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Characteristics of near-wall turbulence at quasistationarity under strong wall cooling
are studied using direct numerical simulation of open-channel flow. It is shown that if
turbulence reaches quasistationarity, then the characteristics of quasistationary near-wall
turbulence, even with the strongest wall cooling rate, are generally similar to the weakly
stratified case. The effects of strong stable stratification on the characteristics of near-wall
turbulence are transient. The effect of stratification on several characteristics of stratified
near-wall turbulence, including first-, second-, and higher-order statistics, turbulent kinetic
energy budget, and mechanisms involved in the evolution of turbulence producing eddies,
are discussed. It is shown that among mechanisms that contribute to the budget of turbulent
kinetic energy, transfer and pressure-work are more dependent on the stratification if
turbulence reaches quasistationarity. The buoyancy destruction term influences the budget
for the tangential Reynolds stress more than the budget for the turbulent kinetic energy.
Relevant length scales are also discussed in detail. The Corrsin and Ellison scales are
smaller than the Ozmidov scales and are sensitive to stratification in the upper logarithmic
layer and in the outer layer. The Corrsin scales in the lower half of the buffer layer and
fine-scale structures of wall-normal velocity in the viscous sublayer are smaller than the
Kolmogorov scale. Finally, the effect of heat entrainment from the upper boundary and
computational domain size are also examined. In summary, it is found that the behavior
of near-wall turbulence at quasistationarity is approximately similar to weakly stratified
cases, regardless of the choice of upper boundary condition.
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I. INTRODUCTION

In the stably stratified atmospheric boundary layer (ABL), the reduction of vertical mixing has a
significant effect from an environmental perspective. For example, the reduced vertical mixing with
stable stratification may lead to increased air pollution by a localized accumulation of black carbon
[1] and a considerable reduction in power output from large wind farms [2]. Turbulence in the stably
stratified ABL involves complexities such as spatiotemporal intermittency [3–9], microfronts [6,10],
and gravity wave breaking [6,11], which are not yet completely understood. These complexities can
be studied by simulating stably stratified wall-bounded shear-flow (e.g., stratified channel flows) as
an idealized model for the stable atmospheric boundary layer.

For such idealized models, wall-modelled LES studies of the ABL in rotating reference frames
[12] have shown that an increase in stable stratification leads to stronger vertical gradients of the

*aatoufi@uwaterloo.ca

2469-990X/2020/5(6)/064603(31) 064603-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3575-1467
https://orcid.org/0000-0003-3922-8777
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.064603&domain=pdf&date_stamp=2020-06-05
https://doi.org/10.1103/PhysRevFluids.5.064603


ATOUFI, SCOTT, AND WAITE

mean temperature, a decrease in vertical turbulent momentum flux, an increase in vertical turbulent
temperature flux, and an ABL that is typically shallower [12,13]. The integral length scale and
turbulence production decrease as stratification increases [12].

The effects of stratification on the budget of turbulent kinetic energy (TKE) have been studied
for quasistationary turbulence with LES [14–16] and nonstationary turbulence with direct numerical
simulations (DNS) [3,4,17–19]. Furthermore, the recent experimental study of Williams et al. [13]
of stably stratified turbulence over a flat plate has shown that increasing stratification is associated
with strong reductions in tangential Reynolds stress, leading to the collapse of turbulence production
by mean shear. The motions that contribute to negative Reynolds stress and positive turbulence
production due to mean shear (Q2 and Q4 events [20,21]) are most affected by stratification. The
ejections (Q2) are damped and sweeps (Q4) are not significantly affected by stable stratification.
The motions that contribute to positive tangential Reynolds stress and negative production (Q1 and
Q3 events) are less affected.

Taylor et al. [16] performed an LES study of open channel flow at friction Reynolds number
Reτ = 400 with imposed negative density gradient at the top and zero density gradient at the
bottom for relatively weak stratification up to friction Richardson number Riτ = 500 and Prandtl
number Pr = 5. The velocity fluctuations in the inner layer of the bottom boundary layer are not
significantly influenced by stratification in their results. This minimal dependence of near-wall
velocity fluctuations on stratification raises a question regarding the location of the imposed density
gradient. If the density gradient (source of strongly stable stratification) were placed on the bottom
wall, which is where the turbulence is generated by shear, would the turbulence be more affected by
the stratification? Here, we address this question for open channel flow at quasistationarity, which
was also the state investigated in Taylor et al. [16]. While there are a number of relatively recent DNS
studies that have also addressed this question, these studies used either a closed channel [5,9] or an
open channel with fixed top temperature [8,19,22,23]. From the perspective of a nocturnal ABL,
an open channel is the more relevant idealized case. In the latter studies, stratification is imposed
on both the bottom wall and the upper boundary. However, these latter studies did not discuss
characteristics of the strongly stable regime. By strongly stable, we mean stratification that is strong
enough to cause intermittency or full collapse and relaminarization of fully developed turbulence
shortly after stratification is introduced; this perspective is motivated by earlier experimental [13,24]
and numerical studies [5,8,9]. In the case of strong stable stratification, an important question is how
strongly stratified turbulence that recovers from possible collapse compares to weakly or neutrally
stratified wall-bounded turbulence.

Apart from bottom cooling, heat entrainment from the upper boundary layer for strong stable
stratification can significantly affect boundary layer dynamics as a result of the strong capping
inversion [22,23,25,26] that develops beneath the top boundary [4]. In the real nocturnal ABL the
capping inversion controls the boundary layer height [25]. It is therefore also important to address
the impact of heat flux from the upper boundary on the characteristics of wall-bounded turbulence.
In realistic flows, due to active momentum transfer from the free atmosphere into ABL, heat may be
entrained into the ABL [27]. In our open-channel flow simulations with a rigid lid at top boundary,
we used heat entrainment to refer to heat flux from top boundary.

Here we mainly examine the quasistationary state, which may nevertheless inform our perception
of evolving stable boundary layers, which are usually complicated by the dependence of the
turbulence statistics on time. The main themes of the present work are as follows: (1) characterizing
first and second-order statistics and relevant length scales of wall-generated turbulence under
strong stable stratification at a quasistationarity state with a focus on the near-wall region where
turbulence has been shown to be largely affected by buoyancy earlier in the surface cooling
process [4], (2) investigating the impact of a capping inversion, and (3) analyzing sensitivity to
the choice of computational domain size. The rest of the paper is divided into three sections. In
Sec. II, the governing equations are presented and the numerical approach is briefly discussed.
The results are shown in Sec. III. The notion of “strong stable” stratification is first discussed
in the context of the current study in Sec. III A. We then study the effect of stratification on the
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first and second-order statistics and TKE in Sec. III B. Then, mixing and stratification effects are
diagnosed using nondimensional numbers in Sec. III C. The TKE budget is presented and discussed
in Sec. III D. Kinetic energy redistribution is addressed in Sec. III E. After studying the TKE budget,
turbulence production is explored in Sec. III F. Typical length scales for stratified wall-bounded
turbulence are introduced and investigated in Sec. III G and in Sec. III H. Higher-order statistics are
examined in Sec. III I. The results section concludes by reviewing the sensitivity of some of the
diagnostics to heat entrainment from the upper boundary in Sec. III J and computational domain
size in Sec. III K. The paper ends with conclusions in Sec. IV.

II. GOVERNING EQUATIONS AND METHODOLOGY

In this work, the nondimensional Navier-Stokes equations under the Oberbeck-Boussinesq
approximation (OBA) are used. With the choice of channel height, reference friction velocity, and a
value for the imposed bottom-surface temperature gradient, the dimensionless OBA equations can
be written as [5,16]

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ 1

Reτ

∂2ui

∂x j∂x j
+ Riτ θ δi3 + δi1, (2)

∂θ

∂t
+ u j

∂θ

∂x j
= 1

PrReτ

∂2θ

∂x j∂x j
, (3)

where Reτ , Riτ , and Pr are reference friction Reynolds, Richardson, and Prandtl numbers. The
variables ui, θ , and p are the ith velocity component, deviation of the temperature field from the
constant background temperature, and deviation of the pressure from the hydrostatic background
pressure. (u1, u2, u3) = (u, v,w) are the component of velocity in the streamwise, spanwise, and
wall-normal directions, which correspond to the x, y, and z axes of the Cartesian coordinate system,
respectively.

The open-source flow solver Hercules [5] is used to solve the governing equations numerically.
This model employs the Fourier-spectral method in the horizontal directions along with second-
order finite difference and grid staggering in the vertical direction. Grid stretching is also used in
vertical direction where the mesh is denser close to the bottom to resolve small scales near the
wall. For dealising, Fourier modes are truncated following the 2/3 rule in the horizontal directions,
and a skew-symmetric form of nonlinear advection terms is employed in the vertical direction [28].
Continuity is enforced by applying the fractional step method [29].

A constant force is included in the x momentum equation to drive flow in the x direction.
Periodic boundary conditions have been employed in the horizontal (x-y) plane while no-slip and
free-slip boundary condition are applied at the wall and at channel top, respectively. The temperature
boundary condition at the bottom boundary is Neumann with ∂θ/∂z = 1 to impose surface cooling
and stable stratification. Two types of boundary conditions are considered for the temperature of
the upper boundary: Neumann (∂θ/∂z = 0) for the main simulations, where the upper boundary is
adiabatic, and Dirichlet (θ = 0) for additional cases that include heat flux at the upper boundary.

Five main high-resolution simulations (C1–C5) with Reτ = 560 are performed in this study,
as presented in Table I. For these simulations the domain size is Lx = 2π , Ly = π , and h = 1
and grid spacings based on wall units are �x+ = 4.6, �y+ = 2.3 in horizontal directions, and
�z+ ∈ [0.08 − 3.3] in the vertical. Plus unit are scaled by Reynolds number, e.g., �z+ = �z Reτ .
Simulations include one unstratified case (C1) and four stratified cases (C2–C5), with Riτ ranging
from 0 to 1120. The time step is �t = 0.0002 in C1 and C2 and �t = 0.00015 for C3–C5.
The stratified cases C2–C5 are initialized from an output of the neutral case C1 within the
quasistationarity state. The unstratified case is run for a total of 53 outer layer time units t d = t/t o,
where t o = h/uτ is the timescales of the outer layer eddies and uτ is the friction velocity based on
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TABLE I. Parameters of simulations

Case Reτ Riτ h/LMO Lx/h Ly/h t f BC Nx Ny Nz

C1 560 0 0 2π π 53.2 N/N 768 768 384
C2 560 560 0.41 2π π 48.5 N/N 768 768 384
C3 560 697 0.51 2π π 47.7 N/N 768 768 384
C4 560 833 0.61 2π π 55.19 N/N 768 768 384
C5 560 1120 0.82 2π π 62.6 N/N 768 768 384
C6 560 2800 2.05 2π π 30.9 N/N 768 768 384
C2D 560 560 0.41 2π π 40 N/D 768 768 384
C5D 560 1120 0.82 2π π 60 N/D 768 768 384
C5DC 560 1120 0.82 2π π 140.8 N/D 384 384 192
L5D 560 1120 0.82 8π 6π 70.9 N/D 1536 2304 192

the value of the mean shear at the wall and h is the channel height. After initialization, cases C2,
C3, C4, and C5 are run for 49, 48, 55, and 62 outer layer unit times, respectively.

The temporal evolution of TKE k = u′
iu

′
i/2, where u′

i = ui − ui and mean kinetic energy (MKE)
K = uiui/2 integrated over the domain are shown in Fig. 1 for C1–C5. Overbar denotes averaging
over horizontal directions and time throughout this paper (except for explicitly stated quantities that
are time dependant, for which overbar denotes horizontal averaging only). It can be seen that, during
the last 12 time units, a quasistationary state is reached for the cases considered here. Therefore the

0 20 40 60

200

300

400

500

600

700

0 20 40 60
0

1

2

3

0 20 40 60

10 1

10 2

10 3

0 20 40 60
0

2

4

6

10 -3

FIG. 1. Time series of (a) domain integrated MKE, (b) domain integrated TKE, (c) domain-integrated
buoyancy frequency, and (d) friction coefficient for C1–C6.
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reported quantities in this study are averaged over the last 12 time units. Moreover, as shown in
Fig. 1, the stratified cases take more time to reach quasistationarity due to the increase of flow
timescales caused by stable stratification [4].

Note that the qualifier “quasi” is used since the domain-averaged temperature decreases due to the
boundary conditions [16,18] (pure cooling) for C2–C5 and does not reach stationarity. Nevertheless,
this decrease does not affect the buoyancy frequency, mean velocities, and fluctuating fields, which
all appear stationary as shown in Fig. 1 [4].

Additional simulations are performed to investigate the effect of very strong stratification (C6),
computational domain size (C5DC and L5D) and the upper thermal boundary condition (C2D and
C5D). Turbulence in case C6 collapses and does not recover (Fig. 1), which shows that Riτ in
C5 is approximately the maximum at which near wall turbulence may recover to quasistationarity.
This case is run for 30 outer layer unit times. For C5DC and L5D �x+ = 9.2, �y+ = 4.6, and
�z+ ∈ [0.32 − 6.3]. For cases C2D, C5D, and C6, the same grid spacings as in C1–C5 are used. For
C2D, C5D, and C6, the time step is �t = 0.00015, while �t = 0.0003 is used for C5DC and L5D.
The case C5DC is initialized by sampling the output of C5D at the time TKE become quasistationary
on a grid that is two times coarser in each direction. Using the output of C5DC at quasistationarity,
case L5D is initialized by periodically extending the output of C5DC by 8 times in the streamwise
direction and 6 times in the spanwise direction. The BC column in Table I refers to the choice of
upper thermal boundary condition where N refers to Neumann (∂θ/∂z = 0) and D refers to Dirichlet
(θ = 0). The latter leads to entrainment of heat from the upper boundary.

The h/LMO in Table I refers to the ratio of Monin-Obukhov scale to channel height, where the
MO scale LMO is (in terms of dimensionless quantities)

LMO

h
= Reτ Pr

κRiτ
, (4)

and κ ≈ 0.41 is the von Kármán constant. More details for simulations C1–C5 are given in Atoufi
et al. [4]. All parameters and diagnostic quantities are dimensionless.

III. RESULTS

A. Strength of stratification

Before we discuss the results, let us clarify what we mean by “strong stable stratification” within
the context of the current study, as we often use this terminology. The classification of stable
stratification regimes in this work, as a result of wall cooling, is determined by the transient state.
The time evolution of cases C1–C6 in Fig. 1 show that distinct phases exist in the cooling process,
which we discuss in detail in Ref. [4]. These cases undergo an initial decay that lasts for four to
six (outer layer eddy) turnover times, where the longest decay phase corresponds to the strongest
stable case, C6, considered here. The next phase is recovery, when turbulence recovers from the
initial decay caused by the stable stratification. The recovery phase is generally longer than the
decay phase, and simulations with higher Riτ take longer to recover from the initial decay. For
instance, the recovery phase for C5 is 4 � tu0

τ /h � 45, which highlights the significance of stable
stratification in increasing the timescale of the energy-containing eddies during the decay phase.

The recovery of the more strongly stratified cases C4 and C5 behave differently when compared
to the more weakly stratified cases C1–C3, which suggests that C4 and C5 are in a different stable
stratification regime. In these two cases, the domain integrated MKE and TKE (Fig. 1) show an
overshoot in the recovery phase of the cooling process, which is different from C2 and C3 where
quasistationarity is asymptotically approached without such overshoots. Moreover, for C4 and C5,
the initial decay of TKE [Fig. 1(b)] is larger than C2 and C3. In particular, in C5, the effect of
stratification is strong enough to cause partial collapse of turbulence for almost 20 turnover times.
Due to these differences, we mark stratification regime for C4 and C5 as strongly stable. In C6,
stratification is so strong that the flow does not recover to a turbulent state and fully collapses.
The Riτ for C5 and C6 lie in the region of strongly stratified turbulence in the (Reτ − Riτ ) space
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diagram for stably stratified wall-bounded flows given by Zonta and Soldati [7] based on previous
DNS studies.

Flores and Riley [8] also simulated open-channel flow with the same parameters and bottom
boundary condition as in C5 and used a Dirichlet boundary condition at top. They found the
stratification in this case to be strong enough to cause intermittency. However, and as we will show
in this study, despite the fact that the impact of stratification on the flow is strong in the decay and
recovery phase, when quasistationarity is reached, the impact of stratification is weak.

The friction coefficient is defined as the ratio of the wall shear stress to the kinetic energy of the
bulk flow and is expressed as [16]

Cf = 2τw

ρu2
b

= 2u2
τ

u2
b

, (5)

where ub = 1
h

∫ h
0 u dz is the bulk flow velocity and overbar refers to averaging over the horizontal

plane. Time series of the friction coefficient are shown in Fig. 1(d). The friction coefficient
monotonically decreases with increasing surface cooling rate (increasing Riτ ), consistent with other
studies of stably stratified boundary layers [13,15,16]. Similarly to TKE, Cf also undergoes a rapid
decay followed by recovery to a quasistationary value for each case. The Cf values for C6 also
shows drastic decrease and no signs of recovery consistent will full collapse of turbulence across
whole boundary layer.

Before discussing the quasistationary state, it should be noted that whether the turbulence
collapses or not, and the Riτ at which collapse occurs, is also sensitive to the choice of initial
condition. For example, for a case with Riτ = 1680 (with parameters and boundary condition
similar to C5), initialization using a neutral case at the same Reτ leads to full collapse. However
if the simulation is initialized using output from C5 at quasistationarity state when tu0

τ /h = 23.7,
plus uniformly distributed random noise in the velocity field with zero mean and variance of 0.2,
turbulence recovers and attains quasistationarity state.

B. First- and second-order statistics

In this section, we focus on the overall effect of stratification on characteristics of the quasista-
tionary state for simulations C1–C5. The mean velocity profile is shown in Fig. 2(a). Increasing
stratification (i.e., by increasing the bottom wall cooling flux by increasing Riτ ) increases the
mean velocity above the buffer layer at z+ � 30; as will be shown below, this is a result of flow
acceleration due to the decrease in wall shear stress [Fig. 6(a)]. All cases exhibit log-linear behavior
of mean velocity for 30 � z+ � 100 with a monotonic increase of the slope of the log-linear
profile as Riτ increases. The mean velocity up to the end of the buffer region (z+ � 30) is almost
independent of stratification.

Profiles of the buoyancy frequency N2, where

N2 = Riτ
∂θ

∂z
, (6)

are shown in Fig. 2(b). In contrast to the mean velocity profiles, the effect of the cooling flux on the
mean temperature gradient is greatest near the lower boundary. As expected, increasing Riτ results
in monotonic enhancement of N2 near the wall, which becomes weaker moving upward. However,
the dependence of N2 on Riτ is much less pronounced above z+ = 100. Therefore, for C2–C5, the
buoyancy restoring force, which increases with Riτ , is strongest at lower boundary and becomes
weakest at the upper boundary.

One-point statistics of velocity fluctuations are shown in Fig. 3, and TKE is shown in Fig. 4.
Generally, and similar to studies of weakly stratified cases [16], all cases show similar profiles
in the inner layer for z � 0.2 (z+ � 100) and slightly different trends in the outer layer z � 0.2
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FIG. 2. Horizontally averaged profiles of (a) streamwise velocity and (b) buoyancy frequency.

(z+ > 100). For example, u′2 and v′2 above z > 0.6 decrease slightly as Riτ increases. The decrease
in w′2 with increasing stratification is consistent across the channel height.

The dominant contribution to TKE for z � 0.1 comes from u′2. Specifically, almost 85% of the
TKE peak in the near-wall region comes from the streamwise velocity fluctuations. The maximum
of this streamwise fraction of the TKE in the buffer region is reduced as stratification increases
[zoomed-in box in Fig. 3(a)]. However, above z ≈ 0.2 the u′2 contribution is reduced to about
50% where the v′2 and w′2 contributions increase and reach about 30% and 20% of total TKE,
respectively, to z ≈ 0.9.

Although the mean velocity profiles show clear differences, even in the buffer layer [Fig. 2(a)],
the maxima of the velocity fluctuations with stratification are within 10% of those from the neutral
case. The result here are consistent with the study of Taylor et al. [16] although we have used
different boundary conditions by imposing the source of stable stratification on the bottom wall
where turbulence is generated.

This degree of similarity between velocity fluctuations for different stratifications, even in the
most strongly stable quasistationary case C5, for which turbulence partially collapsed at an earlier
stage of the cooling process [4], strongly supports the idea that the destruction of TKE by stable
stratification is a transient process as also discussed in Donda et al. [22,23]. If turbulence passes the
decay and recovery phases [4], then the quasistationary characteristics of near-wall turbulence are

064603-7



ATOUFI, SCOTT, AND WAITE

0 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

7 7.5
0.02

0.025

0.03

0.035

0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.6 1.8 2

0.05

0.1

0.15

0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1.1

0.1

0.2

0.3

FIG. 3. Second-order moment of fluctuations of (a) streamwise velocity (u′2), (b) spanwise velocity (v′2),
and (c) vertical velocity (w′2).

generally similar to the weakly stratified case. This transient effect will be further discussed when
the budget of TKE and tangential Reynolds stresses are introduced.

It is worth discussing some of the differences between cases C1–C5 and those in Donda et al.
[22,23]. For C1–C5 there is no heat flux from the upper boundary and the lower boundary is
continuously cooled. Thus the maximum sustainable heat flux (MSHF) [22], which is an upper
limit for effective heat transfer across the channel height to balance wall cooling, is zero in
C1–C5. In Donda et al. [22,23] it is hypothesized that a stably stratified wall-bounded flow
with heat entrainment from the upper boundary has a nonzero MSHF beyond which turbulence
collapses. As mentioned earlier, turbulence recovers from partial collapse in C5 [4]. Interestingly,
turbulence recovers for other more strongly stratified cases with Riτ � 2000, h/LMO < 1.4 if
properly initialized but not for h/LMO � 1.5 (not shown here). For example, if a simulation with
Riτ = 2000 is initialized using Riτ = 1680 simulation outputs at quasistationarity plus uniformly
distributed random noise in the velocity field with zero mean and variance of 0.2, turbulence
recovers and acquires quasistationarity state. The initialization technique for a case with Riτ = 1680
has been introduced in Sec. III A. Therefore, in C2–C5, the flow is limited by a minimum shear
capacity (MSC) as discussed in van Hooijdonk et al. [30] (and not a MSHF), below which turbulence
production cannot be maintained and starts to collapse. This difference suggests investigating
turbulence collapse based on shear production as a more reliable approach.

Moreover, compared to the work of Taylor and coworkers (Fig. 8 in Taylor et al. [16] and Fig. 3
here), after reaching quasistationarity the velocity fluctuations in the inner layer are not significantly
sensitive to the location of the imposed stable stratification. Similar results are obtained whether it
is imposed at the bottom wall where turbulence is being generated, or at the upper boundary where
there is no source of turbulence production. This similarity among velocity statistics regardless
of the choice where stable stratification introduced is due to the fact that shear dominates over
buoyancy in the quasistationary state, as will be shown in Sec. III C.

Profiles of mean and root-mean-square (RMS) temperature are shown in Fig. 5. It is clear
that increasing Riτ results in stronger temperature gradient and N2. Temperature fluctuations are
relatively small everywhere, with somewhat higher values as Riτ increases. The effect of Riτ
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FIG. 4. Turbulent kinetic energy profile.

become more clear in the outer layer as shown in Fig. 5(b) where wall-generated shear becomes
less dominant.

The tangential Reynolds stress is shown Fig. 6(a). Stratification leads to a monotonic decrease
of −u′w′ at all heights. This decrease in −u′w′ with increasing Riτ explains the flow acceleration
by stratification in Fig. 2(a). Turbulent heat fluxes are shown in Figs. 6(b) and 6(c). The streamwise
turbulent heat flux is an order of magnitude larger than the vertical heat flux. The larger values of
streamwise turbulent heat flux are due to the fact that streamwise velocity fluctuations are largest
compared to the wall-normal and spanwise counterparts. Profiles of u′θ ′ and −w′θ ′ closely follow
the profiles of u′2 and w′2 in Figs. 3(a) and 3(c) by a factor of O(10−3) signifying small values for
θ ′ correlating with u′ and w′. Additionally, Figs. 3(a) and 3(c) and Figs. 6(b) and 6(c) together
show that the normalized correlation between fluctuating streamwise velocity and temperature

Ruθ = u′θ ′/(
√

u′2
√

θ ′2) is larger than the normalized correlation between fluctuating wall-normal

velocity and temperature Rwθ = −w′θ ′/(
√

w′2
√

θ ′2). The larger normalized correlation between
u′ and θ ′ suggests that the effect of buoyancy is more pronounced in the evolution of the quantities
that directly depend on u′θ ′ (e.g., evolution of turbulence production as in tangential Reynolds stress
budget equation) rather than w′θ ′ (e.g., evolution of the variance of vertical velocity fluctuations).

C. Buoyancy Reynolds number and gradient and flux Richardson numbers

In this section, we aim to further explore the nature of stable stratification caused by wall cooling
in C2–C5. To do so, we relate stratification effects to the mean shear and turbulence dissipation,
which control the characteristics of the turbulence and thus momentum mixing. To reach this goal
we use three different nondimensional parameters by which stratification can be quantified: the
buoyancy Reynolds number Reb, gradient Richardson number (Rig), and flux Richardson number
(Ri f ).
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FIG. 5. First- and second-order statistics for temperature field. (a) Mean and (b) root-mean-square. The θ0

and θ1 in (a) are values of mean temperature at bottom (z/h = 0) and top boundary (z/h = 1), respectively.

The buoyancy Reynolds number is defined as [31]

Reb = Reτ

ε

N2
, (7)

where horizontally and temporally averaged values are used for the kinetic energy dissipation ε and
buoyancy frequency. Reb is related to the ratio of the Ozmidov to Kolmogorov scales (both will be
defined in Sec. III G) and quantifies the range of small scales that are not affected by stratification
[32,33]. Regions with Reb � 1 include overturning, enhanced mixing, and more isotropic small-
scale turbulence. Vertical profiles of Reb are shown in Fig. 7(a). Even in C5, the minimum value
of Reb � 50 for z/h � 0.8, showing that there are inertial range eddies that are not significantly
affected by stratification [33], similar to a weakly stratified case. Therefore, features of near-wall
turbulence are far from the viscously coupled stratified turbulence (VCST) regime with Reb < 1
[4,34,35]. By contrast, at early times in C5, during the decay and early stages of the recovery phase,
VCST was the dominant feature of the near-wall region, which had Reb < 1 [4].

The gradient Richardson number is defined as [9,36]

Rig = N2

S2
, (8)

where S = ∂u/∂z. The gradient Richardson number shows regions of the flow where either
buoyancy or shear dominates. In shear-dominated regions, turbulence is enhanced and mixing
becomes stronger. Only the regions above z ≈ 0.9 satisfy the criteria Rig > 0.25 [36] and mean
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FIG. 6. Second-order moment of (a) streamwise-vertical velocity fluctuations, (b) streamwise velocity-
temperature fluctuations, (c) vertical velocity-temperature fluctuations.

shear dominates everywhere else for all cases, as shown in Fig. 7(b). Therefore, it is expected
that near-wall turbulence in the stratified cases is similar in C2–C5 since Rig is relatively small
for all stratifications. The small values for Rig near the wall are due to the fact that mean shear
near the wall is very large and almost independent of stratification [Fig. 2(a)] in the quasistationary
state. Therefore, Rig becomes very small near the wall z < 0.1 with only a small dependence on
stratification.

The flux Richardson number is defined as [16]

Ri f = −B

−B + ε
, (9)

where horizontally and temporally averaged values are used for the viscous dissipation (ε) and
buoyancy destruction (B) (these quantities will be defined and described in more detail below).
Effectively Ri f is the ratio between buoyancy destruction B and TKE production P, where the
balance P ∼ −B − ε is used to have meaningful values where P is small within the logarithmic and
outer layer regions. Therefore Ri f measures the work that is needed to overcome the destroying
effect of stable stratification that may lead to reduction in momentum mixing [16]. The Ri f in
Fig. 7(c) increases with increasing stratification at all heights. Also, Ri f increases when moving
away from the wall until z ≈ 0.8. Therefore, with increasing height, more work is needed to
overcome the destroying effect of buoyancy until z � 0.8, showing that the outer layer is mostly
affected by stratification. Mean shear production dominates buoyancy in the near-wall region and
the effects of stable stratification become minimal where z � 0.2. Above z ≈ 0.8, Ri f becomes
smaller due to the impermeable free-slip-wall at the upper boundary.

Now let us return to the discussion of strong stable stratification prior to quasistationarity. To
complement our qualitative observation of collapse and recovery at early times [4] we now quantify
strong stable stratification with the gradient Richardson number, which gives a local measure of
stratification strength. Profiles of Rig at different times in the inner region are shown in (Fig. 8).
It is important to note that although the quasistationary value of Rig in the inner layer (z � 0.2)
are less than 0.1 for C2–C5 [Fig. 7(b)], Rig acquires higher values in this region at earlier times of
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FIG. 7. Vertical profiles of (a) buoyancy Reynolds number, (b) gradient Richardson number, and (c) flux
Richardson number.

surface cooling process (Fig. 8). The values of Rig [Fig. 8(d)] in the inner region for C5 reaches
0.2, which is close to the threshold of 0.25 [37,38] for the stability of stratified shear flow. This is
in agreement with the appearance of intermittency in this region at early times. In C6, Rig reaches
0.25 at early times [Fig. 8(e)] and turbulence in the near-wall region completely collapses (Fig. 1).
The inner-region collapse of turbulence leads to full collapse of outer layer turbulence at subsequent
times.

Due to the fact that turbulence in C6 fully collapses, leading to completely different boundary
layer structures (e.g., layered vortices as shown in Atoufi et al. [4]), quasistationarity is not reached
for this case. Thus for the moderate Reynolds number considered here, the strongest surface cooling
rate (set by Riτ ) which may be imposed on a neutral open-channel flow while allowing for the
recovery of fully developed turbulence must be between C5 and C6, i.e., Reτ between 1120 and
2800. The relatively high values for Rig in the inner region in C5 confirms presence of strong stable
stratification in this case earlier in the cooling process.

D. TKE budget

In this section, we aim to investigate the mechanisms that contribute to the TKE budget for
quasistationary stably stratified wall-bounded turbulence. The different terms in the TKE budget
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FIG. 8. Changes of gradient Richardson number over inner region at different times for (a) C2, (b) C3,
(c) C4, (d) C5, and (e) C6. The u0

τ refers to friction velocity of neutral case. The outer layer part is not shown
for clarity since Rig obtains large values in this region during the decay phase and early recovery phase of the
cooling process.

are defined in the Appendix and shown in Fig. 9: production P, dissipation ε, buoyancy destruction
B, turbulent transport T , viscous diffusion D, and pressure-work �. It is noteworthy that buoyancy
flux as sometimes used in the literature (e.g., Huang and Bou Zeid [12]) differs in sign from B.
For clarity only cases C1, C3, and C5 are shown, and we focus on inner-layer balances where
z+ � 100. Although the major balance is between production and dissipation, stratification affects
these two mechanisms only slightly. Overall, the behavior is different from the transient case, where
stratification has a significant impact on the evolution of TKE [4].

In general, the effects of stratification are more prominent going from the neutral case C1 to
C2. For C2–C5, all of the terms that contribute to the budget of TKE become close together
even when Riτ increases by a factor of two from C2 to C5, which causes partial collapse before
turbulence reaches stationarity [4]. Production and dissipation vary only slightly with stratification.
Turbulence production in the inner layer decreases with increasing Riτ for z+ � 20 and increases
with increasing Riτ for z+ � 20 [Fig. 9(a)]. Except in the viscous sublayer (VSL) where z+ � 5,
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FIG. 9. Different contributions to the budget of TKE: (a) production, (b) dissipation, (c) buoyancy
destruction, (d) turbulent transport, (e) pressure-work, and (f) viscous diffusion. Each term is scaled by Reτ

which is equivalent to conventional near-wall scaling by friction velocity uτ and viscosity ν as ν/u2
τ .

dissipation decreases with increasing Riτ . Stratification has a more significant effect on the smaller
terms B, T , and �. The buoyancy destruction B is an order of magnitude smaller than production
and dissipation, which indicates that buoyancy destruction has a small impact on TKE exchange.
The turbulent transport T is approximately equal to the transport of u′2 (T ≈ T11, see Appendix).
Interestingly, in the upper VSL, T decreases as Riτ increases. Its magnitude also decreases in the
buffer layer as Riτ increases. As will be shown in Sec. III I, this change of T with stratification is
consistent with weakening ejection and intensifying sweep events as Riτ increases.

The pressure-work term � [39,40] describes the work that is associated with the pressure field
that can modify the kinetic energy of fluid elements. In the VSL, viscosity plays a significant role
and the kinetic energy is not sufficient to initiate lift-up of the fluid elements. The pressure-work �

(along with D) can amplify kinetic energy of fluid elements to be sufficiently large for lift-up and
escape from such a highly viscous region as the VSL. The largest values for � are limited to the
VSL, where � decreases as Riτ increases. This decrease in � with increasing stratification signifies
that the ability of fluid elements to lift up from the lower part of the VSL is reduced as Riτ increases.

In the VSL, viscous diffusion and pressure-work are energy sources. The net effect of these two
TKE sources, along with dissipation, are transferred upward to the buffer layer by T . In the lowest

064603-14



CHARACTERISTICS OF QUASISTATIONARY NEAR-WALL …

-0.1 -0.05 0 0.05 0.1

10 0

10 1

10 2

FIG. 10. Intercomponent energy redistribution.

part of the VSL z+ � 1, where velocity fluctuations are small, D and ε balance each other. Thus,
� is the key mechanism in this part of the VSL to perform the work that is needed to transport
fluid elements to the upper VSL where velocity fluctuations become stronger and T plays a more
dominant role transferring TKE.

E. Intercomponent energy redistribution

So far, we have explored the behavior of the components of the velocity fluctuations and the
TKE budget. An important question is how TKE is being distributed among horizontal and vertical
components of velocity fluctuations. To analyze intercomponent energy transfer at different vertical
levels, the diagonal components of i j (see Appendix) are examined. These terms can be used
because continuity implies that the pressure-strain mechanism does not contribute to the budget of
TKE and acts to redistribute among different portion of TKE.

Intercomponent energy redistribution ii (no summation over i) is shown in Fig. 10. Overall,
the dependence of the components of ii on z+ is the same with stratification as without. In the
lower part of the VSL z+ � 3, 33 is a sink in the budget of w′2, and 11, 22 are sources for u′2

and v′2 (11,33 > 0). However, in that region 11 is small and TKE is transferred mostly from
w′2 to v′2, showing that flow structures are becoming mostly lifted up. This flow of energy between
fluctuating components may be due to vertical excitation of spanwise vortex rolls as in the early
stage of hairpin vortex formation [41,42]. In upper VSL (3 � z+ � 5), TKE is extracted from w′2

and u′2 and distributed into v′2, which suggests lifting up of the legs of quasistreamwise hairpin
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vortex [20,21]. These vortical structures become more streamwise aligned moving upward into the
buffer layer as 11 becomes increasingly negative while 22 and 33 become more positive.

In the lower buffer layer where 5 � z+ � 10, 11 becomes a considerable sink in the budget of
u′2 showing that flow structures become dominantly streamwise aligned (e.g., formation of streaks
from legs of hairpin vortices). TKE still redistributes from u′2 and w′2 to v′2, but the rate of energy
distribution from u′2 intensifies compared to the upper VSL. From z+ � 10, TKE redistributes from
u′2 to v′2 and w′2. Above the buffer region where z+ � 30, TKE is almost equally distributed from
u′2 to w′2 and to v′2. In these intercomponent TKE redistributions above the VSL, the magnitude of
11 and 33 increase as Riτ increases.

The change in 11 with stratification for z+ � 10 is more pronounced than that of 22 and 33.
This suggests stratification is in favor of straightening of tilted streamwise structures, as the decrease
in 11 leads to decrease in 22 and 33.

F. Budget of tangential Reynolds stress

In Sec. III D, we explored the budget of TKE at equilibrium. While production was influenced
by stratification, the influence was less than expected. In this section, we aim to achieve a better
understanding of why this is the case. To do so, we examine the budget of the tangential Reynolds
stress, because of the key role that it plays in turbulence production.

The different contributions to the budget of u′w′ are production (P13), dissipation (ε13), buoyancy
destruction (B13), turbulent transport (T13), viscous diffusion (T13), pressure-transport �13, and
pressure-strain (13); these terms are defined in the Appendix and profiles are shown in Fig. 11.
Similarly to the TKE budget, we focus on inner layer balances. Interestingly for u′w′, production
P13 [Fig. 11(a)] and the buoyancy term B13 [Fig. 11(c)] are the same order of magnitude, showing
that stratification has a more important effect on the budget of u′w′ than the TKE budget. The
maximum of P13 is in the buffer layer and is an order of magnitude larger than the dissipation ε13.
Another significant contribution to the budget of u′w′ within the buffer layer comes from 13.

Transfer of u′w′ in part of the buffer layer where 5 � z+ � 20 corresponds to a sign change in
T13 [Fig. 11(d)], which shows a transfer of tangential Reynolds stress from the wall to the upper
boundary layer (ejection) for z+ � 10 and from the upper boundary layer toward the wall (sweep)
for 10 � z+ � 50. In both the VSL and the buffer layer, T13 shows a significant decrease from C1
to C2. B13 increases with stratification while ε13 and D13 are not very sensitive to stratification.
The effect of stratification on �13 is largest in the VSL. Above the VSL, stratification does not
significantly affect these mechanisms within the inner layer. The magnitude of 13 in the VSL is
increased with increasing Riτ . Very close to the wall where z+ < 1, 13 and �13 balance each other
and ε13 is balanced by D13. The maximum of B13 occurs at z+ ≈ 15. The neighbourhood of this
location is associated with suppression of ejection and sweeping of tangential Reynolds stress as
shown in Fig. 11(d).

The importance of buoyancy on the budget of the tangential Reynolds stress highlights the
significance of stratification on the evolution of turbulence producing eddies. Thus it is expected
that turbulence collapses at early stages of strong surface cooling when the timescale of turbulence
producing eddies is larger than the timescale of buoyancy destruction through boundary layer growth
[4]. As a result, they cannot adjust accordingly and the boundary layer cannot accommodate a buffer
region [8] with net positive production.

Although we mainly discuss the quasistationary state, the hierarchy of the different terms in
the Reynolds stress budget is independent of whether the transient or quasistationary state is
considered. Hence, another motivation for the examination of the budget of u′w′ is to have a clearer
understanding of the mechanisms that most significantly contribute to the transiently evolving
turbulence-producing eddies seen in an earlier study for the same configuration [4]. The significance
of buoyancy on the evolution of turbulence production rather than buoyancy destruction of TKE
has been found in other flow configurations. Recently, Shah and Bouzeid [43] showed that for an
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FIG. 11. Different contribution to the budget of u′w′: (a) production, (b) dissipation, (c) buoyancy
destruction, (d) transfer, (e) viscous diffusion (f) pressure-transport, and (g) pressure-strain.

evolving Ekman boundary layer under stable stratification, turbulence decay is controlled by the
decrease in TKE production and not buoyancy destruction.

G. Length scales

Although relevant length scales for homogeneous stratified turbulence [44] and unstratified wall-
bounded shear flows [45] have been studied independently in numerous studies [20,33], far fewer

064603-17



ATOUFI, SCOTT, AND WAITE

studies have looked at length scales for stratified wall-bounded shear flows [16]. In this section, we
examine various length scales, and also check the basic requirement for the grid scales to be smaller
than that of the smallest dissipative eddies. Meeting this requirement implies we are accurately
resolving the interaction of scales at all levels. Vertical grid spacing is denoted by �z and is a
function of height due to grid stretching.

We begin by looking at the Kolmogorov length scale due to its fundamental importance as the
typical length scale of small, dissipative eddies in a turbulent flow. The Kolmogorov length scale is
defined as

η = (
Re3

τ ε
)−1/4

. (10)

It has recently been suggested that the Kolmogorov scale is not necessarily the smallest dissipative
scale, particularly in regions of the flow that contain strong velocity gradients [46]. Since dissipation
is governed by velocity gradients, it is useful to define scales that are derived based on statistics of
velocity derivatives. Fine-scale structures in the velocity field are defined as [47]

λ
ui
i =

⎡⎢⎣ ( ∂u′
i

∂xi

)2( ∂2u′
i

∂x2
i

)2

⎤⎥⎦
1/2

, (11)

where the summation convention is not used. With this definition, λ
ui
i is the scale of momentum-

carrying structures that are fine enough to capture both dissipation and diffusion processes (ui struc-
tures hereafter). The consideration of diffusion becomes important in the lower VSL where viscous
dissipation and diffusion have similar values. In particular for w structures, wall impermeability
imposes very small values for wall normal velocity in the lower VSL and having the correct turbulent
diffusion becomes very important.

Shear generated by the presence of the wall plays a key role in maintaining turbulence production
for wall-bounded turbulence. If lC is the length scale of the eddies that have timescales comparable
to mean shear S, then their velocity is of order ulC ≈ (εlC )1/3 [45] using the inertial-range
approximation. Therefore, from lC/ulC = 1/S, the Corrsin length scale is defined as [45]

lC =
( ε

S3

)1/2
. (12)

The Corrsin scale is typically used in shear flows [45].
In stratified turbulent flows it is common to define a characteristic scale of stratification, which

we will denote as lO, for which there is a balance between inertial and buoyant effects [33]. This
scale is called the Ozmidov scale and is defined as

lO =
( ε

N3

)1/2
. (13)

Analogously to the Corrsin scale, lO is the scale at which the eddy timescale is similar to N .
Therefore, stratification has a negligible effect on turbulence for scales much smaller than lO, and
the effect of stratification becomes dynamically important when the eddy size is similar to or greater
than the Ozmidov scale.

All the length scales that have been discussed so far depend on velocity fluctuations and are
therefore inherently linked to the kinetic energy of the flow. It is also important to identify scales that
primarily involve potential energy. The Ellison scale lE is a distance that a fluid particle can travel
before all of its kinetic energy transfers to potential energy and transfer back toward equilibrium
position [48,49]. Therefore, the Ellison scale is an overturning scale and it is defined as [16,48–50]

lE =
√

θ ′2
∂θ
∂z

. (14)
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FIG. 12. Length scales as a function of wall normal distance. (a) grid (solid lines), Kolmogorov (dashed
lines), Corrsin (dotted lines), and Ozmidov scales (dash-dotted lines). (b) Kolmogorov scales (solid lines), fine
scales of w structures (dotted lines), v structures (dash-dotted lines), and u structures (dashed lines). (c) Ellison
scales.

Figure 12 shows these length scales as functions of height from the wall. In Fig. 12(a) we can
see first of all that η and lC are smaller than the Ozmidov scale. The Kolmogorov scale shows little
dependence on stratification, while the Corrsin scale does show some dependence on stratification in
the outer region above z+ ≈ 100, where lC decreases as Riτ increases. This is particularly interesting
because they are still smaller than the Ozmidov scale. Note also that the Corrsin scale is smaller than
the Kolmogorov scale below z+ ≈ 10 in Fig. 12(a), implying that all scales are affected by strong
near-wall shear. Both the Kolmogorov and Corrsin scales are indeed larger than the grid scale,
indicating that the flow is well resolved.

Fine scales of w structures (λw
z ), shown in Fig. 12(b), are smaller than η in the lower VSL where

z+ � 1 as a result of wall-impermeability leading to small vertical velocity. Moreover, the limiting
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behavior of the velocity fluctuations [51,52] leads to a linear profile for λw
z close to the wall [47].

The λu
x , λv

y , and λw
z fine scales of velocity structures are smaller than the Ozmidov scale and are not

sensitive to stratification at all vertical levels, as shown in Fig. 12(b). As expected, the outer layer
values of λu

x , λv
y , and λw

z are similar, indicating that small scales in that region are close to isotropic.
Fine structures of u are larger than the other components and fine structures of w are the smallest.

Figure 12(c) shows the Ellison scale, which does not exhibit a dependence on Riτ in the near-wall
region. However, lE is sensitive to stratification in the outer layer, although it is smaller than lO.

H. Kinetic energy spectra and horizontal scales

To address vertical dependence of the horizontal length scales that may contribute to the kinetic
energy cascade we look at premultiplied streamwise and spanwise energy spectra as a function of
height. The premultiplied energy spectra are defined as

φx
E (kx, z) = kx

2

∑
ky

kyûiû
∗
i , (15)

φ
y
E (ky, z) = ky

2

∑
kx

kxûiû
∗
i , (16)

where (̂ ) refers to Fourier transform, ∗ represents complex conjugate and kx and ky are wave num-
bers in streamwise and spanwise directions. Premultipied spectra are frequently shown [9,45,53]
because of their relationship with kinetic energy. For example, spanwise averaged kinetic energy
corresponds to

∫
E dkx = ∫

φx
E d (logkx ) = ∫

φx
E d (logλx ), where E = ∑

ky
ûiû∗

i /2 and λx = 2π/kx

is the wavelength in the streamwise direction. A similar expression is valid for the streamwise
averaged kinetic energy. Thus, on a logarithmic wavelength axis, φx

E and φ
y
E visualize spectral

energy densities [9] for streamwise and spanwise wavelengths, respectively.
The premultiplied spectra are shown in Fig. 13. For clarity, only spectra for cases C1 and C5 are

shown. It can be seen that the energetic scales in the buffer layer in the spanwise direction are smaller
than those in the buffer layer in the streamwise direction. For example, the contours containing 90%
of the spectral energy density are centered at λy ≈ 100 and λx ≈ 800 for spanwise and streamwise
scales, respectively. The λx and λy corresponding to each contour line at all levels become slightly
smaller with increasing stratification. The inclination of spectral energy density contours with height
[dashed-dotted line in Fig. 13(a)] for the spanwise scales is more pronounced in comparison to
the streamwise scales [Fig. 13(b)]. This difference suggests that widening of spanwise scales with
respect to height occurs at a larger rate compared to elongating of streamwise scales. Large outer-
layer spanwise scales with λy � Ly (λ+

y � 1760) contain only �10% of spectral energy density as
shown in Fig. 13(a). However, they penetrate down to VSL. Large outer-layer streamwise scales
with λx � Lx contain �40% of the spectral energy density, as shown in Fig. 13(b). However, they
do not contribute significantly to statistics as shown below, probably due to the paucity of those
scales [54]. Large outer-layer streamwise structures of the size λx � Lx (λ+

y � 3520) contain �10%
of the spectral energy density and have also their roots in the VSL.

For the neutral case, spanwise length scales increase monotonically with height and contour
lines of spectral energy density show a relatively symmetric shape around the reference line λy ∝ z.
Interestingly, for strongly stable stratification, this symmetry of the spectral energy density around
the line λy ∝ z is broken for spanwise scales [in Fig. 13(a)] while the shape of spectral energy
density for streamwise scales is approximately preserved [Fig. 13(b)]. Thus, distribution of kinetic
energy among different λx scales does not change significantly with stratification at all heights. In
C5, the change of λy with height that contribute between 30% and 70% of the φ

y
E is smaller in

comparison to the scales that contribute more than 70% of φ
y
E . For scales that contain less than 30%

of φ
y
E in C5, the increase with height is smaller compared to scales that contain a similar portion of

φ
y
E in C1. Thus, stratification causes asymmetry in distribution of kinetic energy among different λy

scales with respect to height.
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FIG. 13. Spectral energy density (a) φ
y
E and (b) φx

E . Blue and green lines correspond to C1 and C5,
respectively. Contours are plotted at the level of 0.1, 0.3, 0.5, 0.7, and 0.9 of maximum values of the
corresponding spectrum. The slope of the black diagonal dash-dotted line is 1 in (a) where z = 60

Reτ
λy.

I. Higher-order statistics

Higher-order statistics can provide additional insight into our understanding of the distribution
of TKE. For example, third-order moments of velocity fluctuations can provide insight into energy
transfer and fourth-order moments can accentuate activities of less energetic scales. We scale u′2 and
u′4 by their maximum so that both have values between zero and one. Then, below the log-region
where the flow is energetic these profiles look similar. However, above that region where the flow is
less energetic, the difference between these scaled profiles become more prominent (not shown).

Plots of u′3 with respect u′2 and u′4 are presented in Fig. 14. Third-order moments of u′ and w′

are correlated with the transfer of u′2 and w′2 (Ti j term in the Appendix). By comparing Figs. 14(c)
and 14(d) one can say is that u′2 and u′4 are strongly correlated (a similar relationship is seen for w′2

and w′4). Similar results have been found in LES simulations of atmospheric boundary layers [55].
From the modeling perspective, this strong correlation between second- and fourth-order statistics
suggest that a linear model that relates fourth-order moments and second-order moments can be
used to represent effect of fourth-order moments. This results supports quasinormal approximation
[55–57] which can be used in model development [57,58].

Also, strong positive fluctuations in u′3 are enhanced as stratification increases, while strong
negative ones are weakened. Therefore, stratification is in favor (in a quasistationary sense) of
intensifying high-speed streaks and weakening low-speed streaks [Fig. 14(a)]. Positive streamwise
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FIG. 14. Profiles of (a) third-order versus fourth-order moments of streamwise velocity fluctuations,
(b) third-order versus fourth-order moments of vertical velocity fluctuations, (c) fourth-order versus second-
order moments of streamwise velocity fluctuations, and (d) fourth-order versus second-order moments of
vertical velocity fluctuations.

velocity fluctuations can be seen (Fig. 15) to increase in the upper VSL as Riτ increases whereas
negative streamwise velocity fluctuations in the buffer layer decrease. For w′3, the positive vertical
velocity fluctuations are strongly weakened and the magnitude of the negative vertical velocity
fluctuations are slightly increased, in particular in the log region.

This behavior of third-order velocity statistics can be summarized in terms of a Q2 (ejection) and
Q4 (sweep) map. As shown in Fig. 15(c), ejection events (Q2) are hindered as Riτ increases and
sweeping events (Q4) are less affected compared to the neutral case, consistent with earlier studies
[13,16]. The larger effect of stratification on ejection events is due to the fact that these events are
strongest close to the wall where N2 is largest. Therefore, buoyancy restoring force has more effect
on these events rather than sweeping events, which are initiated further from the wall with a smaller
N2 [13,16].

J. Effect of heat entrainment from upper boundary

For the stratified cases shown so far (C2–C5), we have neglected the effect of possible heat
transfer from the upper boundary. In doing so, we have isolated near-wall turbulence from
modulations caused by stable stratification (i.e., capping inversion) due to heat entrainment at the
upper boundary. As discussed by Atoufi et al. [4], heat entrainment from the upper boundary results
in weakening of the outer layer eddies, which can significantly affect the wall turbulence. These
outer layer eddies play an important role in turbulence recovery for strong stable stratification.
Removing them from the flow results in full collapse of turbulence during transient cooling [4], and
intensifying their available TKE, even by 10%, can enable recovery from collapse [8].
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FIG. 15. Vertical profile of (a) third-order moment of streamwise velocity fluctuations and (b) third-order
moment of vertical velocity fluctuations, and (c) w′3 versus u′3 for analysis of quadrant events (Q1–Q4).

In this section, we study the effect of the upper thermal boundary condition on statistics of
the quasistationary state. To do so, we compare C2 and C5 with C2D and C5D. In C2 and C5
heat transfer from the upper boundary is not permitted. Cases C2D and C5D use Dirichlet upper
boundary conditions and therefore allow entrainment of heat from the upper boundary. For C2D
and C5D, simulations are initialized using fields from the quasistationary states from C2 and C5,
respectively. As shown in Fig. 16(a) heat entrainment from the upper boundary results in trends for
TKE that are similar to more weakly stratified cases [see Fig. 1(b)] when stratification is imposed
only at the bottom wall such as C2 (see Atoufi et al. [4] for the temporal evolution of C2–C5).
In both C2D and C5D, turbulence first undergoes a decay until t ≈ 5 and then starts recovering
afterward. However, the overshoot of domain integrated TKE in C5 is not observed for C5D. An
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FIG. 16. Effects of heat entrainment from the upper boundary on (a) domain-integrated TKE and (b) verti-
cal profile of TKE.

important point here is that turbulence can recover from initial decay with or without entrainment
of heat from the upper boundary. To distinguish between these two situations, one can say that the
former flow is limited to a maximum sustainable heat flux [22,23] and the latter flow is limited to a
minimum shear capacity to sustain turbulence [30] (see Sec. III B for more detailed explanation).

The profile of TKE in Fig. 16(b) shows that the upper thermal boundary condition can modulate
flow characteristics (e.g., TKE, mean shear, and N2) for z � 0.3 in the quasistationary state.
Compared to C5, C5D has lower TKE for z > 0.8. Moreover, in C5D the flow acceleration due
to reduced tangential Reynolds stress leads to larger streamwise velocity for z > 0.3 [Fig. 17(a)].
The temporal evolution of domain integrated TKE suggests that entrainment of heat from the upper
boundary also has a transient effect and if turbulence approaches quasistationary state the TKE
become close to the weakly stratified case. A strong capping inversion caused by heat entrainment
from the upper boundary can be clearly seen in Fig. 17(b), where for z > 0.3 buoyancy restoring
force significantly increases. The effect of heat entrainment from the upper boundary is significant
on mean flow velocity and buoyancy frequency above the buffer layer. However, TKE for all
stratified cases shows similar behavior (Fig. 16(b) and also Fig. 19 in Taylor et al. [16]). This
similarity strongly suggests that characteristics of stably stratified wall-turbulence become similar
to weakly stratified cases if quasistationarity is acquired. This similarity means that, regardless of
the choice of the upper boundary condition, the TKE profile becomes roughly similar to weakly
stratified cases.

K. Computational domain size effect

Results presented so far were obtained on a domain of medium size [53,59] with Lx = 2π and
Ly = π . For the unstratified case, such a domain contains a few minimal flow units [60] including
at least one ejection and one sweep [61]. Here we examine the effect of the computational domain
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FIG. 17. Effects of heat entrainment from upper boundary on (a) mean velocity profile and (b) buoyancy
frequency.

on mean flow behavior, second-order statistics, and energy spectra. In this section the results from
a larger domain simulation L5D with Lx = 8π and Ly = 6π are compared to medium domain case
C5DC, which both have the same grid resolution, which is lower than that of the main simulations
C1–C5. Note that these simulations employ Dirichlet boundary conditions at the upper boundary
and therefore have heat entrainment. The size of the larger domain was chosen based on the study
of García-Villalba and del Álamo [9].

The mean flow velocity and temperature profiles for medium and large domain size simulations
in Fig. 18 look quite similar. This is consistent with unstratified channel flow simulations [59]. The
only slight differences between medium and large domains are observed for z > 0.6. Second-order
statistics of velocity and temperature also have similar profiles for medium and large domain sizes,
as seen in Fig. 19. The turbulent heat flux in the vertical direction shows slightly larger sensitivity
to the choice of domain size.

The streamwise-averaged premultiplied kinetic energy spectrum for the smaller domain shows
that it is already sufficient to represent the scales in the spanwise direction [Fig. 20(a)]. The widest
structures belong to the outer layer whereas the tallest structures are streaks that belong to the buffer
layer, where 10 � z+ � 20. Streaks with size λx � Lx in the buffer layer contain �60% of energy
spectrum as shown in Fig. 20(b). As expected, spanwise length scales are typically smaller than
streamwise length scales. Moreover, and consistent with earlier studies [54], the spectrum for the
small domain closely follows that for the larger domain up to the cutoff wavelength that is set by
the domain size in the streamwise direction. It is worth mentioning that the tall length scales in
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FIG. 18. Computational domain size effect on (a) mean velocity profiles and (b) buoyancy frequency.

Fig. 20(b), with λx ≈ 25h and about 10% of the TKE, are likely attached inactive structures [62].
These structures enhance viscous dissipation as they are connected to the VSL [63]. These inactive
structures most likely contain swirling or meandering type of motions [62] which will not contribute
to top-down transferring of tangential Reynolds stresses.

IV. CONCLUSION

In this paper, near-wall turbulence under strong stable stratification has been studied using DNS.
To address the effects of stable stratification on the characteristics of near-wall turbulence, five
different high-resolution cases (C1–C5) are considered with different Richardson numbers ranging
from the neutral to strongly stable stratified regime.

The configuration for cases C1–C5 was chosen similar to Atoufi et al. [4] to analyze the response
in the near-wall region due to stratification imposed by bottom wall cooling. Although this response
was found to be significant in the transient case [4], at quasistationarity the impact is much smaller.
Nonetheless, in the near-wall region, where z � 0.1, stratification leads to a decrease in velocity
variances, TKE, tangential Reynolds stress, and heat flux in the streamwise and wall-normal
direction. Using analysis of higher-order statistics it was shown that the tendency of streamwise
velocity fluctuations to acquire positive values is intensified as stratification increases.

Mean flow velocity above z+ � 10 is increased as Riτ increases due to flow acceleration caused
by a reduction in near-wall tangential Reynolds stress. The buoyancy restoring force is strongest at
the wall and becomes weaker moving away from the wall. Increasing Riτ intensifies this restoring
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colors are similar to Fig. 18.

force. However, the shear stress generated by the mean shear dominates these buoyancy forces. By
analyzing Reb it was shown that for C2–C5, overturning and not layering of vortical structures is a
dominant feature of eddy motions in the near-wall region if quasistationarity is reached. To z � 0.8,
the flux Richardson number is reduced with increasing height and stratification.

Analysis of the TKE budget shows that production and dissipation are the dominant terms in
balancing TKE above the VSL and buoyancy destruction does not significantly affect the TKE
budget. It was shown that very near the wall where z+ � 1, velocity fluctuations are small and
pressure-work term plays an important role in transferring TKE to higher-momentum fluid farther
away from the wall. To further explore the effects of stratification on turbulence production, we
examined the budget of tangential Reynolds stress. By doing so, it was shown that buoyancy has a
considerable effect on the budget of tangential Reynolds stress. Therefore, the appearance of patchy
turbulence during the cooling process due to a lack of production (and not excessive dissipation [4])
is likely linked to the significance of buoyancy destruction on the evolution of tangential Reynolds
stress.
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wise premultiplied energy spectrum. Line colors are similar to Fig. 18. Contours are plotted at the level of (0.1,
0.3, 0.5, 0.7, 0.9) of maximum values of energy spectrum.

By analyzing length scales, it was found that in the outer layer, z+ � 100, for each Riτ :
lO > lE > lC . Each of these scales shows some sensitivity to stratification. It was shown that there
are scales smaller than the Kolmogorov scale that may be important for wall-bounded stratified
turbulence. Particularly in the VSL, the Corrsin scales are smaller than Kolmogorov scales. Very
near the wall where z+ � 1, λw

z structures are also smaller than Kolmogorov scales. In the VSL,
lC < λw

z in general.

Analysis of intercomponent energy transfer ii shows that energy extraction by u′2 is more
sensitive to stable stratification than v′2 or w′2. Comparison of the various terms in ii suggests
there are changes in the directivity (or preferred alignment angles) of the vortical structures in the
near-wall region with stratification. This will be investigated in a future study.

Quasistationary wall turbulence under strong bottom cooling responds to the entrainment of heat
from the upper boundary in a manner similar to weakly stratified turbulence with bottom cooling
that has been initialized from the neutrally stratified case. However, in the quasistationary state,
this entrainment of heat significantly affects the mean flow characteristics of the outer layer with
minimal change on turbulence of the inner layer.

The effect of domain size on the results was also considered by running an additional simulation
on a large domain. It was shown that mean velocity and buoyancy frequency can be accurately
represented in the lower half of the channel using the smaller domain size. In the upper half,
mean flow and buoyancy frequency slightly deviate from larger domain simulations. However,
and consistent with studies of unstratified wall-bounded turbulence [54], one-point second-order
statistics are accurately represented on a domain size of Lx = 2π , Ly = π . Although the mechanisms
that are involved in the balance of TKE have been discussed here, the cascade of kinetic energy in
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strongly stable stratified wall turbulence remains an open question that will be addressed in future
work.
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APPENDIX: REYNOLDS STRESSES TRANSPORT EQUATIONS

The budget of Reynolds stresses are governed by [14]:
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are production, turbulent transport, pressure-transport, pressure-strain, and
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′δi3), (A3)

are viscous diffusion, viscous dissipation, and buoyancy. The buoyancy terms are called buoyancy
destruction if they are negative. The budget equation for TKE is similar to (A1) with i = j. Note
that, in the TKE budget, we refer to B as buoyant destruction, since it is generally negative.
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