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Abstract11

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early12

applications including neural networks and expert systems. Since then the field has rapidly progressed13

congruently with the wide adoption of machine learning (ML) methods in the environmental sciences.14

Here, we present a scoping review of ML applications in wildfire science and management. Our overall15

objective is to improve awareness of ML methods among wildfire researchers and managers, as well as16

illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists.17

To that end, we first present an overview of popular ML approaches used in wildfire science to date,18

and then review the use of ML in wildfire science as broadly categorized into six problem domains,19

including: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3)20

fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management.21

Furthermore, we discuss the advantages and limitations of various ML approaches relating to data size,22

computational requirements, generalizability, and interpretability, as well as identify opportunities for23

future advances in the science and management of wildfires within a data science context. In total, we24

identified 300 relevant publications up to the end of 2019, where the most frequently used ML methods25

across problem domains included random forests, MaxEnt, artificial neural networks, decision trees,26

support vector machines, and genetic algorithms. As such, there exists opportunities to apply more27

current ML methods — including deep learning and agent based learning — in the wildfire sciences,28

especially in instances involving very large multivariate datasets. We must recognize, however, that29

despite the ability of ML methods to learn on their own, expertise in wildfire science is necessary to30

ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML31

methods, such as deep learning, requires a dedicated and sophisticated knowledge of their application.32

Finally, we stress that the wildfire research and management communities play an active role in providing33

relevant, high quality, and freely available wildfire data for use by practitioners of ML methods.34
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1 Introduction37

Wildland fire is a widespread and critical element of the earth system [Bond and Keeley, 2005], and is a38

continuous global feature that occurs in every month of the year. Presently, global annual area burned39

is estimated to be approximately 420 Mha [Giglio et al., 2018], which is greater in area than the country40

of India. Globally, most of the area burned by wildfires occurs in grasslands and savannas. Humans41

are responsible for starting over 90% of wildland fires, and lightning is responsible for almost all of the42

remaining ignitions. Wildland fires can result in significant impacts to humans, either directly through loss43

of life and destruction to communities, or indirectly through smoke exposure. Moreover, as the climate44

warms we are seeing increasing impacts from wildland fire [Coogan et al., 2019]. Consequently, billions45

of dollars are spent every year on fire management activities aimed at mitigating or preventing wildfires’46

negative effects. Understanding and better predicting wildfires is therefore crucial in several important47

areas of wildfire management, including emergency response, ecosystem management, land-use planning,48

and climate adaptation to name a few.49

Wildland fire itself is a complex process; its occurrence and behaviour are the product of several50

interrelated factors, including ignition source, fuel composition, weather, and topography. Furthermore,51

fire activity can be examined viewed across a vast range of scales, from ignition and combustion processes52

that occur at a scale of centimeters over a period of seconds, to fire spread and growth over minutes to53

days from meters to kilometers. At larger extents, measures of fire frequency may be measured over years54

to millennia at regional, continental, and planetary scales (see Simard [1991] for a classification of fire55

severity scales, and Taylor et al. [2013] for a review of numerical and statistical models that have been used56

to characterize and predict fire activity at a range of scales). For example, combustion and fire behavior57

are fundamentally physicochemical processes that can be usefully represented in mechanistic (i.e., physics-58

based) models at relatively fine scales [Coen, 2018]. However, such models are often limited both by the59

ability to resolve relevant physical processes, as well as the quality and availability of input data [Hoffman60

et al., 2016]. Moreover, with the limitations associated with currently available computing power it is not61

feasible to apply physical models to inform fire management and research across the larger and longer62

scales that are needed and in near real time. Thus, wildfire science and management rely heavily on the63

development of empirical and statistical models for meso, synoptic, strategic, and global scale processes64

[Simard, 1991], the utility of which are dependent upon their ability to represent the often complex and65

non-linear relationships between the variables of interest, as well as by the quality and availability of data.66

While the complexities of wildland fire often present challenges for modelling, significant advances have67

been made in wildfire monitoring and observation primarily due to the increasing availability and capability68

of remote-sensing technologies. Several satellites (eg. NASA TERRA, AQUA and GOES), for instance,69

have onboard fire detection sensors (e.g., Advanced Very High Resolution Radiometer (AVHRR), Moderate70

Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS)),71

and these sensors along with those on other satellites (e.g., LANDSAT series) routinely monitor vegetation72

distributions and changes. Additionally, improvements in numerical weather prediction and climate models73

are simultaneously offering smaller spatial resolutions and longer lead forecast times [Bauer et al., 2015]74

which potentially offer improved predictability of extreme fire weather events. Such developments make a75

data-centric approach to wildfire modeling a natural evolution for many research problems given sufficient76

data. Consequently, there has been a growing interest in the use of Machine Learning (ML) methodologies77

in wildfire science and management in recent years.78

Although no formal definition exists, we adopt the conventional interpretation of ML as the study of79

computer algorithms that can improve automatically through experience [Mitchell, 1997]. This approach80

is necessarily data-centric, with the performance of ML algorithms dependent on the quality and quantity81

of available data relevant to the task at hand. The field of ML has undergone an explosion of new82

algorithmic advances in recent years and is deeply connected to the broader field of Artificial Intelligence83

(AI). AI researchers aim to understand and synthesize intelligent agents which can act appropriately to their84

situation and objectives, adapt to changing environments, and learn from experience [Poole and Mackworth,85
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2010]. The motivations for using AI for forested ecosystem related research, including disturbances due to86

wildfire, insects, and disease, were discussed in an early paper [Schmoldt, 2001], while Olden et al. [2008]87

further argued for the use of ML methods to model complex problems in ecology. The use of ML models88

in the environmental sciences has seen a rapid uptake in the last decade, as is evidenced by recent reviews89

in the geosciences [Karpatne et al., 2017], forest ecology [Liu et al., 2018], extreme weather prediction90

[McGovern et al., 2017], flood forecasting [Mosavi et al., 2018], statistical downscaling [Vandal et al., 2018],91

remote sensing [Lary et al., 2016], and water resources [Shen, 2018, Sun and Scanlon, 2019]. Two recent92

perspectives have also made compelling arguments for the application of deep learning in earth system93

sciences [Reichstein et al., 2019] and for tackling climate change [Rolnick et al., 2019]. To date, however,94

no such paper has synthesized the diversity of ML approaches used in the various challenges facing wildland95

fire science.96

In this paper, we review the current state of literature on ML applications in wildfire science and97

management. Our overall objective is to improve awareness of ML methods among fire researchers and98

managers, and illustrate the diverse and challenging problems in wildfire open to data scientists. This99

paper is organized as follows. In Section 2, we discuss commonly used ML methods, focusing on those100

most commonly encountered in wildfire science. In Section 3, we give an overview of the scoping review101

and literature search methodology employed in this paper. In this section we also highlight the results of102

our literature search and examine the uptake of ML methods in wildfire science since the 1990s. In Section103

4, we review the relevant literature within six broadly categorized wildfire modeling domains: (i) Fuels104

characterization, fire detection, and mapping; (ii) fire weather and climate change; (iii) fire probability105

and risk; (iv) fire behavior prediction; (v) fire effects; and (vi) fire management. In Section 5, we discuss106

our findings and identify further opportunities for the application of ML methods in wildfire science and107

management. Finally, in Section 6 we offer conclusions. Thus, this review will serve to guide and inform108

both researchers and practitioners in the wildfire community looking to use ML methods, as well as provide109

ML researchers the opportunity to identify possible applications in wildfire science and management.110

2 Artificial Intelligence and Machine Learning111

“Definition: Machine Learning - (Methods which) detect patterns in data, use the uncov-112

ered patterns to predict future data or other outcomes of interest”113

from Machine Learning: A Probabilistic Perspective, 2012 [Murphy, 2012].114

ML itself can be seen as a branch of AI or statistics, depending who you ask, that focuses on building115

predictive, descriptive, or actionable models for a given problem by using collected data, or incoming116

data, specific to that problem. ML methods learn directly from data and dispense with the need for117

a large number of expert rules or the need to model individual environmental variables with perfect118

accuracy. ML algorithms develop their own internal model of the underlying distributions when learning119

from data and thus need not be explicitly provided with physical properties of different parameters. Take120

for example, the task of modeling wildland fire spread, the relevant physical properties which include fuel121

composition, local weather and topography. The current state of the art in wildfire prediction includes122

physics-based simulators that fire fighters and strategic planners rely on to take many critical decisions123

regarding allocation of scarce firefighting resources in the event of a wildfire [Sullivan, 2007]. These physics-124

based simulators, however, have certain critical limitations; they normally render very low accuracies, have125

a prediction bias in regions where they are designed to be used, are often hard to design and implement due126

to the requirement of large number of expert rules. Furthermore, modelling many complex environmental127

variables is often difficult due to large resource requirements and complex or heterogeneous data formats.128

ML algorithms, however, learn their own mappings between parametric rules directly from data and do129

not require expert rules, which is particularly advantageous when the number of parameters are quite large130

and their physical properties quite complex, as in the case of wildland fire. Therefore, a ML approach to131

wildfire response may help to avoid many of the limitations of physics-based simulators.132
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A major goal of this review is to provide an overview of the various ML methods utilized in wildfire sci-133

ence and management. Importantly, we also provide a generalized framework for guiding wildfire scientists134

interested in applying ML methods to specific problem domains in wildland fire research. This conceptual135

framework, derived from the approach in [Murphy, 2012] and modified to show examples relevant to wild-136

land fire and management is shown in Fig. 1. In general, ML methods can be identified as belonging to137

one of three types: supervised learning; unsupervised learning; or, agent based learning. We describe each138

of these below.139

Supervised Learning - In supervised ML all problems can be seen as one of learning a parametrized140

function, often called a “model”, that maps inputs (i.e., predictor variables) to outputs (or “target vari-141

ables”) both of which are known. The goal of supervised learning is to use an algorithm to learn the142

parameters of that function using available data. In fact, both linear and logistic regression can be seen143

as very simple forms of supervised learning. Most of the successful and popular ML methods fall into this144

category.145

Unsupervised Learning - If the target variables are not available, then ML problems are typically146

much harder to solve. In unsupervised learning, the canonical tasks are dimensionality reduction and147

clustering, where relationships or patterns are extracted from the data without any guidance as to the148

“right” answer. Extracting embedded dimensions which minimize variance, or assigning datapoints to149

(labelled) classes which maximize some notion of natural proximity or other measures of similarity are150

examples of unsupervised ML tasks.151

Agent Based Learning - Between supervised and unsupervised learning are a group of ML methods152

where learning happens by simulating behaviors and interactions of a single or a group of autonomous153

agents. These are general unsupervised methods which use incomplete information about the target vari-154

ables, (i.e., information is available for some instances but not others), requiring generalizable models to155

be learned. A specific case in this space is Reinforcement Learning [Sutton and Barto, 1998], which is156

used to model decision making problems over time where critical parts of the environment can only be157

observed interactively through trial and error. This class of problems arises often in the real world and158

require efficient learning and careful definition of values (or preferences) and exploration strategies.159

In the next section, we present a brief introduction to commonly used ML methods from the aforemen-160

tioned learning paradigms. We note that this list is not meant to be exhaustive, and that some methods161

can accommodate both supervised and unsupervised learning tasks. It should be noted that the classifi-162

cation of a method as belonging to either ML or traditional statistics is often a question of taste. For the163

purpose of this review — and in the interests of economy — we have designated a number of methods as164

belonging to traditional statistics rather than ML. For a complete listing see tables 1 and 2.165

2.1 Decision Trees166

Decision Trees (DT) [Breiman, 2017] belong to the class of supervised learning algorithms and are another167

example of a universal function approximator, although in their basic form such universality is difficult to168

achieve. DTs can be used for both classification and regression problems. A decision tree is a set of if-then-169

else rules with multiple branches joined by decision nodes and terminated by leaf nodes. The decision node170

is where the tree splits into different branches, with each branch corresponding to the particular decision171

being taken by the algorithm whereas leaf nodes represent the model output. This could be a label for a172

classification problem or a continuous value in case of a regression problem. A large set of decision nodes173

is used in this way to build the DT. The objective of DTs are to accurately capture the relationships174

between input and outputs using the smallest possible tree that avoids overfitting. C4.5 [Quinlan, 1993]175

and Classification and Regression Trees (CART, [Breiman et al., 1984]) are examples of common single DT176

algorithms. Note that while the term CART is also used as an umbrella term for single tree methods, we177

use DT here to refer to all such methods. The majority of decision tree applications are ensemble decision178

tree (EDT) models that use multiple trees in parallel (ie. bootstrap aggregation or bagging) or sequentially179

(ie., boosting) to arrive at a final model. In this way, EDTs make use of many weak learners to form a180

strong learner while being robust to overfitting. EDTs are well described in many ML/AI textbooks and181
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KM, SOM, 
autoencoders, 
GMM, ISODATA, 
HMM, HC, PCA, 
DBSCAN

ANN, DT, BRT, 
RF, KNN, SVM, 
K-SVM, LR, LDA
   

- Fire susceptibility 
- Fire Spread/Burn 

area prediction         
- Fire occurence
- Fire severity
- Smoke Prediction
- Climate Change

GA, MCTS, A3C DQN, A3C, 
MCTS

- Fire Detection
- Fire mapping
- burned area 

prediction
- Fire weather  

prediction 

- Optimizing fire 
simulators

- Fire spread and 
growth

- Fuel treatment
- Planning and 

Policy
- Wildfire response

- Fuels 
characterization

- Fire detection
- Fire mapping

SOM, 
autoencoders, 
t-SNE, RF, BRT, 
MaxEnt, PCA, 
factor analysis

- Landscape 
controls on fire

- Fire susceptibility 
- Fire Spread/Burn 
area prediction 

Figure 1: A diagram showing the main machine learning types, types of data, and modeling tasks in
relation to popular algorithms and potential applications in wildfire science and management. Note that
the algorithms shown bolded are core ML methods whereas non-bolded algorithms are often not considered
ML.

are widely available as implemented libraries.182

2.1.1 Random Forests183

A Random Forest (RF) [Breiman, 2001] is an ensemble model composed of a many individually trained184

DTs, and is the most popular implementation of a bagged decision tree. Each component DT in a RF185

model makes a classification decision where the class with the maximum number of votes is determined186

to be the final classification for the input data. RFs can also be used for regression where the final187

output is determined by averaging over the individual tree outputs. The underlying principle of the RF188

algorithm is that a random subset of features is selected at each node of each tree; the samples for training189

each component tree are selected using bagging, which resamples (with replacement) the original set of190

datapoints. The high performance of this algorithm is achieved by minimizing correlation between trees191

while reducing model variance so that a large number of different trees provides greater accuracy than192

individual trees. However, this improved performance comes at the cost of an increase in bias and loss of193

interpretability (although variable importance can still be inferred through permutation tests).194
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Machine Learning Methods

A3C Asynchronous Advantage Actor-Critic
AdaBoost Adaptive Boosting
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Networks
ADP Approximate Dynamic Programming (a.k.a. reinforcement learning)
Bag Bagged Decision Trees
BN Bayesian Networks
BRT Boosted Regression Trees (a.k.a. Gradient Boosted Machine)
BULC Bayesian Updating of Land Cover
CART Classification and Regression Tree
CNN Convolutional Neural Network
DNN Deep Neural Network
DQN Deep Q-Network
DT Decision Trees (incl. CART, J48, jRip)
EDT Ensemble Decision Trees (incl. bagging and boosting)
ELM Extreme Machine Learning (i.e., feedforward network)
GA Genetic algorithms (a.k.a evolutionary algorithms)
GBM Gradient Boosted Machine (a.k.a. Boosted Regression Trees, incl. XGBoost, AdaBoost, LogitBoost)
GMM Gaussian Mixture Models
GP Gaussian Processes
HCL Hard Competitive Learning
HMM Hidden Markov Models
ISODATA Iterative Self-Organizing DATA algorithm
KNN K Nearest Neighbor
KM K-means Clustering
LB LogitBoost (incl. AdaBoost)
LSTM Long Short Term Memory
MaxEnt Maximum Entropy
MCMC Markov Chain Monte Carlo
MCTS Monte Carlo Tree Search
MLP Multilayer Perceptron
MDP Markov Decision Process
NB Naive Bayes
NFM Neuro-Fuzzy models
PSO Particle Swarm Optimization
RF Random Forest
RL Reinforcement Learning
RNN Recurrent Neural Network
SGB Stochastic Gradient Boosting
SOM Self-organizing Maps
SVM Support Vector Machines
t-SNE T-distributed Stochastic Neighbor Embedding

Table 1: Table of acronyms and definitions for common machine learning algorithms referred to in text.

2.1.2 Boosted Ensembles195

Boosting describes a strategy where one combines a set of weak learners — usually decision trees — to196

make a strong learner using a sequential additive model. Each successive model improves on the previous197
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Non-machine learning methods

DBSCAN Density-based spatial clustering of applications with noise
GAM Generalized Additive Model
GLM Generalized Linear Model
KLR Kernel Logistic Regression
LDA Linear Discriminant Analysis
LR Logistic Regression
MARS Multivariate Adaptive Regression Splines
MLR Multiple Linear Regression
PCA Principal Component Analysis
SLR Simple Linear regression

Table 2: Table of acronyms and definitions for common data analysis algorithms usually considered as
foundational to, or outside of, machine learning itself.

by taking into account the model errors from the previous model, which can be done in more than one way.198

For example, the adaptive boosting algorithm, known as AdaBoost [Freund and Shapire, 1995], works by199

increasing the weight of observations that were previously misclassified. This can in principle reduce the200

classification error leading to a high level of precision [Hastie et al., 2009].201

Another very popular implementation for ensemble boosted trees is Gradient Boosting Machine (GBMs),202

which makes use of the fact that each DT model represents a function that can be differentiated with re-203

spect to its parameters, i.e., how much a change in the parameters will change the output of the function.204

GBMs sequentially build an ensemble of multiple weak learners by following a simple gradient which points205

in the opposite direction to weakest results of the current combined model [Friedman, 2001].206

The details for the GBM algorithm are as follows. Denoting the target output as Y , and given a207

tree-based ensemble model, represented as a function Ti(X) → Y , after adding i weak learners already,208

the “perfect” function for the (i+ 1)th weak learner would be h(x) = Ti(x)−Y which exactly corrects the209

previous model (i.e., T(i+1)(x) = Ti(x) + h(x) = Y ). In practice, we can only approach this perfect update210

by performing functional gradient descent where we use an approximation of the true residual (i.e., loss211

function) at each step. In our case this approximation is simply the sum of the residuals from each weak212

learner decision tree L(Y, T (X)) =
∑

i Y − Ti(X). GBM explicitly uses the gradient ∇TiL(Y, Ti(X) of the213

loss function of each tree to fit a new tree and add it to the ensemble.214

In a number of domains, and particularly in the context of ecological modeling GBM is often referred215

to as Boosted Regression Trees (BRTs) [Elith et al., 2008]. For consistency with the majority of literature216

reviewed in this paper we henceforth use the latter term. It should be noted that while deep neural networks217

(DNNs) and EDT methods are both universal function approximators, EDTs are more easily interpretable218

and faster to learn with less data than DNNs. However, there are fewer and fewer cases where trees-based219

methods can be shown to provide superior performance on any particular metric when DNNs are trained220

properly with enough data (see for example, Korotcov et al. [2017]).221

2.2 Support Vector Machines222

Another category of supervised learning includes Support Vector Machines (SVM) [Hearst et al., 1998] and223

related kernel-based methods. SVM is a classifier that determines the hyper-plane (decision boundary)224

in an n-dimensional space separating the boundary of each class, for data in n dimensions. SVM finds225

the optimal hyper-plane in such a way that the distance between the nearest point of each class to the226

decision boundary is maximized. If the data can be separated by a line then the hyper-plane is defined to227

be of the form wTx+ b = 0 where the w is the weight vector, x is the input vector and b is the bias. The228

distance of the hyper-plane to the closest data point d, called a support vector, is defined as the margin229

of separation. The objective is to find the optimal hyper-plane that minimizes the margin. If they are230
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not linearly separable, kernel SVM methods such as Radial Basis Functions (RBF) first apply a set of231

transformations to the data to a higher dimensional space where finding this hyperplane would be easier.232

SVMs have been widely used for both classification and regression problems, although recently developed233

deep learning algorithms have proved to be more efficient than SVMs given a large amount of training234

data. However, for problems with limited training samples, SVMs might give better performances than235

deep learning based classifiers.236

2.3 Artificial Neural Networks and Deep Learning237

The basic unit of an Artificial Neural Network (ANN) is a neuron (also called a perceptron or logistic238

unit). A neuron is inspired by the functioning of neurons in mammalian brains in that it can learn simple239

associations, but in reality it is much simpler than its biological counterpart. A neuron has a set of inputs240

which are combined linearly through multiplication with weights associated with the input. The final241

weighted sum forms the output signal which is then passed through a (generally) non-linear activation242

function. Examples of activation functions include sigmoid, tanh, and the Rectified Linear Unit (ReLU).243

This non-linearity is important for general learning since it creates an abrupt cutoff (or threshold) between244

positive and negative signals. The weights on each connection represent the function parameters which245

are fit using supervised learning by optimizing the threshold so that it reaches a maximally distinguishing246

value.247

In practice, even simple ANNs, often called Multi-Layered Perceptrons (MLP), combine many neuron248

units in parallel, each processing the same input with independent weights. In addition, a second layer of249

hidden neuron units can be added to allow more degrees of freedom to fit general functions, see Figure 2(a).250

MLPs are capable of solving simple classification and regression problems. For instance, if the task is one of251

classification, then the output is the predicted class for the input data, whereas in the case of a regression252

task the output is the regressed value for the input data. Deep learning [LeCun et al., 2015] refers to253

using Deep Neural Networks (DNNs) which are ANNs with multiple hidden layers (nominally more than254

3) and include Convolutional Neural Networks (CNNs) popularized in image analysis and Recurrent Neural255

Networks (RNNs) which can be used to model dynamic temporal phenomena. The architecture of DNNs256

can vary in connectivity between nodes, the number of layers employed, the types of activation functions257

used, and many other types of hyperparameters. Nodes within a single layer can be fully connected, or258

connected with some form of convolutional layer (e.g., CNNs), recurrent units (e.g., RNNs), or other sparse259

connectivity. The only requirement of all these connectivity structures and activation functions is that they260

are differentiable.261

Regardless of the architecture, the most common process of training a ANN involves processing input262

data fed through the network layers and activation functions to produce an output. In the supervised263

setting, this output is then compared to the known true output (i.e., labelled training data) resulting in264

an error measurement (loss or cost function) used to evaluate model performance. The error for DNNs265

are commonly calculated as a cross entropy loss between the predicted output label and the true output266

label. Since every part of the network is mathematically differentiable we can compute a gradient for the267

entire network. This gradient is used to calculate the proportional change in each network weight needed268

to produce an infinitesimal increase in the likelihood of the network producing the same output for the269

most recent output. The gradient is then weighted by the computed error, and thereafter all the weights270

are updated in sequence using a backpropagation algorithm [Hecht-Nielsen, 1992].271

ANNs can also be configured for unsupervised learning tasks. For example, self-organizing maps (SOMs)272

are a form of ANN adapted for dealing with spatial data and have therefore found widespread use in the273

atmospheric sciences [Skific and Francis, 2012]. A SOM is a form of unsupervised learning that consists of274

a two-dimensional array of nodes as the input layer, representing say, a gridded atmospheric variable at a275

single time. The algorithm clusters similar atmospheric patterns together and results in a dimensionality276

reduction of the input data. More recently, unsupervised learning methods from deep learning, such as277

autoencoder networks, are starting to replace SOMs in the environmental sciences [Shen, 2018].278

8

Page 8 of 70
E

nv
ir

on
. R

ev
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
17

4.
89

.1
96

.4
1 

on
 0

9/
09

/2
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



Figure 2: Logistic regression can be seen as basic building block for neural networks, with no hidden
layer and a sigmoid activation function. Classic shallow neural networks (also known as Multi-Layer
Perceptrons) have at least one hidden layer and can have a variety of activation functions. Deep neural
networks essentially have a much larger number of hidden layers as well as use additional regularization
and optimization methods to enhance training.

2.4 Bayesian methods279

2.4.1 Bayesian Networks280

Bayesian networks (Bayes net, belief network; BN) are a popular tool in many applied domains because281

they provide an intuitive graphical language for specifying the probabilistic relationships between variables282

as well as tools for calculating the resulting probabilities [Pearl, 1988]. The basis of BNs is Bayes’ theorem,283

which relates the conditional and marginal probabilities of random variables. BNs can be treated as a ML284

task if one is trying to automatically fit the parameters of the model from data, or even more challenging,285

to learn the best graphical structure that should be used to represent a dataset. BNs have close ties to286

causal reasoning, but it is important to remember that the relationships encoded in a BN are inherently287

correlational rather than causal. BNs are acyclic graphs, consisting of nodes and arrows (or arcs), defining288

a probability distribution over variables U . The set of parents of a node (variable) X, denoted πX , are all289

nodes with directed arcs going into X. BNs provide compact representation of conditional distributions290

since p(Xi|X1, . . . , Xi−1) = p(Xi|πXi) where X1, . . . , Xi−1 are arranged to be all of the ancestors of Xi291

other than its direct parents. Each node X is associated with a conditional probability table over X and292

its parents defining p(X|πX). If a node has no parents, a prior distribution is specified for p(X). The joint293

probability distribution of the network is then specified by the chain rule P (U) =
∏

X∈U p(X|πX).294

2.4.2 Näıve Bayes295

A special case of a BN is the Näıve Bayes (NB) classifier, which assumes conditional independence between296

input features, which allows the likelihood function to be constructed by a simple multiplication of the297

conditional probability of each input variable conditional on the output. Therefore, while NB is fast298
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and straightforward to implement, prediction accuracy can be low for problems where the assumption of299

conditional independence does not hold.300

2.4.3 Maximum Entropy301

Maximum Entropy (MaxEnt), originally introduced by Phillips et al. [2006], is a presence only framework302

that fits a spatial probability distribution by maximising entropy, consistent with existing knowledge.303

MaxEnt can be considered a Bayesian method since it is compatible with an application of Bayes Theorem304

as existing knowledge is equivalent to specifying a prior distribution. MaxEnt has found widespread use305

in landscape ecology species distribution modeling [Elith, Phillips, Hastie, Dud́ık, Chee, and Yates, 2011],306

where prior knowledge consists of occurrence observations for the species of interest.307

2.5 Reward based methods308

2.5.1 Genetic Algorithms309

Genetic algorithms (GA) are heuristic algorithms inspired by Darwin’s theory of evolution (natural selec-310

tion) and belong to a more general class of evolutionary algorithms [Mitchell, 1996]. GAs are often used to311

generate solutions to search and optimization problems by using biologically motivated operators such as312

mutation, crossover, and selection. In general, GAs involve several steps. The first step involves creating313

an initial population of potential solutions, with each solution encoded as a chromosome. Second a fitness314

function appropriate to the problem is defined, which returns a fitness score determining how likely an315

individual is to be chosen for reproduction. The third step requires the selection of pairs of individuals,316

denoted as parents. In the fourth step, a new population of finite individuals are created by generating317

two new offspring from each set of parents using crossover, whereby a new chromosome is created by some318

random selection process from each parents chromosomes. In the final step called mutation, a small sample319

of the new population is chosen and a small perturbation is made to the parameters to maintain diversity.320

The entire process is repeated many times until the desired results are satisfactory (based on the fitness321

function), or some measure of convergence is reached.322

2.5.2 Reinforcement Learning323

Reinforcement learning (RL) represents a very different learning paradigm to supervised or unsupervised324

learning. In RL, an agent (or actor) interacts with its environment and learns a desired behavior (set of325

actions) in order to maximize some reward. RL is a solution to a Markov Decision Process (MDP) where326

the transition probabilities are not explicitly known but need to be learned. This type of learning is well327

suited to problems of automated decision making, such as required for automated control (e.g., robotics)328

or for system optimization (e.g., management policies). Various RL algorithms include Monte Carlo Tree329

Search (MTCS), Q-Learning, and Actor-Critic algorithms. For an introduction to RL see Sutton and Barto330

[2018].331

2.6 Clustering methods332

Clustering is the process of splitting a set of points into groups where each point in a group is more similar to333

its own group than any other group. There are different ways in which clustering can be done, for example,334

the K-means (KM) clustering algorithm [MacQueen et al., 1967], based on a centroid model, is perhaps335

the most well-known clustering algorithm. In K-means, the notion of similarity is based on closeness to336

the centroid of each cluster. K-means is an iterative process in which the centroid of a group and points337

belonging to a group are updated at each step. The K-means algorithm consists of five steps: (i) specify338

the number of clusters; (ii) each data point is randomly assigned to a cluster; (iii) the centroids of each339

cluster is calculated; (iv) the points are reassigned to the nearest centroids, and (v) cluster centroids are340

recomputed. Steps iv and v repeat until no further changes are possible. Although KM is the most widely341
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used clustering algorithm, several other clustering algorithms exist including, for example, agglomerative342

Hierarchical Clustering (HC), Gaussian Mixture Models (GMMs) and Iterative Self-Organizing DATA343

(ISODATA).344

2.7 Other methods345

2.7.1 K-Nearest Neighbor346

The K-Nearest Neighbors (KNN) algorithm is a simple but very effective supervised classification algorithm347

which is based on the intuitive premise that similar data points are in close proximity according to some348

metric [Altman, 1992]. Specifically, a KNN calculates the similarity of data points to each other using the349

Euclidean distance between the K nearest data points. The optimal value of K can be found experimentally350

over a range values using the classification error. KNN is widely used in applications where a search query351

is performed such that results should be similar to another pre-existing entity. Examples of this include352

finding similar images to a specified image and recommender systems. Another popular application of353

KNN is outlier (or anomaly) detection, whereby the points (in a multidimensional space) farthest away354

from their nearest neighbours may be classified as outliers.355

2.7.2 Neuro-Fuzzy models356

Fuzzy logic is an approach for encoding expert human knowledge into a system by defining logical rules357

about how different classes overlap and interact without being constrained to “all-or-nothing” notions of358

set inclusion or probability of occurrence. Although early implementations of fuzzy logic systems depended359

on setting rules manually, and therefore are not considered machine learning, using fuzzy rules as inputs360

or extracting them from ML methods are often described as “neuro-fuzzy” methods. For example, the361

Adaptive Neuro-Fuzzy Inference System (ANFIS) [Jang, 1993] fuses fuzzy logical rules with an ANN362

approach, while trying to maintain the benefits of both. ANFIS is a universal function approximator363

like ANNs. However, since this algorithm originated in the 1990s, it precedes the recent deep learning364

revolution so is not necessarily appropriate for very large data problems with complex patterns arising in365

high-dimensional spaces. Alternatively, human acquired fuzzy rules can be integrated into ANNs learning;366

however, it is not guaranteed that the resulting trained neural network will still be interpretable. It367

should be noted that fuzzy rules and fuzzy logic are not a major direction of research within the core ML368

community.369

3 Literature search and scoping review370

The combination of ML and wildfire science and management comprises a diverse range of topics in a rela-371

tively nascent field of multidisciplinary research. Thus, we employed a scoping review methodology [Arksey372

and O’Malley, 2005, Levac et al., 2010] for this paper. The goal of a scoping review is to characterize the373

existing literature in a particular field of study, particularly when a topic has yet to be extensively reviewed374

and the related concepts are complex and heterogeneous [Pham, Rajić, Greig, Sargeant, Papadopoulos,375

and Mcewen, 2014]. Furthermore, scoping reviews can be particularly useful for summarizing and dissem-376

inating research findings, and for identifying research gaps in the published literature. A critical review of377

methodological advances and limitations and comparison with other methods is left for future work. We378

performed a literature search using the Google Scholar and Scopus databases and the key words “wild-379

fire” or “wildland fire” or“forest fire” or “bushfire” in combination with “machine learning” or “random380

forest” or “decision trees” or “regression trees” or “support vector machine” or “maximum entropy” or381

“neural network” or “deep learning” or “reinforcement learning”. We also used the Fire Research Institute382

online database (http://fireresearchinstitute.org) using the following search terms: “Artificial In-383

telligence”; “Machine Learning”; “Random Forests”; “Expert Systems”; and “Support Vector Machines”.384
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Figure 3: Number of publications by year for 300 publications on topic of ML and wildfire science and
management as identified in this review.
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Figure 4: Number of ML applications by category and by year for 300 publications on topic of ML and
wildfire science and management as identified in this review.

Furthermore, we obtained papers from references cited within papers we had obtained using literature385

databases.386

After performing our literature search, we identified a total of 300 publications relevant to the topic of387

ML applications in wildfire science and management (see supplementary material for a full bibliography).388

Furthermore, a search of the Scopus database revealed a dramatic increase in the number of wildfire and389

12

Page 12 of 70
E

nv
ir

on
. R

ev
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
17

4.
89

.1
96

.4
1 

on
 0

9/
09

/2
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



ML articles published in recent years (see Fig. 3). After identifying publications for review, we further390

applied the following criteria to exclude non-relevant or unsuitable publications, including: (i) conference391

submissions where a journal publication describing the same work was available; (ii) conference posters;392

(iii) articles in which the methodology and results were not adequately described to conduct an assessment393

of the study; (iv) articles not available to as either by open access or by subscription; and (v) studies that394

did not present new methodologies or results.395

4 Wildfire applications396

In summary, we found a total of 300 journal papers or conference proceedings on the topic of ML applica-397

tions in wildfire science and management. We found the problem domains with the highest application of398

ML methods was Fire Occurrence, Susceptibility and Risk (127 papers) followed by Fuels Characterization,399

Fire Detection And Mapping (66 papers), Fire Behaviour Prediction (43 papers), Fire Effects (35 papers),400

Fire Weather and Climate Change (20 papers), and Fire Management (16 papers). Within Fire Occur-401

rence, Susceptibility and Risk, the subdomains with the most papers were Fire Susceptibility Mapping (71402

papers) and Landscape Controls on Fire (101 papers). Refer to table 3 and the supplementary material403

for a break-down of each problem subdomain and ML methods used, as well as study areas considered.404

4.1 Fuels Characterization, Fire Detection, and Mapping405

4.1.1 Fuels characterization406

Fires ignite in a few fuel particles; subsequent heat transfer between particles through conduction, radiation407

and convection, and the resulting fire behavior (fuel consumption, spread rate, intensity) is influenced by408

properties of the live and dead vegetative fuels, including moisture content, biomass, and vertical and409

horizontal distribution. Fuel properties are a required input in all fire behavior models, whether it be410

a simple categorical vegetation type, as in the Canadian FBP System, or as physical quantities in a 3411

dimensional space (eg. see FIRETEC model). Research to predict fuel properties has been carried out412

at two different scales 1) regression applications to predict quantities such as the crown biomass of single413

trees from more easily measured variables such as height and diameter, and 2) classification applications to414

map fuel type descriptors or fuel quantities over a landscape from visual interpretation of air photographs415

or by interpretation of the spectral properties of remote sensing imagery. However, relatively few studies416

have employed ML to wildfire fuel prediction, leaving the potential for substantially more research in this417

area.418

In an early study, Riaño et al. [2005] used an ANN to predict and map the equivalent water thickness419

and dry matter content of wet and dry leaf samples from 49 species of broad leaf plants using reflectance and420

transmittance values in the Ispra region of Italy. Pierce et al. [2012] used RF to classify important canopy421

fuel variables (e.g. canopy cover, canopy height, canopy base height, and canopy bulk density) related to422

wildland fire in Lassen Volcanic National Park, California, using field measurements, topographic data,423

and NDVI to produce forest canopy fuel maps. Likewise, Viegas et al. [2014] used RF with Landfire424

and biophysical variables to perform fuel classification and mapping in Eastern Oregon. The authors425

of the aforementioned study achieved relatively high overall modelling accuracy, for example, 97% for426

forest height, 86% for forest cover, and 84% for existing vegetation group (i.e. fuel type). López-Serrano427

et al. [2016] compared the performance of three common ML methods (i. SVM; ii. KNN; and iii. RF) and428

multiple linear regression in estimating above ground biomass in the Sierra Madre Occidental, Mexico. The429

authors reported the advantages and limitations of each method, concluding that that the non-parametric430

ML methods had an advantage over multiple linear regression for biomass estimation. Garćıa et al. [2011]431

used SVM to classify LiDAR and multispectral data to map fuel types in Spain. Chirici et al. [2013]432

compared the use of CART, RF, and Stochastic Gradient Boosting SGB, an ensemble tree method that433

uses both boosting and bagging, for mapping forest fuel types in Italy, and found that SGB had the highest434

overall accuracy.435

13

Page 13 of 70
E

nv
ir

on
. R

ev
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
17

4.
89

.1
96

.4
1 

on
 0

9/
09

/2
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



S
ectio

n
D

o
m

a
in

N
F

M
S

V
M

K
M

G
A

B
N

B
R

T
A

N
N

D
T

R
F

K
N

N
M

A
X

E
N

T
D

L
N

B
O

th
er

1
.1

F
u

els
ch

a
ra

cteriza
tio

n
-

2
-

-
-

1
1

1
4

1
-

-
-

-
1
.2

F
ire

d
etectio

n
2

3
1

1
1

-
12

-
-

-
-

18
-

3
1
.3

F
ire

p
erim

eter
a
n

d
severity

m
a
p

p
in

g
1

12
1

2
-

1
6

1
4

2
1

-
-

6

2
.1

F
ire

w
ea

th
er

p
red

ictio
n

-
-

1
-

-
-

-
-

1
-

-
-

-
3

2
.2

L
ig

h
tn

in
g

p
red

ictio
n

-
-

-
-

-
-

-
1

2
-

-
-

-
-

2
.3

C
lim

a
te

ch
a
n

g
e

-
1

-
-

-
6

2
2

5
-

7
-

-
-

3
.1

F
ire

o
ccu

rren
ce

p
red

ictio
n

-
3

-
-

1
-

7
1

5
1

2
-

1
4

3
.2

L
a
n

d
sca

p
e-sca

le
B

u
rn

ed
a
rea

p
red

ictio
n

-
1

1
1

-
-

1
1

2
-

1
1

-
1

3
.3

F
ire

S
u

scep
tib

ility
M

a
p

p
in

g
2

12
1

3
2

8
16

9
26

-
27

1
2

3
3
.4

L
a
n

d
sca

p
e

co
n
tro

ls
o
n

fi
re

2
10

1
3

2
19

11
15

40
1

30
1

1
2

4
.1

F
ire

S
p

rea
d

a
n

d
G

row
th

-
-

-
13

2
-

4
-

1
1

-
3

-
2

4
.2

B
u

rn
ed

a
rea

a
n

d
fi

re
severity

p
red

ictio
n

-
7

-
1

1
3

10
7

6
3

-
2

1
5

5
.1

S
o
il

ero
sio

n
a
n

d
d

ep
o
sits

-
-

1
-

-
-

1
1

-
-

1
-

-
-

5
.2

S
m

o
ke

a
n

d
p

a
rticu

la
te

levels
-

2
-

-
-

3
3

-
5

2
-

-
-

2
5
.3

P
o
st-fi

re
reg

en
era

tio
n

a
n

d
eco

lo
g
y

-
1

-
1

1
6

1
2

10
-

2
-

1
-

5
.4

S
o
cio

eco
n

o
m

ic
eff

ects
-

-
-

-
1

-
-

-
-

-
-

-
-

-
6
.1

P
la

n
n

in
g

a
n

d
p

o
licy

-
-

-
1

1
-

-
-

2
-

-
-

-
2

6
.2

F
u

el
trea

tm
en

t
-

-
-

1
1

-
-

-
-

-
-

-
-

1
6
.3

W
ild

fi
re

p
rep

a
red

n
ess

a
n

d
re-

sp
o
n

se
-

-
-

1
2

1
1

-
-

-
1

1
-

1

6
.4

S
o
cia

l
fa

cto
rs

-
-

-
-

1
-

-
-

-
-

-
-

-
-

T
a
b

le
3
:

S
u

m
m

a
ry

o
f

a
p

p
lica

tio
n

o
f

M
L

m
eth

o
d

s
ap

p
lied

to
d

iff
eren

t
p

rob
lem

d
om

ain
s

in
w

ild
fi

re
scien

ce
an

d
m

an
agem

en
t.

A
tab

le
of

acron
y
m

s
fo

r
th

e
M

L
m

eth
o
d

s
a
re

g
iven

in
1
.

N
o
te

th
a
t

in
som

e
cases

a
p

ap
er

m
ay

u
se

m
ore

th
an

on
e

M
L

m
eth

o
d

an
d

/or
ap

p
ear

in
m

u
ltip

le
p

rob
lem

d
o
m

a
in

s.

14

Page 14 of 70
E

nv
ir

on
. R

ev
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
17

4.
89

.1
96

.4
1 

on
 0

9/
09

/2
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



4.1.2 Fire detection436

Detecting wildfires as soon as possible after they have ignited, and therefore while they are still relatively437

small, is critical to facilitating a quick and effective response. Traditionally, fires have mainly been detected438

by human observers, by distinguishing smoke in the field of view directly from a fire tower, or from a video439

feed from a tower, aircraft, or from the ground. All of these methods can be limited by spatial or temporal440

coverage, human error, the presence of smoke from other fires and by hours of daylight. Automated441

detection of heat signatures or smoke in infra-red or optical images can extend the spatial and temporal442

coverage of detection, the detection efficiency in smoky conditions, and remove bias associated with human443

observation. The analytical task is a classification problem that is quite well suited to ML methods.444

For example, Arrue et al. [2000] used ANNs for infrared (IR) image processing (in combination with445

visual imagery, meteorological and geographic data used in a decision function using fuzzy logic), to identify446

true wildfires. Several researchers have similarly employed ANNs for fire detection [Al-Rawi et al., 2001,447

Angayarkkani and Radhakrishnan, 2010, Fernandes et al., 2004a,b, Li et al., 2015, Soliman et al., 2010,448

Utkin et al., 2002, Sayad et al., 2019]. In addition, Liu et al. [2015] used ANNs on wireless sensor networks449

to build a fire detection system, where multi-criteria detection was used on multiple attributes (e.g. flame,450

heat, light, and radiation) to detect and raise alarms. Other ML methods used in fire detection systems451

include SVM to automatically detect wildfires from videoframes [Zhao et al., 2011], GA for multi-objective452

optimization of a LiDAR-based fire detection system [Cordoba et al., 2004], BN in a vision-based early fire453

detection system [Ko et al., 2010], ANFIS [Angayarkkani and Radhakrishnan, 2011, Wang et al., 2011],454

and KM [Srinivasa et al., 2008].455

CNNs (ie. deep learning), which are able to extract features and patterns from spatial images and456

are finding widespread use in object detection tasks, have recently been applied to the problem of fire457

detection. Several of these applications trained the models on terrestrial based images of fire and/or smoke458

[Zhang et al., 2016, 2018a,b, Yuan et al., 2018, Akhloufi et al., 2018, Barmpoutis et al., 2019, Jakubowski459

et al., 2019, João Sousa et al., 2019, Li et al., 2018b, 2019, Muhammad et al., 2018, Wang et al., 2019].460

Of particular note, Zhang et al. [2018b] found CNNs outperformed a SVM-based method and Barmpoutis461

et al. [2019] found a Faster region-based CNN outperformed another CNN based on YOLO (“you only look462

once”). Yuan et al. [2018] used CNN combined with optical flow to include time-dependent information.463

Li et al. [2018b] similarly used a 3D CNN to incorporate both spatial and temporal information and so464

were able to treat smoke detection as a segmentation problem for video images. Another approach by Cao465

et al. [2019] used convolutional layers as part of a Long Short Term Memory (LSTM) Neural network for466

smoke detection from a sequence of images (ie. video feed). They found the LSTM method achieved 97.8%467

accuracy, a 4.4% improvement over a single image-based deep learning method.468

Perhaps of greater utility for fire management were fire/smoke detection models trained on either469

unmanned aerial vehicle (UAV) images [Zhao et al., 2018, Alexandrov et al., 2019] or satellite imagery470

including GOES-16 [Phan and Nguyen, 2019] and MODIS [Ba et al., 2019]. Zhao et al. [2018] compared471

SVM, ANN and 3 CNN models and found their 15-layer CNN performed best with an accuracy of 98%. By472

comparison, the SVM based method, which was unable to extract spatial features, only had an accuracy of473

43%. Alexandrov et al. [2019] found YOLO was both faster and more accurate than a region-based CNN474

method in contrast to Barmpoutis et al. [2019].475

4.1.3 Fire perimeter and severity mapping476

Fire maps have two management applications: 1) Accurate maps of the location of the active fire perimeter477

are important for daily planning of suppression activities and/or evacuations, including modeling fire478

growth 2) Maps of the final burn perimeter and fire severity are important for assessing and predicting the479

economic and ecological impacts of wildland fire and for recovery planning. Historically, fire perimeters were480

sketch-mapped from the air, from a ground or aerial GPS or other traverse, or by air-photo interpretation.481

Developing methods for mapping fire perimeters and burn severity from remote sensing imagery has been482

an area of active research since the advent of remote sensing in the 1970s, and is mainly concerned with483
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classifying active fire areas from inactive or non burned areas, burned from unburned areas (for extinguished484

fires), or fire severity measures such as the Normalized Burn Ratio [Lutes et al., 2006].485

In early studies using ML methods for fire mapping Al-Rawi et al. [2001] and Al-Rawi et al. [2002] used486

ANNs (specifically, the supervised ART-II neural network) for burned scar mapping and fire detection. Pu487

and Gong [2004] compared Logistic Regression (LR) with ANN for burned scar mapping using Landsat488

images; both methods achieved high accuracy (> 97%). Interestingly, however, the authors found that489

LR was more efficient for their relatively limited data set. The authors in Zammit et al. [2006] performed490

burned area mapping for two large fires that occurred in France using satellite images and three ML491

algorithms, including SVM, K-nearest neighbour, and the K-means algorithm; overall SVM had the best492

performance. Likewise, E. Dragozi, I. Z. Gitas, D.G. Stavrakoudis [2011] compared the use of SVM against493

a nearest neighbour method for burned area mapping in Greece and found better performance with SVM.494

In fact, a number of studies [Alonso-Benito et al., 2008, Cao et al., 2009, Petropoulos et al., 2010, 2011, Zhao495

et al., 2015, Pereira et al., 2017, Branham et al., 2017, Hamilton et al., 2017] have successfully used SVM496

for burned scar mapping using satellite data. Mitrakis et al. [2012] performed burned area mapping in the497

Mediterranean region using a variety of ML algorithms, including a fuzzy neuron classifier (FNC), ANN,498

SVM, and AdaBoost, and found that, while all methods displayed similar accuracy, the FNC performed499

slightly better. Dragozi et al. [2014] applied SVM and a feature selection method (based on fuzzy logic)500

to IKONOS imagery for burned area mapping in Greece. Another approach to burned area mapping in501

the Mediterranean used an ANN and MODIS hotspot data [Gómez and Pilar Mart́ın, 2011]. Pereira et al.502

[2017] used a one class SVM, which requires only positive training data (i.e. burned pixels), for burned503

scar mapping, which may offer a more sample efficient approach than general SVMs – the one class SVM504

approach may be useful in cases where good wildfire training datasets are difficult to obtain. In Mithal505

et al. [2018], the authors developed a three-stage framework for burned area mapping using MODIS data506

and ANNs. Crowley et al. [2019] used Bayesian Updating of Landcover (BULC) to merge burned-area507

classifications from three remote sensing sources (Landsat-8, Sentinel-2 and MODIS). Celik [2010] used508

GA for change detection in satellite images, while Sunar and Özkan [2001] used the interactive Iterative509

Self-Organizing DATA algorithm (ISODATA) and ANN to map burned areas.510

In addition to burned area mapping, ML methods have been used for burn severity mapping, including511

GA [Brumby et al., 2001], MaxEnt [Quintano et al., 2019], bagged decision trees [Sá et al., 2003], and others.512

For instance, Hultquist et al. [2014] used three popular ML approaches (Gaussian Process Regression (GPR)513

[Rasmussen and Williams, 2006], RF, and SVM) for burn severity assessment in the Big Sur ecoregion,514

California. RF gave the best overall performance and had lower sensitivity to different combinations of515

variables. All ML methods, however, performed better than conventional multiple regression techniques.516

Likewise, Hultquist et al. [2014] compared the use of GPR, RF, and SVM for burn severity assessment, and517

found that RF displayed the best performance. Another recent paper by Collins et al. [2018] investigated518

the applicability of RF for fire severity mapping, and discussed the advantages and limitations of RF for519

different fire and land conditions.520

One recent paper by Langford et al. [2019] used a 5-layer deep neural network (DNN) for mapping fires521

in Interior Alaska with a number of MODIS derived variables (eg. NDVI and surface reflectance). They522

found that a validation-loss (VL) weight selection strategy for the unbalanced data set (i.e., the no-fire523

class appeared much more frequently than fire) allowed them to achieve better accuracy compared with a524

XGBoost method. However, without the VL approach, XGBoost outperformed the DNN, highlighting the525

need for methods to deal with unbalanced datasets in fire mapping.526

4.2 Fire Weather and Climate Change527

4.2.1 Fire weather prediction528

Fire weather is a critical factor in determining whether a fire will start, how fast it will spread, and where529

it will spread. Fire weather observations are commonly obtained from surface weather station networks530

operated by meteorological services or fire management agencies. Weather observations may be interpolated531
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from these point locations to a grid over the domain of interest, which may include diverse topographical532

conditions; the interpolation task is a regression problem. Weather observations may subsequently be533

used in the calculation of meteorologically based fire danger indices, such as the Canadian Fire Weather534

Index (FWI) System [Van Wagner, 1987]. Future fire weather conditions and danger indices are commonly535

forecast using the output from numerical weather prediction (NWP) models (e.g., The European Forest536

Fire Information System [San-Miguel-Ayanz et al., 2012]). However, errors in the calculation of fire danger537

indices that have a memory (such as the moisture indices of the FWI System) can accumulate in such538

projections. It is noteworthy that surface fire danger measures may be correlated with large scale weather539

and climatic patterns.540

To date there has been relatively few papers that address fire weather and danger prediction using ma-541

chine learning. The first effort [Crimmins, 2006] used self-organizing maps (SOMs) to explore the synoptic542

climatology of extreme fire weather in the southwest USA. He found three key patterns representing south-543

westerly flow and large geopotential height gradients that were associated with over 80% of the extreme544

fire weather days as determined by a fire weather index. Nauslar et al. [2019] used SOMs to determine the545

timing of the North American Monsoon that plays a major role on the length of the active fire season in546

the southwest USA. Lagerquist et al. [2017] also used SOMs to predict extreme fire weather in northern547

Alberta, Canada. Extreme fire weather was defined by using extreme values of the Fine Fuel Moisture548

Code (FFMC), Initial Spread Index (ISI) and the Fire Weather Index (FWI), all components of the Cana-549

dian Fire Weather Index (FWI) System [Van Wagner, 1987]. Good performance was achieved with the550

FFMC and the ISI and this approach has the potential to be used in near real time, allowing input into551

fire management decision systems. Other efforts have used a combination of conventional and machine552

learning approaches to interpolate meteorological fire danger in Australia [Sanabria et al., 2013].553

4.2.2 Lightning prediction554

Lightning is second most common cause of wildfires (behind human causes); thus predicting the location555

and timing of future storms/strikes is of great importance to predicting fire occurrence. Electronic lightning556

detection systems have been deployed in many parts of the world for several decades and have accrued rich557

strike location/time datasets. Lightning prediction models have employed these data to derive regression558

relationships with atmospheric conditions and stability indices that can be forecast with NWP. Ensemble559

forecasts of lightning using RF is a viable modelling approach for Alberta, Canada [Blouin et al., 2016].560

Bates et al. [2017] used two machine learning methods (CART and RF) and three statistical methods to561

classify wet and dry thunderstorms (lightning associated with dry thunderstorms are more likely to start562

fires) in Australia.563

4.2.3 Climate Change564

Transfer modeling, whereby a model produced for one study region and/or distribution of environmental565

conditions is applied to other cases [Phillips et al., 2006], is a common approach in climate change science.566

Model transferability should be considered when using ML methods to estimated projected quantities due567

to climate change or other environmental changes. With regards to climate change, transfer modeling is568

essentially an extrapolation task. Previous studies in the context of species distribution modeling have569

indicated ML approaches may be suitable for transfer modeling under future climate scenarios. For exam-570

ple, Heikkinen et al. [2012] indicated MaxEnt and generalized boosting methods (GBM) have the better571

transferability than either ANN and RF, and that the relatively poor transferability of RF may be due to572

overfitting.573

There are several publications on wildfires and climate change that use ML approaches. Amatulli574

et al. [2013] found that Multivariate Adaptive Regression Splines (MARS) were better predictors of future575

monthly area burned for 5 European countries as compared to Multiple Linear Regression and RF. [Parks576

et al., 2016] projected fire severity for future time periods in Western USA using BRT. Young et al. [2017]577

similarly used BRT to project future fire intervals in Alaska and found up to a fourfold increase in (30578

17

Page 17 of 70
E

nv
ir

on
. R

ev
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
17

4.
89

.1
96

.4
1 

on
 0

9/
09

/2
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



year) fire occurrence probability by 2100. Several authors used MaxEnt to project future fire probability579

globally [Moritz et al., 2012], for Mediterranean ecosystems [Batllori et al., 2013], in Southwest China [Li580

et al., 2017], the pacific northwestern USA [Davis et al., 2017], and for south central USA [Stroh et al.,581

2018]. An alternative approach for projecting future potential burn probability was employed by Stralberg582

et al. [2018] who used RF to determine future vegetation distributions as inputs to ensemble Burn-P3583

simulations. Another interesting paper of note was by Boulanger et al. [2018] who built a consensus model584

with 2 different predictor datasets and 5 different regression methods (generalised linear models, RF, BRT,585

CART and MARS) to make projections of future area burned in Canada. The consensus model can be586

used to quantify uncertainty in future area burned estimates. The authors noted that model uncertainty587

for future periods (> 200%) can be higher than that of different climate models under different carbon588

forcing scenarios. This highlights the need for further work in the application of ML methods for projecting589

future fire danger under climate change.590

4.3 Fire Occurrence, Susceptibility and Risk591

Papers in this domain include prediction of fire occurrence and area burned (at a landscape or seasonal592

scales), mapping of fire susceptibility (or similar definitions of risk) and analysis of landscape or environ-593

mental controls on fire.594

4.3.1 Fire occurrence prediction595

Predictions of the number and location of fire starts in the upcoming day(s) are important to preparedness596

planning — that is, the acquisition of resources, including the relocation of mobile resources and readiness597

for expected fire activity. The origins of fire occurrence prediction (FOP) models go back almost 100598

years [Nadeem et al., 2020]. FOP models typically use regression methods to relate the response variable599

(fire reports or hotspots) to weather, lightning, and other covariates for a geographic unit, or as a spatial600

probability. The seminal work of Brillinger and others in developing the spatio-temporal FOP framework is601

reviewed in Taylor et al. [2013] The most commonly used ML method in studies predicting fire occurrence602

were ANNs. As early as 1996, Vega-Garcia et al. [1996] used an ANN for human-caused wildfire prediction603

in Alberta, Canada, correctly predicting 85% of no-fire observations and 78% of fire observations. Not604

long after, Alonso-Betanzos et al. [2002] and Alonso-Betanzos et al. [2003] used ANN to predict a daily605

fire occurrence risk index using temperature, humidity, rainfall, and fire history, as part of a larger system606

for real-time wildfire management system in the Galicia region of Spain. Vasilakos et al. [2007] used607

separate ANNs for three different indices representing fire weather (Fire Weather Index; FWI), hazard608

(Fire Hazard Index; FHI), and risk (Fire Risk Index) to create a composite fire ignition index (FII) for609

estimating the probability of wildfire occurrence on the Greek island of Lesvos. Sakr et al. [2010] used610

meteorological variables in a SVM to create a daily fire risk index corresponding to the number of fires611

that could potentially occur on a particular day. Sakr et al. [2011] then compared the use of SVM and612

ANN for fire occurrence prediction based only on relative humidity and cumulative precipitation up to613

the specific day. While Sakr et al. [2011] reported low errors for the number of fires predicted by both614

the SVM and ANN models, ANN models outperformed SVM; however, the SVM performed better on615

binary classification of fire/no fire. It is important to note, however, that ANNs encompass a wide range616

of possible network architectures. In an Australian study, Dutta et al. [2013] compared the use of ten617

different types of ANN models for estimating monthly fire occurrence from climate data, and found that618

an Elman RNN performed the best.619

After 2012, RF became the more popular method for predicting fire occurrence among the papers620

reviewed here. Stojanova et al. [2012] evaluated several machine learning methods for predicting fire621

outbreaks using geographical, remote sensed, and meteorological data in Slovenia, including single classifier622

methods (i.e., KNN, Naive Bayes, DT (using the J48 and jRIP algorithms), LR, SVM, and BN), and623

ensemble methods (AdaBoost, DT with bagging, and RF). The ensemble methods DT with bagging and624

RF displayed the best predictive performance with bagging having higher precision and RF having better625
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recall. Većın-Arias et al. [2016] found that RF performed slightly better than LR for predicting lightning626

fire occurrence in the Iberian Peninsula, based on topography, vegetation, meteorology, and lightning627

characteristics. Similarly, Cao et al. [2017] found that a cost-sensitive RF analysis outperformed GLM628

and ANN models for predicting wildfire ignition susceptibility. In recent non-comparative studies, Yu629

et al. [2017] used RF to predict fire risk ratings in Cambodia using publicly available remote sensed630

products, while Van Beusekom et al. [2018] used RF to predict fire occurrence in Puerto Rico and found631

precipitation was found to be the most important predictor. The maximum entropy (MaxEnt) method632

has also been used for fire occurrence prediction [De Angelis et al., 2015, Chen et al., 2015]. For example,633

De Angelis et al. [2015] used MaxEnt to evaluate different meteorological variables and fire-indices (e.g.634

the Canadian Fire Weather Index, FWI) for daily fire risk forecasting in the mountainous Canton Ticino635

region of Switzerland. The authors of that study found that combinations of such variables increased636

predictive power for identifying daily meteorological conditions for wildfires. Dutta et al. [2016] use a two-637

stage machine learning approach (ensemble of unsupervised deep belief neural networks with conventional638

supervised ensemble machine learning) to predict bush-fire hot spot incidence on a weekly time-scale. In639

the first unsupervised deep learning phase, Dutta et al. [2016] used Deep Belief Networks (DBNet; an640

ensemble deep learning method) to generate simple features from environmental and climatic surfaces.641

In the second supervised ensemble classification stage, features extracted from the first stage were fed642

as training inputs to ten ML classifiers (i.e., conventional supervised Binary Tree, Linear Discriminant643

Analyser, Näıve Bayes, KNN, Bagging Tree, AdaBoost, Gentle Boosting Tree, Random Under-Sampling644

Boosting Tree, Subspace Discriminant, and Subspace KNN) to establish the best classifier for bush fire645

hotspot estimation. The authors found that bagging and the conventional KNN classifier were the two646

best classifiers with 94.5% and 91.8% accuracy, respectively.647

4.3.2 Landscape scale burned area prediction648

The use of ML methods in studies of burned area prediction have only occurred relatively recently compared649

to other wildfire domains, yet such studies have incorporated a variety of ML methods. For example, Cheng650

and Wang [2008] used an RNN to forecast annual average area burned in Canada, while Archibald et al.651

[2009] used RF to evaluate the relative importance of human and climatic drivers of burnt area in Southern652

Africa. Arnold et al. [2014] used Hard Competitive Learning (HCL) to identify clusters of unique pre-fire653

antecedent climate conditions in the interior western US which they then used to construct fire danger654

models based on MaxEnt.655

Mayr et al. [2018] evaluated five common statistical and ML methods for predicting burned area and656

fire occurrence in Namibia, including GLM, Multivariate Adaptive Regression Splines (MARS), Regres-657

sion Trees from Recursive Partitioning (RPART), RF, and SVMs for Regression (SVR). The RF model658

performed best for predicting burned area and fire occurrence; however, adjusted R2 values were slightly659

higher for RPART and SVR in both cases. Likewise, de Bem et al. [2018] compared the use of LR and660

ANN for modelling burned area in Brazil. Both LR and ANN showed similar performance; however, the661

ANN had better accuracy values when identifying non-burned areas, but displayed lower accuracy when662

classifying burned areas.663

4.3.3 Fire Susceptibility Mapping664

A considerable number of references (71) used various ML algorithms to map wildfire susceptibility, cor-665

responding to either the spatial probability or density of fire occurrence (or other measures of fire risk666

such as burn severity) although other terms such as fire vulnerability and risk have also been used. The667

general approach was to build a spatial fire susceptibility model using either remote sensed or agency668

reported fire data with some combination of landscape, climate, structural and anthropogenic variables as669

explanatory variables. In general, the various modeling approaches used either a presence only framework670

(e.g., MaxEnt) or a presence/absence framework (e.g., BRT or RF).671
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Early attempts at fire susceptibility mapping used CART [Amatulli et al., 2006, Amatulli and Camia,672

2007, Lozano et al., 2008]. Amatulli and Camia [2007] compared fire density maps in central Italy using673

CART and multivariate adaptive regression splines (MARS) and found while CART was more accurate674

that MARS led to smoother density model. More recent work has used ensemble based classifiers, such as675

RF and BRT, or ANNs (see table S.3.3 in supplementary material for a full list) Several of these papers676

also compared ML and non-ML methods for fire susceptibility mapping and in general found superior677

performance from the ML methods. Specifically, Adab [2017] mapped fire hazard in the Northeast of Iran,678

and found ANN performed better than binary logistic regression (BLR) with an AUC of 87% compared679

with 81% for BLR. Bisquert et al. [2012] found ANN outperformed logistic regression for mapping fire680

risk in the North-west of Spain. Goldarag et al. [2016] also compared ANN and linear regression for681

fire susceptibility mapping in Northern Iran and found ANN had much better accuracy (93.49%) than682

linear regression (65.76%). Guo et al. [2016b] and Guo et al. [2016a] compared RF and logistic regression683

for fire susceptibility mapping in China and found RF led to better performance. Oliveira et al. [2012]684

compared RF and LR for fire density mapping in Mediterranean Europe and found RF outperformed685

linear regression. De Vasconcelos et al. [2001] found ANN had better classification accuracy than logistic686

regression for ignition probability maps in parts of Portugal.687

Referring to table 3 and section S.3.3 of the supplementary material a frequently used ML method688

for fire susceptibility mapping was Maximum Entropy (MaxEnt) which is extensively used in landscape689

ecology for species distribution modeling [Elith et al., 2011]. In particular, Vilar et al. [2016] found MaxEnt690

performed better than GLM for fire susceptibility mapping in central Spain with respect to sensitivity691

(i.e., true positive rate) and commission error (i.e., false positive rate), even though the AUC was lower.692

Of further note, Duane et al. [2015] partitioned their fire data into topography-driven, wind-driven and693

convection-driven fires in Catalonia and mapped the fire susceptibility for each fire type.694

Other ML methods used for regional fire susceptibility mapping include Bayesian networks [Bashari695

et al., 2016, Dlamini, 2011] and novel hybrid methods such as Neuro-Fuzzy systems [Jaafari et al., 2019,696

Tien Bui et al., 2017]. Bashari et al. [2016] noted that Bayesian networks may be useful because it allows697

probabilities to be updated when new observations become available. SVM was also used by a number of698

authors as a benchmark for other ML methods [Ghorbanzadeh et al., 2019b, Gigović et al., 2019, Hong699

et al., 2018, Jaafari, 2019, Ngoc Thach et al., 2018, Rodrigues and De la Riva, 2014, Sachdeva et al., 2018,700

Tehrany et al., 2018, Tien Bui et al., 2017, van Breugel et al., 2016, Zhang et al., 2019] but as we discuss701

below, it did not perform as well as other methods to which it was being compared.702

There were two applications of ML for mapping global fire susceptibility including Moritz et al. [2012]703

who used MaxEnt and Luo et al. [2013] who used RF. Both of these papers found that at a global scale,704

precipitation was one of the most important predictors of fire risk.705

The majority of papers considered thus far used the entire study period (typically 4 or more years) to706

map fire susceptibility, therefore neglecting the temporal aspect of fire risk. However, a few authors have707

considered various temporal factors to map fire susceptibility. Mart́ın et al. [2019] included seasonality and708

holidays as explanatory variables for fire probability in northeast Spain. Vacchiano et al. [2018] predicted709

fire susceptibility separately for the winter and summer seasons. Several papers produced maps of fire710

susceptibility in the Eastern US by month of year [Peters et al., 2013, Peters and Iverson, 2017]. Parisien711

et al. [2014] examined differences in annual fire susceptibility maps and a 31 year climatology for the USA,712

highlighting the role of climate variability as a driver of fire occurrence. In particular, they found FWI90713

(the 90th percentile of the Canadian Fire Weather Index) was the dominant factor for annual fire risk714

but not for climatological fire risk. Cao et al. [2017] considered a 10 day resolution (corresponding to the715

available fire data) for fire risk mapping, which makes their approach similar to fire occurrence prediction.716

In addition to fire susceptibility mapping, a few papers focused on other aspects of fire risk including717

mapping probability of burn severity classes [Holden et al., 2009, Parks et al., 2018, Tracy et al., 2018].718

Parks et al. [2018] additionally considered the role of fuel treatments on fire probability which has obvious719

implications for fire management. Additionally Ghorbanzadeh et al. [2019a] combined fire susceptibility720

maps with vulnerability and infrastructure indicators to produce a fire hazard map.721
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A number of papers directly compared three or more ML (and sometimes non-ML) methods for fire722

susceptibility mapping. Here we highlight some of these papers, which elucidate the performance and723

advantages/disadvantages of various ML methods. Cao et al. [2017] found a cost-sensitive RF model724

outperformed a standard RF model, ANN as well as probit and logistic regression. Ghorbanzadeh et al.725

[2019b] compared ANN, SVM and RF and found the best performance with RF. Gigović et al. [2019]726

compared SVM and RF for fire susceptibility mapping in combination with Bayesian averaging to generate727

ensemble models. They found the ensemble model led to marginal improvement (AUC = 0.848) over SVM728

(AUC=0.834) and RF (AUC=0.844). For mapping both wildfire ignitions and potential natural vegetation729

in Ethiopia van Breugel et al. [2016] also considered ensemble models consisting of a weighted combination730

of ML methods (RF, SVM, BRT, MaxEnt, ANN, CART) and non-ML methods (GLM and MARS) and731

concluded the ensemble member performed best over a number of metrics. However, in this paper RF732

showed the best overall performance of all methods including the ensemble model.733

Jaafari et al. [2018] compared 5 decision tree based classifiers for wildfire susceptibility mapping in Iran.734

Here, the Alternating Decision tree (ADT) classifier achieved the highest performance (accuracy 94.3%) in735

both training and validation sets. Ngoc Thach et al. [2018] compared SVM, RF and a Multilayer Perceptron736

(MLP) neural network for forest fire danger mapping in the region of Tjuan chau in Vietnam. They found737

the performance of all models were comparable although MLP had the highest AUC values. Interestingly738

Pourtaghi et al. [2016] found that a generalized additive model (GAM) outperformed RF and BRT for fire739

susceptibility mapping in the Golestan province in Iran. This was one of the few examples we found where740

a non-ML method outperformed ML methods. Rodrigues and De la Riva [2014] compared RF, BRT, SVM741

and logistic regression for fire susceptibility mapping and found RF led to the highest accuracy as well as742

the most parsimonious model. Tehrany et al. [2018] compared a LogitBoost ensemble-based decision tree743

(LEDT) algorithm with SVM, RF and Kernel logistic regression (KLR) for fire susceptibility mapping in744

Lao Cai region of Vietnam and found the best performance with LEDT, closely followed by RF. Finally,745

of particular note, Zhang et al. [2019] compared CNN, RF, SVM, ANN and KLR for fire susceptibility746

mapping in the Yunnan Province of China. This was the only application of deep learning we could find747

for fire susceptibility mapping. The authors found that CNN outperformed the other algorithms with748

overall accuracy of 87.92% compared with RF (84.36%), SVM (80.04%), MLP (78.47%), KLR (81.23%).749

They noted that the benefit of CNN is that it incorporates spatial correlations so that it can learn spatial750

features. However, the downside is that deep learning models are not as easily interpretted as other ML751

methods (such as RF and BRT).752

4.3.4 Landscape controls on fire753

Many of the ML methods used in fire susceptibility mapping have also been used to examine landscape754

controls – ie. the relative importance of weather, vegetation, topography, structural and anthropogenic755

variables – on fire activity, which may facilitate hypothesis formation and testing or model building. From756

table 3 the most commonly used methods in this section were MaxEnt, RF, BRT and ANN. These methods757

all allow for the determination of variable importance (i.e. the relative influence of predictor variables in a758

given model of a response variable). A commonly used method to ascertain variable importance is through759

the use of partial dependence plots [Hastie et al., 2009]. This method works by averaging over models760

that exclude the predictor variable of interest, with the resulting reduction in AUC (or other performance761

metrics) representing the marginal effect of the variable on the response. Partial dependence plots have the762

advantage of being able to be applied to a wide range of ML methods. A related method for determining763

variable importance, often used for RFs, is a permutation test which involves random permutation of each764

predictor variable [Strobl et al., 2007]. Another model-dependent approach used for ANN is the use of765

partial derivatives (of the activation functions of hidden and output nodes) as outlined by Vasilakos et al.766

[2009]. It should be noted that while many other methods for model interpretation and variable dependence767

exist, a discussion of these methods is outside the scope of this paper.768

In general, the drivers of fire occurrence or area burned varied greatly by the study area considered769

(including the size of area) and the methods used. Consistent with other work on “top down” and “bottom770
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up” drivers of fire activity, at large scales climate variables were often determined to be the main drivers771

of fire activity whereas at smaller scales anthropogenic or structural factors exerted a larger influence.772

Here we discuss some of the papers that highlight the diversity of results for different study areas and773

spatial scales (global, country, ecoregion, urban) but refer the reader to section S.3.4 of the supplementary774

material for a full listing of papers in this section. Note that many of the papers listed under section S.3.4775

also belong to the fire susceptibility mapping section and have already been discussed there.776

Aldersley et al. [2011] considered drivers of monthly area burned at global and regional scales using777

both regression trees and RF. They found climate factors (high temperature, moderate precipitation, and778

dry spells) were the most important drivers at the global scale, although at the regional scale the models779

exhibited higher variability due to the influence of anthropogenic factors. At a continental scale Mansuy780

et al. [2019] used MaxEnt to show that climate variables were the dominant controls (over landscape781

and human factors) on area burned for most ecoregions for both protected areas and outside these areas,782

although anthropogenic factors exerted a stronger influence in some regions such as the Tropical Wet783

Forests ecoregion. [Masrur et al., 2018] used RF to investigate controls on circumpolar arctic fire and784

found June surface temperature anomalies were the most important variable for determining the likelihood785

of wildfire occurrence on an annual scale. Chingono and Mbohwa [2015] used MaxEnt to model fire786

occurrences in Southern Africa where most fires are human-caused and found vegetation (i.e., dry mass787

productivity and NDVI) were the main drivers of biomass burning. Curt et al. [2015] used BRT to examine788

drivers of fire in New Caledonia. Interestingly, they found that human factors (such as distance to villages,789

cities or roads) were dominant influences for predicting fire ignitions whereas vegetation and weather790

factors were most important for area burned. Curt et al. [2016] modeled fire probabilities by different791

fire ignition causes (lightning, intentional, accidental, negligence professional and negligence personal) in792

Southeastern France. They found socioeconomic factors (eg. housing and road density) were the dominant793

factors for ignitions and area burned for human-caused fires. Fernandes et al. [2016] used BRT to examine794

large fires in Portugal and found high pyrodiversity (ie. spatial structure due to fire recurrence) and795

low landscape fuel connectivity were important drivers of area burned. Curt et al. [2016] modeled fire796

probabilities by different fire ignition causes (lightning, intentional, accidental, negligence professional and797

negligence personal) in Southeastern France. They found socioeconomic factors (eg. housing and road798

density) were the dominant factors for ignitions and area burned for human-caused fires. Leys et al. [2017]799

used RF to find the drivers that determine sedimentary charcoal counts in order to reconstruct grassfire800

history in the Great Plains, USA. Not surprisingly, they found fire regime characteristics (eg. area burned801

and fire frequency) were the most important variables and concluded that charcoal records can therefore802

be used to reconstruct fire histories. Li et al. [2009] used ANNs to show that wildfire probability was803

strongly influenced by population density in Japan, with a peak determined by the interplay of positive804

and negative effects of human presence. This relationship, however, becomes more complex when weather805

parameters and forest cover percentage are added to the model. Liu et al. [2013] used BRT to study806

factors influencing fire size in the Great Xingan Mountains in Northeastern China. Their method included807

a “moving window” resampling technique that allowed them to look at the relative influence of variables808

at different spatial scales. They showed that the most dominant factors influencing fire size were fuel and809

topography for small fires, but fire weather became the dominant factor for larger fires. For regions of810

high population density, anthropogenic or structural factors are often dominant for fire susceptibility. For811

example Molina et al. [2019] used MaxEnt to show distance to roads, settlements or powerlines were the812

dominant factors for fire occurrence probability in the Andalusia region in southern Spain. MaxEnt has813

also been used for estimating spatial fire probability under different scenarios such as future projections of814

housing development and private land conservation [Syphard et al., 2016]. One study in China using RF815

found mean spring temperature was the most important variable for fire occurrence whereas forest stock816

was most important for area burned [Ying et al., 2018].817

Some authors examined controls on fire severity using high resolution data for a single large fire. For818

example, several authors used RF to examine controls on burn severity for the 2013 Rim fire in the Sierra819

Nevada [Lydersen et al., 2014, Kane et al., 2015, Lydersen et al., 2017]. At smaller spatial scales fire820
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weather was the most important variable for fire severity, whereas fuel treatments were most important821

at larger spatial scales [Lydersen et al., 2017]. A similar study by Harris and Taylor [2017] showed that822

previous fire severity was an important factor influencing fire severity for the Rim fire. For the 2005 Riba823

de Saelices fire, Viedma et al. [2015] looked at factors contributing to burn severity using a BRT model824

and found burning conditions (including fire weather variables) were more important compared than stand825

structure and topography. For burn severity these papers all used the Relativized differenced Normalized826

Burn Ratio (RdNBR) metric, derived from Landsat satellite images, which allowed spatial modeling at827

high resolutions (eg. 30m by 30m). In addition to the more commonly used ML methods one paper by828

Wu et al. [2015] used KNN to identify spatially homogeneous fire environment zones by clustering climate,829

vegetation, topography, and human activity related variables. They then used CART to examine variable830

importance for each of three fire environment zones in south-eastern China. For landscape controls on fire831

there were few studies comparing multiple ML methods. One such study by Nelson et al. [2017] compared832

CART, BRT and RF for classifying different fire size classes in British Columbia, Canada. For both central833

and periphery regions they found the best performing model was BRT followed by CART and RF. For834

example, in the central region BRT achieved a classification accuracy of 88% compared with 82.9% and835

49.6% for the CART and RF models respectively. It is not clear from the study why RF performed poorly,836

although it was noted that variable importance differs appreciably between the three models.837

4.4 Fire Behavior Prediction838

In general, fire behavior includes physical processes and characteristics at a variety of scales including839

combustion rate, flaming, smouldering residence time fuel consumption, flame height, and flame depth.840

However, the papers in this section deal mainly with larger scale processes and characteristics such as the841

prediction of fire spread rates, fire growth, burned area, and fire severity, conditional on the occurrence842

(ignition) of one, or more, wildfires. Here, our emphasis is on prognostic applications, in contrast to the843

Fuels Characterization, Fire Detection and Mapping problem domain, in which we focused on diagnostic844

applications.845

4.4.1 Fire spread and growth846

Predicting the spread of a wildland fire is an important task for fire management agencies, particularly to847

aid in the deployment of suppression resources or to anticipate evacuations one or more days in advance.848

Thus, a large number of models have been developed using different approaches. In a series of reviews849

Sullivan [2009a,b,c] described fire spread models he classified as being of physical or quasi-physical nature,850

or empirical or quasi-empirical nature, as well as mathematical analogues and simulation models. Many851

fire growth simulation models convert one dimensional empirical or quasi-empirical spread rate models to852

two dimensions and then propagate a fire perimeter across a modelled landscape.853

A wide range of ML methods have been applied to predict fire growth. For example, Markuzon and854

Kolitz [2009] tested several classifiers (RF, BNs, and KNN) to estimate if a fire would become large either855

one or two days following its observation; they found each of the tested methods performed similarly with856

RF correctly classifying large fires at a rate over 75%, albeit with a number of false positives. Vakalis857

et al. [2004] used a ANN in combination with a fuzzy logic model to estimate the rate of spread in the858

mountainous region of Attica in Greece. A number of papers used genetic algorithms (GAs) to optimize859

input parameters to a physics or empirically based fire simulator in order to improve fire spread predictions860

[Abdalhaq et al., 2005, Rodriguez et al., 2008, Rodŕıguez et al., 2009, Artés et al., 2014, 2016, Carrillo861

et al., 2016, Denham et al., 2012, Cencerrado et al., 2012, 2013, 2014, Artés et al., 2017, Denham and862

Laneri, 2018]. For example, Cencerrado et al. [2014] developed a framework based on GAs to shorten the863

time needed to run deterministic fire spread simulations. They tested the framework using the FARSITE864

[Finney, 2004] fire spread simulator with different input scenarios sampled from distributions of vegetation865

models, wind speed/direction, and dead/live fuel moisture content. The algorithm used a fitness function866

which discarded the most time-intensive simulations, but did not lead to an appreciable decrease in the867
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accuracy of the simulations. Such an approach is potentially useful for fire management where it is desirable868

to predict fire behavior as far in advance as possible so that the information can be enacted upon. This869

approach may greatly reduce overall simulation time by reducing the input parameter space as also noted870

by Artés et al. [2016] and Denham et al. [2012], or through parallelization of simulation runs for stochastic871

approaches [Artés et al., 2017, Denham and Laneri, 2018]. A different goal was considered by Ascoli et al.872

[2015] who used a GA to optimize fuel models in Southern Europe by calibrating the model with respect873

to rate of spread observations.874

Kozik et al. [2013] presented a fire spread model that used a novel ANN implementation that incorpo-875

rated a Kalman filter for data assimilation that could potentially be run in real-time, the resulting model876

more closely resembling that of complex cellular automata than a traditional ANN. The same authors later877

implemented this model and simulated fire growth under various scenarios with different wind speeds and878

directions, or both, although a direct comparison with real fire data was not possible [Kozik et al., 2014].879

Zheng et al. [2017] simulated fire spread by integrating a cellular automata (CA) model with an Extreme880

Learning Machine (ELM; a type of feedforward ANN). Transition rules for the CA were determined by881

the ELM trained with data from historical fires, as well as vegetation, topographic, and meteorological882

data. Likewise, Chetehouna et al. [2015] used ANNs to predict fire behavior, including rate of spread,883

and flame height and angle. In contrast, Subramanian and Crowley [2017] formulated the problem of fire884

spread prediction as a Markov Decision Process, where they proposed solutions based on both a classic885

reinforcement learning algorithm and a deep reinforcement learning algorithm – the authors found the886

deep learning approach improved on the traditional approach when tested on two large fires in Alberta,887

Canada. The authors further developed this work to compare five widely used reinforcement learning888

algorithms [Subramanian and Crowley, 2018], and found that the Asynchronous Advantage Actor-Critic889

(A3C) and Monte Carlo Tree Search (MCTS) algorithms achieved the best accuracy. Meanwhile, Khakzad890

[2019] developed a fire spread model to predict the risk of fire spread in Wildland-Industrial Interfaces,891

using Dynamic Bayesian Networks (DBN) in combination with a deterministic fire spread model. The892

Canadian Fire Behavior Prediction (FBP) system, which uses meteorological and fuel conditions data as893

inputs, determined the fire spread probabilities from one node to another in the aforementioned DBN.894

More recently Hodges and Lattimer [2019] trained a (deep learning) CNN to predict fire spread using895

environmental variables (topography, weather and fuel related variables). Outputs of the CNN were spatial896

grids corresponding to the probability the burn map reached a pixel and the probability the burn map897

did not reach a pixel. Their method achieved a mean precision of 89% and mean sensitivity of 80% with898

reference 6 hourly burn maps computed using the physics-based FARSITE simulator. Radke et al. [2019]899

also used a similar approach to predict daily fire spread for the 2016 Beaver Creek fire in Colorado.900

4.4.2 Burned area and fire severity prediction901

There are a number of papers that focus on using ML approaches to directly predict the final area burned902

from a wildfire. Cortez and Morais [2007] compared multiple regression and four different ML methods903

(DT, RF, ANN, and SVM) to predict area burned using fire and weather (i.e., temperature, precipitation,904

relative humidity and wind speed) data from the Montesinho natural park in northeastern Portugal, and905

found that SVM displayed the best performance. A number of publications subsequently used the data906

from Cortez and Morais [2007] to predict area burned using various ML methods, including ANN [Safi and907

Bouroumi, 2013, Storer and Green, 2016], genetic algorithms [Castelli et al., 2015], both ANN and SVM908

[Al Janabi et al., 2018], and decision trees [Alberg, 2015, Li et al., 2018a]. Notably, Castelli et al. [2015]909

found that a GA variant outperformed other ML methods including SVM. Xie and Shi [2014] used a similar910

set of input variables with SVM to predict burned area in for Guangzhou City in China. In addition to911

these studies, Toujani et al. [2018] used hidden Markov models (HMM) to predict burned area in the north-912

west of Tunisia, where the spatiotemporal factors used as inputs to the model were initially clustered using913

self-organizing maps (SOMs). Liang et al. [2019] compared back-propagation neural networks, recurrent914

neural networks (RNN) and Long Short Term Memory (LSTM) neural networks to predict wildfire scale,915

a quantity related to area burned and fire duration, in Alberta Canada. They found the highest accuracy916
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(90.9%) was achieved with LSTM.917

Most recently, Xie and Peng [2019] compared a number of machine learning methods for estimating area918

burned (regression) and binary classification of fire sizes (> 5 Ha) in Montesinho natural park, Portugal.919

For the regression task, they found a tuned RF algorithm performed better than standard RF, tuned920

and standard gradient boosted machines, tuned and standard generalized linear models (GLMs) and deep921

learning. For the classification problem they found extreme gradient boosting and deep learning had a922

higher accuracy than CART, RF, SVM, ANN, and logistic regression.923

By attempting to predict membership of burned area size classes, a number of papers were able to924

recast the problem of burned area prediction as a classification problem. For example, Yu et al. [2011]925

used a combination of SOMs and back-propagation ANNs to classify forest fires into size categories based926

on meteorological variables. This approach gave Yu et al. [2011] better accurary ( 90%) when compared927

with a rules-based method ( 82%). Özbayoğlu and Bozer [2012] estimated burned area size classes us-928

ing geographical and meteorological data using three different machine learning methods: i) Multilayer929

Perceptron (MLP); ii) Radial Basis Function Networks (RBFN); and iii) SVM. Overall, the best perform-930

ing method was MLP, which achieved a 65% success rate, using humidity and windspeed as predictors.931

Zwirglmaier et al. [2013] used a BN to predict area burned classes using historical fire data, fire weather932

data, fire behaviour indices, land cover, and topographic data. Shidik and Mustofa [2014] used a hybrid933

model (Fuzzy C-Means and Back-Propagation ANN) to estimate fire size classes using data from Cortez934

and Morais [2007], where the hybrid model performed best with an accuracy of 97.50% when compared935

with Naive Bayes (55.5%), DT (86.5%), RF (73.1%), KNN (85.5%) and SVM (90.3%). Mitsopoulos and936

Mallinis [2017] compared BRT, RF and Logistic Regression to predict 3 burned area classes for fires in937

Greece. They found RF led to the best performance of the three tested methods and that fire suppression938

and weather were the two most important explanatory variables. Coffield et al. [2019] compared CART,939

RF, ANN, KNN and gradient boosting to predict 3 burned area classes at time of ignition in Alaska.940

They found a parsimonious model using CART with Vapor Pressure Deficit (VPD) provided the best941

performance of the models and variables considered.942

We found only one study that used ML to predict fire behavior related to fire severity, which is important943

in the context of fire ecology, suggesting that there are opportunities to apply ML in this domain of wildfire944

science. In that paper, Zald and Dunn [2018] used RF to determine that the most important predictor of945

fire severity was daily fire weather, followed by stand age and ownership, with less predictability given by946

topographic features.947

4.5 Fire Effects948

Fire Effects prediction studies have largely used regression based approaches to relate costs, losses, or other949

impacts (e.g., soils, post-fire ecology, wildlife, socioeconomic factors) to physical measures of fire severity950

and exposure. Importantly, this category also includes wildfire smoke and particulate modelling (but not951

smoke detection which was previously discussed in the fire detection section).952

4.5.1 Soil Erosion and Deposits953

Mallinis et al. [2009] modelled potential post-fire soil erosion risk following a large intensive wildfire in the954

Mediterranean area using CART and k-means algorithms. In that paper, before wildfire, 55% of the study955

area was classified as having severe or heavy erosion potential, compared to 90% post-fire, with an overall956

classification accuracy of 86%. Meanwhile, Buckland et al. [2019] used ANNs to examine the relationships957

between sand deposition in semi-arid grasslands and wildfire occurrence, land use, and climatic conditions.958

The authors then predicted soil erosion levels in the future given climate change assumptions.959
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4.5.2 Smoke and Particulate Levels960

Smoke emitted from wildfires can seriously lower air quality with adverse effects on the health of both961

human and non-human animals, as well as other impacts. Thus, it is not surprising that ML methods962

have been used to understand the dynamics of smoke from wildland fire. For example, Yao et al. [2018b]963

used RF to predict the minimum height of forest fire smoke using data from the CALIPSO satellite. More964

commonly, ML methods have also been used to estimate population exposure to fine particulate matter965

(e.g., PM2.5: atmospheric particulate matter with diameter less than 2.5µm), which can be useful for966

epidemiological studies and for informing public health actions. One such study by Yao et al. [2018a]967

also used RF to estimate hourly concentrations of PM2.5 in British Columbia, Canada. Zou et al. [2019]968

compared RF, BRT and MLR to estimate regional PM2.5 concentrations in the Pacific Northwest and969

found RF performed much better than the other algorithms. In another very broad study covering several970

datasets and ML methods, Reid et al. [2015] estimated spatial distributions of PM2.5 concentrations971

during the 2008 northern California wildfires. The authors of the aforementioned study used 29 predictor972

variables and compared 11 different statistical models, including RF, BRT, SVM, and KNN. Overall, the973

BRT and RF models displayed the best performance. Emissions other than particulate matter have also974

been modelled using ML, as Lozhkin et al. [2016] used an ANN to predict carbon monoxide concentrations975

emitted from a peat fire in Siberia, Russia. In another study, the authors used ten different statistical and976

ML methods and 21 covariates (including weather, geography, land-use, and atmospheric chemistry) to977

predict ozone exposures before and after wildfire events [Watson et al., 2019]. Here, gradient boosting gave978

the best results with respect to both root mean square error and R2 values, followed by RF and SVM. In a979

different application related to smoke, Fuentes et al. [2019] used ANNs to detect smoke in several different980

grape varietals used for wine making.981

4.5.3 Post-fire regeneration, succession, and ecology982

The study of post-fire regeneration is an important aspect of understanding forest and ecosystem responses983

and resilience to wildfire disturbances, with important ecological and economic consequences. RF, for984

example, has been a popular ML method for understanding the important variables driving post-fire985

regeneration [João et al., 2018, Vijayakumar et al., 2016]. Burn severity (a measure of above and below986

ground biomass loss due to fire) is an important metric for understanding the impacts of wildfire on987

vegetation and post-fire regeneration, soils, and potential successional shifts in forest composition, and as988

such, has been included in many ML studies in this section, including [Barrett et al., 2011, Cai et al., 2013,989

Cardil et al., 2019, Chapin et al., 2014, Divya and Vijayalakshmi, 2016, Fairman et al., 2017, Han et al.,990

2015, Johnstone et al., 2010, Liu and Yang, 2014, Mart́ın-Alcón and Coll, 2016, Sherrill and Romme, 2012,991

Thompson and Spies, 2010]. For instance, Cardil et al. [2019] used BRT to demonstrate that remotely-992

sensed data (i.e., Relative Differenced Normalized Burn Ratio index; RdNBR) can provide an acceptable993

assessment of fire-induced impacts (i.e., burn severity) on forest vegetation, while [Fairman et al., 2017]994

used RF to identify the variables most important in explaining plot-level mortality and regeneration of995

Eucalyptus pauciflora in Victoria, Australia, affected by high-severity wildfires and subsequent re-burns.996

Debouk et al. [2013] assessed post-fire vegetation regeneration status using field measurements, a canopy997

height model, and Lidar (i.e., 3D laser scanning) data with a simple ANN. Post-fire regeneration also has998

important implications for the successional trajectories of forested areas, and a few studies have examined999

this using ML approaches [Barrett et al., 2011, Cai et al., 2013, Johnstone et al., 2010]. For example,1000

Barrett et al. [2011] used RF to model fire severity, from which they made an assessment of the area1001

susceptible to a shift from coniferous to deciduous forest cover in the Alaskan boreal forest, while Cai et al.1002

[2013] used BRT to assess the influence of environmental variables and burn severity on the composition1003

and density of post-fire tree recruitment, and thus the trajectory of succession, in northeastern China. In1004

other studies not directly related to post-fire regeneration, Hermosilla et al. [2015] used RF to attribute1005

annual forest change to one of four categories, including wildfire, in Saskatchewan, Canada, while [Jung1006

et al., 2013] used GA and RF to estimate the basal area of post-fire residual spruce (Picea obovate) and fir1007
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(Abies sibirica) stands in central Siberia using remotely sensed data. Magadzire et al. [2019] used MaxEnt1008

to demonstrate that fire return interval and species life history traits affected the distribution of plant1009

species in South Africa. ML has also been used to examine fire effects on the hydrological cycle, as Poon1010

et al. [2018] used SVM to estimate both pre- and post-wildfire evapotranspiration using remotely sensed1011

variables.1012

Considering the potential impacts of wildfires on wildlife, it is perhaps surprising that relatively few of1013

such studies have adopted ML approaches. However, ML methods have been used to predict the impacts1014

of wildfire and other drivers on species distributions and arthropod communities. Hradsky et al. [2017], for1015

example, used non-parametric BNs to describe and quantify the drivers of faunal distributions in wildfire-1016

affected landscapes in southeastern Australia. Similarly, Reside et al. [2012] used MaxEnt to model bird1017

species distributions in response to fire regime shifts in northern Australia, which is an important aspect1018

of conservation planning in the region. ML has also been used to look at the effects of wildfire on fauna at1019

the community level, as Luo et al. [2017] used DTs, Association Rule Mining, and AdaBoost to examine1020

the effects of fire disturbance on spider communities in Cangshan Mountain, China.1021

4.5.4 Socioeconomic effects1022

ML methods have been little used to model socio-economic impacts of fire to date. We found one study1023

in which BNs were used to predict the economic impacts of wildfires in Greece from 2006-2010 due to1024

housing losses [Papakosta et al., 2017]. The authors did this by first defining a causal relationship between1025

the participating variables, and then using BNs to estimate housing damages. It is worth noting that the1026

problem of detecting these causal relationships from data is a difficult task and remains an active area of1027

research in artificial intelligence.1028

4.6 Fire management1029

The goal of contemporary fire management is to have the appropriate amount of fire on the landscape, which1030

may be accomplished through the management of vegetation including prescribed burning, the management1031

of human activities (prevention), and fire suppression. Fire management is a form of risk management that1032

seeks to maximize fire benefits and minimize costs and losses [Finney, 2005]. Fire management decisions1033

have a wide range of scales, including long-term strategic decisions about the acquisition and location of1034

resources or the application of vegetation management in large regions, medium-term tactical decisions1035

about the acquisition of additional resources, relocation, or release of resources during the fire season, and1036

short-term real time operational decisions about the deployment and utilization of resources on individual1037

incidents. Fire preparedness and response is a supply chain with a hierarchical dependence. Taylor [2020]1038

describes 20 common decision types in fire management and maps the spatial-temporal dimensions of their1039

decision spaces.1040

Fire management models can be predictive, such as the probability of initial attack success, or pre-1041

scriptive such as to maximize/minimize an objective function (e.g., optimal helicopter routing to minimize1042

travel time in crew deployment). While advances have been made in the domain of wildfire management1043

using ML techniques, there have been relatively few studies in this area compared to other wildfire problem1044

domains. Thus, there appears to be great potential for ML to be applied to wildfire management problems,1045

which may lead to novel and innovative approaches in the future.1046

4.6.1 Planning and policy1047

An important area of fire management is planning and policy, where various ML methods have been1048

applied to address pertinent challenges. For example, Bao et al. [2015] used GA, which are useful for1049

solving multi-objective optimization problems, to optimize watchtower locations for forest fire monitoring.1050

Bradley et al. [2016] used RF to investigate the relationship between the protected status of forest in the1051

western US and burn severity. Likewise, Ruffault and Mouillot [2015] also used BRTs to assess the impact1052
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of fire policy introduced in the 1980s on fire activity in southern France and the relationships between fire1053

and weather, and Penman et al. [2011] used BNs to build a framework to simultaneously assess the relative1054

merits of multiple management strategies in Wollemi National Park, NSW, Australia. McGregor et al.1055

[2016] used Markov decision processes (MDP) and model free Monte Carlo method to create fast running1056

simulations (based on the FARSITE simulator) to create interactive visualizations of forest futures over1057

100 years based on alternate high-level suppression policies. McGregor et al. [2017] demonstrated ways1058

in which a variety of ML and optimization methods can be used to create an interactive approximate1059

simulation tool for fire managers. The authors of the aforementioned study utilized a modified version of1060

the FARSITE fire-spread simulator, which was augmented to run thousands of simulation trajectories while1061

also including new models of lightning strike occurrences, fire duration, and a forest vegetation simulator.1062

McGregor et al. [2017] also clearly show how decision trees can be used to analyze a hierarchy of decision1063

thresholds for deciding whether to suppress a fire or not; their hierarchy splits on fuel levels, then intensity1064

estimations, and finally weather predictors to arrive at a generalizable policy.1065

4.6.2 Fuel treatment1066

ML methods have also been used to model the effects of fuel treatments in order to mitigate wildfire risk.1067

For example, Penman et al. [2014] used a BN to examine the relative risk reduction of using prescribed burns1068

on the landscape versus within the 500m interface zone adjacent to houses in the Sydney basin, Australia.1069

Lauer et al. [2017] used approximate dynamic programming (also known as reinforcement learning) to1070

determine the optimal timing and location of fuel treatments and timber harvest for a fire-threatened1071

landscape in Oregon, USA, with the objective of maximizing wealth through timber management. Similarly,1072

Arca et al. [2015] used GA for multi-objective optimization of fuel treatments.1073

4.6.3 Wildfire preparedness and response1074

Wildfire preparedness and response issues have also been examined using ML techniques. Costafreda-1075

Aumedes et al. [2015] used ANNs to model the relationships between daily fire load, fire duration, fire type,1076

fire size, and response time, as well as personnel and terrestrial/aerial units deployed for individual wildfires1077

in Spain. Most of the models in Costafreda-Aumedes et al. [2015] highlighted the positive correlation of1078

burned area and fire duration with the number of resources assigned to each fire, and some highlighted1079

the negative influence of daily fire load. In another study, Penman et al. [2015] used Bayesian Networks1080

to assess the relative influence of preventative and suppression management strategies on the probability1081

of house loss in the Sydney basin, Australia. O’Connor et al. [2017] used BRT to develop a predictive1082

model of fire control locations in the Northern Rocky Mountains, USA, based on the likelihood of final fire1083

perimeters, while Homchaudhuri et al. [2010] used GAs to optimize fireline generation. Rodrigues et al.1084

[2019] modelled the probability that wildfire will escape initial attack using a RF model trained with fire1085

location, detection time, arrival time, weather, fuel types, and available resources data. Important variables1086

in Rodrigues et al. [2019] included fire weather and simultaneity of events. Julian and Kochenderfer [2018a]1087

used two different RL algorithms to develop a system for autonomous control of one or more aircraft in1088

order to monitor active wildfires.1089

4.6.4 Social factors1090

Recently, the use of ML in fire management has grown to encompass more novel aspects of fire management,1091

even including the investigation of criminal motives related to arson, as Delgado et al. [2018] used BNs1092

to characterize wildfire arsonists in Spain thereby identifying five motivational archetypes (i.e., slight1093

negligence; gross negligence; impulsive; profit; and revenge).1094
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5 Discussion1095

ML methods have seen a spectacular evolution in development, accuracy, computational efficiency, and1096

application in many fields since the 1990s. It is therefore not surprising that ML has been helpful in1097

providing new insights into several critical sustainability and social challenges in the 21st century [Gomes,1098

2009, Sullivan et al., 2014, Butler, 2017]. The recent uptake and success of ML methods has been driven1099

in large part by ongoing advances in computational power and technology. For example, the recent use of1100

bandwidth optimized Graphics Processing Units (GPUs) takes advantage of parallel processing for simul-1101

taneous execution of computationally expensive tasks, which has facilitated a wider use of computationally1102

demanding but more accurate methods like DNNs. The advantages of powerful but efficient ML methods1103

are therefore widely anticipated as being useful in wildfire science and management.1104

However, despite some early papers suggesting that data driven techniques would be useful in forest1105

fire management [Latham, 1987, Kourtz, 1990, 1993], our review has shown that there was relatively slow1106

adoption of ML-based research in wildfire science up to the 2000s compared with other fields, followed by a1107

sharp increase in publication rate in the last decade. In the early 2000s, data mining techniques were quite1108

popular and classic ML methods such as DTs, RF, and bagging and boosting techniques began to appear in1109

the wildfire science literature (e.g., Stojanova et al. [2006]). In fact, some researchers started using simple1110

feed forward ANNs for small scale applications as early as the mid 1990s and early 2000s (e.g., Mccormick1111

et al. [1999], Al-Rawi et al. [2002]). In the last three decades, almost all major ML methods have been1112

used in some way in wildfire applications, although some more computationally demanding methods, such1113

as SOMs and cellular automatons, have only been actively experimented with in the last decade [Toujani1114

et al., 2018, Zheng et al., 2017]. Furthermore, the recent development of DL algorithms, with a particular1115

focus on extracting spatial features from images, has led to a sharp rise in the application of DL for wildfire1116

applications in the last decade. It is evident, however, from our review that while an increasing number1117

of ML methodologies have been used across a variety of fire research domains over the past 30 years, this1118

research is unevenly distributed among ML algorithms, research domains and tasks, and has had limited1119

application in fire management.1120

Many fire science and management questions can be framed within a fire risk context. Xi et al. [2019]1121

discussed the advantages of adopting a risk framework with regard to statistical modeling of wildfires.1122

There the risk components of “hazard”, “vulnerability” and “exposure” are replaced respectively by fire1123

probability, fire behavior and fire effects. Most fire management activities can be framed as risk controls1124

to mitigate these components of risk. Traditionally, methods used in wildfire fire science to address these1125

various questions have included physical modeling (e.g., Sullivan [2009a,b,c]), statistical methods (e.g.,1126

Taylor et al. [2013], Xi et al. [2019]), simulation modeling (e.g., Keane et al. [2004]), and operations1127

research methods (Martell [2015], Minas et al. [2012]).1128

In simple terms, any analytical study begins with one or more of four questions: “what happened?”;1129

“why did it happen?”; “what will happen?”; or “what to do?” Corresponding data driven approaches to1130

address these questions are respectively called descriptive, diagnostic, predictive, and prescriptive analyt-1131

ics. The type of analytical approach adopted then circumscribes the types of methodological approaches1132

(e.g., regression, classification, clustering, dimensionality reduction, decision making) and sets of possible1133

algorithms appropriate to the analysis.1134

In our review, we found that studies incorporating ML methods in wildland fire science were predomi-1135

nantly associated with descriptive or diagnostic analytics, reflecting the large body of work on fire detection1136

and mapping using classification methods, and on fire susceptibility mapping and landscape controls on1137

fire using regression approaches. In many cases, the ML methods identified in our review are an alternative1138

to statistical methods used for clustering and regression. While the aforementioned tasks are undoubtedly1139

very important for understanding wildland fire, we found much less work associated with predictive or pre-1140

scriptive analytics, such as fire occurrence prediction (predictive), fire behaviour prediction (predictive),1141

and fire management (prescriptive). This may be because: a) particular domain knowledge is required to1142

frame fire management problems; b) fire management data are often not publicly available, need a lot of1143
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work to transform into an easily analyzable form, or do not exist at the scale of the problem; and c) some1144

fire management problems are not suited or can’t be fully addressed by ML approaches. We note that much1145

of the work on fire risk in the fire susceptibility and mapping domain used historical fire and environmental1146

data to map fire susceptibility; therefore, while that work aims to inform future fire risk, it cannot be1147

considered to be predictive analytics, except, for example, in cases where it was used in combination with1148

climate change projections. It appears then that, in general, wildfire science research is currently more1149

closely aligned with descriptive and diagnostic analytics, whereas wildfire management goals are aligned1150

with predictive and prescriptive analytics. This fundamental difference identifies new opportunities for1151

research in fire management, which we discuss later in this paper.1152

In the remainder of the paper, we examine some considerations for the use of ML methods, including:1153

data considerations, model selection and accuracy, implementation challenges, interpretation, opportuni-1154

ties, and implications for fire management.1155

5.1 Data considerations1156

ML is a data-centric modeling paradigm concerned with finding patterns in data. Importantly, data1157

scientists need to determine, often in collaboration with fire managers or domain experts, whether there1158

are suitable and sufficient data for a given modeling task. Some of the criteria for suitable data include1159

whether: a) the predictands and covariates are or can be wrangled into the same temporal and spatial scale;1160

b) the observations are a representative sample of the full range of conditions that may occur in application1161

of a model to future observations; and c) whether the data are at spatiotemporal scale appropriate to the1162

fire science or management question. The first of these criteria can be relaxed in some ML models such as1163

ANNs and DNNs, where inputs and outputs can be at different spatial or temporal scales for appropriately1164

designed network architectures, although data normalization may still be required. The second criterion1165

also addresses the important question of whether enough data exists for training a given algorithm for a1166

given problem. In general, this question depends on the nature of the problem, complexity of the underlying1167

model, data uncertainty and many other factors (see Roh et al. [2018] for a further discussion of data1168

requirements for ML). In any case, many complex problems require a substantive data wrangling effort, to1169

acquire, perform quality assurance, and fuse data into sampling units at the appropriate spatiotemporal1170

scale. An example of this in daily fire occurrence prediction, where observations of a variety of features1171

(e.g., continuous measures such as fire arrival time and location, or lightning strike times and locations) are1172

discretized into three-dimensional (e.g., longitude, latitude, and day) cells called voxels. Another important1173

consideration for the collection and use of data in machine learning is selection bias. A form of spatial1174

selection bias called preferential sampling occurs when sampling occurs preferentially in locations where1175

one expects a certain response [Diggle et al., 2010]. For example, preferential sampling may occur in air1176

monitoring, because sensors may be placed in locations where poor air quality is expected [Shaddick and1177

Zidek, 2014]. In general, preferential sampling or other selection biases may be avoided altogether by1178

selecting an appropriate sampling strategy at the experimental design phase, or, where this is not possible,1179

to take it into account in model evaluation [Zadrozny, 2004].1180

For the problem domain fire detection and mapping, most applications of ML used some form of im-1181

agery (e.g., remote sensed satellite images or terrestrial photographs). In particular, many papers used1182

satellite data (e.g., Landsat, MODIS) to determine vegetation differences before and after a fire and so were1183

able to map area burned. For fire detection, many applications considered either remote sensed data for1184

hotspot or smoke detection, or photographs of wildfires (used as inputs to an image classification problem).1185

For fire weather and climate change, the three main sources of data were either weather station observa-1186

tions, climate reanalyses (modelled data that include historical observations), or GCMs for future climate1187

projections. Reanalyses and GCMs are typically highly dimensional large gridded spatiotemporal datasets1188

which require careful feature selection and/or dimensional reduction for ML applications. Fire occurrence1189

prediction, susceptibility, and risk applications used a large number of different environmental variables as1190

predictors, but almost all used fire locations and associated temporal information as predictands. Fire data1191

itself is usually collated from fire management agencies in the form of georeferenced points or perimeter1192
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data, along with reported dates, ignition cause, and other related variables. Care should be taken using1193

such data because changes in reporting standards or accuracy may lead to data inhomogeneity. As well as1194

fire locations and perimeters, fire severity is an attribute of much interest to fire scientists. Fire severity is1195

often determined from remotely sensed data and represented using variables such as the Differenced Nor-1196

malized Burn Ratio (dNBR) and variants, or through field sampling. However, remote sensed estimates of1197

burn severity should be considered as proxies as they have low skill in some ecosystems. Other fire ecology1198

research historically relies on in situ field, sampling although many of the ML applications attempt to1199

resolve features of interest using remote sensed data. Smoke data can also be derived from remote sensed1200

imagery or from air quality sensors (e.g., PM2.5, atmospheric particulate matter less than 2.5 µm).1201

Continued advances in remote sensing, as well as the quality and availability of remote sensed data prod-1202

ucts, in weather and climate modeling have led to increased availability of large spatiotemporal datasets,1203

which presents both an opportunity and challenge for the application of ML methods in wildfire research1204

and management. The era of “big data” has seen the development of cloud computing platforms to provide1205

the computing and data storage facilities to deal with these large datasets. For example, in our review we1206

found two papers [Crowley et al., 2019, Quintero et al., 2019] that used Google Earth Engine which inte-1207

grates geospatial datasets with a coding environment [Gorelick et al., 2017]. In any case, data processing1208

and management plays an important role in the use of large geospatial datasets.1209

5.2 Model selection and accuracy1210

Given a wildfire science question or management problem and available relevant data, a critical question to1211

ask is what is the most appropriate modeling tool to address the problem? Is it a standard statistical model1212

(e.g., linear regression or LR), a physical model (e.g., FIRETEC or other fire simulator), a ML model, or a1213

combination of approaches? Moreover, which specific algorithm will yield the most accurate classification1214

or regression. Given the heterogeneity of research questions, study areas, and datasets considered in the1215

papers reviewed here, it is not possible to comprehensively answer these questions with respect to ML1216

approaches. Even in the case where multiple studies used the same dataset [Cortez and Morais, 2007,1217

Safi and Bouroumi, 2013, Storer and Green, 2016, Castelli et al., 2015, Al Janabi et al., 2018, Alberg,1218

2015, Li et al., 2018a, Castelli et al., 2015] the different research questions considered meant a direct1219

comparison of ML methods was not possible between research studies. However, a number of individual1220

studies did make comparisons between multiple ML methods, or between ML and statistical methods for1221

a given wildfire modeling problem and dataset. Here we highlight some of their findings to provide some1222

guidance with respect to model selection. In our review (see section 4 and the supplementary material), we1223

found 29 papers comparing ML and statistical methods, where in the majority of these cases ML methods1224

were found to be more accurate than traditional statistical methods (e.g., GLMs), or displayed similar1225

performance [Pu and Gong, 2004, Bates et al., 2017, de Bem et al., 2018]. In only one study on climate1226

change by Amatulli et al. [2013], MARS was found to be superior to RF for their analytical task. A sizable1227

number of the comparative studies (14) involved classification problems that used LR as a benchmark1228

method against ANN or ensemble tree methods. For studies comparing multiple ML methods, there was1229

considerable variation in the choice of most accurate method; however, in general ensemble methods tended1230

to outperform single classifier methods (e.g., Stojanova et al. [2012], Dutta et al. [2016], Mayr et al. [2018],1231

Nelson et al. [2017], Reid et al. [2015], Watson et al. [2019]), except in one case where the most accurate1232

model (CART) was also the most parsimonious [Coffield et al., 2019]. A few more recent papers also1233

highlighted the advantages of DL over other methods. In particular, for fire detection, Zhang et al. [2018b]1234

compared CNNs with SVM and found that CNNs were more accurate, while Zhao et al. [2018] similarly1235

found CNNs superior to SVMs and ANNs. For fire susceptibility mapping, Zhang et al. [2019] found CNNs1236

were more accurate than RF, SVMs, and ANNs. For time series forecasting problems, Liang et al. [2019]1237

found LSTMs outperformed ANNs. Finally, Cao et al. [2019] found that using an LSTM combined with a1238

CNN led to better fire detection performance from video compared with CNNs alone.1239

In any case, more rigorous inter-model comparisons are needed to reveal in which conditions, and in1240

what sense particular methods are more accurate, as well as to establish procedures for evaluating accuracy.1241
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ML methods are also prone to overfitting, so it is important to evaluate models with robust test datasets1242

using appropriate cross-validation strategies. For example, the näıve application of cross-validation to data1243

that have spatial or spatio-temporal dependencies may lead to overly optimistic evaluations [Roberts et al.,1244

2017]. In general, one also desires to minimise errors associated with either under-specification or over-1245

specification of the model, a problem known as the bias-variance trade-off [Geman et al., 1992]. However,1246

several recent advances have been made to reduce overfitting in ML models, for instance, regularization1247

techniques in DNNs [Kukačka et al., 2017]. Moreover, when interpreting comparisons between ML and1248

statistical methods, we should be cognizant that just as some ML methods require expert knowledge, the1249

accuracy of statistical methods can also vary with the skill of the practitioner. Thompson and Calkin1250

[2011] also emphasize the need for identifying sources of uncertainty in modeling so that they can better1251

managed.1252

5.3 Implementation Challenges1253

Beyond data and model selection, two important considerations for model specification are feature selection1254

and spatial autocorrelation. Knowledge of the problem domain is extremely important in identifying a set1255

of candidate features. However, while many ML methods are not limited by the number of features,1256

more variables do not necessarily make for a more accurate, interpretable, or easily implemented model1257

[Schoenberg, 2016, Breiman, 2001] and can lead to overfitting and increased computational time. Two1258

different ML methods to enable selection of a reduced and more optimal set of features include GAs and1259

PSO. Sachdeva et al. [2018] used a GA to select input features for BRT and found this method gave the1260

best accuracy compared with ANN, RF, SVM, SVM with PSO (PSO-SVM), DTs, logistic regression, and1261

NB. Hong et al. [2018] employed a similar approach for fire susceptibility mapping and found this led to1262

improvements for both SVM and RF compared with their non-optimized counterparts. Tracy et al. [2018]1263

used a novel random subset feature selection algorithm for feature selection, which they found led to higher1264

AUC values and lower model complexity. Jaafari et al. [2019] used a NFM combined with the imperialist1265

competitive algorithm (a variant of GA) for feature selection which led to very high model accuracy (0.99)1266

in their study. Tien Bui et al. [2017] used PSO to choose inputs to a NFN and found this improved results.1267

[Zhang et al., 2019] also considered the information gain ratio for feature selection. As noted in Moritz1268

et al. [2012] and Mayr et al. [2018], one should also take spatial autocorrelation into account when modeling1269

fire probabilities spatially. In general, the presence of spatial autocorrelation violates the assumption of1270

independence for parametric models, which can degrade model performance. One approach to deal with1271

autocorrelation requires subsampling to remove any spatial autocorrelation Moritz et al. [2012]. It is also1272

often necessary to subsample from non-fire locations due to class imbalance between ignitions and non-1273

ignitions (e.g., Cao et al. [2017], Zhang et al. [2019]). Song et al. [2017] considered spatial econometric1274

models and found a spatial autocorrelation model worked better than RF, although Kim et al. [2019] note1275

that RF may be robust to spatial autocorrelation with large samples. In contrast to many ML methods, a1276

strength of CNNs is its ability to exploit spatial correlation in the data to enable the extraction of spatial1277

features.1278

5.4 Interpretation1279

A major obstacle for the adoption of ML methods to fire modeling tasks is the perceived lack of inter-1280

pretability or explainability of such methods, which are often considered to be “black box” models. Users1281

(in this case fire fighters and managers) need to trust ML model predictions, and so have the confidence1282

and justification to apply these models, particularly in cases where proposed solutions are considered novel.1283

Model intepretability should therefore be an important aspect of model development if models are to be1284

selected and deployed in fire management operations. Model interpretability varies significantly across1285

the different types of ML. For example, conventional thinking is that tree-based methods are more inter-1286

pretable than neural network methods. This is because a single decision tree classifier can be rendered1287

as a flow chart corresponding to if-then-else statements, whereas an ANN represents a nonlinear function1288
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approximated through a series of nonlinear activations. However, because they combine multiple trees in1289

an optimized way, ensemble tree classifiers are less interpretable than single tree classifiers. On the other1290

hand, BNs are one example of an ML technique where good explanations for results can be inferred due1291

to their graphical representation; however, full Bayesian learning on large-scale data is very computation-1292

ally expensive which may have limited early applications; however, as computational power has increased1293

we have seen an increase in the popularity of BNs in wildfire science and management applications (e.g.,1294

Penman et al. [2015], Papakosta et al. [2017]).1295

DL-based architectures are widely considered to be among the least interpretable ML models, despite1296

the fact that they can achieve very accurate function approximation [Chakraborty et al., 2017]. In fact, this1297

is demonstrative of the well-known trade-off between prediction accuracy and interpretability (see Kuhn1298

and Johnson [2013] for an in-depth discussion). The ML community, however, recognizes the problem1299

of interpretability and work is underway to develop methods that allow for greater interpretability of ML1300

methods, including methods for DL (see for example, McGovern et al. [2019]) or model-agnostic approaches1301

[Ribeiro et al., 2016]. Runge et al. [2019] further argue that casual inference methods should be used in1302

conjunction with predictive models to improve our understanding of physical systems. Finally, it is worth1303

noting that assessing variable importance (see Sec. 4.3.4) for a given model can play a role in model1304

interpretation.1305

5.5 Opportunities1306

Our review highlights a number of potential opportunities in wildfire science and management for ML1307

applications where ML has not yet been applied or is under-utilized. Here we examine ML advances in1308

other areas of environmental science that have analogous problems in wildland fire science and which may1309

be useful for identifying further ML applications. For instance, Li et al. [2011] compared ML algorithms for1310

spatial interpolation and found that a RF model combined with geostatistical methods yielded good results;1311

a similar method could be used to improve interpolation of fire weather observations from weather stations,1312

and so enhance fire danger monitoring. Rasp and Lerch [2018] showed that ANNs could improve weather1313

forecasts by post-processing ensemble forecasts, an approach which could similarly be applied to improve1314

short-term forecasts of fire weather. Belayneh et al. [2014] used ANNs and SVMs combined with wavelet1315

transforms for long term drought forecasting in Ethiopia; such methods could also be useful for forecasting1316

drought in the context of fire danger potential. In the context of numerical weather prediction, Cohen et al.1317

[2019] found better predictability using ML methods than dynamical models for subseasonal to seasonal1318

weather forecasting, suggesting similar applications for long-term fire weather forecasting. McGovern et al.1319

[2017] discussed how AI techniques can be leveraged to improve decision making around high-impact1320

weather. More recently, Reichstein et al. [2019] have further argued for the use of DL in the environmental1321

sciences, citing its potential to extract spatiotemporal features from large geospatial datasets. Kussul et al.1322

[2017] used CNNs to classify land cover and crop types and found that CNNs improved the results over1323

standard ANN models; a similar approach could be used for fuels classification, which is an important input1324

to fire behaviour prediction models. Shi et al. [2016] also used CNNs to detect clouds in remote sensed1325

imagery and were able to differentiate between thin and thick cloud. A similar approach could be used1326

for smoke detection, which is important for fire detection, as well as in determining the presence of false1327

negatives in hotspot data (due to smoke or cloud obscuration). Finally, recent proposals have called for1328

hybrid models that combine process-based models and ML methods [Reichstein et al., 2019]. For example,1329

ML models may replace user-specified parameterizations in numerical weather prediction models [Brenowitz1330

and Bretherton, 2018]. Other recent approaches use ML methods to determine the solutions to nonlinear1331

partial differential equations Raissi and Karniadakis [2018], Raissi et al. [2019]. Such methods could find1332

future applications in improving fire behaviour prediction models based on computationally expensive1333

physics-based fire simulators, in coupled fire-atmosphere models, or in smoke dispersion modeling. In any1334

case, the applications of ML that we have outlined are meant for illustrative purposes and are not meant1335

to represent an exhaustive list of all possible applications.1336
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5.6 Implications for fire management1337

We believe ML has been under-utilized in fire management, particularly with respect to problems belonging1338

to either predictive or prescriptive analytics. Fire management comprises a set of risk control measures,1339

which are often cast in the framework of the emergency response phases: prevention; mitigation; prepared-1340

ness; response; recovery; and review [Tymstra et al., 2019]. In terms of financial expenditure, by far the1341

largest percentage spent in the response phase [Stocks and Martell, 2016]. In practice, fire management is1342

largely determined by the need to manage resources in response to active or expected wildfires, typically1343

for lead times of days to weeks, or to manage vegetative fuels. This suggests the opportunity for increased1344

research in areas of fire weather prediction, fire occurrence prediction, and fire behaviour prediction, as1345

well as optimizing fire operations and fuel treatments. The identification of these areas, as well as the fact1346

that wildfire is both a spatial and temporal process, further reiterate the need for ML applications for time1347

series forecasting.1348

From this review, there were few papers that used time series ML methods for forecasting problems,1349

suggesting an opportunity for further work in this area. In particular, recurrent neural networks (RNNs)1350

were used for fire behavior prediction [Cheng and Wang, 2008, Kozik et al., 2013, 2014] and fire occurrence1351

prediction [Dutta et al., 2013]. The most common variant of RNNs are Long Short Term Memory (LSTM)1352

networks [Hochreiter and Schmidhuber, 1997], which have been used for burned area prediction [Liang1353

et al., 2019] and fire detection [Cao et al., 2019]. Because these methods implicitly model dynamical1354

processes, they should lead to improve forecasting models compared with standard ANNs. For example1355

Gensler et al. [2017] have used LSTMs to forecast solar power and Kim et al. [2017] used CNNs combined1356

with LSTM for forecasting precipitation. We anticipate that these methods could also be employed for fire1357

weather, fire occurrence, and fire behaviour prediction.1358

We note that there are a number of operational research and management science methods used in fire1359

management research including queuing, optimization, and simulation of complex system dynamics (e.g.,1360

Martell [2015]) where ML algorithms don’t seem to provide an obvious alternative. For example, planning1361

models to simulate the interactions between fire management resource configurations and fire dynamics1362

reviewed by [Mavsar et al., 2013]. From our review, a few papers used agent-based learning methods for fire1363

management. In particular, reinforcement learning was used for optimizing fuel treatments [Lauer et al.,1364

2017] or for autonomous control of aircraft for fire monitoring [Julian and Kochenderfer, 2018a]. GAs were1365

used for generating optimal firelines for active fires [Homchaudhuri et al., 2010] and for reducing the time1366

for fire simulation [Cencerrado et al., 2014]. However, more work is needed to identify where ML methods1367

could contribute to tactical, operational, or strategic fire management decision making.1368

An important challenge for the fire research and management communities is enabling the transition1369

of potentially useful ML models to fire management operations. Although we identified several papers1370

that emphasized their ML models could be deployed in fire management operations [Artés et al., 2016,1371

Alonso-Betanzos et al., 2002, Iliadis, 2005, Stojanova et al., 2012, Davis et al., 1989, 1986, Liu et al.,1372

2015], it can be difficult to assess whether and how a study has been adopted by, or influenced, fire1373

management agencies. This challenge is often exacerbated by a lack of resources and/or funding, as well as1374

the different priorities and institutional cultures of researchers and fire managers. One possible solution to1375

this problem would be the formation of working groups dedicated to enabling this transition, preferably at1376

the research proposal phase. In general, enabling operational ML methods will require tighter integration1377

and greater collaboration between the research and management communities, particularly with regards1378

to project design, data compilation and variable selection, implementation, and interpretation. However,1379

it is worth noting that this is not a problem unique to ML, it is a long-standing and common issue in many1380

areas of fire research and other applied science disciplines, where continuous effort is required to maintain1381

communications and relationships between researchers and practitioners.1382

Finally, we would like to stress that we believe the wildfire research and management communities1383

should play an active role in providing relevant, high quality, and freely available wildfire data for use by1384

practitioners of ML methods. For example, burned area and fire weather data made available by Cortez1385

and Morais [2007] was subsequently used by a number of authors in their work. It is imperative that the1386
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quality of data collected by management agencies be as robust as possible, as the results of any modelling1387

process are dependent upon the data used for analysis. It is worth considering how new data on, for1388

example, hourly fire growth or the daily use of fire management resources, could be used in ML methods1389

to yield better predictions or management recommendations — using new tools to answer new questions1390

may require better or more complete data. Conversely, we must recognize that despite ML models being1391

able to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of wildfire1392

processes, while the complexity of some ML methods (e.g., DL) requires a dedicated and sophisticated1393

knowledge of their application (we note that many of the most popular ML methods used in this study are1394

fairly easy to implement, such as RF, MaxEnt, and DTs). The observation that no single ML algorithm is1395

superior for all classes of problem, an idea encapsulated by the “no free lunch” theorem [Wolpert, 1996],1396

further reinforces the need for domain-specific knowledge. Thus, the proper implementation of ML in1397

wildfire science is a challenging endeavor, often requiring multidisciplinary teams and/or interdisciplinary1398

specialists to effectively produce meaningful results.1399

5.7 A word of caution1400

ML holds tremendous potential for a number of wildfire science and management problem domains. As1401

indicated in this review, much work has already been undertaken in a number of areas, although further1402

work is clearly needed for fire management specific problems. Despite this potential, ML should not be1403

considered a panacea for all fire research areas. ML is best suited to problems where there is sufficient high-1404

quality data, and this is not always the case. For example, for problems related to fire management policy,1405

data is needed at large spatiotemporal scales (i.e., ecosystem/administrative spatial units at timescales of1406

decades or even centuries), and such data may simply not yet exist in current inventories. At the other1407

extreme, data is needed at very fine spatiotemporal scales for fire spread and behavior modeling, including1408

high resolution fuel maps and surface weather variables which are often not available at the required scale1409

and are difficult to acquire even in an experimental context. Another limitation of ML may occur when1410

one attempts make predictions where no analog exists in the observed data, such as may be the case with1411

climate change prediction.1412

6 Conclusions1413

Our review shows that the application of ML methods in wildfire science and management has been steadily1414

increasing since their first use in the 1990s, across core problem domains using a wide range ML methods.1415

The bulk of work undertaken thus far has used traditional methods such as RF, BRT, MaxEnt, SVM1416

and ANNs, partly due to the ease of application and partly due to their simple interpretability in many1417

cases. However, problem domains associated with predictive (e.g., predicted fire behavior) or prescriptive1418

analytics (e.g. optimizing fire management decisions) have seen much less work with ML methods. We1419

therefore suggest opportunities exist for both the wildfire community and ML practitioners to apply ML1420

methods in these areas. Moreover, the increasing availability of large spatio-temporal datasets, from climate1421

models or remote sensing for example, may be amenable to the use of deep learning methods, which can1422

efficiently extract spatial or temporal features from data. Another major opportunity is the application of1423

agent based learning to fire management operations, although many other opportunities exist. However,1424

we must recognize that despite ML models being able to learn on their own, expertise in wildfire science1425

is necessary to ensure realistic modelling of wildfire processes across multiple scales, while the complexity1426

of some ML methods (e.g. DL) requires a dedicated and sophisticated knowledge of their application.1427

Furthermore, a major obstacle for the adoption of ML methods to fire modeling tasks is the perceived1428

lack of interpretability of such methods, which are often considered to be black box models. The ML1429

community, however, recognizes this problem and work is underway to develop methods that allow for1430

greater interpretability of ML methods (see for example, [McGovern et al., 2019]). Data driven approaches1431

are by definition data dependent — if the fire management community wants to more fully exploit powerful1432
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ML methods, we need to consider data as a valuable resource and examine what further information on1433

fire events or operations are needed to apply ML approaches to management problems. Thus, wildland1434

fire science is a diverse multi-faceted discipline that requires a multi-pronged approach, a challenge made1435

greater by the need to mitigate and adapt to current and future fire regimes.1436
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Jacek Jakubowski, Maciej Solarczyk, and Micha l Wísnios. Smoke detection in a digital image with the use2008

of convolutional network. page 14. SPIE-Intl Soc Optical Eng, mar 2019. ISBN 9781510627857. doi:2009

10.1117/12.2524560.2010

J. . R. Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man,2011

and Cybernetics, 23(3):665–685, May 1993. doi: 10.1109/21.256541.2012

Maria João Sousa, Alexandra Moutinho, and Miguel Almeida. Wildfire detection using transfer learning2013

on augmented datasets. Expert Systems with Applications, page 112975, sep 2019. ISSN 09574174. doi:2014

10.1016/j.eswa.2019.112975.2015
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Marc Andŕ Parisien, Susan Snetsinger, Jonathan A. Greenberg, Cara R. Nelson, Tania Schoennagel,2371

Solomon Z. Dobrowski, and Max A. Moritz. Spatial variability in wildfire probability across the west-2372

ern United States. International Journal of Wildland Fire, 21(4):313–327, 2012. ISSN 10498001. doi:2373

10.1071/WF11044.2374
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