
Normal Mode Spectra of Idealized Baroclinic Waves

MATTHEW R. AMBACHER AND MICHAEL L. WAITE

University of Waterloo, Waterloo, Ontario, Canada

(Manuscript received 24 May 2019, in final form 13 December 2019)

ABSTRACT

Normalmodes are used to investigate the contributions of geostrophic vortices and inertia–gravity waves to

the energy spectrum of an idealized baroclinic wave simulation. The geostrophic and ageostrophic modal

spectra (GE and AE, respectively) are compared to the rotational and divergent kinetic energy (RKE and

DKE, respectively), which are often employed as proxies for vortex and wave energy. In our idealized f-plane

framework, the horizontal modes are Fourier, and the vertical modes are found by solving an appropriate

eigenvalue problem. For low vertical mode number n, both the GE and AE spectra are steep; however, for

higher n, while both spectra are shallow, the AE is shallower than the GE and the spectra cross. The AE

spectra are peaked at the Rossby deformation wavenumber kR
n , which increases with n. Analysis of the

horizontal mode equations suggests that, for large wavenumbers k � kR
n , the GE is approximated by the

RKE, while the AE is approximated by the sum of the DKE and potential energy. These approximations are

supported by the simulations. The vertically averaged RKE and DKE spectra are compared to the sum of

the GE and AE spectra over all vertical modes; the spectral slopes of the GE and AE are close to those of

the RKE and DKE, supporting the use of the Helmholtz decomposition to estimate vortices and waves

in the midlatitudes. However, the AE is consistently larger than the DKE because of the contribution from

the potential energy. Care must be taken when diagnosing the mesoscale transition from the intersection

of the vortex andwave spectra;GE andAEwill intersect at a different scale thanRKEandDKE, despite their

similar slopes.

1. Introduction

In the decades since Nastrom and Gage (1985) first

described the shape of the atmospheric kinetic energy

(KE) spectrum, the mystery of this spectrum has mo-

tivated fundamental research in several areas of geo-

physical fluid dynamics. The 23 spectral slope at

synoptic scales is well explained by quasigeostrophic

(QG) turbulence theory (Charney 1971), but the dy-

namical mechanisms behind the mesoscale25/3 slope,

which extends from scales ofO(100) toO(1) km, is still

an active area of research. While some early work fo-

cused on the possibility of an inverse energy cascade

through the mesoscale driven by convection (Gage

1979; Lilly 1983), it now appears that the energy cas-

cade is downscale at sub-100-km scales (Lindborg and

Cho 2001). Different mechanisms have been proposed

for such a cascade, including inertia–gravity waves

(IGWs; Dewan 1979; VanZandt 1982; Bartello 1995),

anisotropic stratified turbulence (Lindborg 2006; Riley

and Lindborg 2008), and balanced dynamics near the

tropopause (Tulloch and Smith 2006). Nevertheless, a

complete picture of the mesoscale cascade process

remains elusive. Indeed, it is possible that more than

one mechanism is important, or that different mecha-

nisms act at different levels or scales. In addition to

being a fundamental problem in geophysical turbulence,

this question has important practical implications: the

mesoscale cascade connects the large, energy-containing

scales with microscales, where turbulent dissipation oc-

curs, and is not fully resolved by atmospheric models.

Parameterizations of the cascade should be consistent

with its physics (e.g., Shutts 2005; Schaefer-Rolffs and

Becker 2013).

A basic question about the atmospheric energy

spectrum, which must be answered before the various

proposed theories can be evaluated, is whether it is

dominated by IGWs and/or geostrophic vortices. Several

studies have attempted to decompose spectra from air-

craft data into wave and vortex contributions, mainly

using the Helmholtz decomposition of the horizontal

velocity field. This decomposition separates the KE

into horizontally rotational and divergent kinetic en-

ergy (RKE and DKE, respectively), which are looselyCorresponding author: Michael L. Waite, mwaite@uwaterloo.ca
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attributed to geostrophic vortices and IGWs. This

attribution is not exact, even in a linear sense, since

IGWs have some rotational motion, especially at low

frequencies. Furthermore, at large scales and low lat-

itudes, Rossby waves have some divergent motion.

Nonlinearities complicate matters further, since some

of the horizontal divergence is balanced, even on an

f-plane (e.g., Kafiabad and Bartello 2016). Nevertheless,

the Helmholtz decomposition is useful and straightfor-

ward. Helmholtz-decomposed KE spectra from aircraft

data show that, while the KE spectrum is dominated by

the RKE in the troposphere (Cho et al. 1999; Lindborg

2007), the level of DKE is not negligible in the tropo-

sphere, and actually dominates over the RKE in the lower

stratosphere (Callies et al. 2016; Li and Lindborg 2018).

Furthermore, Callies et al. (2016) used the Helmholtz-

decomposed KE spectra, along with potential energy (PE)

spectra from temperature data, to construct linear IGW

energy spectra, confirming that wave energy dominates the

total mesoscale energy in the lower stratosphere. These

studies suggest that the mesoscale spectrum may be ex-

plained by IGW theories in the lower stratosphere, but not

in the upper troposphere.

Most atmospheric models are capable of reproducing

at least the qualitative shape of the atmospheric spectrum

when run at sufficiently high resolution (e.g., Koshyk and

Hamilton 2001; Skamarock 2004; Hamilton et al. 2008;

Skamarock et al. 2014). Such models can be used to ad-

dress physical questions about themesoscale cascade. For

example, numerical studies have confirmed that the

spectral flux is downscale below scales of 100km (Augier

andLindborg 2013).Other studies have shown that, while

the lower-stratospheric KE spectrum is dominated by

DKE consistent with IGWs, the spectral energy budget is

strongly influenced by vertical wave fluxes in addition

to downscale transfer (Waite and Snyder 2009; Peng

et al. 2015a). Nevertheless, there are some differ-

ences between models, such as the relatively low frac-

tion of DKE in Hamilton et al. (2008) compared to

Skamarock and Klemp (2008). Some of these differ-

ences may be due to vertical resolution (Waite 2016;

Skamarock et al. 2019) and physical parameterizations

(Malardel and Wedi 2016), both of which can affect the

simulated spectra.

For spectral analysis from aircraft data, spectra are

computed at (approximately) constant height by ne-

cessity, and energy decompositions are restricted to

horizontal, not vertical, structure. However, analysis

of model output allows for more flexibility. An alter-

native spectral decomposition for model data can be

formulated with linear normal modes. The equations

of motion can be linearized around a reference state,

and solutions to the equations can be expressed as a

sum of the orthogonal normal modes of the system

(e.g., Kasahara and Puri 1981). By orthogonality, the

total domain-averaged energy can be expressed as a

sum of modal energies. This approach has several ad-

vantages over the usual procedure of analyzing spectra

independently at different model levels. First, unlike the

Helmholtz decomposition, the normal modes fully

separate linear IGWs and geostrophic vortices; there

is no ambiguity, at least in a linear sense, about

whether the RKE is due to geostrophic vortices or

low-frequency IGWs. Second, the vertical structure of

the IGWs is built into the decomposition. Third, since

potential energy is considered, the normal modes de-

compose the total mechanical energy, not just the ki-

netic energy. Finally, since the modes are orthogonal,

they allow for a complete decomposition of the total

energy into geostrophic vortices and IGWs at every

horizontal and vertical scale.

Normal modes have been used to investigate the

mesoscale spectrum in both idealized simulations and

more realistic model data. Bartello (1995) used normal

modes to decompose energy spectra in homogeneous

rotating–stratified turbulence, and found that IGW

energy cascades downscale with a shallow spectrum

due to catalytic wave–vortex interactions. The normal

mode approach is now commonly employed in idealized

studies of rotating–stratified turbulence (e.g., Kitamura

and Matsuda 2010; Deusebio et al. 2013; Herbert et al.

2016). In a more realistic context, Terasaki et al. (2011)

and �Zagar et al. (2017) used normal modes to decom-

pose the energy spectrum in global reanalysis data. They

found that, like Bartello (1995), the IGW spectrum is

shallower than the geostrophic spectrum at all scales;

indeed, the IGW spectral slope is around 25/3 across a

wide range of length scales. At sufficiently small scales,

the shallower IGW spectrum crosses the steeper geo-

strophic spectrum, and the total energy is dominated

by IGWs. In the idealized homogeneous studies, the

normal mode structure is Fourier in the horizontal and

vertical; by contrast, with global data, the horizontal

structure are Hough modes, while the vertical structure

is found by solving the associated eigenvalue problem

(e.g., Kasahara and Puri 1981).

In this paper, we use normal modes on a periodic

f-plane to analyze the spectrum in an idealized mesoscale

simulation driven by baroclinic instability. Baroclinic

waves have been used in several studies for idealized

investigations of the mesoscale spectrum (Waite and

Snyder 2009; Peng et al. 2015a,b). Despite the simple

setup, these simulations yield many realistic mesoscale

features, including DKE spectra with a 25/3 slope.

These simulations, while idealized, are able to cap-

ture the basic mechanism by which IGWs energy is
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transferred downscale with a 25/3 spectrum. In dry

simulations, the amplitude of the DKE spectrum is not

large enough to significantly modify the KE spectrum in

the troposphere, but it does in the stratosphere, where

the total kinetic energy shallows under the dominance

of the DKE (Waite and Snyder 2009). The addition of

moist physics (Waite and Snyder 2013; Peng et al.

2015a,b) or topography and surface fluxes (Menchaca

andDurran 2019) enhances the DKE spectrum and, as a

result, the mesoscale KE spectrum.

Idealized baroclinic instability offers a test case of

intermediate complexity in which to investigate the

role of IGWs in the mesoscale spectrum. Compared

to homogeneous rotating–stratified turbulence, this

approach uses more realistic vertical structure and

large-scale vortices. On the other hand, the geometry

of the f-plane allows for the use of Fourier modes to

represent the horizontal structure, which are consid-

erably simpler than Hough modes. This setup allows

for a careful analysis of the normal mode spectra and

comparison between the normal mode andHelmholtz

decompositions. The rest of this paper is organized as

follows. In section 2, we review the equations for the

vertical and horizontal modes. In section 3, we outline

the numerical test case and model. Results are pre-

sented in section 4, and conclusions are given in

section 5.

2. Modes

a. Separation of variables

We start by reviewing the derivation of the vertical

normal modes for the hydrostatic f-plane linearized

about a state of rest [we followDaley (1991)]. The linear

adiabatic equations, using pressure as the vertical co-

ordinate, are

›u

›t
2 f

0
y52

›f0

›x
, (1)

›y

›t
1 f

0
u52

›f0

›y
, (2)

= � u1 ›w

›p
5 0, (3)

›

›t

›~f

›p
1w~G 5 0, (4)

where (u, y) is the horizontal velocity,w5 _p is the vertical

velocity (the dot denotes a time derivative; we use v for

frequency below), p is the pressure, f0 is the Coriolis pa-

rameter, ~f and f0 are the basic state and perturbation

geopotential, and ~G is the static stability, given by

~G ( p)5
1

p

d

dp

 
p
d~f

dp
2

R~f

c
p

!
. (5)

By assuming separable dependence on (x, y, t) and p, the

variables can be expressed as

u(x, y, p, t)5U(x, y, t)Z( p) , (6)

y(x, y, p, t)5V(x, y, t)Z( p) , (7)

f0(x, y, p, t)5F(x, y, t)Z( p) . (8)

Equations for the time-varying horizontal structure

U(x, y, t), V(x, y, t), and F(x, y, t) and the fixed vertical

structure Z( p) are then

›U

›t
2 f

0
V52

›F

›x
, (9)

›V

›t
1 f

0
U52

›F

›y
, (10)

1

Z

d

dp

�
1
~G

dZ

dp

�
5

1

›F/›t

�
›U

›x
1

›V

›y

�
52

1

gh
, (11)

where g is gravity and21/(gh) is the separation constant in

the mixed Eq. (11), which defines the equivalent depth h.

The equations of motion are now in a separated state

consisting of the shallow-water equations of depth h in

the horizontal,

›U

›t
2 f

0
V52

›F

›x
, (12)

›V

›t
1 f

0
U52

›F

›y
, (13)

›F

›t
1 gh

�
›U

›x
1

›V

›y

�
5 0, (14)

and the vertical structure equation,

d

dp

�
1
~G

dZ

dp

�
1

1

gh
Z5 0: (15)

When the divergence is not identically zero, the horizontal

equations are influenced by the vertical structure through

the value of 1/(gh), which is an eigenvalue of Eq. (15).

Because they are based on the linear equations, the hori-

zontal and vertical Eqs. (12)–(15) have the same formwhen

different vertical coordinates, for example, terrain-following

sigma coordinates, are used (Staniforth et al. 1985).

b. Vertical modes

The vertical structure Eq. (15) is an eigenvalue

problem, which can be solved with rigid boundary
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conditions _z5 0, where z is the height, at the upper and

lower boundaries:

dZ

dp
1

p
s
~G

RT
s

Z5 0 at p5p
s
, (16)

dZ

dp
1

p
t
~G

RT
t

Z5 0 at p5p
t
, (17)

where subscripts s and t denote the surface and model

top, respectively (Daley 1991). Rigid-lid boundary con-

ditions, while not exactly realistic at the upper boundary,

are convenient, consistent with model boundary condi-

tions, and commonly employed (e.g., Wiin-Nielsen 1971;

Kasahara andQian 2000). Cohn andDee (1989) point out

that the spectrum of vertical modes is determined by

the coefficients of Eq. (15) near the upper boundary.

Together, Eqs. (15)–(17) are a standard Sturm–Liouville

problem and define the vertical structure. Solutions are

given by a sequence of vertical normal modes Zn( p) for

n5 0, 1, 2, . . . , which are orthogonal in theL2 norm in p,

and eigenvalues 1/(ghn). Eigenvalues define the equiv-

alent depth hn of the nth mode.

c. Horizontal modes

Once the vertical structure problem is solved, the

equivalent depths hn fully determine the horizontal

problem in Eqs. (12)–(14). These equations are the lin-

ear shallow-water equations with depth hn, the normal

modes of which have been extensively studied on the

sphere (e.g., Kasahara 1976). The horizontally periodic

f-plane is considerably simpler because a Fourier basis

can be used [we follow Warn (1986)]. Assuming har-

monic time dependence, U, V, and F } exp(2ivt),

where i is the imaginary unit, and Eqs. (12)–(14) become

2ivU
n
2 f

0
V

n
1

›F
n

›x
5 0, (18)

2ivV
n
1 f

0
U

n
1

›F
n

›y
5 0, (19)

›U
n

›x
1
›V

n

›y
2

iv

gh
n

F
n
5 0, (20)

where subscript n denotes horizontal variables corre-

sponding to vertical mode n. The corresponding Fourier

coefficients satisfy

2ivÛ
n
2 f

0
V̂

n
1 ik

x
F̂

n
5 0, (21)

2ivV̂
n
1 f

0
Û

n
1 ik

y
F̂

n
5 0, (22)

ik
x
Û

n
1 ik

y
V̂

n
2

iv

gh
n

F̂
n
5 0, (23)

where f̂ n(k) is the Fourier coefficient of the field

fn(x, y) and k5 (kx, ky) is the horizontal wave vector.

This results in a 3 3 3 eigenvalue problem at every

(k, n), given by

v

0
B@ Û

n

V̂
n

ĥ
n

1
CA5

0
B@ 0 if

0
k
x
c
n

2if
0

0 k
y
c
n

k
x
c
n

k
y
c
n

0

1
CA
0
B@ Û

n

V̂
n

ĥ
n

1
CA, (24)

where cn 5
ffiffiffiffiffiffiffiffi
ghn

p
is the gravity wave speed for vertical

mode n and hn 5Fn/cn is the scaled geopotential, which

has units of velocity.

The system (24) has eigenvalues

v0
k,n 5 0, v6

k,n 56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20

q
, (25)

and corresponding orthogonal eigenvectors

E0
k,n 5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20
p

0
B@2ic

n
k
y

ic
n
k
x

f
0

1
CA, (26)

E6
k,n 5

1ffiffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20
p

0
BBB@

if
0
k
y
6 k

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20

q
2if

0
k
x
6 k

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20

q
c
n
k2

1
CCCA,
(27)

where k2 5 k2
x 1k2

y [our eigenvector notation follows

Bartello (1995), who considered the nonhydrostatic

uniformly stratified case]. For every vertical mode n and

horizontal wave vector k, there are three horizontal

modes: one geostrophic mode with frequency v0
k,n,

which yields steady geostrophic motion; and two

ageostrophic modes with frequencies v6
k,n, which cor-

respond to left- and right-traveling inertia–gravity

waves. The Rossby deformation wavenumber kR
n 5 f0/cn,

which is determined by cn and therefore by the equiv-

alent depth hn, separates large rotation-dominated

scales (k � kR
n ), at which inertia–gravity waves are

approximately inertia waves (v6
k,n ’6f0), from small

gravity-dominated scales (k � kR
n ), at which waves are

approximately gravity waves (v6
k,n ’6cnk).

For a given (k, n), the Fourier coefficients of the ve-

locity and scaled geopotential can be expressed as a

linear combination of the geostrophic and ageostrophic

eigenvectors0
B@ Û

n

V̂
n

ĥ
n

1
CA5A0

k,nE
0
k,n 1A1

k,nE
1
k,n 1A2

k,nE
2
k,n, (28)
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where A0
k,n and A6

k,n are the amplitudes of the geo-

strophic and ageostrophic components. These ampli-

tudes are found by taking the inner product of Eq. (28)

with the eigenvectors; they are given by

A0
k,n 5

0
B@ Û

n

V̂
n

ĥ
n

1
CA � E0

k,n 5
c
n
ẑ
n
1 f

0
ĥ
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2nk
2 1 f 20

p , (29)

and similarly

A6
k,n 5

0
B@ Û

n

V̂
n

ĥ
n

1
CA � E6

k,n 5
2f

0
ẑ
n
7 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20
p

d̂
n
1 c

n
k2ĥ

nffiffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2nk

2 1 f 20
p ,

(30)

where ẑn 5 ikxV̂n 2 ikyÛn and d̂n 5 ikxÛn 1 ikyV̂n are the

vertical vorticity and horizontal divergence of mode n.

In summary, the full three-dimensional dynamical fields

can decomposed, first into vertical modes, and then into

horizontal modes. For each vertical mode n and each hor-

izontal wave vector k, there are three modes: one geo-

strophic mode (with amplitudeA0
k,n) and two ageostrophic

modes (with amplitudes A6
k,n). A similar decomposition

into geostrophic (Rossby wave) and ageostrophic (inertia–

gravity wave) modes, using Hough instead of Fourier

modes to describe thehorizontal structure, is possible on the

sphere (Kasahara 1976). By the dispersion relation (25), the

ageostrophic modes are equivalent to linear inertia–gravity

waves, as documented in many analogous contexts [e.g.,

Warn (1986) in shallow water; Bartello (1995) in homoge-

neous rotating–stratified turbulence; and �Zagar et al. (2017)

on the sphere]. As a linear decomposition, the geostrophic

and ageostrophic modes do not directly separate non-

linearly balanced vortices and unbalanced waves, respec-

tively; for example, balanced vortices will project somewhat

on to the ageostrophicmodes (Kafiabad andBartello 2016).

d. Reconstruction and energetics

Since the vertical modes Zn( p) are orthogonal and

complete, we can use them to express three-dimensional

velocity and geopotential fields f(x, y, p) as

f (x, y,p)5�
n

f
n
(x, y)Z

n
( p), (31)

where the fn can be found by projection onto Zn( p) as

f
n
(x, y)5

1

p
s
2 p

t

ðps
pt

f (x, y,p)Z
n
( p) dp. (32)

Furthermore, with periodic boundary conditions in the

horizontal, f(x, y, p) can be expressed in terms of vertical

modes and horizontal Fourier modes as

f (x, y, p)5�
k,n

f̂
n
(k)ei(kxx1kyy)Z

n
( p) . (33)

Parseval’s theorem relates the domain-averaged square

of f (e.g., the zonal kinetic energy for f 5 u) to the sum

of the modal coefficients:

1

A( p
s
2 p

t
)

ððð
V

f 2(x, y,p) dx dy dp5�
k,n
j f̂

n
(k)j2, (34)

whereA is the horizontal area of the domain. Note that,

using velocity for f, the RHS of Eq. (34) is proportional

to the kinetic energy per unit volume, not mass, because

the vertical integral is over p; no extra factor of density is

required. For a given vertical mode n, the total energy

can be decomposed into kinetic energy (KE) and po-

tential energy (PE) as

E
n
5�

k

1

2
(jÛ

n
(k)j2 1 jV̂

n
(k)j2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kinetic

1
1

2
jĥ

n
(k)j2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Potential

5�
k

KE(k, n)1PE(k,n), (35)

and into geostrophic energy (GE) and ageostrophic

energy (AE) as

E
n
5�

k

1

2
jA0

k,nj
2

|fflfflfflffl{zfflfflfflffl}
Geostrophic

1
1

2
(jA1

k,nj2 1 jA2
k,nj2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ageostrophic

5�
k

GE(k,n)1AE(k,n). (36)

Furthermore, for k . 0 the kinetic energy spectrum for

each vertical mode can be decomposed using Helmholtz

decomposition into rotational kinetic energy and di-

vergent kinetic energy

KE(k, n) 5
1

2

jẑ
n
(k)j2
k2

1
1

2

jd̂
n
(k)j2
k2

5RKE(k,n)1DKE(k, n). (37)

From these modal spectra, horizontal wavenumber

spectra can be computed by summing over annuli in the

kx–ky plane (e.g., Waite and Snyder 2009).

e. Relationship between modal and Helmholtz
decomposition

The horizontal modal amplitudes in Eqs. (29) and (30)

show that there is a relationship between the normal

mode and Helmholtz decompositions: the geostrophic

mode in Eq. (29) depends on the horizontal vorticity

but not the divergence, while the ageostrophic mode

in Eq. (30) depends on vorticity and divergence, as

expected on an f-plane (on a b-plane or sphere, the
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geostrophic mode additionally has some divergence due

to the meridional dependence of the Coriolis parame-

ter, but this is small at midlatitude mesoscales). We

explore this connection further here. First, consider the

relationship between the geostrophic and rotational

kinetic energy spectra. It can be shown that for large

wavenumbers with k � kR
n , the geostrophic energy

spectrum satisfies

GE(k,n)’RKE(k, n). (38)

To derive this approximation, consider the size of the

geostrophic modal amplitude from Eq. (29)

jA0
k,nj

2
5

1

11 ( f
0
/c

n
k)2

"
jẑ

n
j2

k2
1

�
f
0

c
n
k

�2

jĥ
n
j2

1
f
0

c
n
k

 
ĥ
n
*
ẑ
n

k
1 c.c.

!#
, (39)

where c.c. denotes complex conjugate. Therefore, the

geostrophic energy is

GE(k,n)5
1

2
jA0

k,nj
2

5
1

11 (kR
n /k)

2

"
RKE(k, n)1

�
kR
n

k

�2

PE(k, n)

1
kR
n

2k

 
ĥ
n
*
ẑ
n

k
1 c.c.

!#
. (40)

The third term is bounded by

�����k
R
n

2k

1

11 (kR
n /k)

2

 
ĥ
n
*ẑ

n

k
1 c.c.

!�����
# 2

kR
n

k

1

11 (kR
n /k)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RKE(k,n)PE(k, n)

p
. (41)

This approximation requires that the potential energy

is not much larger than the rotational kinetic energy

when k � kR
n , which will be investigated below. If it is,

then a larger wavenumber than kR
n may be required for

the potential energy contribution to the GE to be

negligible. For k � kR
n , Eq. (40) becomes Eq. (38).

Therefore, at scales much smaller than the deformation

scale, the geostrophic energy is approximately equal to

the rotational kinetic energy.As the ratio kR
n /k increases,

for example, by decreasing k at fixed n or by increasing n

at fixed k, the geostrophic energy has a reduced contri-

bution from the rotational kinetic energy and additional

contribution from the potential energy. Similarly, for

small wavenumbers with k � kR
n , we have

GE(k, n)’PE(k,n), (42)

and the large-scale geostrophic energy is approximately

equal to the potential energy.

Next, consider the relationship between the

ageostrophic and divergent kinetic energy. For k � kR
n ,

the ageostrophic energy spectrum satisfies

AE(k, n)’DKE(k,n)1PE(k, n). (43)

To derive this approximation, consider the size of the

ageostrophic modal amplitudes from Eq. (30)
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When the 1 and 2 modes are added together to

construct the total ageostrophic energy, the first

two cross terms on the RHS cancel, and we are

left with

AE(k, n) 5
1

2
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ẑ
n
*

k
ĥ
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The last term is bounded by Eq. (41), as in the geo-

strophic spectrum. For k � kR
n , this becomes Eq. (43).

This approximation assumes that the RKE is not

much larger than the DKE and PE when k � kR
n ,

which will be checked below. Therefore, at scales

much smaller than the deformation scale, the

ageostrophic energy is the sum of the DKE and PE.

As the ratio kR
n /k increases, the contribution from

the DKE remains the same, but the RKE contribution

increases and the PE contribution decreases. Similarly,

for k � kR
n , we have

AE(k, n)’RKE(k,n)1DKE(k, n)5KE(k,n), (46)

and the large-scale ageostrophic energy approximately

equals the kinetic energy.

This analysis suggests that, for sufficiently small

horizontal scales with k � kR
n , the Helmholtz de-

composition does give a good approximation to

the geostrophic/ageostrophic decomposition. This

agreement will be checked below. At larger scales,

the relationship between the two decompositions

is different. Furthermore, in a b-plane or spheri-

cal model, the relationship between the two de-

compositions would be complicated by the presence

of velocity divergence in the geostrophic (Rossby

wave) mode.

3. Numerical approach

a. Initial conditions

We initialize our simulations with a baroclinically

unstable double jet based on the idealized channel jet

of Ullrich et al. (2015). The velocity of a single zonal jet,

with width ‘, is given by

u(x, y,s)52u
0
sin2

�py
‘

�
lns exp

"
2

�
lns

b

�2
#
, (47)

where s 5 p/ps and u0 and b are the velocity and depth

scale of the jet. These and other basic parameters

are given in Table 1. The prescribed zonal velocity field

goes to zero at y 5 0, ‘. With b 5 2, the velocity

reaches a maximum value of 0.86u0 at a height of s 5
0.24. The initial Rossby number, based on the jet pa-

rameters in Table 1, is Ro0 5 u0/( f0‘)5 0:21.

The geopotential field has a basic state and fluctuation

f(x, y,s)5 ~f(s)1f00(x, y) lns exp

"
2

�
lns

b

�2
#
, (48)

where the basic-state profile is

~f(s)5
T

0
g

G
12s

RdG
g

� �
, (49)

and the horizontal structure of the fluctuation is
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. (50)

Here T0 is the surface temperature, g is the acceleration

due to gravity,Rd is the ideal gas constant for dry air, and

G is the (constant) lapse rate of the atmosphere. Note

that this G is different fromDaley’s (1991) static stability

profile ~G ( p) from section 2.

In addition to prescribing the velocity fields and

geopotential field, a temperature field is required to

completely describe the initial state of the jet. The basic-

state temperature is given by

~T(s)5T
0
s

RdG
g , (51)

which satisfies d ~T/dz52G. The fluctuation tempera-

ture T 0(x, y, s)5T(x, y, s)2 ~T(s) is

T 0(x, y,s)5
f00(x, y)

R
d

	
2
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exp
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2

�
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b

�2
#
.

(52)

Figure 1 shows the basic-state temperature and

Brunt–Väisälä frequency. Although the initial jet

lacks a tropopause, the atmosphere is still stably

stratified with a sharp increase in stratification above

100 hPa.

To use periodic horizontal boundary conditions,

which simplifies the analysis of the horizontal normal

modes, we extend the jet meridionally to construct a

doubly periodic double jet. The domain is extended

from y 2 [0, ‘] to y 2 [2‘, ‘], so the full domain width is

L5 2‘. The geopotential and temperature fields are

chosen to be even extensions about y5 0, and the zonal

TABLE 1. Parameters used in the initialization and simulation.

Parameter Description Value

u0 Velocity scale 55m s21

‘ Single jet width 2560 km

b Dimensionless jet depth 2

T0 Surface temperature 288K

g Acceleration due to gravity 9.81m s21

G Lapse rate 0.005Km21

Rd Ideal gas constant of dry air 287 J kg21 K21

f0 Coriolis parameter 1024 s21

L Domain size 5120 km

Dx 5 Dy Grid spacing 5 km

ps Surface pressure (basic state) 1017.5 hPa

pt Lid pressure (basic state) 7.0 hPa
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velocity field is an odd extension to maintain geo-

strophic balance. Figure 2 shows the zonal velocity

and potential temperature fields in the extended

domain.

Finally, to initialize baroclinic instability, each jet is

perturbed with a two-dimensional Gaussian potential

temperature bubble of amplitude 4K and half-width

600 km (Ullrich et al. 2015) centered at y56‘/2. The

geopotential and density are recalculated after the per-

turbation to maintain column mass and hydrostatic

balance.

b. Model setup

Simulations are performed with the Advanced

Research dynamical core of the Weather Research and

Forecasting (WRF, version 3.7.1) Model (Skamarock

et al. 2008), which solves the equations for a compress-

ible, nonhydrostatic atmosphere. The domain is a square

doubly periodic f-plane with size L3 L. The horizontal

grid spacing is Dx 5 Dy 5 5 km. The domain depth is

25 km, with 100 levels evenly spaced in the basic-state

pressure. The grid spacing Dz therefore increases with

height from 84m near the surface, to 260m at z5 10km,

to 2 km near the top. The basic-state pressure at the

model surface and lid are ps 5 1017.5 hPa and pt 5
7.0 hPa. The time step is Dt 5 30 s.

Since these are idealized simulations, most physical

parameterizations are turned off. Simulations are dry

and there are no surface fluxes, radiative transfer, or

boundary layer mixing. A diffusive damping layer with

dimensionless coefficient 0.05 is employed within 5 km

of the upper boundary. The advection scheme is fifth

order in the horizontal and third order in the vertical;

the weak numerical viscosity from the upwind-biased

fluxes is sufficient to suppress gridscale noise, and no

additional eddy viscosity is imposed (e.g., Wicker and

Skamarock 2002). Simulations were run for 16 days with

fields output every 2 h.

c. Vertical modes

To analyze the simulation output in terms of the

normal modes, we need the set of vertical modes Zn( p)

and equivalent depths hn associated with the back-

ground state and numerical grid of our simulation. We

compute the modes from the initial basic-state ~f in

Eq. (49), which, through the static stability ~G , deter-

mines the vertical structure in Eq. (15). Although the

model is nonhydrostatic, dynamics at the scales of in-

terest are close to hydrostatic, so the hydrostatic normal

modes are used. The eigenvalue problem is discretized

using a second-order centered finite difference scheme

with evenly spaced pressure levels (Daley 1991), which

approximates the modesZn( p) at theWRFmass points.

Finite difference solutions to the eigenvalue problem

have been successfully employed in other numerical

studies of vertical modes in atmospheric models (e.g.,

Kasahara and Puri 1981; Tanaka 1985). �Zagar et al.

(2012) analyzed ECMWF model output using vertical

modes discretized with both finite difference and higher-

order spectral approximations; the resulting projections

and energetics were not significantly affected by the

discretization approach. The eigenvalue solver was

verified by comparison with the isothermal modes, for

which there is an analytical solution (e.g., Daley 1991).

Since the WRFModel levels are equally spaced in basic

FIG. 1. Initial mean vertical profile of the (a) horizontal mean

temperature and (b) Brunt–Väisälä frequency. FIG. 2. Meridional slice of initial velocity (colored; m s21) and

potential temperature (gray contours; interval: 10K) after the

domain has been extended to be doubly periodic.
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state pressure, no vertical interpolation is employed,

either in the calculation of the modes or the projection

onto them.

Figure 3 shows the computed equivalent depths hn
and deformation wavenumber kR

n (here and elsewhere,

wavenumbers are nondimensionalized by Dk 5 2p/L).

With 100 model levels, there are 100 orthogonal vertical

modes: a barotropic mode n 5 0 and baroclinic modes

1 # n # 99. For clarity, Figs. 3a and 3b are restricted

to 0# n# 30, while Figs. 3c and 3d show the full range of

n. The equivalent depth of the barotropic mode is

9753m, and the depths of the first few baroclinic modes

are 1290, 448, 215, and 125m. The dimensionless de-

formation wavenumbers range from 0.7 for n 5 1 to 6

for n5 10, to 13 for n5 20, and to 31 for n5 40. Figure 4

shows the vertical structure of a selection of modes.

Mode n has n zero crossings, as expected. The distance

between two consecutive zero crossings around s 5 0.5,

that is, half the approximate modal wavelength in the

midtroposphere, decreases from 6.5 km for n 5 5 to

3.2 km, 1.4 km, and 900m for n 5 10, 20, and 30, re-

spectively. The wavelength decreases for increasing n,

and around approximately n 5 20, the modes become

marginally resolved near the upper part of the domain.

For higher modes, the oscillations cease in the upper

portion of the domain, which extends downward with

increasing n. Terasaki and Tanaka (2007) found that

the lack of oscillations at upper levels for higher

modes is due to the finite difference method, and

occurs when there are very high-frequency oscilla-

tions in the analytical modes. �Zagar et al. (2012)

found small-amplitude high-frequency oscillations at

these levels when higher-order discretizations were

used, but they did not significantly affect the results.

Even when the modes are not well resolved, they

form an orthogonal basis.

4. Results

a. Simulation overview

Figure 5 shows the evolution of the potential tem-

perature in the lowest grid cell and 500-hPa vertical

vorticity and horizontal divergence at t5 0, 4, 8, 12, and

16 days. At the initial time, the jet structure and tem-

perature bubble are clearly visible; since the initial jet is

in geostrophic balance, there is no velocity divergence.

By 4 days, a single baroclinic wave is growing on each

jet, accompanied by a small band of inertia–gravity

waves in the divergence field. By 8 days, two mature

baroclinic waves are present on each jet, with clearly

defined cold regions, cyclonic vorticity, and embedded

inertia–gravity waves. Waves are visible above the cold

fronts and inside the cyclones. By 12 days and beyond,

the baroclinic instability appears to have saturated, in-

stabilities are developing on the surface potential tem-

perature filaments, and waves fill the entire domain.

b. Vertically averaged kinetic energy spectra

Figure 6 shows vertically averaged spectra of kinetic,

rotational kinetic, and divergent kinetic energy at a

FIG. 3. (a),(c) Equivalent depths hn and (b),(d) deformation

wavenumbers kR
n for (a),(b) the first 30 and (c),(d) all vertical

modes. In (b) and (d), kR
n is nondimensionalized by 2p/Lx.

MARCH 2020 AMBACHER AND WA ITE 821



FIG. 4. Vertical structure of select vertical modes Zn( p).
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FIG. 5. Horizontal slices of (left) potential temperature (K) in the lowest grid cell (z’ 42m), and (center)

500-hPa vertical vorticity, and (right) horizontal divergence at t 5 (a)–(c) 0, (d)–(f) 4, (g)–(i) 8, (j)–(l) 12,

and (m)–(o) 16 days. Vorticity and divergence are normalized by f.
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selection of times. By averaging spectra of energy per

unit mass on model levels, the average spectra are pro-

portional to energy per unit volume using the basic-state

density (e.g., Waite and Snyder 2009). The kinetic en-

ergy spectrum (Fig. 6a) grows and fills out as the baro-

clinic instability develops. The spectrum saturates at

around t’ 12 days with a slope of22.6 (unless otherwise

stated, spectral slopes are measured between k5 10 and

100). The spectrum falls off rapidly beyond k’ 200 due

to the numerical dissipation.

The RKE spectrum (Fig. 6b) resembles the total ki-

netic energy spectrum, and saturates with a slightly

steeper slope of22.8. After 12 days, the RKE spectrum

experiences a slight decrease in energy at large k. By

contrast, the shallower DKE spectrum, which has a

slope of 21.9, continues to grow slowly in amplitude

until the end of the simulation. The kinetic energy

spectrum is the sum of the steeper RKE spectrum and

shallower DKE spectrum; however, as in the dry baro-

clinic wave simulations of Waite and Snyder (2009), the

amplitude of the DKE spectrum is not high enough to

influence the total kinetic energy, which is dominated by

the steeper RKE spectrum across all resolved wave-

numbers. No mesoscale shallowing occurs in the verti-

cally integrated KE spectrum. In what follows, we focus

on t 5 16 days, since the DKE spectrum has the largest

amplitude at this time.

Energy spectra computed on individual model levels

are shown in Fig. 7. At 850hPa (Fig. 7a), the spectra

resemble the vertical average, which is dominated by the

lower troposphere: the RKE spectrum is steep, theDKE

spectrum is shallow, and the total KE spectrum resem-

bles the RKE over most wavenumbers. In fact, the

vertically integrated KE spectrum (gray dashed curve in

Fig. 7a) is nearly indistinguishable from the 850hPa

KE spectrum. At 500 hPa (Fig. 7b), the RKE and DKE

spectra cross around k ’ 60, beyond which the DKE

dominates and the kinetic energy spectrum shallows

slightly. This transition is even more pronounced at

200 hPa, where the RKE and DKE spectra cross around

k ’ 25 (Fig. 7c). Therefore, while the KE spectra in the

lower stratosphere show clear mesoscale shallowing

dominated by DKE (as found in other idealized baro-

clinic wave studies, for example, Waite and Snyder

2009), the vertically averaged spectra, which are domi-

nated by the lower troposphere, do not.

c. Modal spectra

Figure 8 shows the geostrophic and ageostrophic en-

ergy spectra for a selection of vertical modes at t 5
16 days. For small mode numbers, the geostrophic en-

ergy dominates at all horizontal scales, and both the

geostrophic and ageostrophic energy spectra are very

steep, with slopes of around 24 (the spectral slopes are

plotted against n in Fig. 9). Indeed, for n # 3, the

ageostrophic energy spectrum is actually steeper than

the geostrophic. As n increases, both spectra get shal-

lower, and the ageostrophic spectra are consistently

shallower than the geostrophic. For example, at n 5 10,

FIG. 6. Vertically averaged spectra of (a) kinetic energy,

(b) rotational kinetic energy, and (c) divergent kinetic energy at

t 5 2, 4, 6, 8, 12, and 16 days. The straight reference lines show the

best-fit slope between k 5 10 and 100 at t 5 16 days: (a) 22.6,

(b) 22.8, and (c) 21.9. Here and in other spectra figures, a factor

of Dk is included so that the y axis shows energy, not energy

spectral density.
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the geostrophic and ageostrophic slopes are 23.3

and 22.6; for n 5 20, they are 23.0 and 22.0; and for

n 5 30, they are 22.5 and 21.4. As a result of their

different slopes, the shallower ageostrophic spectrum

intersects the steeper geostrophic spectrum for n $ 5

and exceeds the GE at large k. The geostrophic energy

spectral slope shallows to around22 by n5 40 and stays

there for larger n, while the ageostrophic spectrum gets

increasingly shallow for larger n (see below).

The geostrophic energy spectrum is peaked at small

wavenumbers for all n. The largest-scale geostrophic

vortices project onto small k at all n. By contrast, the

peak in the ageostrophic spectrum moves to larger

wavenumbers with increasing n. The wavenumber peak

appears to occur near the deformation wavenumber,

which is indicated by the vertical lines in Fig. 8. We

can measure the peak by finding the wavenumber of

maximum kEA(k, n) for each n; this wavenumber is

plotted along with kR in Fig. 10. The actual peak wave-

numbers are indeed clustered around kR for n * 10.

These spectra imply that inertia–gravity waves with in-

creasing n, and therefore decreasing vertical scale, are

characterized by a correspondingly small horizontal

scale that is given by the deformation scale. For n * 50,

the peak occurs near the numerical dissipation range;

it cannot increase further, and no spectral power law is

resolved at larger k.

Generally, the amplitudes of the spectra in Fig. 8,

and the total amount of energy in each vertical

mode, decrease with increasing n. The geostrophic and

ageostrophic energy in each vertical mode are plotted

in Fig. 11a. Most of the energy in the system is geo-

strophic energy in the lowest fewmodes, associated with

the large-scale baroclinic wave, as expected. The geo-

strophic energy is peaked at n 5 3 and dominates over

the ageostrophic energy for all n [cf. Terasaki and

Tanaka (2007), who similarly found a peak in the total

energy at mode 4]. Interestingly, both the geostrophic

and ageostrophic energy per mode decreases like n23

for n * 10, which is reminiscent of the 23 vertical

wavenumber spectrum associated with QG turbulence.

The mesoscale energy in each vertical mode is com-

puted by restricting to k$ 10 (Fig. 11b). The mesoscale

geostrophic energy is peaked at n 5 3, like the total

geostrophic energy, which is dominated by large hori-

zontal scales. By contrast, the mesoscale ageostrophic

energy is contained in intermediate vertical modes, and

peaked at n ’ 9.

d. Helmholtz decomposition

The left column of Fig. 12 shows the geostrophic, ro-

tational kinetic, and potential energy spectra for modes

n5 1, 10, 20, 40, and 80. Equations (38) and (42) suggest

that the geostrophic energy spectrum should be well

approximated by the rotational kinetic energy spectrum

for k � kR
n and by the potential energy spectrum for

k � kR
n . Figure 12 shows that these limiting spectra are

approximately correct, although the transition does not

happen right at kn
R. For n 5 1, the deformation wave-

number is smaller than gravest wavenumber k 5 1 and

FIG. 7. Spectra of kinetic, rotational kinetic, and divergent ki-

netic energy at (a) 850, (b) 500, and (c) 200 hPa at t 5 16 days.

Spectra are computed onmodel levels, and pressures correspond to

basic state. In (a), the vertically averaged KE spectrum is also

shown by the gray dashed line for reference, and is almost entirely

hidden by KE and RKE (solid thick and thin black curves).
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FIG. 8. Spectra of geostrophic (solid) and ageostrophic (dashed) energy at t5 16 days for a selection ofmodes,

as labeled (as in Fig. 3). The black reference curves have slopes of 25/3 and 23, and the gray vertical line

indicates the Rossby deformation wavenumber kR
n .
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the geostrophic energy spectrum is indeed indistin-

guishable from the RKE spectrum, as expected. For

increasing n and kR
n , the GE and RKE spectra diverge

at large scales, and we obtain GE(k, n) ’ PE(k, n) for

small k and GE(k, n) ’ RKE(k, n) for large k, also as

expected.

However, the transition happens at k larger than kR
n .

See, for example, n 5 20, for which kn
R 5 13: Fig. 12e

shows GE(k, n) ’ PE(k, n) for k & 30, and GE(k, n) ’
RKE(k, n) for k * 80. This finding is confirmed in

Fig. 13a, which shows the spectral ratios PE(k, n)/GE(k, n)

and RKE(k, n)/GE(k, n) with a linear y axis: the tran-

sition between PE- and RKE-dominated geostrophic

energy clearly happens at k between 30 and 80, which

is a larger than kR
n . The discrepancy with the prediction

in Eqs. (38) and (42) is due to the fact that the potential

energy is actually much larger than the rotational kinetic

energy at k5 kR
n , in contrast to the assumption made in

deriving Eq. (38). For n 5 20, the PE is 5 times larger

than the RKE at this scale. Therefore, larger k/kR
n is

required for the PE contribution to be negligible in

Eq. (38), and similarly for Eq. (42). Nevertheless, the

transition wavenumber clearly increases with kn
R as n

increases. For n5 80 (Fig. 12i), the deformation scale is

close to the numerical dissipation range, andGE(k, n)’
PE(k, n) across all undamped scales. As a result of the

dependence on kR
n , the mesoscale slopes of the geo-

strophic and rotational kinetic energy spectra agree well

for n & 10, but diverge at larger n, for which the RKE

spectra are much shallower than the GE (Fig. 9).

The right column of Fig. 12 shows the ageostrophic,

divergent kinetic, divergent kinetic plus potential, and

kinetic energy spectra for the same modes as in the left

column. As was the case for the geostrophic energy, the

ageostrophic energy spectra follow the approximations

in Eqs. (43) and (46) at large and small wavenumbers:

the ageostrophic energy is approximated by the poten-

tial plus divergent kinetic energy for k � kR
n and by

the kinetic energy for k � kR
n . For n 5 1, the ageo-

strophic energy is nearly identical to the potential plus

divergent kinetic energy at all wavenumbers, which are

all larger than kR
1 . Moving to larger n, our results show

AE(k, n) ’ KE(k, n) for small k and AE(k, n) ’
DKE(k, n) 1 PE(k, n) for large k, again as expected.

However, as was the case for the geostrophic energy

spectra, the transition between these approximation re-

gimes occurs at a wavenumber beyond kR
n . For example,

for n 5 20 (Fig. 12g), we have AE(k, n) ’ KE(k, n) for

k& 30 andAE(k, n)’DKE(k, n)1 PE(k, n) for k* 80;

these are the same transition wavenumbers as for the

geostrophic spectrum, as expected, and they are

larger than kR
20 5 13. The transition in the n 5 20 case

is illustrated more clearly in Fig. 13b, which shows

the ratios KE(k, n)/AE(k, n) and [DKE(k, n) 1
PE(k, n)]/AE(k, n). Interestingly, while the large-k

approximation is excellent for k . 80, the small-k

approximation is not great: the potential plus diver-

gent kinetic energy underapproximates the ageostrophic

energy at small k. This discrepancy is due to the fact

that the potential energy is much larger than the

kinetic energy at small k, and therefore very small

k/kn
R are required for the PE term in Eq. (45) to be

negligible. Similarly, the RKE is much larger than

the DKE at kR
n , so larger k/kR

n is required for the RKE

term to be negligible in Eq. (45). Overall, the me-

soscale slopes of the ageostrophic and divergent

kinetic energy are much closer over all n than those

of the geostrophic and rotational kinetic energy,

although the DKE spectra are slightly shallower for

10 & n & 40.

FIG. 9. Mesoscale slope of the geostrophic, ageostrophic, rota-

tional kinetic, and divergent kinetic energy spectra at t 5 16 days.

Slopes are measured for 10 # k # 100.

FIG. 10. The wavenumber of the peak in ageostrophic energy

(black circles) and the Rossby deformation wavenumber (solid)

plotted against n.
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e. Vertically averaged geostrophic and ageostrophic
spectra

While the modal spectra allow for a detailed com-

parison of the geostrophic/ageostrophic and Helmholtz-

decomposed spectra, most model spectral analysis

considers vertically averaged (over layers if not the

whole domain), not modal, spectra. Figure 14 shows

modal spectra summed over all vertical modes, cor-

responding to a vertical average over the whole do-

main [cf. Eq. (34)]. The geostrophic and rotational

kinetic energy spectra agree well over all k. There is

slightly more GE than RKE at intermediate wave-

numbers, but overall, the amplitudes and slopes are

very similar: the mesoscale slopes of the geostrophic

and rotational kinetic energy spectra are23.0 and22.8,

respectively. As discussed above, the RKE spectrum

is expected to approximate the GE spectrum for k

larger than the Rossby deformation wavenumber;

since the vertically averaged spectra are dominated by

small n (Fig. 11), which have relatively small kR
n (e.g.,

0.7, 1.2, and 1.8, for n 5 1, 2, and 3), the agreement

spans all k.

The ageostrophic and divergent kinetic energy spectra

have similar slopes but different amplitudes over all k.

The mesoscale slopes are 22.1 and 21.9, respectively,

for the AE and DKE spectra. The vertically averaged

ageostrophic spectrum is shallower than the ageo-

strophic spectra of the dominant low vertical modes

(Fig. 8); for example, the ageostrophic spectral slopes

are23.9,24.8, and23.3 for n5 1, 2, and 4, which are all

steeper than 22.1. The shallowness of the vertically

averaged ageostrophic spectrum seems to be due to

the higher n modes, the spectra of which are peaked at

kR
n and are therefore increasingly flat for larger n.

The ageostrophic energy spectrum has a larger ampli-

tude and slightly steeper slope than the DKE spectrum:

as a result, the gap between these spectra narrows with

increasing k, from a factor of 8 at k 5 1, to 4 at k 5 10,

and 2.5 at k 5 11. The DKE spectrum always underes-

timates the AE spectrum, by a factor of 2.5 at k 5 100,

because of the missing contributions from the PE and

(to a lesser degree) the RKE. Nevertheless, as with

the GE and RKE spectra, the divergent kinetic en-

ergy spectral slope gives a good approximation of the

ageostrophic spectral slope over all k when vertically

integrated spectra are considered.

5. Conclusions

Energy spectra in idealized baroclinic wave simula-

tions were investigated using linear normal modes. The

usual approach for analyzing energy spectra in atmo-

spheric models is to consider kinetic energy spectra,

often Helmholtz-decomposed into rotational and di-

vergent KE, at different vertical levels. The normal

mode approach is different: it decomposes the total

domain-averaged mechanical energy into geostrophic

and ageostrophic energy at every horizontal and vertical

mode. In the idealized simulations performed here, the

horizontal mode structure is Fourier and the vertical

mode structure is found by solving the appropriate ei-

genvalue problem.

The vertically averaged KE spectra have a simple and

familiar power-law structure: the RKE has a slope of

around 22.8 and the DKE has a shallower slope of

around 21.9, which are close to the 23 and 25/3 re-

ported elsewhere (e.g., Waite and Snyder 2009; Peng

et al. 2015a). However, the amplitude of the DKE

spectrum is too small to influence the kinetic energy

spectrum, even at small scales. The KE spectral slope

is 22.6 down to the (numerical) dissipation scale and

no transition to a shallower mesoscale spectrum is ap-

parent. As found in previous studies of idealized dry

baroclinic waves (e.g., Waite and Snyder 2009), there

is a transition to a shallower spectrum in the lower

FIG. 11. Total geostrophic (solid) and ageostrophic (dashed)

energy in each vertical mode, computed using (a) all horizontal

scales and (b) mesoscales (k $ 10). The solid reference line has a

slope of 23.
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FIG. 12. (left) Spectra of geostrophic, rotational kinetic, and potential energy. (right) Spectra of ageostrophic,

divergent kinetic, divergent kinetic plus potential, and kinetic energy.All spectra are at t5 16 days for a selection of

modes, as labeled. The black reference curves have slopes of 25/3 and 23, and the gray vertical line indicates the

Rossby deformation radius kR
n .
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stratosphere, but not in the troposphere; since the ver-

tically averaged spectra are dominated by lower levels,

this shallowing is not apparent in the vertical average.

The normal mode decomposition gives an interesting

perspective into how the energy is partitioned into

geostrophic and ageostrophic (IGW)motion at different

horizontal and vertical scales. For small vertical mode

numbers, corresponding to deep vertical structures, both

the GE and AE spectra are very steep, and the GE en-

ergy dominates at all k. However, for increasing n, the

AE spectrum shallows while the GE spectrum remains

steep; for n $ 5, the GE and AE spectra cross and the

small horizontal scales are dominated by ageostrophic

energy. Overall, both the GE and AE spectra get shal-

lower with increasing n. The GE spectrum, which is al-

ways peaked at large scales, appears to be approaching a

slope of around 22. By contrast, the AE spectra are

peaked around the Rossby deformation wavenumber

kR
n . As a result, for large nwith correspondingly large kR

n ,

the AE spectra are nearly flat for a wide range of k.

Most of the energy in the system, both GE and AE,

is contained in the lowest vertical modes, which have

the largest vertical scales. Indeed, the modal energy

decreases with increasing n like n23, similar to the

Fourier spectrum expected for homogeneous QG tur-

bulence. Since the energy in every vertical mode is

dominated by the largest scales, it is perhaps not sur-

prising that the vertical modal spectrum follows the

QG scaling. However, when only themesoscale (k$ 10)

is considered, there is a significant difference between

geostrophic and ageostrophic energy. The mesoscale

geostrophic energy continues to be dominated by the

smallest n, but the ageostrophic energy is peaked at n5
9, which has a midtropospheric vertical scale of a few

kilometers.

A detailed comparison between the normal mode and

Helmholtz decompositions was given. We showed that,

for k � kR
n , the geostrophic energy should be approxi-

mately given by the rotational kinetic energy, and the

ageostrophic energy should be the sum of the divergent

kinetic and potential energies. These limits provide a

potential justification for the use of RKE and DKE as

proxies for geostrophic and wave energy in the spectral

analysis of data (e.g., Cho et al. 1999; Lindborg 2007)

and simulations (e.g., Hamilton et al. 2008; Skamarock

and Klemp 2008), at least in the midlatitude mesoscale

[at larger scales and lower latitudes, velocity divergence

in the geostrophic (Rossby) mode complicates this re-

lationship]. In practice, these approximations were re-

alized in our spectra, but the transition wavenumber was

larger than kR
n . As a result, for small n, themesoscale GE

FIG. 14. Spectra of geostrophic, ageostrophic, rotational kinetic,

and divergent kinetic energy summed over all n.

FIG. 13. (a) The ratio of the potential and rotational kinetic

energy to the geostrophic energy and (b) the ratio of the kinetic and

the potential plus divergent kinetic energy to the ageostrophic

energy. In both panels, n 5 20 and the thick vertical gray line

shows kR
20 5 13.
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and AE spectra were well approximated by the RKE

and the sum of the DKE and PE; however, for larger

n, this approximation was less valid. Nevertheless,

since the total energy is dominated by smaller n, the

Helmholtz decomposition actually performed very well

when applied to the vertically averaged spectra: the

RKE spectrum is very close to the GE spectrum over all

k, while the slope of the DKE spectrum was a good

approximation to that of the AE spectrum. However,

since theAE spectrum also has a significant contribution

from potential energy, which is missing in theHelmholtz

decomposition, the DKE spectrum underapproximates

the AE spectral amplitude by a factor of around 2.5.

This factor could be important when using the spectral

crossing wavenumber to diagnose the location of the

mesoscale transition. The AE spectrum will cross the

GE spectrum at a smaller wavenumber than that where

the DKE spectrum crosses the RKE spectrum [e.g.,

compare �Zagar et al. (2017), who considered GE–AE

crossings, with Waite and Snyder (2009), who looked at

RKE–DKE crossings; see also Deusebio et al. (2013),

who show both in the idealized homogeneous case].

The similarity between the normal mode and

Helmholtz decomposed spectral slopes is promising.

The Helmholtz decomposition is simple and straight-

forward to employ for both aircraft and model data,

and these results shown here suggest that the RKE and

DKE spectral slopes are indeed good approximations

to the more physically meaningful geostrophic and

ageostrophic modal spectra. However, caution and more

work are required before extrapolating these idealized

results to more comprehensive models. In particular,

simulations and reanalysis in larger or global domains, in

which the Rossby deformation scales of the dominant

vertical modes are smaller than the domain size, would

likely show more of a difference between the normal

mode and Helmholtz spectral slopes at large scales.

Rossby wave velocity divergence associated with merid-

ionally varying Coriolis parameter is also missing in the

f-plane setup considered here. In addition, physical mech-

anisms that are neglected here are known to amplify the

DKE spectra, and will therefore have a similar effect on

the AE: these include moist physics (Waite and Snyder

2013; Peng et al. 2015a,b; Sun et al. 2017) and topogra-

phy and surface fluxes (Menchaca and Durran 2019).

Indeed, normal mode spectra from reanalysis data show

that the GE and AE spectra do indeed cross at length

scales of a few hundred kilometers, leading to a more

pronounced mesoscale spectrum that what was found

here (Terasaki et al. 2011; �Zagar et al. 2017). The effects

of these physical processes on the normal mode spectra,

and in particular on the amplitude of the ageostrophic

(IGW) energy, requires further investigation.
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