Geometric Tracking Control of a Quadrotor UAV on SE(3)

T. Lee, M. Leok, N.H. McClamroch

Presented by Luc Larocque Department of Applied Mathematics University of Waterloo

April 10, 2018

T. Lee, M. Leok, N.H. McClamroch Geometric Tracking Control of a Quadrotor UAV on SE(3)

伺 ト イ ヨ ト イ ヨ

Outline

Quadrotor Dynamics Model

2 Geometric Tracking Control
 • Tracking Errors
 • Tracking Controller
 • Propositions

3 Simulations

• • = • • = •

 $\begin{array}{ll} \{\vec{i}_1,\vec{i}_2,\vec{i}_3\} & \text{inertial reference frame} \\ \{\vec{b}_1,\vec{b}_2,\vec{b}_3\} & \text{body-fixed frame} \\ m \in \mathbb{R} & \text{total mass of quadrotor} \\ J \in \mathbb{R}^{3 \times 3} & \text{inertia matrix w.r.t. body-fixed frame} \\ R \in \mathrm{SO}(3) & \text{rotation matrix (body to inertial frame)} \\ \Omega \in \mathbb{R}^3 & \text{angular velocity in the body-fixed frame} \end{array}$

Fig. 1. Quadrotor model

æ

Setup

 $x \in \mathbb{R}^3$ location of the center of mass in the inertial frame $v \in \mathbb{R}^3$ velocity of the center of mass in the inertial frame $d \in \mathbb{R}$ distance from the CoM to each rotor thrust generated by the i-th rotor along $-\vec{b}_3$ axis $f_i \in \mathbb{R}$ torque generated by the i-th rotor about \vec{b}_3 axis $\tau_i \in \mathbb{R}$ total thrust, i.e., $f = \sum_{i=1}^{4} f_i$ in $-\vec{b}_3$ direction $f \in \mathbb{R}$ $M \in \mathbb{R}^3$ total moment in the body-fixed frame

周 ト イ ヨ ト イ ヨ ト

• Total thrust (in the inertial frame):

 $-fRe_3 \in \mathbb{R}^3$

イロト イ団ト イヨト イヨト

æ

• Total thrust (in the inertial frame):

 $-fRe_3 \in \mathbb{R}^3$

• Torque of i^{th} rotor:

 $(-1)^i c_{\tau f} f_i$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Total thrust (in the inertial frame):

 $-fRe_3 \in \mathbb{R}^3$

• Torque of i^{th} rotor:

$$(-1)^i c_{\tau f} f_i$$

• Write total thrust f and moments M_i as:

$$\begin{bmatrix} f\\ M_1\\ M_2\\ M_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1\\ 0 & -d & 0 & d\\ d & 0 & -d & 0\\ -c_{\tau f} & c_{\tau f} & -c_{\tau f} & c_{\tau f} \end{bmatrix} \begin{bmatrix} f_1\\ f_2\\ f_3\\ f_4 \end{bmatrix}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Total thrust (in the inertial frame):

 $-fRe_3 \in \mathbb{R}^3$

• Torque of i^{th} rotor:

$$(-1)^i c_{\tau f} f_i$$

• Write total thrust f and moments M_i as:

$$\begin{bmatrix} f \\ M_1 \\ M_2 \\ M_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -d & 0 & d \\ d & 0 & -d & 0 \\ -c_{\tau f} & c_{\tau f} & -c_{\tau f} & c_{\tau f} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$

• For $d, c_{\tau f} > 0$, the above matrix is invertible. Use f, M_1, M_2, M_3 as control inputs, and solve for each f_i .

Equations of Motion

$$\dot{x} = v$$
 (1)

. . .

(4月) (3日) (3日) 日

$$m\dot{v} = mge_3 - fRe_3 \tag{2}$$

$$\dot{R} = R\hat{\Omega} \tag{3}$$

$$J\dot{\Omega} + \Omega \times J\Omega = M \tag{4}$$

where the hat map $\hat{\cdot} : \mathbb{R}^3 \to \mathfrak{so}(3)$ is defined by the condition that $\hat{x}y = x \times y, \ \forall x, y \in \mathbb{R}^3$

Fracking Errors Fracking Controller Propositions

Outline

Geometric Tracking Control
 Tracking Errors

- Tracking Controller
- Propositions

3 Simulations

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Goal: track prescribed trajectory of the flat output variables

 $x_d(t)$ and $\vec{b}_{1_d}(t)$,

where $x_d(t) \in \mathbb{R}^3$ is the desired position of the CoM, and $\vec{b}_{1_d}(t)$ is the desired direction of the first body-fixed axis.

< 同 ト < 三 ト < 三 ト

Goal: track prescribed trajectory of the flat output variables

 $x_d(t)$ and $\vec{b}_{1_d}(t)$,

where $x_d(t) \in \mathbb{R}^3$ is the desired position of the CoM, and $\vec{b}_{1_d}(t)$ is the desired direction of the first body-fixed axis.

4 3 5 4

In order to track a prescribed trajectory, we must define tracking errors for each part of the state: x, v, R, Ω .

Note: Euler angles are avoided as singularities arise when used.

< ロ > < 同 > < 三 > < 三 >

In order to track a prescribed trajectory, we must define tracking errors for each part of the state: x, v, R, Ω .

Note: Euler angles are avoided as singularities arise when used.

Define tracking errors:

$$e_x = x - x_d \tag{5}$$

$$e_v = v - v_d \tag{6}$$

$$e_R = \frac{1}{2} \left(R_d^T R - R^T R_d \right)^{\vee} \tag{7}$$

$$e_{\Omega} = \Omega - R^T R_d \Omega_d \tag{8}$$

くロ と く 同 と く ヨ と 一

where the vee map $(.)^{\vee} : \mathfrak{so}(3) \to \mathbb{R}^3$ is the inverse of the hat map.

Given smooth tracking commands $x_d(t)$, $\vec{b}_{1_d}(t)$, and positive constants $k_x, k_v, k_R, k_{\Omega}$, define the desired direction of the third body-fixed axis:

$$b_{3d} = \frac{-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d}{\|-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d\|}$$
(9)

< ロ > < 同 > < 三 > < 三 >

Given smooth tracking commands $x_d(t)$, $\vec{b}_{1_d}(t)$, and positive constants $k_x, k_v, k_R, k_{\Omega}$, define the desired direction of the third body-fixed axis:

$$b_{3_d} = \frac{-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d}{\|-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d\|}$$
(9)

and

$$\vec{b}_{2_d} = \frac{\vec{b}_{3_d} \times \vec{b}_{1_d}}{\|\vec{b}_{3_d} \times \vec{b}_{1_d}\|}$$
(10)

< ロ > < 同 > < 三 > < 三 >

Given smooth tracking commands $x_d(t)$, $\vec{b}_{1_d}(t)$, and positive constants $k_x, k_v, k_R, k_{\Omega}$, define the desired direction of the third body-fixed axis:

$$b_{3_d} = \frac{-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d}{\|-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d\|}$$
(9)

and

$$\vec{b}_{2_d} = \frac{\vec{b}_{3_d} \times \vec{b}_{1_d}}{\|\vec{b}_{3_d} \times \vec{b}_{1_d}\|}$$
(10)

We may now write the desired attitude (rotation) matrix:

$$R_d = [\vec{b}_{2_d} \times \vec{b}_{3_d}, \vec{b}_{2_d}, \vec{b}_{3_d}]$$
(11)

< 同 > < 三 > < 三 > -

We choose the control inputs f, M to be:

$$f = -(-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d) \cdot Re_3$$
(12)

$$M = -k_R e_R - k_\Omega e_\Omega + \Omega \times J\Omega$$
(13)

$$-J(\hat{\Omega} R^T R_d \Omega_d - R^T R_d \dot{\Omega}_d)$$

イロト イボト イヨト イヨト

э

We choose the control inputs f, M to be:

$$f = -(-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d) \cdot Re_3$$
(12)

$$M = -k_R e_R - k_\Omega e_\Omega + \Omega \times J\Omega$$
$$-J(\hat{\Omega} R^T R_d \Omega_d - R^T R_d \dot{\Omega}_d)$$
(13)

exponentially stabilizes the zero equilibrium of the attitude tracking error

< ロ > < 同 > < 三 > < 三 >

We choose the control inputs f, M to be:

$$f = -(-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d) \cdot Re_3$$
(12)

$$M = -k_R e_R - k_\Omega e_\Omega + \Omega \times J\Omega$$
$$-J(\hat{\Omega} R^T R_d \Omega_d - R^T R_d \dot{\Omega}_d)$$
(13)

- exponentially stabilizes the zero equilibrium of the attitude tracking error
- translational tracking error converges to zero provided the attitude tracking error is zero

・ 同 ト ・ ヨ ト ・ ヨ ト

We choose the control inputs f, M to be:

$$f = -(-k_x e_x - k_v e_v - mg e_3 + m\ddot{x}_d) \cdot Re_3$$
(12)

$$M = -k_R e_R - k_\Omega e_\Omega + \Omega \times J\Omega$$
$$-J(\hat{\Omega}R^T R_d \Omega_d - R^T R_d \dot{\Omega}_d)$$
(13)

- exponentially stabilizes the zero equilibrium of the attitude tracking error
- translational tracking error converges to zero provided the attitude tracking error is zero

•
$$f = c(e_x, e_v, \ddot{x}_d) \vec{b}_{3_d} \cdot \vec{b}_3 \quad \rightarrow |f|$$
 smaller when $\vec{b}_3 \neq \vec{b}_{3_d}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition 1 (Exponential Stability of Attitude Dynamics)

Consider the control moment M defined in (13) for any positive constants k_R, k_{Ω} . Suppose that the initial condition satisfies

$$\Psi(R(0), R_d(0)) < 2 \tag{14}$$

$$\|e_{\Omega}(0)\|^{2} < \frac{2}{\lambda_{max}(J)}k_{R}(2 - \Psi(R(0), R_{d}(0)))$$
(15)

Then the zero equilibrium of the attitude tracking error e_R, e_Ω is exponentially stable. Furthermore, there exist constants $\alpha_2, \beta_2 > 0$ such that

$$\Psi(R(t), R_d(t)) \le \min\{2, \alpha_2 e^{-\beta_2 t}\}.$$
(16)

Proposition 2 (Exponential Stability of Complete Dynamics)

Consider control force f and moment M as defined in (12), (13). Suppose the initial condition satisfies $\Psi(R(0), R_d(0)) \le \psi_1 < 1$.

Then for any positive constants k_x, k_v , we can carefully choose k_R, k_Ω (details skipped) such that the zero equilibrium of the tracking errors of the complete dynamics is exponentially stable. The region of attraction is characterized by

$$\Psi(R(0), R_d(0)) \le \psi_1 < 1$$
(17)

・ロト ・四ト ・ヨト ・ヨト

$$\|e_{\Omega}(0)\|^{2} < \frac{2}{\lambda_{max}(J)}k_{R}(1 - \Psi(R(0), R_{d}(0)))$$
(18)

Proposition 3 (Almost Global Exponential Attractiveness of Complete Dynamics)

Consider a control system designed according to Proposition 2. Suppose the initial condition satisfies

$$\Psi(R(0), R_d(0)) \le \psi_1 < 2 \tag{19}$$

$$\|e_{\Omega}(0)\|^{2} < \frac{2}{\lambda_{max}(J)}k_{R}(2 - \Psi(R(0), R_{d}(0)))$$
 (20)

Then the zero equilibrium of the tracking errors of the complete dynamics is exponentially attractive.

< ロ > < 同 > < 三 > < 三 >

Outline

Q Geometric Tracking Control
 Tracking Errors
 Tracking Controller
 Propositions

3 Simulations

伺 ト イヨト イヨト

Fig. 4. Case I: following an elliptic helix (horizontal axes represent simulation time in seconds)

T. Lee, M. Leok, N.H. McClamroch Geometric Tracking Control of a Quadrotor UAV on SE(3)

æ

(a) Snapshots for $0.5 \le t \le 4$ (Snapshots are shifted forward to represent the evolution of time. In reality, the quadrotor is flipped at a fixed position. An animation is available at http://my.fit.edu/~taeyoung)

Fig. 5. Case II: recovering from an initially upside down attitude (horizontal axes represent simulation time in seconds)

э