Automated Material Synthesis using Deep Reinforcement Learning

Mark Crowley
Assistant Professor
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada
https://uwaterloo.ca/scholar/mcrowley
@comptrink
About Me

- PhD : Computer Science at the University of British Columbia (2011)
- Postdoc : Oregon State University
 - on Computational Sustainability
- Assistant Professor (since 2015)
 - University of Waterloo – ECE Department
 - UW ECE Machine Learning Lab
 - (https://uwaterloo.ca/scholar/mcrowley/lab)
 - Waterloo.ai : Waterloo Artificial Intelligence Institute (http://waterloo.ai)
 - Element AI: Faculty Research Fellow

Automated Material Synthesis using Deep RL
i.e. using AI to build an automated chemist advisor

• Can we utilize Artificial Intelligence to automate aspects of physical chemistry to discover new pathways for creating materials with desired properties?

• Artificial Intelligence, Machine Learning and all that...
Data, Big Data, Machine Learning, AI, etc, etc,...

Data Analysis

- Tables, images, text, time series
- Reports, statistics, Charts, trends

Big Data Tools
- Logistic Regression
- Gaussian Processes
- SVM
- PCA
- Decision Trees
- Random Forests

Deep Learning
- CNN
- RNN
- LSTM
- Multilayer Perceptron
- SOM

Machine Learning
- HMM
- HMM
- Multi-layer Perceptron
- SVM
- Decision Trees
- Random Forests

Artificial Intelligence
- Bayesian Networks
- Reinforcement Learning
- MCTS
- Constraint Programming
- Game Theory
- Evolutionary Algorithms

Automated Decision Making
- Policy, Decision Rules, Summaries
- Policies, Decision Rules, Summaries
- Algorithms

Human Decision Making
- Classification, Patterns, Predictions Probabilities
- Classification, Patterns, Predictions Probabilities

Deep Learning
- CNN
- DQN
- Game Theory
- Deep Learning
- Reinforcement Learning

Reinforcement Learning
- A3C
- Q-Learning
- MCTS
- Constraint Programming

Evolutionary Algorithms
- A *
- A *
- A *
- A *

Evolutionary Algorithms
- SAT
- SAT
- SAT
- SAT

Evolutionary Algorithms
- Cellular Automata
- Cellular Automata
- Cellular Automata
- Cellular Automata

Evolutionary Algorithms
- Heuristic Search
- Heuristic Search
- Heuristic Search
- Heuristic Search

Evolutionary Algorithms
- Randomized Search
- Randomized Search
- Randomized Search
- Randomized Search

Evolutionary Algorithms
- k-means
- k-means
- k-means
- k-means

Evolutionary Algorithms
- Bayesian Networks
- Bayesian Networks
- Bayesian Networks
- Bayesian Networks

Evolutionary Algorithms
- Gaussian Processes
- Gaussian Processes
- Gaussian Processes
- Gaussian Processes

Evolutionary Algorithms
- Reinforcement Learning
- Reinforcement Learning
- Reinforcement Learning
- Reinforcement Learning
Major Types of Machine Learning

"Detect patterns in data, use the uncovered patterns to predict future data or other outcomes of interest"
– Kevin Murphy, “Machine Learning: A Probabilistic Perspective”, 2012
Markov Decision Process (MDP)

- State of the World
 - Chemical descriptions, amounts, proportions,..
 - Pressure, Temperature...

- Actions
 - Add/remove reactant
 - Change temperature/pressure
 - Choose which “bench” to use
 - Measure something about your current samples

- Rewards
 - Amount of desired material
 - Time spent
 - Cost of inputs

- Dynamics
 - Well understood but expensive ODE’s describing reactions
 - Statistical behavior of extraction, outcome chemicals, temperature, pressure
Markov Decision Process (MDP)

Different Fields of AI Come Down to (one way to look at it)

• Which parts of this picture do you know?
• Which can you estimate?
• Which do you need to know?

\[s, a, r \]

State of the World

Rewards

Actions

Dynamics

...
In this field what we do know ahead of time...

- The (simplified) dynamics for basic bench activities
- The immediate costs of each activity, and our distance to the final goal

![Diagram of Reinforcement Learning](image)
Reinforcement Learning (RL)

But we **do not** know ahead of time...
- The best (or any) way of stringing together a *series* of transformation activities to achieve a desired material
- The full state of the output of an activity without a destructive observation

But, we can ask for them by acting and seeing what happens...
Reinforcement Learning as an MDP

Reinforcement Learning is learning the policy for taking actions for an MDP when you do not have access to the full definition of:

- the rewards
- AND/OR the dynamics

Training must be carried out interactively:

1. Commit to action using latest (or some) policy
2. Find out the next state and reward from the world/simulator/environment
3. Improve your policy
4. Repeat until the policy is “good enough” or it stops changing
The "Physics" of Reinforcement Learning

- RL always comes down to solving a recursive Bellman Equation that relates the values of states and actions.
- This in many varieties and it usually solved approximately.
 - MDPs can be solved exactly, but only in small cases with complete knowledge.
 - RL algorithms seek to iteratively update a value function, or the policy directly, through experience to make improved decision decisions.

Value Iteration

\[V^*(s) = R(s) + \max_a \gamma \sum_{s'} P(s'|s, a)V^*s' \]

Policy Gradient

\[\nabla_\theta V^\pi(s_0) \approx \frac{1}{|K|} \sum_{k \in K} \sum_{t} R(k) \nabla_\theta \log \pi(a^{k,t}|s^{k,t}, \theta) \]

Q-learning

\[Q'(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha (r_t + \gamma \max_a Q(s_{t+1}, a)) \]
Deep Reinforcement Learning on Atari Games

Flurry of advances since 2014 by Google DeepMind and others applying Deep Learning to RL algorithms.

Many algorithms since then trying to provide a better way to learn the value function with DNNs

- Alpha Go – RL + human training
- Alpha Zero – RL + MCTS search + playing itself (Go, Chess)
- AlphaStar – RL + LSTMs + ? = play StarCraft against human experts

Automated Material Synthesis using Deep RL
Generalizing across “games” to learn to act robustly in new, similar situations

Learning a causal model of a complex system by interacting with

Bringing science and experimentation into AI

What better way to do this than with actual physical science?
Multi-Stage Exploration

- We approach this by building small, manageable models for component activities in materials design and chemistry
 - (1) Reaction rates of various collections of chemicals at given temperatures and pressures
 - (2) Navigating the phases of matter of a given compound using temperature and pressure changes
 - (3) Extraction of materials in solution via polarizing solvents

Automated Material Synthesis using Deep RL
Multi-Stage Exploration

Automated Material Synthesis using Deep RL
Chemistry Lab

Process Actions

• (1) ODE-World
• (2) Phase-World
• (3) Extraction-World

Observation Actions

• Mass Spectrometry*
• Nuclear Magnetic Resonance*
• Gas Chromatography*
• High Performance Liquid Chromatography*
• UV-Vis Spectrometry*
• Fluorescence Spectrometry*

Automated Material Synthesis using Deep RL
Different Fields of AI Come Down to (one way to look at it)

- Which parts of this picture do you know?
- Which can you estimate?
- Which do you need to know?

State of the World → Actions → State of the World

Rewards: r_1, r_2

Actions: a_1, a_2

Dynamics
Waterloo.AI — The Waterloo AI Institute

• Joint initiative of Faculty of Engineering and Faculty of Mathematics

• Includes over 100 researchers in AI:
 • management sciences, electrical and computer, mechanical and mechatronics, systems design, civil and environmental, and chemical engineering
 • computer science, statistics and actuarial sciences, combinatorics and optimization
 • public health, health systems, biology, chemistry, earth and environmental sciences, and physics and astronomy, economics, accounting and finance

Automated Material Synthesis using Deep RL
• Multidisciplinary research teams including mathematicians, computer scientists, and engineers

• Established expertise in collaborating with industry and developing real-world solutions to commercial challenges
Waterloo.ai — Foundational Research Areas

- Machine learning, statistical learning
- Natural language processing
- Computer vision
- Probabilistic models, knowledge discovery, and knowledge representation
- Multi-agent systems and game theory
- Health Informatics
- Optimization and decision making
- Trust modeling
- Affective computing and sentiment analysis
- Human-computer interaction
- Neuroscience