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Optimal Kinodynamic Planning Problem:

Find control: u(t)
that minimizes: J [x(t), u(t), tfinal ]

subject to: u(t) ∈ U ,∀t ∈ [tinit , tfinal ]
x(t) ∈ Xfree ,∀t ∈ [tinit , tfinal ]
fl ≤ f [ẋ(t), x(t), u(t), t] ≤ fu ,∀t ∈ [tinit , tfinal ]
x(tfinal ) ∈ Xgoal

Note:
tfinal is free
We focus on problems where Xfree is not explicitly represented.
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Dynamics

Approximate Dynamics

There are no known analytical solutions to the minimum-time
optimal control problem under the quadrotor’s nonlinear dynamics.

Use approximator-corrector structure to simplify computations.
Approximate using double-integrator which can be solved
analytically for the unobstructed minimal-time control problem:

ẋ(t) = Ax + Bu + c

A =
[

0 I
0 0

]
, B =

[
0
I

]
, c =

[
0
g

]
, x =

[
ξB
ξ̇B

]
∈ R6, u = ξ̈B ∈ R3

where ξB is the position of the body frame.
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Planning Framework

Sampling (Offline)
”The key idea behind sampling-based algorithms is to avoid the
explicit construction of the configuration space and instead
conduct a search that probes the configuration space with a
sampling scheme.”

Offline phase:
Randomly draw Ns samples from state space.

From Ns samples, randomly draw Npair pairs of states, with
replacement, Npair ≤ Ns(Ns − 1).
Store one state from each of these pairs in A, the other in B.
Solve the OBVP determined by each pair in A,B;
Store solutions in table titled COST.
A SVM classifier is trained using the look-up table COST.
The SVM is used to approximate cost-limited reachable sets.
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Planning (Online)

Obstacle data is obtained from the collision detection module.
Start state xinit and goal region Xgoal are now specified.

Online phase:
Randomly draw Ngoal states from Xgoal .

Use the SVM to approximate outgoing nbhd of xinit and
incoming nbhd of Xgoal from pre-sampled states.
Solve OBVPs from xinit and Xgoal to their nearest neighbors
(determined by SVM) and also store these solutions in Cost.
Use kinoFMT∗ algorithm to determine the optimal trajectory
through the set of sampled states.
The selected optimal sample states are traced with a smooth
path, which the online flight controller tracks.
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Support Vector Machine

SVM

A support vector machine (SVM) is used for classification.
E.g., ”Does point A satisfy property P?”

Here, the SVM is used to determine whether or not an
edge/transition between states has optimal cost below some
threshold, Jth.

The SVM is trained using information from the COST table.
Example entry:

((a, b), (c, d)) : (223.4︸ ︷︷ ︸
Jopt

, 0.8791︸ ︷︷ ︸
Topt

)
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Support Vector Machine

SVM : Cost-limited Reachable Set Figure
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Differential Flatness

The nonlinear quadrotor dynamic equations represent a
differentially flat system.

That is, the state and control variables can be expressed in terms
of position (ξN) and yaw (ψN) and their derivatives.

These are called flat output variables.

Differential flatness is an important property that allows us the
following freedom:
Any smooth trajectory (with reasonably bounded derivatives)
in the space of flat outputs can be followed by the
underactuated quadrotor.
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Trajectory Smoothing
Goal: Find minimum-snap polynomial trajectories connecting
waypoints chosen by kinoFMT∗. We need one polynomial for each
of the four flat output variables, and for each segment of the
trajectory.

Let P(t) =
∑N

i=0 pi t i be an Nth order polynomial.
We must find the coefficients pi that minimize

Jsnap =
∫ T

0
P(4)(t)2dt = pTQ(T )p

under the constraints
Ap = d

where A =
[

A0
AT

]
, d =

[
d0
dT

]
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Trajectory Smoothing

The constrained QP problem is numerically unstable.
Instead, we can substitute p = A−1d into Jsnap to obtain an
unconstrained QP problem:

Jsnap = pTQ(T )p
= dTA−TQ(T )A−1d

rewriting A,Q, and d as block diagonal matrices, one for each
segment of the trajectory.
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Trajectory Smoothing

Jsnap = dTA−TQ(T )A−1d

For convenience, we reorder d so that fixed derivatives (dfix ) and
free derivatives (dfree) are grouped together, which is accomplished
by multiplying d by the appropriate permutation matrix, C .

Jsnap =
[

dfix
dfree

]T

CTA−TQ(T )A−1C
[

dfix
dfree

]

=
[

dfix
dfree

]T [
H11 H12
H21 H22

]T [
dfix
dfree

]

Differentiating and setting to zero yields:

d∗
free = −H−1

22 HT
12dfix
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Fast Marching Tree

FMT∗ Basics

Uses dynamic programming over a fixed set of sampled points

Sample state b is considered a neighbour of a if the optimal
cost from a to b is less than some threshold, Jth

Whenever a locally-optimal connection intersects an obstacle,
that sample is lazily skipped over in the current iteration
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Fast Marching Tree

FMT∗ Algorithm
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