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Optimal Kinodynamic Planning Problem:

Find control: u(t)
that minimizes: J[x(t), u(t), tfinal
subject to: u(t) eU ,Vt € [tinit, thinal)
x(t) € Xpree , V't € [tinit, thinal)
fi < FIx(t), x(t), u(t),t] < fy YVt € [tinit, thinal]
X(tfinat) € Xgoal
Note:

B tf,, is free

m We focus on problems where X is not explicitly represented.
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Approximate Dynamics

There are no known analytical solutions to the minimum-time
optimal control problem under the quadrotor’s nonlinear dynamics.
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Approximate Dynamics

There are no known analytical solutions to the minimum-time
optimal control problem under the quadrotor’s nonlinear dynamics.

Use approximator-corrector structure to simplify computations.
Approximate using double-integrator which can be solved
analytically for the unobstructed minimal-time control problem:

x(t) =Ax+Bu+c

ST

where &g is the position of the body frame.

, X = FB] e RS, u:§B€R3
B



KinoFMT*
L Method

LPlanning Framework

Sampling (Offline)

"The key idea behind sampling-based algorithms is to avoid the
explicit construction of the configuration space and instead
conduct a search that probes the configuration space with a
sampling scheme.”

Offline phase:

m Randomly draw Ns samples from state space.
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m From Ng samples, randomly draw N,,; pairs of states, with
replacement, Npair < Ng(Ns — 1).
Store one state from each of these pairs in A, the other in B.
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Sampling (Offline)

"The key idea behind sampling-based algorithms is to avoid the
explicit construction of the configuration space and instead
conduct a search that probes the configuration space with a
sampling scheme.”

Offline phase:
m Randomly draw Ns samples from state space.
m From Ng samples, randomly draw N,,; pairs of states, with
replacement, Npair < Ng(Ns — 1).
Store one state from each of these pairs in A, the other in B.
m Solve the OBVP determined by each pair in A, B;
Store solutions in table titled COST.

m A SVM classifier is trained using the look-up table COST.
The SVM is used to approximate cost-limited reachable sets.
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Planning (Online)

Obstacle data is obtained from the collision detection module.
Start state xijnjz and goal region Xg, are now specified.

Online phase:

m Randomly draw Ng,, states from Xgo,).
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through the set of sampled states.
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Planning (Online)

Obstacle data is obtained from the collision detection module.
Start state xijnjz and goal region Xg, are now specified.

Online phase:

m Randomly draw Ng,, states from Xgo,).

m Use the SVM to approximate outgoing nbhd of x;,; and
incoming nbhd of Xz, from pre-sampled states.

m Solve OBVPs from xinir and Xgoa to their nearest neighbors
(determined by SVM) and also store these solutions in COST.

m Use kinoFMT™* algorithm to determine the optimal trajectory
through the set of sampled states.

m The selected optimal sample states are traced with a smooth
path, which the online flight controller tracks.



KinoFMT*
L Method
LSupport Vector Machine

SVM

A support vector machine (SVM) is used for classification.
E.g., "Does point A satisfy property P?"
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Here, the SVM is used to determine whether or not an
edge/transition between states has optimal cost below some
threshold, Jsp.
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SVM

A support vector machine (SVM) is used for classification.
E.g., "Does point A satisfy property P?"

Here, the SVM is used to determine whether or not an
edge/transition between states has optimal cost below some
threshold, Jsp.

The SVM is trained using information from the COST table.
Example entry:

((a,b), (c,d)) : (233.4, 03791)
opt opt
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SVM : Cost-limited Reachable Set Figure

Figure 4. Cq ion of a cost-limited set for a notional 2D dynamical system. Formally, a (forward) cost-limited reachable set is the
set of states that can bc reached from a given state with a cost bounded above by a given threshold (denoted as Ji).
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Differential Flatness

The nonlinear quadrotor dynamic equations represent a
differentially flat system.

That is, the state and control variables can be expressed in terms
of position (£y) and yaw (1n) and their derivatives.

These are called flat output variables.
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Differential Flatness

The nonlinear quadrotor dynamic equations represent a
differentially flat system.

That is, the state and control variables can be expressed in terms
of position (£y) and yaw (1n) and their derivatives.

These are called flat output variables.

Differential flatness is an important property that allows us the
following freedom:

Any smooth trajectory (with reasonably bounded derivatives)
in the space of flat outputs can be followed by the
underactuated quadrotor.
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Trajectory Smoothing

Goal: Find minimum-snap polynomial trajectories connecting
waypoints chosen by kinoFMT*. We need one polynomial for each
of the four flat output variables, and for each segment of the
trajectory.

Let P(t) = XN, pit’ be an Nth order polynomial.
We must find the coefficients p; that minimize

)
AW:A P@(tY2dt = pT Q(T)p

under the constraints

meA:[%}d:[%]
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Trajectory Smoothing

The constrained QP problem is numerically unstable.
Instead, we can substitute p = A~1d into Jsnap to obtain an
unconstrained QP problem:

anap = pTQ( T)p
=d"ATQ(T)A 1d

rewriting A, Q, and d as block diagonal matrices, one for each
segment of the trajectory.
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Trajectory Smoothing

Jsnap = d'A T Q( T)Afld

For convenience, we reorder d so that fixed derivatives (dy) and
free derivatives (dfee) are grouped together, which is accomplished
by multiplying d by the appropriate permutation matrix, C.

T T
_ | dix Hii Hio drix
dfree H 21 H 22 d free

Differentiating and setting to zero yields:

* —1 9T
dfree - _H22 H12dﬁX



KinoFMT*
L Planning Algorithm

Outline

Planning Algorithm
m Fast Marching Tree



KinoFMT*
LF’lanning Algorithm
LFast Marching Tree

FMT* Basics

m Uses dynamic programming over a fixed set of sampled points
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FMT* Basics

m Uses dynamic programming over a fixed set of sampled points

m Sample state b is considered a neighbour of a if the optimal
cost from a to b is less than some threshold, Js,

m Whenever a locally-optimal connection intersects an obstacle,
that sample is lazily skipped over in the current iteration
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FMT* Algorithm

Algorithm 3 Kinodynamic Fast Marching Tree Algorithm (kino-FMT )
1V = VU {@inic} U {Xgou}
2E+ 0
3 W V\{@inic}; H < {Tinit}
4 Z & Tinit
5 while z ¢ Xyou do
6 N2 ¢+ Near(z,V\{z}, Jun)
7 Xpear = Intersect(N2®, W)
8 forz € Xy do
9 NI« Near(V\{z}, =, Jn)

10 Ypear ¢ Intersect (N, H)

11 Ymin < argminyey,,, {Cost(y,T = (V, E))+Cost (yz)}
12 if CollisionFree(Ymin,z) then

13 E — EU{(Ymin, )}

14 H «+ HUu{z}

15 W« W\{z}

16 H+«+ H\{z}

17 if H = ( then

18 return Failure

19z < argmingey{Cost(y,T = (V,E))}
20 return Path(z, T = (V, E))
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