but the

boundary value of x = 0 gives approximately 1.347524158, and the other boundary

value of x = −
√

1
τ

gives approximately 3.371362832. The line y =
√

1
τ

is symmetric

to the line y = −
√

1
τ
. On the line x = 0, there is only one local minimum at y = 0,

giving the value of 1. On the interior of this region there are no local minima or

maxima. Thus, T2(x, y) is always greater than or equal to 1 on this region, and is

equal to 1 only at x = y = 0. (See Figure 5.2.)

Thus, T1(x, y) and T2(x, y) are strictly greater than 1 on their respective regions,

except at the point x = y = 0. Thus, as we take the maximum of T1(x, y) and T2(x, y),

T (x, y) > 1 as x and y cannot both equal 0. Furthermore, we see that if q →∞, then

q1 → 0, which implies that x→ 0 and y → 0. Thus, as q →∞ we have T1(x, y)→ 1

and T2(x, y)→ 1, and hence T (x, y)→ 1.

CHAPTER 5. CUBIC PISOT NUMBERS 68

F
i
g
u
r
e
s
/
T
2
.
p
s

Figure 5.2: T2(x, y) on the region of x ≤ 0

Therefore D(q) < 1, and further as q →∞ then D(q)→ 1.

In Table 5.3 we indicate when D(q) = D2(q). (When D(q) 6= D2(q) and q > τ then

D(q) = D1(q).) Figure 5.3 gives a graphical interpretation of when D(q) = D2(q).

The value D(q) takes depends on the location of its conjugate q1 in the complex plane.

If q1 is in the interior of the convex curve (where the real part is less than zero), then

D(q) = D1(q), otherwise D(q) = D2(q).

5.5 Bounds for the Height with Respect to ε

Let q ∈ Υ . We know from [33] that:

|P (q)| ≤ 1

H(P (x))2+ε

CHAPTER 5. CUBIC PISOT NUMBERS 69

Figures/T1T2.ps

Figure 5.3: Regions where D1(q) and D2(q) are minimal

has only finitely many integer quadratic solutions. In this section we find an upper

bound for H(P (x)) (dependent on ε) for all of these solutions.

We see from Theorem 5.2 that |P (q)| ≥ D(q)−ε
H(P (x))2 in all but finitely many cases. Let

us re-examine the proof of Theorem 5.2 to find a lower bound for |P (q)| that holds in

all cases. By not binding S(q) to zero, we can re-write equation (5.11) (page 61) as:

|P (q)| ≥ 1

H(P (x))2 max{S(q1)S(q2) : H(S(x)) ≤ 1, deg(S(x)) ≤ 2}
.

This is true for all integer quadratics P (x). Again, we notice S(x) must be an extreme

point, hence this can be rewritten as

|P (q)| ≥ 1

H(P (x))2 max{S(q1)S(q2) : S(x) = ±x2 ± x± 1}
.

So we see that there is a solution only if:

1

H(P (x))2+ε
≥ |P (q)|,

≥ 1

H(P (x))2 max{S(q1)S(q2) : S(x) = ±x2 +±x+±1}
.

CHAPTER 5. CUBIC PISOT NUMBERS 70

From which is follows that:

1

H(P (x))ε
≥ 1

max{S(q1)S(q2) : S(x) = ±x2 +±x+±1}
.

By taking the reciprocal we get:

H(P (x))ε ≤ max{S(q1)S(q2) : S(x) = ±x2 +±x+±1},

which yields:

H(P (x)) ≤
(
max{S(q1)S(q2) : S(x) = ±x2 +±x+±1}

)1/ε
.

This proves the following theorem:

Theorem 5.4. If q ∈ Υ with q1 = q̄2 the conjugates of q and

H(P (x)) >
(
max{S(q2)S(q1) : S(x) = ±x2 ± x± 1}

)1/ε

then there are no integer quadratic solutions P (x) to

|P (q)| ≤ 1

H(P (x))2+ε
.

5.6 Further Research

Recall from Section 5.1 that it appears that lm(q) = Pn(q) for the first and second cu-

bic Pisot numbers. Even though this chapter has demonstrated a simple relationship

between Pn(q) and the minimal integer quadratic approximation to 0 for q ∈ Υ, the

initial reason for this investigation is still open. Some further questions to consider

are:

1. Does lm(q) = Pn(q) for the first and second cubic Pisot numbers?

CHAPTER 5. CUBIC PISOT NUMBERS 71

2. If so, what is the relationship between q, n and m in the equation Pn(q) = lm(q)?

3. Is this pattern true to a limited extent for any of the other Pisot numbers q in

Υ ? (This is suggested by some calculations.)

Chapter 6

Some Conclusions and Open

Questions

Please don’t take it amiss, good sirs, if there are more mistakes in

this little book than there are grey hairs on my old head. What can

I do? I’ve never had much to do with book-learning and the like

before. May the fellow who dreamed it all up choke on his porridge!

As you stare at those letters they start to look the same. Your eyes

cloud over, just like someone had scattered grain all over the page.

See how many misprints I’ve found! All I ask, if you find any of

them, is that you pay no attention, and read them as if they were

spelt correctly.

Village Evenings near Dikanka – Nikolai Gogol

6.1 Open questions

This thesis answers a number of questions concerning various spectra of real numbers,

with particular emphasis on Pisot numbers. Many of these answers lead to new

questions. The main unproven conjecture in this area of research is:

72

CHAPTER 6. SOME CONCLUSIONS AND OPEN QUESTIONS 73

Conjecture 1. For q ∈ (1, 2), l(q) > 0 if and only if q is a Pisot number.

As mentioned in Chapter 4, if a lemma similar to Lemma 4.3 (page 41) could be

found that would work for all polynomials p(x) where p(0) = ±1, regardless of the

degree of p(x) or whether p(x) has a Pisot number as a root or not, then this lemma

could be used to prove Conjecture 1. The second part of this lemma, which comes

from Lemma 4.1, easily extends to an arbitrary degree polynomial, but it is not clear

that there exists an algorithm that forces all but d consecutive terms to be integers

(where d is the degree of p(x)).

To elaborate, let q be a unit quadratic Pisot number with conjugate r and min-

imal polynomial p(x). Recall Lemma 4.2 (page 40) shows that if sx + t ≡
∑
εix

i

(mod p(x)) with εi ∈ {±1, 0}, then the integer pair (s, t) is bounded by the lines

sr+ t = ±c. Equivalently, we could say that the integer pair (s, t) must be within a fi-

nite distance, (dependant on c) from the line s(1,−r) for s ∈ R. A general result holds

true that if p(x) is a irreducible degree d polynomial and ad−1x
d−1 + · · ·+a0 ≡

∑
εix

i

(mod p(x)) with εi ∈ {±1, 0} then the integer d-tuple (ad−1, · · · , a0) is bounded to

some line s(bd−1, · · · , b0) for s ∈ R if and only if p(x) has a Pisot number as a root.

Thus, if a lemma like Lemma 4.3 could be shown to be true for all polynomials,

regardless of degree, or of whether they have a Pisot number as a root or not, it

would follow that for any ad−1q
d−1 + · · · + a0 ∈ Λ(q) there would be restrictions on

ad−1, · · · , a0 if and only if q is a Pisot number. Hence, it would follow that l(q) > 0 if

and only if q is a Pisot number.

There are also numerous other questions that are raised:

1. Does there exist an α ≈ 1.95 such that if q < α, and q is a Pisot number, then

0 ∈ A(q)? (Page 23.)

2. If q ∈ (1, 2) and A(q) is discrete, is q a Perron number? (Page 28.)

3. For q ∈ (1, 2), if A(q) is discrete and the Mahler measure of q is less than 2,

then is q either a Salem or Pisot number? (Page 29.)

CHAPTER 6. SOME CONCLUSIONS AND OPEN QUESTIONS 74

4. Do the only Salem numbers q, where A(q) is discrete satisfy a polynomial of the

form xn − xn−1 − · · · − x+ 1? (Page 29.)

5. Does there exist an α ≈ 1.72 such that if q < α and q is not a Pisot number

then A(q) is not discrete? (Page 29.)

6. If q is any quadratic Pisot number (including non-unit quadratic Pisot numbers),

and
{
Ck
Dk

}
are the best approximations of q, does lm(q) = |Dkq−Ck|, and if so,

what is the relationship between k and m? (Page 48.)

7. For Pn(q) defined in Theorem 5.1 (page 57), does lm(q) = Pn(q) for the first or

second cubic Pisot number? (Page 70.) If so, what is the relationship between

n, m and q? (Page 71.)

8. Is this pattern that lm(q) = Pn(q) true to a limited extent for any of the other

Pisot numbers q ∈ Υ ? (Page 71.)

6.2 Generalizations

Consider a ring R and define a Pisot number q over R to be the root of a monic

polynomial with coefficients in R, where |q| is greater than 1, and where all the

conjugates of q are of modulus strictly less than 1. An example of this would be the

root of x3− ix2− 1 (approximately −.426114 + 1.31001i). There are conditions on R

that guarantee that all Pisot numbers of this form have discrete spectra. Very little

is known about the problem in this setting though, and would an obvious direction

for further exploration.

A second way that these results can be generalized is to consider S to be a finite

subset of Rn instead of Z. In this case, we define

ΛS(q) :=

{
n∑
i=0

qisi : n ∈ N, si ∈ S ⊂ Rn
}

where the si are vectors and the qi are scalars. There are conditions for S that

guarantee that the spectra are discrete. These conditions though are still not well

CHAPTER 6. SOME CONCLUSIONS AND OPEN QUESTIONS 75

understood. Considering S of this form has applications to quasicrystals, as well as

to robotics [9, 11]. For example, let:

S =

{
[1, 0] ,

[
cos

(
2π

5

)
, sin

(
2π

5

)]
,

[
cos

(
4π

5

)
, sin

(
4π

5

)]
,[

cos

(
6π

5

)
, sin

(
6π

5

)]
,

[
cos

(
8π

5

)
, sin

(
8π

5

)]}
.

Let τ be the golden ratio. It is provable that ΛS(τ) has uniformly discrete spectra.

Figure 6.1 is a plot of all the points in ΛS(τ) of norm less than 10.

CHAPTER 6. SOME CONCLUSIONS AND OPEN QUESTIONS 76

F
i
g
u
r
e
s
/
C
5
N
R
D
1
0
.
p
s

Figure 6.1: (x, y) ∈ ΛS(τ) for S ⊂ R2,
√
x2 + y2 ≤ 10

Appendix A

Code

A.1 Data Types
File name: Polynomial.h

/*

This is the base class for polynomials.

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#ifndef _INT_POLY

#define _INT_POLY

#define true 1

#define false 0

#include <cblas.h>

#include <stream.h>

#define POLY_IS_SHORT true

#ifdef POLY_IS_SHORT

#define PolyType short int

#define MaxPolyType 16384

77

APPENDIX A. CODE 78

#else

#define PolyType int

#define MaxPolyType 1073741824

#endif

// #define PolyType long long

// #define MaxPolyType 9223372036854775807

inline double max(double a, double b) {

if (a < b) { return(b); } return(a);

};

inline double abs(double a) {

return(max(a, -a));

};

inline double min(double a, double b) {

if (a > b) { return(b); } return(a);

};

#ifdef POLY_IS_SHORT

inline int max(int a, int b) {

if (a < b) { return(b); } return(a);

};

#endif

/*

inline int abs(int a) {

return(max(a, -a));

};

*/

#ifdef POLY_IS_SHORT

inline int min(int a, int b) {

if (a > b) { return(b); } return(a);

};

#endif

inline PolyType max(PolyType a, PolyType b) {

if (a < b) { return(b); } return(a);

};

#ifdef POLY_IS_SHORT

inline PolyType abs(PolyType a) {

return(max((PolyType)a, (PolyType)-a));

};

#endif

inline PolyType min(PolyType a, PolyType b) {

if (a > b) { return(b); } return(a);

};

class intPoly {

protected:

PolyType *poly;

int deg;

public:

inline PolyType* coeff() {return(poly);};

APPENDIX A. CODE 79

inline int degree() {return(deg);};

/*

intPoly operator=(intPoly poly2);

int operator==(intPoly poly);

int operator>(intPoly poly);

int operator<(intPoly poly);

*/

inline int operator<(intPoly* poly) {

if (poly->degree() < this->degree()) {

return(false);

} else if (poly->degree() > this->degree()) {

return(true);

}

if ((poly->degree() < 0) && (this->degree() < 0)) {

return(false);

}

for(int i = 0; i <= poly->degree(); i++) {

if (poly->coeff()[i] < this->coeff()[i]) {

return(false);

} else if (poly->coeff()[i] > this->coeff()[i]) {

return(true);

}

}

return(false);

};

inline void read() {

int i;

if (deg >= 0) {

delete poly;

}

cout << "What degree is the polynomial" << endl;

cin >> deg;

poly = new PolyType[deg+1];

for(i=0; i <= deg; i++) {

cout << "Term " << i << ": ";

cin >> poly[i];

}

};

inline intPoly() {deg = -1;};

inline intPoly(int degr, PolyType* polyn) {

int i;

deg = degr;

if (deg < 0) {return; }

poly = new PolyType[(deg) + 1];

for(i = 0; i <= deg; i ++) {

poly[i] = polyn[i];

}

for(i = degr; i >= 0; i--) {

if (poly[i] == 0) {

deg = i-1;

} else {

break;

APPENDIX A. CODE 80

}

}

};

inline int zero() {

if (deg == 0) {

if (poly[deg] == 0) {

return(true);

}

} else if (deg < 0) {

return(true);

} return(false);

};

inline PolyType height() {

int i;

PolyType h;

PolyType t;

h = 0;

for(i = 0 ; i <= deg; i++) {

t = abs(poly[i]);

h = max(t, h);

}

return(h);

};

inline double eval(double beta) {

double alpha, betai;

int i;

alpha = 0;

betai = 1;

for (i=0; i <= deg; i++) {

alpha = alpha + betai * ((double)(coeff()[i]));

betai = betai * beta;

}

return(alpha);

};

inline int eval(int beta) {

int alpha, betai;

int i;

alpha = 0;

betai = 1;

for (i=0; i <= deg; i++) {

alpha = alpha + betai * ((int)(coeff()[i]));

betai = betai * beta;

}

return(alpha);

};

inline void print() {

int i;

if (deg < 0) {

cout << 0 ;

return;

}

for (i = 0; i <= deg-1; i++) {

cout << "(" << poly[i] << ")*x^" << i << "+" ;

};

cout << "(" << poly[i] << ")*x^" << i ;

};

/*

APPENDIX A. CODE 81

nextPoly();

*/

inline ~intPoly () {

if (deg >= 0) {

delete poly;

}

};

};

intPoly* divide(intPoly *poly1, intPoly* poly2);

intPoly* add(intPoly* poly1, intPoly* poly2);

intPoly* mult(intPoly* poly1, intPoly* poly2);

intPoly* diff(intPoly* poly1);

//int operator<(intPoly& poly1, intPoly& poly2) {

// cout << "Did a comparison (YEAH)" << endl;

// return(true);

//};

#endif

File name: Polynomial.cc

/*

This is the base data structure of polynomials.

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include <stream.h>

#include "Polynomial.h"

#define true 1

#define false 0

/*

inline double max(double a, double b) {

if (a < b) { return(b); } return(a);

};

inline double abs(double a) {

return(max(a, -a));

};

inline double min(double a, double b) {

if (a > b) { return(b); } return(a);

};

APPENDIX A. CODE 82

inline int max(int a, int b) {

if (a < b) { return(b); } return(a);

};

inline int abs(int a) {

return(max(a, -a));

};

inline int min(int a, int b) {

if (a > b) { return(b); } return(a);

};

inline PolyType max(PolyType a, PolyType b) {

if (a < b) { return(b); } return(a);

};

inline PolyType abs(PolyType a) {

return(max(a, -a));

};

inline PolyType min(PolyType a, PolyType b) {

if (a > b) { return(b); } return(a);

};

*/

/*

intPoly intPoly::operator=(intPoly poly1) {

intPoly* poly = new intPoly(poly1.degree(), poly1.coeff());

cout << "It actually called the assignment operator" << endl;

return(*poly);

}

*/

/*

int intPoly::operator==(intPoly poly) {

if (poly.degree() != this->degree()) {

return(false);

}

for(int i = 0; i <= poly.degree(); i++) {

if (poly.coeff()[i] != this->coeff()[i]) {

return(false);

}

}

return(true);

}

int intPoly::operator>(intPoly poly) {

return((poly < *(this)));

}

*/

/*

int intPoly::operator<(intPoly* poly) {

if (poly->degree() < this->degree()) {

return(false);

} else if (poly->degree() > this->degree()) {

return(true);

}

if ((poly->degree() < 0) && (this->degree() < 0)) {

return(false);

APPENDIX A. CODE 83

}

for(int i = 0; i <= poly->degree(); i++) {

if (poly->coeff()[i] < this->coeff()[i]) {

return(false);

} else if (poly->coeff()[i] > this->coeff()[i]) {

return(true);

}

}

return(false);

}

*/

/*

PolyType* intPoly::coeff() {

return(poly);

};

*/

/*

int intPoly::degree() {

return(deg);

};

*/

/*

PolyType intPoly::height() {

int i;

PolyType h;

h = 0;

for(i = 0 ; i <= deg; i++) {

h = max(abs(poly[i]), h);

}

return(h);

};

*/

/*

double intPoly::eval(double beta) {

double alpha, betai;

int i;

alpha = 0;

betai = 1;

for (i=0; i <= deg; i++) {

alpha = alpha + betai * ((double)(coeff()[i]));

betai = betai * beta;

}

return(alpha);

};

*/

/*

intPoly::read() {

int i;

if (deg >= 0) {

delete poly;

}

cout << "What degree is the polynomial" << endl;

cin >> deg;

poly = new PolyType[deg+1];

APPENDIX A. CODE 84

for(i=0; i <= deg; i++) {

cout << "Term " << i << ": ";

cin >> poly[i];

}

}

*/

/*

intPoly::print() {

int i;

if (deg < 0) {

cout << 0 ;

return(0);

}

for (i = 0; i <= deg-1; i++) {

cout << "(" << poly[i] << ")*x^" << i << "+" ;

};

cout << "(" << poly[i] << ")*x^" << i ;

};

*/

/*

int intPoly::zero() {

if (deg == 0) {

if (poly[deg] == 0) {

return(true);

}

} else if (deg < 0) {

return(true);

} return(false);

};

*/

/*

intPoly::~intPoly () {

if (deg >= 0) {

delete poly;

}

}

*/

/*

intPoly::intPoly() {

deg = -1;

}

*/

/*

intPoly::intPoly(int degr, PolyType* polyn) {

int i;

deg = degr;

if (deg < 0) {return; }

poly = new PolyType[(deg) + 1];

for(i = 0; i <= deg; i ++) {

poly[i] = polyn[i];

}

for(i = degr; i >= 0; i--) {

if (poly[i] == 0) {

deg = i-1;

} else {

break;

}

APPENDIX A. CODE 85

}

};

*/

/*

intPoly::nextPoly() {

int i;

for(i = 0; i <= deg; i++){

if (poly[i] == 1) {

poly[i] = -1;

break;

} else if(poly[i] == -1) {

poly[i] = 1;

};

};

}

*/

intPoly* divide(intPoly *poly1, intPoly* poly2){

// cout << "Poly is " << poly2->eval(1) << endl;

// cout << "Called divide with degree " << poly1->degree()

// << " and " << poly2->degree()

// << endl;

if (poly1->degree() > poly2->degree()) {

return(new intPoly(poly2->degree(), poly2->coeff()));

}

// Find the lead coefficient of the two polynomials.

// cout << "Find the lead term" << endl;

int hdeg1, hdeg2;

hdeg1 = poly1->coeff()[poly1->degree()];

hdeg2 = poly2->coeff()[poly2->degree()];

// Create a scalar polynomial opposite of the original

PolyType *coeff1 = new PolyType[1];

// This had better be an integer or all hell will break loose

coeff1[0] = 1;

intPoly* scalar1 = new intPoly(0, coeff1);

delete coeff1;

PolyType *coeff2 = new PolyType[poly2->degree() - poly1->degree() + 1];

for(int i=0; i < poly2->degree() - poly1->degree(); i++) {

coeff2[i] = 0;

}

// cout << "Check lead term condition" << endl;

if (!((hdeg2 % hdeg1) == 0)) {

cout << "ARGH, THIS WON’T DIVIDE PROPERLY" << endl;

return(poly1);

}

coeff2[poly2->degree() - poly1->degree()] = -hdeg2/hdeg1;

intPoly *scalar2 = new intPoly(poly2->degree() - poly1->degree(), coeff2);

intPoly *poly3 = mult(poly2, scalar1);

intPoly *poly4 = mult(poly1, scalar2);

intPoly *poly5 = add(poly3, poly4);

// cout << "The new degree is " << poly5->degree() << endl;;

intPoly *ans = divide(poly1, poly5);

APPENDIX A. CODE 86

delete scalar1;

delete scalar2;

delete coeff2;

delete poly3;

delete poly4;

if (ans != poly5) {

delete poly5;

}

return(ans);

}

intPoly* add(intPoly* poly1, intPoly* poly2) {

int deg1;

int deg2;

PolyType* coeff;

PolyType* coeff1;

PolyType* coeff2;

int i;

deg1 = poly1->degree();

deg2 = poly2->degree();

coeff1 = poly1->coeff();

coeff2 = poly2->coeff();

coeff = new PolyType[max(deg1, deg2)+1];

for(i=0; i <= min(deg1, deg2); i ++) {

coeff[i] = coeff1[i] + coeff2[i];

}

if (deg1 == max(deg1, deg2)) {

for(i = deg2 + 1; i <= deg1; i ++) {

coeff[i] = coeff1[i];

}

} else {

for(i = deg1 + 1; i <= deg2; i ++) {

coeff[i] = coeff2[i];

}

}

intPoly *poly = new intPoly(max(deg1, deg2), coeff);

delete coeff;

return(poly);

}

intPoly* mult(intPoly* poly1, intPoly* poly2) {

int i, j;

int deg;

deg = poly1->degree() + poly2->degree();

PolyType* coeff = new PolyType[deg+2];

for (i=0; i <= deg; i++) {

coeff[i] = 0;

}

for (i=0; i <= poly1->degree(); i++) {

for (j=0; j <= poly2->degree(); j++) {

coeff[i+j] = coeff[i+j] + poly1->coeff()[i] * poly2->coeff()[j];

}

}

intPoly *poly = new intPoly(deg, coeff);

delete coeff;

APPENDIX A. CODE 87

return(poly);

}

intPoly* diff(intPoly* poly1) {

PolyType *coeff = new PolyType[poly1->degree()];

int j;

for (j=1; j <= poly1->degree(); j++) {

coeff[j-1] = j * poly1->coeff()[j];

}

intPoly * poly = new intPoly(poly1->degree() - 1, coeff);

delete coeff;

return(poly);

}

A.2 Spectrum Algorithm
File name: Spec.h

/*

This is the generic algorithm to compute l(q), a(q) or l^m(q)

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#ifndef _SPEC

#define _SPEC

#include <CC/stack.h>

#include <CC/set.h>

#define true 1

#define false 0

#include "Polynomial.h"

queue<intPoly*>*

Spec(intPoly* poly, double beta, double upper, int numStart, int* Start,

int numIterate, int* Iterate, int sym = false,

int Zero = false);

#endif

File name: Spec.cc

APPENDIX A. CODE 88

/*

This is the generic algorithm to compute l(q), a(q), or l^m(q)

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#define true 1

#define false 0

#include "Spec.h"

class ptnPoly {

public:

intPoly * Poly;

ptnPoly(intPoly*poly) { Poly = poly; };

ptnPoly() {};

intPoly * poly() const {return(Poly);};

~ptnPoly() {

};

int operator<(const ptnPoly poly1) const {

intPoly *P1, *P2;

P1 = Poly;

P2 = (poly1.Poly);

int a;

a = P1->operator<(P2);

return(a);

};

};

// bool less<ptnPoly>::operator ()(const class ptnPoly & p1,

// const class ptnPoly & p2) const {

// int a = p1.poly()->operator<(p2.poly());

// return(true);

// }

queue<intPoly*>*

Spec(intPoly* poly, double beta, double upper, int numStart, int* Start,

int numIterate, int* Iterate, int sym,

int Zero)

{

queue<intPoly*> ToLookAt;

queue<intPoly*>* LookedAt = new queue<intPoly*>();

set<ptnPoly> Pisot;

double pisot;

int counter;

APPENDIX A. CODE 89

intPoly* poly2;

intPoly* poly3;

intPoly* poly4;

intPoly* poly5;

PolyType* coeffs;

coeffs = new PolyType[2];

coeffs[0] = 0;

coeffs[1] = 1;

intPoly* x = new intPoly(1, coeffs);

coeffs[0] = -1;

intPoly* mone = new intPoly(0, coeffs);

delete coeffs;

ptnPoly *iterate;

iterate = new ptnPoly[numIterate+1];

PolyType maxAllow = MaxPolyType /(1+poly->height());

counter = 0;

int i;

coeffs = new PolyType[1];

for(i = 1; i <= numIterate; i++) {

coeffs[0] = Iterate[i-1];

iterate[i] = ptnPoly(new intPoly(0, coeffs));

}

for(i=1; i<= numStart; i++) {

coeffs[0] = Start[i-1];

intPoly* startPoly = new intPoly(0, coeffs);

ToLookAt.push(startPoly);

};

delete coeffs;

while (!(ToLookAt.empty())) { while(true) {

if ((counter % 500000) == 0) {

cout << "To look at:" << ToLookAt.size() <<

" Looked at:" << LookedAt->size() << endl;

}

counter = counter + 1;

poly2 = ToLookAt.front();

ToLookAt.pop();

pisot = poly2->eval(beta);

if ((pisot >= upper) || (pisot <= -upper)) {

delete poly2;

break;

}

if (poly2->height() > maxAllow) {

cout << "%%% The height is too high, and is not believable at ";

cout << poly2->height() << endl;

return((queue<intPoly*>*)0);

}

if (sym) {

if (poly2->degree() >= 0) {

if (poly2->coeff()[poly2->degree()] < 0) {

poly3 = mult(poly2, mone);

delete poly2;

poly2 = poly3;

}

APPENDIX A. CODE 90

}

}

if (Zero&& poly2->zero()) {

cout << "%%% FOUND ZERO " << endl;

return(LookedAt);

}

int size1 = Pisot.size();

ptnPoly ptn(poly2);

Pisot.insert(ptn);

if (Pisot.size() == size1) {

delete poly2;

break;

}

LookedAt->push(poly2);

poly3 = mult(poly2, x);

for(i = 1; i <= numIterate; i++) {

poly4 = add(poly3, iterate[i].poly());

poly5 = divide(poly, poly4);

if ((poly5 != poly4)) {

delete poly4;

}

ToLookAt.push(poly5);

};

delete poly3;

break;

}; };

return(LookedAt);

}

A.3 Top Level Code
File name: LittleL.cc

/*

This will calculate l(q) for a real number q.

(The minimal non-zero value of p(q), where p ranges over all

height 1 polynomials).

It will take as input the polynomial, as well as the root of the

polynomial.

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

APPENDIX A. CODE 91

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "Spec.h"

inline double dmax(double a, double b) {

if (a < b) { return(b); } return(a);

};

inline double dabs(double a) {

return(dmax(a, -a));

};

inline double dmin(double a, double b) {

if (a > b) { return(b); } return(a);

};

int main() {

intPoly* poly1 = new intPoly();

poly1->read();

cout << "The actually polynomial "; poly1->print(); cout << endl;

double beta;

cout << "What is the value of beta? ";

cin >> beta;

double upper;

upper = 1/(beta-1)+0.001;

cout << "The upper bound is " << upper << endl;

int* coeff1 = new int[3];

int* coeff2 = new int[3];

coeff1[0] = -1; coeff1[1] = 0; coeff1[2] = 1;

coeff2[0] = -1; coeff2[1] = 0; coeff2[2] = 1;

queue<intPoly*>* q = Spec(poly1, beta, upper, 3, coeff1, 3 ,coeff2, true);

cout << "%%% The size of Lambda(q) in the range ["

<< 0 << "," << upper << "] is (approximately) " << 2*(q->size())-1

<< endl;

double Z;

double Ztemp;

Z = 10;

intPoly* poly;

intPoly* ZPoly = new intPoly();

while (!q->empty()) {

poly = q->front();

Ztemp = dabs(poly->eval(beta));

if ((Ztemp > 0) && (Ztemp < Z)) {

Z = Ztemp;

delete ZPoly;

ZPoly = poly;

cout << Z << endl;

cout << "From polynomial ";

poly->print();

cout << endl;

} else {

delete poly;

APPENDIX A. CODE 92

}

q->pop();

};

cout << "%%% The value of l(q) is " << Z << endl;

cout << "%%% This value is from the polynomial: "

<< endl << "%%% ";

ZPoly->print();

cout << endl;

};

File name: LittleLm.cc

/*

This calculates l^m(q), the minimal non-zero value of p(q) as

p ranges over all height m polynomials. It takes as input

the minimal polynomial of q, q, and m.

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "Spec.h"

inline double dmax(double a, double b) {

if (a < b) { return(b); } return(a);

};

inline double dabs(double a) {

return(dmax(a, -a));

};

inline double dmin(double a, double b) {

if (a > b) { return(b); } return(a);

};

int main() {

intPoly* poly1 = new intPoly();

poly1->read();

cout << endl <<

"%%% Examining the root of the polynomial ";

poly1->print(); cout << endl;

double beta;

cout << "What is the value of beta? ";

cin >> beta;

int m;

cout << "What is the value of m? ";

APPENDIX A. CODE 93

cin >> m;

double upper;

upper = m/(beta-1);

int* coeff1 = new int[2*m+1];

int* coeff2 = new int[2*m+1];

for(int k = 0; k <= 2*m; k++) {

coeff1[k] = -m+k;

coeff2[k] = -m+k;

}

queue<intPoly*>* q = Spec(poly1, beta, upper, 2*m+1, coeff1, 2*m+1,coeff2,

true);

cout << "%%% The size of the spectrum is " << q->size() << endl;

double Z;

double Ztemp;

Z = 10;

intPoly* poly;

intPoly* ZPoly = new intPoly();

while (!q->empty()) {

poly = q->front();

Ztemp = dabs(poly->eval(beta));

if ((Ztemp > 0) && (Ztemp < Z)) {

Z = Ztemp;

ZPoly = poly;

cout << Z << endl;

cout << "From polynomial ";

poly->print();

cout << endl;

} else {

delete poly;

}

q->pop();

};

cout << "%%% l^" << m << " value is " << Z ;

cout << " from " ;

ZPoly->print();

cout << endl;

};

File name: LittleWoodL.cc

/*

This will calculate a(q), the minimal non-zero value of p(q)

as p ranges over all +-1 polynomials. It takes as input the

minimal polynomial of q, as well as q

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

APPENDIX A. CODE 94

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "Spec.h"

inline double dmax(double a, double b) {

if (a < b) { return(b); } return(a);

};

inline double dabs(double a) {

return(dmax(a, -a));

};

inline double dmin(double a, double b) {

if (a > b) { return(b); } return(a);

};

int main() {

intPoly* poly1 = new intPoly();

poly1->read();

cout << endl << "%%% The value of q being examined is the root of:"

<< endl << "%%% ";

poly1->print(); cout << endl;

double beta;

cout << "What is the value of beta? ";

cin >> beta;

double upper;

cout << endl << "%%% So the approximate value of q is " << beta << endl;

upper = 1/(beta-1)+0.001;

cout << "The upper bound is " << upper << endl;

int* coeff1 = new int[2];

int* coeff2 = new int[2];

coeff1[0] = -1; coeff1[1] = 1;

coeff2[0] = -1; coeff2[1] = 1;

queue<intPoly*>* q = Spec(poly1, beta, upper, 2, coeff1, 2 ,coeff2, true);

cout << "%%%" << endl;

cout << "%%% The size of A(q) in the range [" << 0 << ","

<< upper << "] is (approximately) " << 2*(q->size()) << endl;

double Z;

double Ztemp;

Z = 10;

int Zero;

Zero = false;

intPoly* poly;

intPoly* ZPoly = new intPoly();

while (!q->empty()) {

poly = q->front();

Ztemp = dabs(poly->eval(beta));

if ((Ztemp > 0) && (Ztemp < Z)) {

Z = Ztemp;

delete ZPoly ;

APPENDIX A. CODE 95

ZPoly = poly;

cout << Z << endl;

cout << "From polynomial ";

poly->print();

cout << endl;

} else if (poly->zero()) {

Zero = true;

delete poly;

} else {

delete poly;

}

q->pop();

};

cout << "%%% The value of a(q) is " << Z << endl;

cout << "%%% This value is from the polynomial: " << endl

<< "%%% ";

ZPoly->print();

cout << endl;

if (Zero) {

cout << "%%% Zero is in A(q)" << endl;

} else {

cout << "%%% Zero is not in A(q)" << endl;

};

cout << "%%%" << endl;

};

File name: PisotDivideLittlewood.cc

/*

This checks to see of q is a root of a +-1 polynomial.

It takes as input the minimal polynomial of q, and q.

Copyright (C) 2000 Kevin G Hare

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "Spec.h"

int main() {

intPoly* poly1 = new intPoly();

poly1->read();

cout << "The actually polynomial "; poly1->print(); cout << endl;

double beta;

cout << "What is the value of beta? ";

cin >> beta;

APPENDIX A. CODE 96

int* coeff1 = new int[2];

int* coeff2 = new int[2];

double upper;

upper = 1/(beta-1);

coeff1[0] = -1; coeff1[1] = 1;

coeff2[0] = -1; coeff2[1] = 1;

queue<intPoly*>* q = Spec(poly1, beta, upper, 3, coeff1, 3 ,coeff2);

intPoly* poly;

while (!q->empty()) {

poly = q->front();

if (poly->zero()) {

cout << "0 is in the spectrum" << endl;

return(0);

}

q->pop();

delete poly;

};

cout << "Guess it is not in the spectrum " << endl;

};

A.4 Compiling Stuff
File name: Makefile

all: LittleLPar

test: Test CheckSpec

ll: LittleL LittleWoodL

all2: LittleL Test GExpand PisotDivideLittlewood LittleLm LittleWoodL

thesis: LittleL LittleLm LittleWoodL PisotDivideLittlewood

#DEBUG = -ggdb

#DEBUG = -debug

#DEBUG = -pg -g

OPTIMIZE = -IPA -INLINE

#OPTIMIZE = -O3 -finline-functions

#-Winline

#LIB = -l /usr/include/ -l /usr/include/CC/

-l /usr/freeware/lib/gcc-lib/mips-sgi-irix6.2/2.8.1/mabi=64/libgcc.a

#LIB = /usr/include/

#CCC = g++

CCC = CC -64

.SUFFIXES: .cc .cc,v .h .h,v

.h,v.h:

co $*.h

.cc,v.cc:

co $*.cc

VBound.o: VBound.cc VBound.h Polynomial.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) VBound.cc -o VBound.o

Spec.o: Spec.cc Spec.h Polynomial.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) Spec.cc -o Spec.o

APPENDIX A. CODE 97

SpecPar.o: SpecPar.cc SpecPar.h PolynomialPar.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) SpecPar.cc -o SpecPar.o

SpecControlPar.o: SpecControlPar.cc SpecControlPar.h SpecPar.h \

PolynomialPar.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) SpecControlPar.cc -o SpecControlPar.o

GExpand.o: GExpand.cc Polynomial.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) GExpand.cc -o GExpand.o

GExpand: GExpand.o Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) GExpand.o Polynomial.o -o GExpand

PisotDivideLittlewood.o: PisotDivideLittlewood.cc Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) PisotDivideLittlewood.cc -o \

PisotDivideLittlewood.o

PisotDivideLittlewood: PisotDivideLittlewood.o Spec.o Spec.h Polynomial.o \

Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) PisotDivideLittlewood.o Spec.o \

Polynomial.o -o PisotDivideLittlewood

LittleLm.o: LittleLm.cc Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleLm.cc -o LittleLm.o

LittleLm: LittleLm.o Spec.o Spec.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleLm.o Spec.o Polynomial.o -o LittleLm

CounterSpec.o: CounterSpec.cc VBound.h Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) CounterSpec.cc -o CounterSpec.o

CounterSpec: CounterSpec.o Spec.o Spec.h Polynomial.o Polynomial.h VBound.o\

VBound.h

$(CCC) $(DEBUG) $(OPTIMIZE) VBound.o CounterSpec.o Spec.o \

Polynomial.o -o CounterSpec

CheckSpec.o: CheckSpec.cc VBound.h Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) CheckSpec.cc -o CheckSpec.o

CheckSpec: CheckSpec.o Spec.o Spec.h Polynomial.o Polynomial.h VBound.o VBound.h

$(CCC) $(DEBUG) $(OPTIMIZE) VBound.o CheckSpec.o Spec.o Polynomial.o \

-o CheckSpec

LittleWoodL.o: LittleWoodL.cc Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleWoodL.cc -o LittleWoodL.o

LittleWoodL: LittleWoodL.o Spec.o Spec.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleWoodL.o Spec.o Polynomial.o -o \

LittleWoodL

LittleLDDiff.o: LittleLDDiff.cc Polynomial.h SpecDDiff.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleLDDiff.cc -o LittleLDDiff.o

LittleLDDiff: LittleLDDiff.o SpecDDiff.o SpecDDiff.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleLDDiff.o SpecDDiff.o \

Polynomial.o -o LittleLDDiff

LittleLDiff.o: LittleLDiff.cc Polynomial.h SpecDiff.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleLDiff.cc -o LittleLDiff.o

LittleLDiff: LittleLDiff.o SpecDiff.o SpecDiff.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleLDiff.o SpecDiff.o \

APPENDIX A. CODE 98

Polynomial.o -o LittleLDiff

LittleWoodDiff.o: LittleWoodDiff.cc Polynomial.h SpecDiff.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleWoodDiff.cc -o LittleWoodDiff.o

LittleWoodDiff: LittleWoodDiff.o SpecDiff.o SpecDiff.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleWoodDiff.o SpecDiff.o \

Polynomial.o -o LittleWoodDiff

ZOPolyDiff.o: ZOPolyDiff.cc Polynomial.h SpecDiff.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) ZOPolyDiff.cc -o ZOPolyDiff.o

ZOPolyDiff: ZOPolyDiff.o SpecDiff.o SpecDiff.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) ZOPolyDiff.o SpecDiff.o \

Polynomial.o -o ZOPolyDiff

ZOPoly.o: ZOPoly.cc Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) ZOPoly.cc -o ZOPoly.o

ZOPoly: ZOPoly.o Spec.o Spec.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(OPTIMIZE) ZOPoly.o Spec.o Polynomial.o -o ZOPoly

LittleLPar.o: LittleLPar.cc PolynomialPar.h SpecPar.h SpecControlPar.h makefile

$(CCC) -c $(DEBUG) $(OPTIMIZE) LittleLPar.cc -o LittleLPar.o

LittleLPar: LittleLPar.o SpecPar.o SpecPar.h PolynomialPar.o PolynomialPar.h \

SpecControlPar.o SpecControlPar.h

$(CCC) $(DEBUG) $(OPTIMIZE) LittleLPar.o SpecPar.o PolynomialPar.o \

SpecControlPar.o -o LittleLPar

LittleL.o: LittleL.cc Polynomial.h Spec.h makefile

$(CCC) -c $(DEBUG) $(LIB) $(OPTIMIZE) LittleL.cc -o LittleL.o

LittleL: LittleL.o Spec.o Spec.h Polynomial.o Polynomial.h

$(CCC) $(DEBUG) $(LIB) $(OPTIMIZE) LittleL.o Spec.o Polynomial.o -o LittleL

Polynomial.o: Polynomial.cc makefile Polynomial.h

$(CCC) -c $(DEBUG) $(OPTIMIZE) Polynomial.cc -o Polynomial.o

PolynomialPar.o: PolynomialPar.cc makefile PolynomialPar.h

$(CCC) -c $(DEBUG) $(OPTIMIZE) PolynomialPar.cc -o PolynomialPar.o

#Test.o: Test.cc SpecPar.h PolynomialPar.h makefile

Test.o: Test.cc

$(CCC) -c $(DEBUG) $(OPTIMIZE) Test.cc -o Test.o

temp: temp.o

$(CCC) $(DEBUG) $(OPTIMIZE) temp.o -o temp

temp.o: temp.cc

$(CCC) -c $(DEBUG) $(OPTIMIZE) temp.cc -o temp.o

#Test: Test.o PolynomialPar.o PolynomialPar.h SpecPar.o SpecPar.h

Test: Test.o

$(CCC) $(DEBUG) $(OPTIMIZE) Test.o PolynomialPar.o -o Test

$(CCC) $(DEBUG) $(OPTIMIZE) Test.o -o Test

checkout:

co -l GExpand.cc LittleL.cc LittleLm.cc \

PisotDivideLittlewood.cc Polynomial.cc \

Polynomial.h Spec.cc Spec.h Test.cc

clean:

APPENDIX A. CODE 99

rm LittleL LittleWoodL LittleLm ZOPoly ZOPolyDiff LittleWoodDiff\

LittleLDiff LittleLDDiff CheckSpec LittleLPar CounterSpec *.o\

ii_files/*

A.5 GNU Public License
File name: gpl.txt

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

APPENDIX A. CODE 100

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

APPENDIX A. CODE 101

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

APPENDIX A. CODE 102

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

APPENDIX A. CODE 103

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

APPENDIX A. CODE 104

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

Bibliography

[1] Douglas Adams, A long dark tea-time of the soul, Pan Books Ltd., London, 1988.

[2] Shiro Ando and Teluhiko Hilano, A disjoint covering of the set of natural numbers

consisting of sequences defined by a recurrence whose characteristic equation has

a Pisot number root, Fibonacci Quart. 33 (1995), no. 4, 363–367.

[3] J. M. Borwein and P. B. Borwein, Pi and the AGM, John Wiley & Sons Inc., New

York, 1998, A study in analytic number theory and computational complexity,

Reprint of the 1987 original, A Wiley-Interscience Publication.

[4] P. Borwein and K.G. Hare, Non-trivial quadratic approximations to zero of a

family of cubic Pisot numbers, (manuscript).

[5] , Some computations on the spectra of Pisot and Salem numbers, Math.

Comp. 71 (2002), 767–780.

[6] , General forms for minimal spectral values for a class of quadratic Pisot

numbers, Journal of the London Math Society (to appear).

[7] David W. Boyd, Pisot and Salem numbers in intervals of the real line, Math.

Comp. 32 (1978), no. 144, 1244–1260.

[8] Y. Bugeaud, On a property of Pisot numbers and related questions, Acta Math.

Hungar. 73 (1996), no. 1-2, 33–39.

[9] Č. Burd́ık, Ch. Frougny, J. P. Gazeau, and R. Krejcar, Beta-integers as natural

counting systems for quasicrystals, J. Phys. A 31 (1998), no. 30, 6449–6472.

105

BIBLIOGRAPHY 106

[10] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Uni-

versity Press, New York, 1957, Cambridge Tracts in Mathematics and Mathe-

matical Physics, No. 45.

[11] Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control

set, Math. Control Signals Systems 14 (2001), no. 2, 173–193.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms,

MIT Press, Cambridge, MA, 1990.

[13] P. Erdös, I. Joó, and V. Komornik, Characterization of the unique expansions

1 =
∑∞

i=1 q
−ni and related problems, Bull. Soc. Math. France 118 (1990), no. 3,

377–390.

[14] P. Erdős, I. Joó, and V. Komornik, On the sequence of numbers of the form

ε0 + ε1q + · · ·+ εnq
n, εi ∈ {0, 1}, Acta Arith. 83 (1998), no. 3, 201–210.

[15] P. Erdős, I. Joó, and F. J. Schnitzer, On Pisot numbers, Ann. Univ. Sci. Budapest.

Eötvös Sect. Math. 39 (1996), 95–99 (1997).

[16] P. Erdős, M. Joó, and I. Joó, On a problem of Tamás Varga, Bull. Soc. Math.

France 120 (1992), no. 4, 507–521.

[17] P. Erdős and V. Komornik, Developments in non-integer bases, Acta Math. Hun-

gar. 79 (1998), no. 1-2, 57–83.

[18] A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer.

Math. Soc. 102 (1962), 409–432.

[19] K.O. Geddes, G. Labahn, M. B. Monagan, and S. Vorketter, The Maple pro-

gramming guide, Springer-Verlag, New York, 1996.

[20] Nikolai Gogol, Taras Bulba, Village Evenings near Dikanka and Mirgorod, Oxford

University Press, Great Britian, 1994, Translated from the Russian by Christo-

pher English, (first published 1833).

BIBLIOGRAPHY 107

[21] , Village evenings near Dikanka, Village Evenings near Dikanka and Mir-

gorod, Oxford University Press, Great Britian, 1994, Translated from the Russian

by Christopher English, (first published 1832).

[22] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, second

ed., Addison-Wesley Publishing Company, Reading, MA, 1994, A foundation for

computer science.

[23] K. G. Hare, Home page, http://www.cecm.sfu.ca/∼kghare, 1999.

[24] Shunji Ito and Yuki Sano, On periodic β-expansions of Pisot numbers and Rauzy

fractals, Osaka J. Math. 38 (2001), no. 2, 349–368.

[25] I. Joó and F. J. Schnitzer, On some problems concerning expansions by noninteger

bases, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 133 (1996), 3–10 (1997).

[26] V. Komornik, P. Loreti, and M. Pedicini, An approximation property of Pisot

numbers, J. Number Theory 80 (2000), no. 2, 218–237.

[27] Ka-Sing Lau, Dimension of a family of singular Bernoulli convolutions, J. Funct.

Anal. 116 (1993), no. 2, 335–358.

[28] Maurice Mignotte, Mathematics for computer algebra, Springer-Verlag, New

York, 1992, Translated from the French by Catherine Mignotte.

[29] Y. Peres and B. Solomyak, Approximation by polynomials with coefficients ±1,

J. Number Theory 84 (2000), no. 2, 185–198.

[30] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2

(1955), 1–20; corrigendum, 168.

[31] R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945), 153–

172.

[32] Raphaël Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Co.,

Boston, Mass., 1963.

BIBLIOGRAPHY 108

[33] Wolfgang M. Schmidt, On simultaneous approximations of two algebraic numbers

by rationals, Acta Math. 119 (1967), 27–50.

[34] A. Schrijver, Theory of linear and integer programming, John Wiley & Sons Ltd.,

Chichester, 1986, A Wiley-Interscience Publication.

[35] C. J. Smyth, On the product of the conjugates outside the unit circle of an alge-

braic integer, Bull. London Math. Soc. 3 (1971), 169–175.

[36] Neal Stephenson, Cryptonomicon, Perennial, New York, 1999.

[37] Jonathan Swift, Gulliver’s travels, Houghton Miffin Company, Boston, 1960,

(first published 1726).

[38] Axel Thue, Uber eine Eigenshaft, die keine transcendenteGrosse haben kann,

Videnskapsselskapets Skrifter. I Mat.-naturv. Klasse, Kristiania (1912), no. 20.

[39] Vickie York, New plan to blow up the moon!, Weekly World News (April 2, 2002).

Index

algebraic integer, 1

algebraic number, 1

best approximation, 36, 39, 43, 44, 46,

48, 51, 52, 55, 73

C++, 16, 26

conjugate, 1

convex polytope, 61, 69

cyclotomic number, 2, 58

discrete, iv, 9, 12, 13, 15, 16, 26, 28, 29,

31, 32, 72, 73

non-uniform, 9, 15, 29–31

uniform, 9, 15, 29, 74

Fibonacci, 9, 34, 35

golden ratio, iii, 6–9, 11, 22, 23, 34–36,

44, 56, 59, 60, 62–64, 66–68, 74

graduate studies, 35

grammar, 71

height, 5, 7–9, 16, 26, 28, 29, 31, 43, 46,

55–59, 61, 63, 64, 69, 70

linear approximation, 44, 52, 55

Louiville’s inequality, 55

Mahler measure, 2, 29, 32, 72

Maple, 47, 59, 60, 66

mathematical pedagogy, iii, 1, 11

moon, 51

Perron number, 28, 72

Pisot number, 2

cubic, iv, 34, 52–70, 73

first, iii, 3, 8, 11, 52, 53, 60, 64,

70, 73

second, 8, 9, 11, 22, 52, 54, 60,

64, 70, 73

quadratic, iv, 34–42, 44–49, 51, 52,

72, 73

programming errors, 22

quadratic approximation, 52–70, 73

reciprocal, 3, 32

red-black tree, 16

Salem number, iii, 2, 26, 29, 31–33, 72,

73

simplex method, 46, 47

spectra, iii, iv, 6–15, 17, 18, 20–23, 26,

28–32, 34–40, 44–46, 48–54, 70,

72–74

109

INDEX 110

algorithm, 14

Ka-Sing Lau, 11

unit, 36

Glossary

A(q) - ±1 polynomials evaluated at q,

9, 10, 22, 23, 26, 28–32, 72, 73

An - For fixed integers a, b, A0 = 0,

A1 = 1, An = aAn−1 + bAn−2,

39–42

Bn - For fixed integers a, b, B0 = 1,

B1 = 0, Bn = aBn−1 + bBn−2,

39–42

D(q) - See definition (page 56), 56–61,

63–66, 68, 69

D1(q) - See definition (page 57), 57, 59,

60, 64, 66, 68, 69

D2(q) - See definition (page 57), 57, 60,

64, 65

Fk - Fibonacci number, (F0 = 0, F1 =

1, Fn = Fn−1 + Fn−2), 9, 34, 35

H(P (x)) - The height of a polynomial

P (x), 5, 55–59, 61, 63, 64, 69,

70

L(q) - lim sup(yk+1 − yk), yk ∈ Y (q), 7,

8

Lm(q) - lim sup(yk+1− yk), yk ∈ Y m(q),

7, 8

P ∗(x) - P (1
x
)xdeg(P (x)) the reciprocal of

P (x), 3, 32

Pn(x) - 1
xn

, 52–54, 57, 58, 61, 70, 73

Y (q) - 0,1 polynomials evaluated at q,

6, 10

Y m(q) - 0, · · · ,m polynomials evaluated

at q, 6–8, 10

Λ(q) - -1,0,1 polynomials evaluated at

q, 8–12, 14, 17, 18, 20–23, 30,

36, 72

ΛS(q) - polynomials with coefficients from

S evaluated at q, 8–12, 14, 15,

17, 18, 20–23, 30, 36–38, 40, 48,

49, 72, 74

Λm(q) - −m, · · · ,m polynomials evalu-

ated at q, 8–12, 14, 17, 18, 20–

23, 30, 36–38, 40, 48, 49, 72

τ - The golden ratio, root of x2−x− 1,

6–9, 22, 34, 35, 56, 59, 60, 62–

64, 66–68, 74

a(q) - Minimal ±1 polynomial at q, 9–

11, 23, 26, 31, 34, 35

c(q,m) - Lower bound of height m poly-

nomials evaluated at q, 5, 6

l(q) - Minimal height 1 polynomial at q,

iii, 7–11, 15, 22, 23, 26, 29–31,

35, 50, 72

111

GLOSSARY 112

lS(q) - Minimal polynomial with coeffi-

cients from S evaluated at q, iii,

iv, 7–11, 13, 15, 22, 23, 26, 29–

31, 34–36, 39, 44–46, 48, 50–54,

70, 72, 73

lm(q) - Minimal height m polynomial

at q, iii, iv, 7–11, 13, 15, 22, 23,

26, 29–31, 34–36, 39, 44–46, 48,

50–54, 70, 72, 73

Ω - Unit quadratic Pisot numbers, 36,

39–41, 44, 46, 47

Υ - Non-totally real unit cubic Pisot

numbers, 52, 55–57, 60, 61, 64,

68, 70, 73

O(f(x)) - Running time of a function is

bounded asymptotically by f(x),

20, 21

P(x) - See definition (page 17), 17, 18,

23

R - Height 1 real polynomials, 41, 44,

46, 48

