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Bacterial colonization in the form of biofilms on surfaces causes persistent infections and is an issue of considerable concern
to healthcare providers. There is an urgent need for novel antimicrobial or antibiofilm surfaces and biomedical devices that
provide protection against biofilm formation and planktonic pathogens, including antibiotic resistant strains. In this context,
recent developments in the material science and engineering fields and steady progress in the nanotechnology field have created
opportunities to design new biomaterials and surfaces with anti-infective, antifouling, bactericidal, and antibiofilm properties. Here
we review a number of the recently developed nanotechnology-based biomaterials and explain underlying strategies used to make
antibiofilm surfaces.

1. Introduction

Biofilms are organized colonies of bacteria, fungi, or yeasts
that form heterogeneous entities on biotic or abiotic sur-
faces by secreting extracellular polymeric substances (EPS).
These substances protect individual cells from hostile factors,
such as immunologic defense systems, nutrient limitations,
and antibacterial agents [1]. The genotypic and phenotypic
characteristics of cells in biofilms differ from those of their
free-floating counterparts, and these differences make them
strongly resistant to antibiotics. This resistance has been
attributed to the failure of antibiotics to penetrate biofilms,
the induction of multidrug efflux pumps of biofilm-specific
phenotypes, and the presence of persisters [2, 3]. Basically,
microbes have the ability to adhere to surfaces, including
those of inert materials, synthetic polymers, and indwelling
medical devices, and this leads to colonization and mature
biofilm development. Furthermore, cell detachment from
mature biofilms leads to infection dissemination and trans-
mission [4, 5]. In fact, clinical infections caused by biofilms
are a more challenging healthcare issue than those caused by
planktonic cells, and microbial infections caused by bacterial
biofilms on biomedical surfaces are a leading cause of death
worldwide [6, 7]. As a result, there is an urgent clinical need

to develop long-lasting biomedical materials or devices with
antibacterial and antibiofilm surfaces.

Nanometer scale materials have been adopted for many
biomedical applications due to the greater reactivities con-
ferred by their large surface to volume ratios and ability to
control their physicochemical properties. In fact, applications
of nanotechnology in medicine resulted in a new field
called “nanomedicine” which has already provided novel
treatments against a wide range of diseases. Nanomate-
rial development is now viewed as a promise strategy for
controlling or treating pathogenic biofilms on indwelling
medical devices and implants. Most of the nanoparticles
examined have been metals (e.g., copper, silver, iron, zinc,
titanium, magnesium, or gold), metal oxides, polymers (e.g.,
nanoporous polymers), metal-based polymeric composites,
peptides, or combinations of these, or liposomes, antibiotic
encapsulated nanoparticles, or responsive smart nanoma-
terials that have antimicrobial effects but cause minimal
damage to the host. Drug loaded nanoparticles could over-
come the limitations of conventional antibiotic treatments
associated with toxicity, improper delivery, or enzymatic
degradation. In addition, hydroxyapatite, chitosan, collagen,
silica, and titanium dioxide have been used as nanomatrices
to incorporate antimicrobials because of their bioactivities,
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Figure 1: Schematic illustration of biofilm development and mechanisms responsible for the antimicrobial and antibiofilm effects of
nanoparticles.

biocompatibilities, low toxicities, and noninflammatory and
nonimmunogenic characteristics [8, 9]. Recently, novel phys-
ical approaches like near-infra red light (NIR) or alternating
magnetic fields (AMFs) have been utilizedwith nanoparticles
to cause irreversible thermal damage to cell surfaces and
bacterial biofilm eradication [10, 11]. These promising devel-
opments could possibly be adapted to treat wound biofilm
infections in a noninvasive, on-demand manner.

This review highlights current strategies of nanotechno-
logy-based approaches designed to control or eradicate
biofilm related infections with special emphasis on nanopar-
ticle embedded biomedical materials.

2. Bacterial Biofilms: Formation to
Dissemination

It is now realized thatmost bacterially derived sessile commu-
nities are capable of forming irreversible biofilms on surfaces
and interfaces by embedding themselves deep in a self-
generated polymeric matrix [43]. Furthermore, most of the
fungal species that form biofilms do so in a similar manner;
Candida andAspergillus are fungal species of particular inter-
est [44]. The mechanism of biofilm formation depends on
environmental stimuli and a series of genetic and phenotypic
changes in planktonic cells. To date, five different stages [45]
have been suggested during biofilm development (Figure 1),
namely, (i) reversible-irreversible adherence, (ii)microcolony
formation, (iii) 3D biofilm formation, (iv) maturation, and
(v) dissemination [46]. In the earliest stage, biofilm devel-
opment involves surface preconditioning and the adsorption
of macromolecules, followed within seconds of surface expo-
sure, by the formation of a conditioning layer. During the
second stage, microorganism adhesion and coadhesion are
strengthened by strong chemical attachments to the matrix
polymer, and the unfolding of cell surface structures results
in the exudation of a polysaccharide slime that attracts cells
and debris. During the third stage, the nutrient rich biofilm
environment promotes rapid microorganism growth that
ultimately results in biofilmdevelopment in a 3Dmanner that
substantially increases biofilm thickness. As film thickness
increases, the forth maturation stage is reached, which is
associated with antibiotic resistance. In the final stage, due to

dynamic flux of the biofilm matrix, microorganisms detach,
either actively or passively, and enter the surrounding envi-
ronment as planktonic cells on a regular basis. Detached cells
can also disseminate to fresh surfaces in the forms of detached
biofilm clumps or fluid-driven cell clusters. Furthermore,
bacteria originating from biofilm communities colonize new
areas to produce new sessile populations.

3. Biofilm Formation and Biofouling

Biofouling (Figure 1) is defined as the accumulation of
unwanted proteins and other analytes or microorganisms
on the surfaces of host materials. Microbial contamination
and associated infections can have serious consequences in
a number of environments, including hospitals and the food
industry and in community-related settings [47]. Fouling
caused by marine organisms is also an issue of concern for
industry and boating. After attaching to a surface, biofoul-
ing organisms can form a conditioning layer that provides
an active platform for diatoms and algae, which results
in increased operational and maintenance costs and the
accelerated degradation of abiotic materials. Likewise, mem-
brane fouling hampers pressure-drivenmembrane processes,
such as reverse osmosis, microfiltration, ultrafiltration, and
nanofiltration, used for water treatment and desalinization.
Membrane biofouling is caused by Aeromonas, Arthrobac-
ter, Bacillus, Corynebacterium, Flavobacterium, and Pseu-
domonas sp. and to a lesser extent by other microorganisms,
like, fungi [48].

In vivo, nonspecific protein adsorption facilitates bac-
terial attachment to surfaces and leads to colonization,
subsequent biofilm formation (Figure 1), and infectious
disease. Protein fouling followed by microbial attachment
with biofilm development is a dormant factor of the failure
of biomedical devices and implants. Furthermore, microbial
attachment reduces the sensitivities and efficacies of devices,
including those of in vitro diagnostic equipment, such as
those required for immunological assays, and thus has thera-
peutic impacts [49].

Biofilms infections of teeth, lungs, skin, heart, and
the urinary tract are always detrimental [50, 51]. Wounds
and implants are susceptible to Staphylococcus aureus and
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Staphylococcus epidermidis infections [52, 53]. Staphylococcus
is responsible for most hospital acquired pneumonia cases
andPseudomonas aeruginosa also forms biofilms in lungs [54,
55]. In addition, multidrug resistant Gram-negative bacterial
species, such as, Escherichia coli, Klebsiella pneumoniae, and
P. aeruginosa, causes widespread biofilm-based infections in
acute care facilities in hospitals [56, 57]. Dental plaques
are tooth biofilms that lead to dental cavities and gum
inflammation and infect dental implants.

Nosocomial infections are contracted inmedical environ-
ments or after direct contact with healthcare settings [59].
Contact with contaminated surfaces or infection by air-borne
bacteria or fungal spores places surgical patients at risk [60,
61]. In fact, more than 60% of hospital related complications
and up to 80% of infection associated deaths are attributable
to biofilm infections [62, 63], and nearly 80% of known
pathogenic bacteria have been implicated in device-related
infections [64, 65], such as intravenous and urinary catheters
[66], joint prostheses [67, 68], penile prostheses [69], contact
lenses [70], fracture fixation devices [71, 72], breast implants
[73, 74], pacemakers [75], endoscopes [76], cardiovascular
and biliary stents [77], and coherent implants [78, 79].
Biofilms on these devices transmit bacteria and act as source
of infection. Currently, removal of the affected device offers
the only permanent means of eradicating infection [80].
Below list describes the device-related biofilm infections.

3.1. Catheter Biofilm Infections

3.1.1. Central Venous Catheters. Hematogenous spread of
infections from colonized central intravenous catheters or
central lines is a long-recognized problemwith infection rates
of 2 and 6.8 per 1000 days, respectively [81, 82]. Vascular
catheters placed for more than 30 days evidenced luminal
colonization and biofilm formation which is predominant
compared to central venous catheters. Therefore, bone mar-
row transplant patients that require a long term vascular
catheter for intravenous access are at greater risk of biofilm
infections [83, 84]. In clinical practice, vascular catheters are
replaced regularly to reduce infection risk, but this practice
substantially increases healthcare costs.

3.1.2. Urinary Catheters. Urinary catheterization is routinely
used to collect urine during surgery, measure urine output,
and prevent urine retention in intensive care unit patients.
Periurethral skin colonization is a cause of bacterial con-
tamination as it can result in bladder migration and the
establishment of biofilms on catheters [85]. Urease produc-
ing bacteria, such as, Proteus, Psuedomonas, and Klebsiella,
increase urinary pH by creating an alkaline environment,
which promotes the formation of struvite biofilms within
catheters [45].These crystalline biofilms can formdeposits on
the outer surfaces, tips, and balloons of catheters and led to
severe complications, such as injury to the urinary bladder.
Furthermore, biofilm debris may be shed after deflating
a catheter balloon, which can block urine flow [86]. The
main strategies used to prevent urinary catheter-associated
infections are to use catheters only when necessary, to avoid

long term catheterization, and to replace catheters regularly.
However, frequent replacement and the disruption caused
can lead to severe complications, in particular, the spread
of bacteria to uncontaminated sites due to biofilm shedding
[87–89].

3.2. Endotracheal Tubes. Numerous microorganisms have
been reported to colonize and form biofilms in endotra-
cheal tubes. These organisms include methicillin-resistant S.
aureus (MRSA) and Gram-negative bacilli, such as E. coli, K.
pneumoniae, P. aeruginosa and Acinetobacter spp., which are
key factors of ventilator-associated pneumonia development
[90]. Reports indicate diverse microorganisms, from orally
associated microflora to clinically specific isolates, can form
biofilms in endotracheal tubes [91, 92].

3.3. Prosthetic Joints. Increasing evidence indicates underly-
ing biofilm infections are a primary cause of aseptic loosening
of joint prostheses. Device-associated infections in prosthetic
joints by S. epidermidisorPropionibacteriumacnes can induce
severe complications and significant mortality after joint
replacement surgery [93, 94].

3.4. Pacemakers and Heart Valves. In the US, more than
100,000 cardiovascular devices are implanted annually and
heart valve infections account for 30% of implant associated
mortalities. S. aureus, S. epidermidis, P. aeruginosa, Acine-
tobacter baumannii, Klebsiella pneumonia, E. coli, and P.
acnes are reportedly the most common causative agents of
cardiac implant infections [75] on pacemakers, prosthetic
valves, defibrillators, and coronary artery bypass grafts, which
incidentally grow thicker biofilms in vivo than in vitro [75,
78, 95]. Other microbes, such as Enterococcus and yeasts,
also form biofilms on cardiovascular devices [96]. Heart
valves have been reported to be targeted by Mycobacterium
fortuitum, which causes systemic biofilm infection without
causing vegetation. Heart valve biofilms reduce blood flow,
cause hematogenous spread, and infect and cause emboli
development in other organs. Basically, heart valves are
infected by clot formation after injury, because blood clots
afford an ideal surface for bacterial adhesion [97].

3.5. Contact Lenses. Although different types of polymeric
contact lens materials have been developed in the attempt to
prevent biofilm formation, these efforts have been uniformly
unsuccessful. Biofilms of certain species, including Candida,
P. aeruginosa, and Fusarium, are resistant to the biocides
in standard contact lens solutions but are susceptible to
hydrogen peroxide [98]. However, contact lenses made from
hydrogels that release ceragenin are reportedly capable of
resisting colonization by P. aeruginosa and S. aureus for two
and four weeks, respectively [99].

3.6. Orthopedic Implants. Up to 15% of infection-associated
hip implant failures required for implant replacement revi-
sion surgery are due to bacterial biofilm formation [100],
which causes inflammation and tissue destruction around



4 BioMed Research International

implants much more rapidly than the damage caused by gin-
givitis [101]. Nevertheless, altering implant surface textures by
sintering [102], sand blasting [103], or plasma spraying [104]
can improve the biofilm resistance of orthopedic implants.

3.7. Breast Implants. Burkhardt et al. proposed that subclin-
ical infections caused capsular contractions around breast
implants [105]. Numerous bacteria in breast ducts and tissue
result in biofilm formation on breast implants, which had
been shown to be the leading cause of contracture [106–
108]. One study showed S. epidermis adhered and produced
biofilms on the breast implant surfaces regardless of surface
textures [73].

4. Approaches to Biofilm Control

Biological response to a biomedical device depends on the
structure and surface functionality of the material used,
and most device-associated infections are likely to originate
from material surface contamination at time of implanta-
tion. Thus, the compositions or surface functionalizations of
biomaterials are tailored to achieve desired results. Surface
engineering ofmaterials can enhance device biocompatibility
and functionality and material properties and surfaces can
be modified to reduce microbial contamination and prevent
biofilm infections. The different methodologies used include

(1) antifouling coatings [47],
(2) antiadhesive surface modifications [109],
(3) addition of antimicrobials to the surfaces of medical

devices [110–112],
(4) coating devices with polymer products [113],
(5) surface engineering with chemical moieties [57, 114–

116],
(6) coating, lamination, adsorption, or immobilization of

biomolecules [117–119].

Microbial attachment to a surface is usually initiated by
the formation of an adsorbed protein layer. Immobilizing
poly(ethylene glycol) (PEG) or oligo(ethylene glycol) or
a zwitterionic species on surfaces is commonly used to
produce antifouling surfaces [120–122]. The introduction
of sulfonate units, presence of longer brushes, and high
molecular weight of poly ethylenemolecules strongly resisted
E. coli, S. epidermidis, P. aeruginosa, Candida tropicalis,
and C. albicans attachment [123, 124]. Bacterial adhesion
to surfaces is a complex process that is not completely
understood, but it appears to be governed by the physical
characteristics of bacteria and surfaces, such as surface
roughness, hydrophobicity, and charge. Lotus leaves and
shark skins have exceptional antifouling properties as their
unique microtopographic features make these surfaces super
hydrophobic and self-cleaning [125], and many researchers
have mimicked this technique [126, 127]. For example,
95% bacterial resistance was recorded for a particle-layered
polythiophene films by altered surface wettability [128]. A
photolithography technique to create the topography of

shark skin on polydimethysiloxane (PDMS) resulted in the
composite significantly inhibited biofilm colonization by S.
aureus. Furthermore, different microtopographic structures
on PDMS showed 86% resistance to colonization by the
sea weed Ulva [129, 130]. The inclusion of natural bioactive
agents, including antimicrobials, into polymers has been
widely applied and utilized in the textile and food industries,
for drug delivery and for treating the surfaces of surgical
implants and biomedical devices. Natural antimicrobials have
also been incorporated into paper [131], thermoset plastics,
and thermoplastics [132] and tested against pathogenicE. coli,
Listeria monocytogenes, and spoilage organisms, including
molds [133]. Additionally, coating glass slides with poly(4-
vinyl-N-alkylpyridinium bromide) was found to kill air-
borne bacteria [134].

Antibiotic coatings efficiently provide surface antimicro-
bial activity because bacteria directly bind with antibiotics
and are lysed before biofilm establishment. This strategy
has been applied to bone cements [135] used in orthopedic
and orthodontic applications [136, 137]. The surface active
biomolecules examined include lactoferrin [138], biosurfac-
tants [139], bacterial adhesion inhibitors [140], antibody-
releasing surfaces [141], nonpathogenic bacteria [142], and
quorum sensing (QS) inhibitors [143], and all have been
utilized to inhibit and eradicate pathogenic bacterial biofilm
development on different biomedical surfaces [144].

Quaternary ammonium compound on different surfaces
was disruptive to bacterial colonization and biofilm forma-
tion [134, 145]. However, high concentrations of quaternary
ammonium compounds and their cationic natures are harm-
ful to human cells [146, 147], and thus, additional develop-
ment is needed to make these materials safer; for example,
embedding a cationic compound in a peptide containing
MAXI hydrogel provided broad antibacterial activity without
harming red blood cells or fibroblasts [148]. Accordingly,
designs incorporating combinations of suitablematerials that
do not harm the host environment provide a key to the
successful application of antibiofilm coatings [149].

Although antiadhesive coatings may provide benefits
for single functionality devices like urinary catheters, voice
prostheses, and contact lenses, they are not sufficient for per-
manent indwelling devices like heart valves, surgical meshes,
hip and knee prostheses, or vascular grafts. Effective implant
materials must have multifunctional surfaces that provide
extended antimicrobial activity and tissue integration and
disinfect surrounding tissues after implant revision surgery,
but on the other hand they must not alter host immune
responses to microorganisms [150]. Current research is
focused onmore sophisticated surface modificationmethods
to prevent microbial adherence, inhibit microbial growth,
and disrupt biofilm formation.

5. Nanotechnology Based Strategies for
Biofilm Control and Treatment

It is believed nanotechnology-based approaches will provide
promising advancements to prevent drug-resistant biofilm
infections of medical devices and biomaterials. A small
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Figure 2: Schematic of biofilm inhibition showing the effects of surface-engineered nanomaterials with diverse antimicrobial properties.

number of studies have reported the use of nanoparticle
(NP) coated surfaces as biofilm inhibiting agents [151]. At the
nanometer scale materials exhibit unique physicochemical
and biological properties and sometimes phenomena, such
as quantum effects, not exhibited by their bulk counterparts.
Nanomaterials have much greater surface area to volume
ratios, which enhances chemical reactivities and bioactivities,
and their sizes are of the same order as biomolecules.
Furthermore, NPs are small enough to penetrate microbial
cell walls and even biofilm layers that can cause irreversible
damage to cell membranes and DNA. In addition, they have
long plasma half-lives and their high surface to volume ratios
facilitate the loading of drugs and targeting entities [152].

5.1. Nanoparticles in AntibiofilmTherapy. Recent advances in
nanotechnology have identified new and promising opportu-
nities for effective biofilm control and treatment. Summary
of different surface-engineered NPs including metal NPs,
polymer NPs, metal-polymer composites, biologically active
NPs, ROS or NO releasing NPs, and stimuli-responsive
smart NPs that are considered to offer the possibility of
either preventing or controlling biofilm related infections on
medical devices with their respective mechanisms of actions
is illustrated in Figure 2.

5.2. Antibacterial Metals. Copper, gold, silver, titanium,
and zinc are known to have antibacterial and antibiofilm
properties, which offer alternatives to antibiotics without
significantly increasing the risk of resistance development. It
has been established that metal-based NPs have much better
antimicrobial activities than their micro-sized counterparts
[153, 154]. The surface textures of metal coated biomaterials
are dependent on coating technique, for example, sintering,
plasma spraying, sand blasting, anodization, or electron
beam evaporation. Furthermore, devices produced using
these techniques exhibit quite different bacterial adhesions,
protein adsorptions, and tissue integration characteristics
[155–157].

5.2.1. Inorganic Nanoparticles. Several inorganic metal NPs,
such as, gold, copper, silver, zinc, and titanium NPs, exhibit
antibiofilm activity. Silver nanomaterials have received con-
siderable attraction because of their superior antimicrobial
activities. Silver in ionic or NP form has an oligodynamic
effect with broad spectrum antibacterial activity and is
especially effective against microbial colonizations associated
with biomedical infections. The antibacterial mechanism
of silver NPs (Ag NPs) is probably due to interactions
between silver ions with bacterial wall sulfhydryl groups
that interfere with and disrupt bacterial cell membranes
[158], enzyme activities [159], respiratory chains [160], and
cell proliferation [161]. Ag NPs have also been shown to
disrupt biofilmmatrices by perturbing intermolecular forces.
In one study, 24 h of treatment with Ag NPs inhibited biofilm
formation by P. aeruginosa and S. epidermidis by more than
95% and biofilm formation by clinically isolated strains of
MRSA andmethicillin-resistant S. epidermidis (MRSE) [162].
Silver impregnated hydroxyapatite and silver-titaniamatrices
reduced bacterial adhesion and prevented biofilm generation
by Gram-positive and Gram-negative bacteria (Table 1), and
the TiO

2
acted as a better supporting matrix and prevented

the aggregation of silver and allowed the controlled release of
silver ions [163]. Nevertheless, continuous exposure to silver
NPsmay result in reduced effectiveness with developed silver
resistance on MRSA [158], and high doses of silver NPs can
delay wound recovery due to toxic effects on skin cells [164].

The antibacterial activities of metal oxide NPs have also
been studied; examples include zinc oxide (ZnO), copper
oxide (CuO), titanium dioxide (TiO

2
), iron oxide (Fe

2
O
3
),

cerium oxide (CeO), magnesium oxide (MgO), and alu-
minum oxide (Al

2
O
3
). ZnO NPs have been found to have

better antibacterial activities and low toxicities inmammalian
cells and to be more effective at inhibiting biofilm formation
and the growth of E. faecalis, S. aureus, S. epidermidis, B.
subtilis, and E. coli than the NPs of other metal oxides [154,
165]. ZnO NPs in combination with 𝛽-chitin dressings were
found to treat skin wound infections effectively in rat models
and to reduce biofilm formation. Furthermore, nanotextured
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Table 1: Nanoparticle-based solutions for prevention and treatment of biofilm associated-medical device infections.

Material Nanomaterial description Antibiofilm devices Antimicrobial mechanism
of NPs

Inorganic NPs

Silver NPs [12–15]
Surface engineered gold
NPs [16]

Urethral catheters, central
venous catheters

Ventricular drain catheters

Released silver ion interacts
with sulfhydryl groups of
bacteria and interferes with
cell membrane integrity,
enzyme activities,
respiratory chains, and cell
proliferations [17].
Highly positive surface
charge disrupts the network
of EPS.

Organic NPs

Quaternary ammonium
chitosan NPs [18]
PEG stabilized lipid NPs
[19]

Bone and dental cements

Long cationic polymer
chains penetrate the cell
membrane and can induce
ion exchange to disrupt
biofilm

Metallic/metal-polymer
nanocomposites

Ag-Ti composites [20]
Silver or antibiotic
conjugated NPs [21, 22]
Silver conjugated silicone
NPs [23]
Diamond like carbon-metal
nanocomposites [24]
Silicone containing
antibiotic loaded liposome
[25]
Polymeric silver NPs [26]
Silver nanoparticle coated
surfaces [27]
Polycationic NPs [28]

Face masks
Heart valve

Catheter against fungi
Pedicle screws

Highly positive surface
charge disrupts the network
of EPS
Silver ions bound with
deoxyribonucleic acid and
interfere with electron
transport, injuring bacterial
enzymes and causing
biofilm disruption

Metallic/metal-polymer
nanocomposites

ZnO NP incorporated
titanium implants [29]
TiO
2
nanotube arrays [30]

Ag NP conjugated
poly(ethylene glycol
diacrylate)-co-acrylic acid
(PEGDA-AA) hydrogel
coatings on a Ti substrate
Quaternary ammonium
salts (QAS) loaded TiO

2

nanotubes [31]
Ciprofloxacin-loaded
nanochitosan coated Ti
implants [32]
Polymeric NP based
photodynamic therapy [33]

Orthopedic implants

ZnO alter protein
adsorptions and
intracellular mechanisms
Positive surface of QAS
disintegrates the negatively
charged bacteria
Released ciprofloxacin
inhibits enzymes including
DNA gyrase, and
topoisomerase causes
bacterial disruption
Free radicals interact with
endogenous molecular
oxygen to produce ROS,
superoxide hydroxyl
radicals, and hydrogen
peroxide damages bacteria
membrane integrity and
causes irreparable bacteria
lysis

Metallic/metal-polymer
nanocomposites

Ti implant surfaces with
ZnO NPs [34]
Nanostructured titania
coating with Ag NPs [35]
Antibiotic incorporated silk
fibroin NPs coated titanium
surface [36]
Nanosilver-endodontic
filling and dental adhesives
[37, 38]

Oral implants
Endodontic filling and

dental adhesives

Direct contact, ZnO
release, ROS generation
Irreversible binding of
gentamycin disrupts
bacteria
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Table 1: Continued.

Material Nanomaterial description Antibiofilm devices Antimicrobial mechanism
of NPs

Metallic/metal-polymer
nanocomposites

Silica NPs [39]
Hydrogel containing Ag
NPs [40]
Zn-CuO nanocoating on
contact lenses [41]
Quaternized chitosan
loaded Ag NPs and
antifungal agent conjugated
graphene oxide [42]

Contact lenses

Released Ag ions
disintegrate the bacteria
and inhibit biofilm
development
Voriconazole inhibits
ergosterol synthesis by
inhibiting 14-alpha sterol
demethylase which
produced antifungal
activity.

ZnO have been reported to have greater bacteriostatic and
bacteria-resistant properties than titania nanophase [153].
However, P. aeruginosa and Proteus have been reported to
exhibit zinc resistance [166, 167].

Nanosized TiO
2
is also considered as nontoxic antibacte-

rial material due to its inert nature as compared with other
metal oxides. Usually, it considered a photocatalyst and is
used for various environmentally related applications, such
as self-cleaning and antifogging effects. Numerous reports
have been issued on photocatalytic biofilm inhibition by
TiO
2
NPs. In addition, these NPs have shown promising

antifungal biofilm activity on the surfaces of biomedical
devices, especially against C. albicans [168]. The mechanism
behind the antimicrobial effect of TiO

2
NPs involves the

production of ROS in microbial cells, oxidation of internal
enzymes, and lipid peroxidation, which reduces respiratory
activity and leads to cell death (Table 1) [169]. It has also
been reported that mesoporous TiO

2
NPs facilitate sustained

release of attached bioactive materials and thus provide long-
term antibiofilm activity [170].

CuO NPs exhibit effective antimicrobial activity against
various bacteria, but they have less antibacterial activity than
silver or zinc NPs, and hence higher concentrations are
required to achieve desired antimicrobial effects, and at these
concentrations CuO NPs could be toxic to mammalian cells
[171–173]. Although CuO NPs have excellent antibacterial
effects, their antibiofilm effects are limited by a narrow
antibacterial window [174]. However, in combination they
exhibit considerable activity; for example, CuO with ZnO
NPs showed significant biofilm inhibitory activity in a NP
coated tooth model [175].

Iron NPs are generally considered MRI contrast agents,
but at 8 nm iron NPs eliminated S. epidermis infection on
orthopedic implants [176]. Furthermore, antibiotic conju-
gated magnetic iron NPs showed higher antibacterial activity
against E. faecalis in both its planktonic and biofilm forms
than unconjugatedmagnetic ironNPs [177]. Catheters coated
with 5 nm core-shell iron NPs showed biofilm resistance
against S. aureus and P. aeruginosa, and these NPs were
reported to be nontoxic and suggested for in vivo applications
[178].

Gold NPs alone have little or no antibacterial activity
[179]. Nevertheless, gold NPs bound to antibiotics [180],
active compounds, or biomolecules [181] show considerable

bactericidal and biofilm inhibitory activities against a variety
of pathogens, including multidrug resistant strains [182].
Since gold NPs are nontoxic to cells, they have been conju-
gated with targeting molecules to achieve specific antibiofilm
activities (Table 1) [183].

5.3. Organic Nanoparticles. Polymeric NPs and polymer
based devices are engineered to provide antibacterial prop-
erties by releasing antibiotics, antimicrobial agents, or bac-
teriostatic peptides or by modifying their surfaces with alkyl
pyrimidines or quaternary ammonium compounds to cause
contact-killing (Table 1).The polycationic groups responsible
for antimicrobial activity cause cell damage perhaps via an ion
exchange interaction between bacteria and charged polymer
surfaces resulting in the disruption of cellular membranes
[184]. The polysaccharides of EPS interact with SO

4

− groups
of functionalized polystyrene NPs by hydrophobic complex-
ation, which disrupts bacterial biofilm formation [185]. A
nanoporous polymer matrix composed of sodium dodecyl
sulfate was found to have significant antibiofilm activity
against E. coli. Likewise, vitamin E-conjugated cationic poly-
mer crosslinked biodegradable hydrogels exhibit bactericidal
and antifungal effects [118, 185, 186]. Levofloxacin (an antibi-
otic,) conjugated poly(lactic-co-glycolic acid) NPs coated
with phosphatidyl choline nanohybrids exhibited enhanced
antibiofilm activity against E. coli [187], and interestingly,
a silicone functionalized PDMS surface (called the brush
design) was highly effective against the bacterial and fun-
gal biofilms of E. coli, S. aureus, and C. albicans without
causing mammalian toxicity [188]. In addition, physico-
chemical surface modifications of titanium using polymers,
such as polymethacrylic acid [189], polyurethane acetate
[190], polyethylene oxide [191], or poly ethylene glycol (PEG)
[192], prevented protein absorption and inhibited bacterial
adherence [193, 194]. Nitric oxide (NO) releasing silica NPs
[195] have been utilized for their bactericidal effects on
planktonicP. aeruginosa cells andused to treat biofilm-related
wound infections in vivo in murine models and reduced
bacterial loads of MRSA [196], A. baumannii [197], and C.
albicans [198].

5.4. Metal-Polymer Nanocomposites. The mechanical prop-
erties of organic polymers are inadequate for device-related
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applications (Table 1), but they can be coated on metal
surfaces by spin coating, dip coating, or layer-by-layer plasma
polymerization [146]. Metal-polymer composites of silicone-
TiO
2
NPs reduced the adhesion of S. aureus by 93% versus

untreated silicone [199], and gallium and zinc NPs incorpo-
rated in a polyether urethane mixed PEG scaffold reduced
P. aeruginosa infection in mice via the controlled release of
gallium NPs where zinc NPs were less effective [200].

5.5. Dendrimers. Dendrimers are three-dimensional struc-
tures with the ability to encapsulate hydrophilic and
hydrophobic entities into the void spaces of their highly
branched structures [201]. Synthesized low molecular weight
peptide dendrimers showed antimicrobial activity against E.
coli and S. aureus without additional antibiotics [202], and
other studies demonstrated the disruption of P. aeruginosa
attachment and prevention of its biofilm formation were due
to the attachment of fucose-specific lectins (LecB) to fucose-
peptide dendrimer ligands [203].

5.6. Cyclodextrins. Cyclodextrins (CDs) are cyclic organic
compounds comprised of glucopyranose units and are used
to solubilize hydrophobic compounds in aqueous media.
It has been reported that CDs surface functionalized with
polyethylene or polypropylene loaded with miconazole
reduced C. albicans biofilm formation by 96% in vitro. Fur-
thermore, gold surface functionalized CD grafted anidula-
fungin and thymol reduced the surface adherence of yeast and
demonstrated fungicidal activity against C. albicans biofilms
[204, 205]. Furthermore, at enhanced drug loading and
retention, ciprofloxacin loaded CD-agar hydrogels showed
broad antibacterial activity against S. aureus, S. epidermidis,
P. aeruginosa, and E. coli and controlled drug release [206].

5.7. Lipid-Based NPs and Microemulsions. Since liposomes
resemble biological cell membrane they have been utilized in
many pharmaceutical applications, including biofilm-related
therapies. Various drug loaded liposomes showed effective
biofilm inhibition and quorum sensing disruption in vitro
[207] and on clinical isolates [208] of E. coli, Acinetobacter
lwoffii, A. baumannii, Bordetella bronchiseptica, Klebsiella
pneumoniae, and P. aeruginosa, in which they reduced the
productions of lipase, protease, and chitinase [209].

Solid lipid nanoparticle (SLN) formulations containing
antimicrobial agents have been used to eradicate biofilm-
forming microorganisms. A SLN formulation containing
PVA hydrogenated castor oil loaded with tilmicosin was used
to treat S. aureus induced mastitis in a murine model [210]
and a SLN formulation containing eugenol showed antifungal
activity in a rat model oral candidiasis [211].

Microemulsions exhibited considerable antibiofilm activ-
ity against P. aeruginosa [212] and C. albicans [213] by
disrupting cytoplasmic membranes, coagulating cytoplasm,
and altering intracellular metabolism.

5.8. Responsive Smart Nanoparticles. A combination of exter-
nal energy and energy absorbing NPs has been used as

a therapeutic means of addressing antimicrobial infections
(Table 1). The basic principle involves causing irreversible
damage in pathogenic cells by activating metal NPs or
polymer-based systems using external energy sources, such
as visible light [214], temperature [215], near-infrared (NIR)
radiation [216], or high frequency alternating magnetic fields
(AMF) [217]. Gold, iron oxide, and graphene NPs have been
utilized as photothermal agents that absorb NIR light and
convert this into heat energy. GoldNPs of various shapes have
been widely studied due to their excellent reactivity to NIR
light, though this reactivity depends on particle size. Gram-
positive, Gram-negative, and mixed species of bacteria were
inactivated thermally by exposing gold [218] or grapheneNPs
[219] to NIR. The temperature of NP-bacterial suspensions
was found to be increased beyond the physiological limits of
bacteria [220].

Nanoscale carriers have also been used for photodynamic
therapy (PDT) to eradicate pathogens using light and pho-
tosensitizers. Exposure of photosensitizer-NP complexes to
light causes the generation of cytotoxic ROS, which then trig-
ger bacterial cell lysis in planktonic and biofilm forms. Conju-
gating photosensitizers onNPs were studied for their efficient
PDT in terms of destroying targeted pathogens or biofilms
[221]. NPs functionalized with porphyrin, methylene blue, or
rose bengal significantly inactivated MRSA [222], C. albicans
[223], and multispecies bacterial [224] biofilms. Although
PDT has potential applications for the treatment of wound
infections, several factors, such as the physicochemical prop-
erties of photosensitizers, the dosages delivered, light dosime-
try, and control of drug release, currently limit its clinical
applications.

Magnetic nanoparticles (MNPs) absorb electromagnetic
radiation fromhigh frequencyAMFand efficiently transmit it
in the form of localized heat, and the hyperthermia produced
by MNPs has been used to destroy in vitro biofilms of S.
aureus and P. aeruginosa [225]. In a recent study, it was
demonstrated MNP hyperthermia efficiently disrupted S.
aureus biofilms in vitro and in an in vivo mouse model of
cutaneous wound infection [226].

6. Antimicrobial and Antibiofilm Mechanisms
of Nanoparticles

The mechanisms underlying the antimicrobial effects of NPs
are not completely understood and vary from the productions
of oxidative and/or free radical formation stressors to DNA
damage (Figure 1). Table 1 summarizes published findings
on the antibacterial and antibiofilm properties of nanostruc-
tured materials, ranging from metals, polymers, and their
composites. Mechanisms responsible for the antibacterial
activity of NPs might involve particle size [227], shape
[228], surface charge [229], or composition,and are believed
to involve [159, 230–232], cell membrane alterations [233,
234], loss of respiratory activity [235], lipid peroxidation
[236], ROS generation [237, 238], DNA unwinding [239],
nitrosation of protein thiols [240], or disruptions ofmetabolic
pathways [241, 242].
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Figure 3: Summary of nanomaterial incorporatingmedical devices.
Prosthetic joint image was reprinted with permission [58].

7. Nanoparticle-Based Antibiofilm Devices

Advances in the nanotechnology have resulted in the devel-
opments of high-performance, multifunctional, bioactive
materials for biomedical devices. Given base materials with
appropriate mechanical (e.g., hardness, stress, and Young’s
modulus) and tribological properties (e.g., wear resistance,
adhesion, and friction), it would appear nanomaterial coat-
ings are likely to result in novel multifunctional and biocom-
patible materials.

Various nanotools are being incorporated into the sur-
faces of biomedical devices to combat infections; Figure 3 and
Table 1 provide more detail of the antimicrobial mechanisms
involved (Figure 1).

8. Future Perspectives

Despite the advances made in the development of novel
antibiofilm agents, devised biofilm treatment strategies are
limited by their high costs and complexities, which means
urgent development is required to identify cost-efficient alter-
natives. As is made clear by this review, recent developments
in nanotechnology-based approaches aimed at preventing,
controlling, and treating bacterial biofilm infections, espe-
cially of biomedical devices, are worthy of serious consid-
eration. Different nanoparticle types and composites with
demonstrated potential bactericidal and fungicidal proper-
ties have been shown to be efficient alternatives to antibiotics
in terms of wound care and related biomedical issues. Nano-
materials are used as constituents of coatings, biomedical
agents, and drug-delivery vehicles and of implant materials
and research remains active in these areas. However, key
issues like NP resistance and surface interactions between

NPs, biofilms, and hosts need to be resolved to ensure
successful clinical applications.

Nanomaterial impregnations of antibiofilm devices are
believed to provide extended antimicrobial effects and to be
minimally toxic as compared with small molecule antimi-
crobials, which exhibit short term activities and are envi-
ronmentally toxic. We hope that this review of the literature
persuades the reader that nanomaterials and nanomaterial-
based biomedical devices with broad spectrum antibiofilm
activities will be produced such that they are potent, non-
toxic, biocompatible, and cost-effective, and that these novel
materials will establish new standards for the treatment and
prevention of pathogenic biofilms.
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