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The dynamic Smagorinsky model for large eddy simulation (LES) of stratified
turbulence is studied in this paper. A maximum grid spacing criterion of A/L, < 0.24
is found in order to capture several of the key characteristics of stratified turbulence,
where A is the filter scale and L, is the buoyancy scale. These results show that the
dynamic Smagorinsky model needs a grid spacing approximately twice as large as
the regular Smagorinsky model to reproduce similar results. This improvement on
the regular Smagorinsky eddy viscosity approach increases the accuracy of results
at small resolved scales while decreasing the computational costs because it allows
larger A. In addition, the eddy dissipation spectra in LES of stratified turbulence
present anisotropic features, taking energy out of large horizontal but small vertical
scales. This trend is not seen in the non-stratified cases, where the subgrid-scale
energy transfer is isotropic. Statistics of the dynamic Smagorinsky coefficient c; are
investigated; its distribution is peaked around zero, and its standard deviations decrease
slightly with increasing stratification. In line with previous findings for unstratified
turbulence, regions of increased shear favour smaller ¢, values; in stratified turbulence,
the spatial distribution of the shear, and hence c;, is dominated by a layerwise
pancake structure. These results show that the dynamic Smagorinsky model presents
a promising approach for LES when isotropic buoyancy-scale resolving grids are
employed.
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1. Introduction

An alternative approach to direct numerical simulation (DNS) is large-eddy
simulation (LES), in which scales larger than the grid spacing A are resolved, but
subgrid-scale (SGS) effects are parametrized. A common and practical SGS scheme
is the Smagorinsky (1963) model, in which the deviatoric part of the SGS momentum
tensor 7" is expressed in terms of the filtered rate of strain s; =1/2(9u;/0x; + du;/0x;),
as follows (using the notation of Pope 2000):

T (x, 1) = =20, (x, DE;(x, 1), (1.1)
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where u = (u, v, w) is the filtered velocity field. The eddy viscosity coefficient v,(x, 7)
is defined by the following model:

v, =c,A’S, (1.2)

where ¢, is the Smagorinsky coefficient, and S = (25;5;)"/%. (Here we define c,
without the squared power, as in Germano 1992, Ghosal ef al. 1995 and Pope
2004, for example.) A constant value of ¢, ~ (0.17)?, which was suggested by Lilly
(1967), did not work particularly well in complex turbulent flows; as a result, Siegel
& Domaradzki (1994) investigated various ranges of ¢, from (0.13)? to (0.24)?
for different turbulent flows. Indeed, there is no clear approach for selecting ¢, in
complex turbulent flows. The dynamic Smagorinsky model is a method proposed by
Germano et al. (1991), in which a temporally and spatially varying ¢, is computed
by applying a second filter A and assuming a self-similar inertial subrange between
two filter scales. An improvement by Lilly (1992) yielded a method to find ¢, using
the resolved fields.

In the last few years, due to high cost of DNS (e.g. Almalkie & de Bruyn Kops
2012; Bartello & Tobias 2013), there has been increased interest in using LES for
computational studies of stratified turbulence (e.g. Remmler & Hickel 2012; Paoli
et al. 2013; Khani & Waite 2014). In stratified turbulence, we also need to model
the SGS density flux h, which is related to the filtered perturbation density p(x, f)
- 9. 1

an

2

hi(x, ) = —P—rtv,(x, 1) , (1.3)
where Pr, is the turbulent Prandtl number. Khani & Waite (2014) have investigated
the performance of two classical LES approaches, the Smagorinsky (1963) and
Kraichnan (1976) models, in LES of stratified turbulence where the filter width A is
larger than the Ozmidov scale. This study found a necessary criterion on A for LES
to capture the fundamental dynamics of stratified turbulence, including a cascade to
small scales (Lindborg 2006), a horizontal wavenumber energy spectrum with a slope
around —5/3 (e.g. Lindborg 2006; Brethouwer et al. 2007; Almalkie & de Bruyn
Kops 2012; Bartello & Tobias 2013), and a breakdown of the layerwise structure
into Kelvin—Helmholtz (KH) instabilities (LLaval, McWilliams & Dubrulle 2003; Waite
2011; Bartello & Tobias 2013; Khani & Waite 2014). These criteria are related to
the buoyancy scale

urms
Lb =27 N , (14)

where u,, is the root-mean-square velocity and N is the buoyancy frequency. The
buoyancy scale is known to be the thickness of the layers that emerge in stratified
turbulence when viscous effects are not dominant (Waite & Bartello 2004; Brethouwer
et al. 2007). As concluded by Khani & Waite (2014), the performance of the
Smagorinsky model in LES of stratified turbulence is disappointing since it requires
three times the resolution compared to the Kraichnan model in order to adequately
capture some of the key features of stratified turbulence (A/L, < 0.17 for the
Smagorinsky LES versus A/L, < 0.47 for the Kraichnan LES). On the other hand,
the applicability of the Kraichnan LES is limited to problems with idealized periodic
boundary conditions, so it is not appropriate for turbulent flows near boundaries or
in complex geometries; note, however, that physical space eddy viscosity models also
face challenges near boundaries (e.g. Meneveau & Katz 2000; Pope 2000; Wan &
Porté-Agel 2011; Lu & Porté-Agel 2014).
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Despite its popularity for geophysical flows, problems with the Smagorinsky model,
including excessive dissipation near the filter scale, are widely known (Germano
et al. 1991; Ghosal et al. 1995; Meneveau & Katz 2000; Pope 2000). In other
fields such as engineering flows, wall-bounded turbulence, and boundary layers, the
dynamic Smagorinsky model is much more widely used (e.g. Jiménez & Moser 2000;
Meneveau & Katz 2000; Pope 2000; Wan & Porté-Agel 2011; Lu & Porté-Agel 2014;
Smith & Porté-Agel 2014), but its applicability to stratified turbulence has not been
investigated. In this paper, we perform and analyse LES of stratified turbulence
using the dynamic Smagorinsky model, in which the main goal is to decrease the
computational costs of the Smagorinsky model in resolving the dynamics of stratified
turbulence. We investigate the maximum filter scale A, which allows for capturing
some of the fundamental features of stratified turbulence, including a cascade to small
scales, a —5/3 horizontal wavenumber energy spectrum and breakdown of layers into
KH instabilities. Also, we investigate the anisotropy of the SGS energy transfer, the
statistics of ¢, at different buoyancy frequencies and numerical resolutions, and the
relationship between ¢, and the resolved dynamics.

In § 2, background on stratified turbulence and the dynamic Smagorinsky model are
reviewed. The numerical approach and methodology are described in § 3. Section 4
presents results, and conclusions are given in § 5.

2. Background

The non-dimensional filtered Navier—Stokes equations under the Boussinesq
approximation are

iy Dy =2 L5 g .1
— (W) = —— — — pe, — — +f, :
or ox T T T Bt by
o1,
M _ o, 2.2)
92
05 9 ol
83 iy 23
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where u, 7, h, p and f are the filtered velocity, deviatoric SGS momentum flux, SGS
density flux, perturbation pressure and velocity forcing fields, respectively, and the
Froude number Fr, =u/N{ is defined based on a velocity scale # and a length scale £.
We neglect the molecular viscosity and diffusion because of the assumption of large
Reynolds number.

The dynamic Smagorinsky model applies a second test filter A > A to the
momentum equation (2.1). It is common to choose A =2A (e.g. Meneveau &
Katz 2000; Pope 2000). The test-filtered momentum equation is given by (e.g. Pope
2000)

aft,-+ 3 G p 1 - ar;jﬂ% o
— Uij) = —— — ——= peé,; — i .
ot 8)(] Hitl 8xi Frezp ‘ 3xj
where T,=T;— 1/3T,.8;, and

) 2.5)

is the sub-test-filter-scale momentum tensor, which needs to be modelled due to
the unknown term wu;. Similar to t” in (1.1), a closure model for T" using the
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Smagorinsky approach could be defined as

T} =—2¢,A’Ss;, (2.6)

where the Smagorinsky coefficient c¢,, which is now allowed to depend on position
and time, should be the same as that in (1.2) because of self-similarity and the
scale-independent assumption (see e.g. Porté-Agel, Meneveau & Parlange (2000) for
the scale-dependent dynamic SGS model). Applying the test filter A to the SGS
momentum tensor 7; and its Smagorinsky model in (1.1), and then subtracting them
from the test SGS momentum tensor T; and its Smagorinsky model (2.6), respectively,
yield (e.g. Meneveau & Katz 2000; Pope 2000)

Lj= Ty — vy = witt; —

i 2.7)
M, = A’Ss; — A’Ss;, (2.8)

S

which are the resolved stress tensor and the Germano rate of strain tensor, respectively,
and are related by the equation

L, =2¢,Mj; 2.9)

Since L; and M;; are known from (2.7) and (2.8), the only unknown in (2.9) is ¢, and
as a result, the system of equation is extremely overdetermined. Lilly (1992) suggests
a least-squares approach to get c¢;, which gives
_ 1 LMy
2 MMy

(2.10)

Cs

It is worthwhile noting the physical interpretation of (2.10), which is that ¢, is
characterized by the amount of dissipation that is generated by projection of the
resolved stress Lj; on the Germano rate of strain M; (e.g. Jiménez & Moser 2000;
Meneveau 2012).

When Lj; and M; are not coaxial, ¢, is negative, which might be interpreted as
backscatter (e.g. Germano et al. 1991). In this situation, any attempts to model the
stress tensor as proportional to the rate of the strain tensor will fail (e.g. Jiménez &
Moser 2000). Indeed, negative eddy viscosity and diffusivity coefficients in (2.1) and
(2.3), respectively, inevitably lead to numerical instabilities (e.g. Domaradzki, Liu &
Brachet 1993; Ghosal et al. 1995; Meneveau & Katz 2000; Pope 2000; Remmler &
Hickel 2012). There are two common approaches to avoiding negative c;: clipping c;
by setting negative values to a non-negative threshold (e.g. 0) and averaging c; over
homogeneous directions (e.g. Lilly 1992; Ghosal et al. 1995; Lesieur & Métais 1996;
Piomelli 1999; Meneveau & Katz 2000; Pope 2000; Porté-Agel et al. 2000; Lu &
Porté-Agel 2014). In this study we apply the first approach: negative ¢, values are set
to zero, but otherwise ¢/ is fully time- and space-dependent, i.e.

(2.11)

+ _Jalx ) o120,
¢ 1) = {O c(x, 1) <O0.

For comparison, we will also investigate the performance of the volume-averaged c;
in our simulations.



LES of stratified turbulence: the dynamic Smagorinsky model 331

In this work we consider strongly stratified turbulence, i.e. with Fr, < 1, in which
the large-scale dynamics are dominated by quasi-horizontal vortical motions rather
than gravity waves (Riley & de Bruyn Kops 2003; Waite & Bartello 2004; Lindborg
2006). Such flows are known to have a layered structure with layer thickness around
L, (Waite & Bartello 2004) and a direct cascade of energy to small scales (Lindborg
2006). Simulations with isotropic resolution of L, show that the layers break up
into KH instabilities on the buoyancy scale (Laval et al. 2003; Brethouwer et al.
2007; Waite 2011; Bartello & Tobias 2013; Waite 2014); as a result, the horizontal
wavenumber kinetic energy spectrum has an approximately —5/3 power law (Lindborg
2006; Brethouwer et al. 2007; Almalkie & de Bruyn Kops 2012; Bartello & Tobias
2013) with possibly a bump at L, (Laval et al. 2003; Brethouwer et al. 2007; Waite
2011). These characteristics of stratified turbulence — a downscale cascade, —5/3
horizontal energy spectrum and KH instabilities at the buoyancy scale — only occur
when the buoyancy Reynolds number Re, = €/vN* > 1 and the horizontal Froude
number Fr, < 1, where Fr, = u,,;/NI, (Riley & de Bruyn Kops 2003; Brethouwer
et al. 2007; Almalkie & de Bruyn Kops 2012; Bartello & Tobias 2013). Note
that when [, is defined using the Taylor hypothesis, it follows that Re, = Fr)Re,
where Re = u,,l,/v (as in Brethouwer et al. 2007 and Bartello & Tobias 2013, for
example). When the dissipation is too strong for a given stratification, e.g. when
Re, < 1, the energy cascade to small horizontal scales is eliminated, the horizontal
wavenumber energy spectrum becomes very steep, and KH instabilities are suppressed
(e.g. Brethouwer et al. 2007; Bartello & Tobias 2013).

3. Methodology

Forced stratified turbulence is studied in this paper, where the forcing term is
applied to the rotational part of the horizontal velocity field, i.e. vortically forced
stratified turbulence; see Herring & Métais (1989), Waite & Bartello (2004), Waite
(2011), Khani & Waite (2014) for more details. Idealized simulations in a cubic
box of side L =2m are considered. The sharp spectral filter is employed, where the
relationship between the cutoff wavenumber k. and the grid spacing A is given by

A=—. 3.1
K (3.1
Spatial derivatives are discretized using the spectral transform method, where the two-
thirds rule (Orszag 1971) is applied in each direction for the elimination of aliasing
errors. Hence, the cutoff wavenumber k. is related to the resolution as

2n

= (3.2)

ke=m
(i.e. 2/3 of the Nyquist wavenumber), where n is the number of grid points in the x, y
and z directions. We can use (3.2) in (3.1) to get the effective grid spacing A =3L/2n,
which is used in the eddy viscosity equations. For time advancement, the explicit third-
order Adams—Bashforth scheme is employed.

Simulations are initialized with low-level random noise and spun up at low
resolution (n=256) and with hyperviscosity to £ =300. Simulations are then continued
at low (n = 256) and high (n = 512) resolution with the dynamic Smagorinsky
subgrid-scale model; a similar approach is considered in Waite & Bartello (2004),
Waite (2011), Khani & Waite (2014), for example. Additional simulations with the
regular Smagorinsky model (described in Khani & Waite 2014) are also considered
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N n k;, k. k, (€) (E(1)) Fr, k. Jk, A/L, At
Dynamic Smagorinsky
d5SNO 0 512 168 1.5 x 107* 0.0058 00 0.006
d5SN2 2 512 31 168 271 1.1x10™* 0.0043 0.013 542 0.092 0.009
d5N4 4 512 57 168 756 1.1 x10™* 0.0049 0.006 295 0.169 0.008
d5N6 6 512 80 168 1352 1.2x10°* 0.0056 0.003 2.10 0.239 0.007
d2NO 0 256 83 1.4 x10~* 0.0053 00 0.018
d2N2 2 256 30 83 273 1.1x107* 0.0044 0.012 277 0.180 0.018
d2N4 4 256 54 83 777 1.1x107* 0.0055 0.005 1.53 0.327 0.016
d2N6 6 256 72 83 1327 1.2x107* 0.0070 0.003 1.15 0435 0.015
d2N12 12 256 127 83 3679 1.3x10™* 0.0090 0.001 0.65 0.763 0.010

Smagorinsky

STN2 2 768 32 254 286 9.8x 107 0.0039 0.012 7.94 0.063 0.006
S5N2 512 31 168 262 1.2x107* 0.0042 0.014 542 0.092 0.009
S2N2 2 256 32 83 282 1.0x10™* 0.0040 0.013 2.59 0.193 0.018

TABLE 1. List of numerical simulations.

[\

for comparison. Four different buoyancy frequencies of N =2, 4, 6 and 12, along with
an unstratified case (N = 0), are considered. Froude numbers vary from 0.001 to oo
to cover both strongly stratified (e.g. Riley & de Bruyn Kops 2003; Waite & Bartello
2004; Hebert & de Bruyn Kops 2006a; Lindborg 2006; Brethouwer et al. 2007; Waite
2011; Khani & Waite 2013, 2014) and unstratified turbulence. The typical kinetic
energy dissipation rate € is around 107%, which gives a forcing time scale #; ~ 10,
when combined with the forcing wavenumber k; = 3. The turbulent Prandtl number
Pr,=1 and u,,; = +/(E(?)) (e.g. Khani & Waite 2014), where the angle brackets (-)
denote time-averaging over 375 <t < 450. Table 1 shows parameters and averaged
quantities for the dynamic Smagorinsky LES in this paper, where k, = (N3/€)'/? is
based on (€) and k;, is based on u,,,.

As in Khani & Waite (2014), we consider the ability of the LES model to capture
fundamental features of stratified turbulence at different resolutions. We have identified
three features of stratified turbulence that are known to be suppressed in simulations
when dissipation is too strong for a given stratification: an approximately —5/3 energy
spectrum in the horizontal wavenumber; KH instabilities and billows on the stratified
turbulence layers, with associated regions of small and negative Richardson number;
and shallowing, or bumps, in the energy spectrum at the buoyancy scale, associated
with the injection of energy from the KH instabilities. These characteristics have
been found in many numerical studies of stratified turbulence, including DNS and
hyperviscosity experiments: Lindborg (2006), Brethouwer et al. (2007), Almalkie &
de Bruyn Kops (2012) and Bartello & Tobias (2013) have found approximately —5/3
energy spectra; Laval et al. (2003), Brethouwer et al. (2007) and Waite (2011, 2014)
have discussed KH instabilities and associated bumps in the energy spectra. The
recent high-resolution DNS by Bartello & Tobias (2013) also found KH instabilities
and stratification-dependent bumps in the compensated energy spectra. These are
not the only properties of stratified turbulence, but they are important, and they are
clearly suppressed when dissipation is too strong; as a result, we have chosen to
focus on these phenomena to identify a resolution criterion for LES. For LES with
the Smagorinsky (1963) or Kraichnan (1976) models, it seems only necessary that L,
be sufficiently resolved (Khani & Waite 2014).
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FIGURE 1. The averaged compensated horizontal energy spectra. The spectra are averaged
over 375 < t < 450. From left to right, arrows show buoyancy wavenumbers k;, that
correspond to buoyancy frequencies N =2, 4, and 6, respectively.

4. Results and discussion
4.1. Buoyancy scale effects on the dynamic Smagorinsky model

The compensated horizontal wavenumber energy spectra, in which the horizontal
spectra are normalized by k,>(¢)¥3, are shown in figure 1. The advantage of
using the compensated spectra is that constant horizontal spectra at intermediate
wavenumbers imply a spectral slope of —5/3, in line with the stratified turbulence
inertial subrange theory of Lindborg (2006). The high-resolution case with N =2
shows an almost constant normalized spectrum over 6 < k;, < 30 along with a wide
bump around k, ~ 30. The lower-resolution simulation with the same stratification
exhibits a steeper spectrum, in which the bump around the buoyancy scale is weakly
resolved. Increased stratification steepens the compensated horizontal wavenumber
energy spectra, to the extent that the high-resolution cases with N =4 and 6 do not
clearly show constant inertial subranges but resolve (small) bumps around k, ~ 60
and 80, respectively. In addition, the low-resolution LES with larger stratification
do not seem to capture any inertial subrange or bumps. In agreement with LES of
stratified turbulence in Khani & Waite (2014), these results suggest that resolving a
clear constant inertial subrange in the compensated horizontal wavenumber spectrum
depends on the resolution and buoyancy frequency. As a result, stronger stratification
may need higher resolution in LES to capture an inertial subrange.

Khani & Waite (2014) have shown that in the Kraichnan and Smagorinsky
LES, capturing dynamics of stratified turbulence depends on the ratio A/L,. Only
for sufficiently small values of A/L, — below 0.47 for Kraichnan and 0.17 for
Smagorinsky — were the small-scale features of stratified turbulence, including KH
instabilities and locally small values of the Richardson number, captured. To evaluate
the relevance of this criterion for the dynamic Smagorinsky model, we consider the
horizontal vorticity fields as well as distributions of the local Richardson number in
our stratified simulations.

Figure 2 shows the y component of vorticity @, in the x—z plane for the high-
resolution simulations with different buoyancy frequencies at y = 0.25 and 7 = 450.
Unlike the unstratified case (figure 2a), the stratified cases are layered in the vertical
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FIGURE 2. Vorticity field in the y direction w, on the x—z plane at y=0.25 and =450
for the high-resolution case with (a) N=0, (b)) N=2, (¢) N=4, and (d) N=6.

direction. KH instabilities are clearly visible in figure 2(b), but less so in figure 2(c,d);
indeed, the increased stratification in figure 2(c,d) leads to decreasing numbers of KH
billows. For stratified simulations, increased stratification inhibits KH instabilities as
the layer thickness decreases towards the dissipation scale (e.g. Hebert & de Bruyn
Kops 2006a; Brethouwer et al. 2007; Bartello & Tobias 2013; Khani & Waite 2014).

There is an apparent connection between cases with no inertial subrange in figure 1
and cases with no KH instabilities in figure 2. This connection has been noted
previously in DNS (Waite 2014) and other kinds of LES (Khani & Waite 2014).
To further investigate this connection with the dynamic Smagorinsky model, we
consider the local Richardson number. The Richardson number shows the ratio of
total (ambient plus perturbation) buoyancy frequency over the square of the vertical
shears of horizontal motions, written as

N? — i@
. Po 0z
Ri= , 4.1
dit 2+ 30\ > @D
0z 0z
where N? = —(g/p0)0®,/dz is constant, py, g and @, are the reference density,

gravity and ambient density fields, respectively. Small Richardson numbers including
negative values correspond to overturning and KH instabilities. Figure 3 shows
the time-averaged histograms of the local Richardson number Ri for the high- and
low-resolution LES with different buoyancy frequencies. Histograms show long tails
for positive Ri and also rapid drops for negative Ri. It appears that by increasing the
resolution and decreasing buoyancy frequency, the peaks in the Ri histograms move
towards negative values, i.e. more of the domain is subject to KH and gravitational
instabilities. In addition, the high-resolution case with N = 2 (the solid black line)
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FIGURE 3. The averaged histograms of local Richardson number Ri. Only the segment
—10 < Ri < 30 is shown. Histograms are normalized by bin size to give probability
distributions, and are computed with 100 bins over the given segment (ARi=0.4).

shows the largest number of points with negative values and the smallest number of
points with positive Ri. However, the low-resolution case with N =6 (the grey dotted
line) shows the largest values for positive Ri and just a few points with negative
Ri. Consistent with the Smagorinsky and Kraichnan LES of Khani & Waite (2014),
increased resolution at fixed buoyancy frequency, or decreased stratification at fixed
resolution, increases the number of points with small and negative Ri. As a result,
figure 3 demonstrates that increased resolution or decreased stratification are more
likely to lead to generation of KH instabilities and overturning (consistent with the
results of figure 2).

Considering these findings, we can now attempt to find a threshold for A/L,
which guarantees that the breakdown of the layers into KH instabilities is captured
(see Khani & Waite 2014 for similar thresholds in the Kraichnan and Smagorinsky
LES). According to table 1 and figure 3, if we consider cases with A < 0.24L,
(i.e. k. > 2.1k;,), the averaged Ri histograms for —10 < Ri < 30 are above 107°. On
the other hand, if A > 0.24L,, only very few points with small and negative Ri appear.
These findings suggest that the maximum grid spacing for the dynamic Smagorinsky
model should be in the range 0.18L, < A < 0.24L,. In contrast, the threshold for
the regular Smagorinsky LES is in the range 0.12L, < A < 0.17L, (see Khani &
Waite 2014). While the dynamic Smagorinsky values are larger — i.e. lower resolution
is able to capture the basic dynamics of stratified turbulence — these ranges nearly
overlap, suggesting that the criteria for the regular and dynamic Smagorinsky are
close. In the next section we compare these two SGS models and show that the
dynamic Smagorinsky model is clearly better.

4.2. The dynamic Smagorinsky model versus the Smagorinsky model

To get a better understanding of how well the dynamic Smagorinsky model
performs in stratified turbulence simulations, we compare with results obtained
with the regular Smagorinsky model at the same stratifications and resolutions
(results from Khani & Waite 2014; these simulations are labelled ‘S’ in table 1).
Figure 4 shows the horizontal wavenumber energy spectra at different resolutions
and fixed buoyancy frequency for both SGS models. Clearly, the dynamic version
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FIGURE 4. (Colour online) The averaged horizontal wavenumber energy spectra for the
dynamic Smagorinsky cases compared with the Smagorinsky cases at different resolutions
with fixed buoyancy frequency N =2. The dot-dot-dashed (magenta online) curve shows
the averaged horizontal wavenumber energy spectra over 300 < t < 356 for dynamic
Smagorinsky simulation, in which ¢, values are space-averaged instead of clipping negative
values. The solid black line segments show —5/3 and —3 slopes.

is less dissipative than the regular Smagorinsky model with the same resolution
at large horizontal wavenumbers: at the same resolutions, the dynamic and regular
Smagorinsky results agree fairly well at large scales but diverge at small scales,
where the regular Smagorinsky results exhibit a much broader and steeper dissipation
range. This is particularly pronounced at the lower resolution (n = 256), where the
regular Smagorinsky spectrum is much steeper than the dynamic model over most
wavenumbers. It is interesting that the dynamic case with n = 512 is very similar
to the Smagorinsky LES with n = 768; nevertheless, the Smagorinsky model is still
more dissipative for k, = 60. In addition, the low-resolution dynamic Smagorinsky
case with N =2 is very close to the regular Smagorinsky LES with n = 512 and
N =2. This trend implies that the dynamic Smagorinsky LES looks like the regular
Smagorinsky case with twice the resolution. As a result, the low-resolution dynamic
Smagorinsky model yields similar results to the high-resolution Smagorinsky model
at fixed buoyancy frequency. It is worth mentioning that at the same resolution, both
the dynamic and regular Smagorinsky models are almost identical at large scales: for
the case with n =256, they are very similar for k, < 6, and for the case with n =512,
they are almost identical up to k;, = 20.

Figure 5 shows the horizontal and vertical wavenumber spectra of SGS energy
transfer (i.e. eddy dissipation spectra) for stratified and unstratified dynamics models
at t=450. The eddy dissipation spectrum shows the rate of kinetic energy dissipation
at resolved wavenumbers due to the eddy viscosity mechanism. In other words, the
eddy dissipation spectra indicate the energy transfer from resolved scales towards the
(unresolved) SGS motions. In order to compute the spectral SGS energy transfer, we
multiply the Fourier coefficient of the eddy viscosity term in (2.1) with twice the
complex conjugate of the Fourier coefficient of the filtered velocity field, and take
the real part. For comparison, the eddy dissipation spectra of the Smagorinsky LES
for the case with n =768 and N = 2 (see Khani & Waite 2014) are also shown.
For unstratified cases, the maximum eddy dissipation occurs at small scales for both
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FIGURE 5. (Colour online) The horizontal (a) and vertical (b) wavenumber spectra of
SGS energy transfer for the low-resolution and high-resolution cases at ¢t = 450. The
spectra are multiplied by wavenumber in order to preserve area on the log-linear axes.
For comparison, the results of high-resolution Smagorinsky LES are also shown (Khani
& Waite 2014).

the horizontal and vertical wavenumber spectra. These trends are consistent with the
isotropic dissipation picture, in which the kinetic energy is damped mainly at small
scales. For stratified cases, however, the eddy dissipation spectra are very different
in the horizontal and vertical directions. According to figure 5(a), the horizontal
wavenumber spectra of SGS energy transfer peak at large scales.

Unlike the horizontal wavenumber spectra, the vertical wavenumber spectra of
eddy dissipation for the stratified cases peak at small scales (figure 5b). Increased
stratification or decreased resolution increase the vertical SGS energy transfer
spectra by contracting the thickness of vertical layers towards the dissipation scale
or increasing dissipation scales, respectively (as seen in previous hyperviscosity
simulations and DNS: Waite & Bartello 2004; Hebert & de Bruyn Kops 20065;
Brethouwer et al. 2007; Almalkie & de Bruyn Kops 2012; Bartello & Tobias 2013).
As a result, for an isotropic eddy viscosity model, increased stratification leads to
anisotropic eddy dissipation spectra due to strongly anisotropic resolved scales (see
also Khani & Waite 2014 for the Kraichnan and Smagorinsky models). It is worth
mentioning that the horizontal and vertical eddy dissipation spectra of the dynamic
Smagorinsky LES with n =512 and N =2 are very similar to their counterparts in
the Smagorinsky LES with higher resolution » =768 and the corresponding buoyancy
frequency, especially when k;, , <60 (figure 5). As a result, the low-resolution dynamic
Smagorinsky model generates almost the same eddy dissipation as the high-resolution
Smagorinsky model in LES of stratified turbulence. The results in figure 5 are
consistent with the results of Khani & Waite (2013), who measured effective eddy
viscosity and dissipation spectra in DNS of stratified turbulence. In particular, the
maximum energy transfer from resolved scales towards SGS motions happens at large
horizontal and small vertical scales (in line with the anisotropic dissipation in DNS
of Khani & Waite 2013).

Figure 6 shows the horizontal and vertical energy transfer spectra for the stratified
case with n =512 and N =2 at r =450. The total kinetic energy transfer spectrum,
which is shown by a solid black line in figure 6, is a summation of the resolved
energy transfer spectrum 7* plus the eddy dissipation spectrum 7,. In the horizontal
direction (figure 6a), there is a large negative peak, which balances the energy input
at large horizontal scales by the forcing term. In the intermediate range 7 < k;, < 23,
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FIGURE 6. The horizontal (a) and vertical (b) energy transfer spectra for the
high-resolution stratified case with N = 2 at r = 450. The spectra are multiplied by
wavenumbers in order to preserve area on the log-linear axes. The thin black line shows
the zero value.

the energy transfer is approximately zero, which shows the stratified turbulence
inertial subrange (Lindborg 2006). At smaller resolved scales a positive bump around
k, = 30 is seen, which indicates the injection of energy near the buoyancy scale k,,
consistent with the development of KH instabilities and billows (in line with DNS
and hyperviscosity simulations of Waite 2011, 2014). Figure 6(b) shows the vertical
energy transfer spectrum, in which a peak around the buoyancy scale k, = 30 is
observed, as in the horizontal. Overall, the transfer spectra seem broadly consistent
with DNS results, which show transfer of energy out of the forcing scales and into
the buoyancy scale (Almalkie & de Bruyn Kops 2012; Waite 2014).

In conclusion, this section shows that the maximum criterion on A /L, for resolving
KH instabilities in the dynamic Smagorinsky model is definitely larger than that
for the regular Smagorinsky model. Even with half the resolution, the dynamic
Smagorinsky model gives similar results to the regular Smagorinsky model (figure 4).

4.3. The dynamic Smagorinsky coefficient c;

In this section, a detailed analysis on the dynamic Smagorinsky coefficient ¢, is
presented. Figure 7(a) shows a snapshot for the ¢ field in the x—z plane along with
a few contours of the characteristic rate of strain S = (2§,-j§,-j)1/ 2 at y=0.25 and r=450
for the high-resolution case with N =4. The vertical axis is zoomed in to show around
13 vertical layers of length 27/k,. It is interesting that the presence of stratification
leads to vertical layers in the ¢/ field. Black contours of S indicate low values
S=1 and 1.5. The magenta contours on the other hand show higher values S = 6
and 8. Interestingly, regions with high straining in figure 7 are generally associated
with zero or very small values of ¢, while regions with low straining correspond
to larger values of c¢!. This behaviour, which has been investigated elsewhere in
unstratified turbulence (e.g. Kleissl er al. 2006; Wan & Porté-Agel 2011), suggests
that the dynamic Smagorinsky coefficient c¢; decreases as shear increases in order to
preserve the small-scale instabilities between vertical layers.

Figure 7(b) shows the probability distributions of ¢ on gridpoints restricted to
different ranges of S at #=450. It is clear that increased straining is associated with
smaller values of c¢]. With weak straining, distributions of the dynamic Smagorinsky
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FIGURE 7. (a) The Smagorinsky coefficient field ¢ on the x—z plane and (b) the
conditional distribution of ¢}, for the high-resolution case with N =4 at y =0.25 and
t =450. In (a), contours of constant S = (25;5;)"/* are overlaid on the ¢ field where
the vertical axis is zoomed in to 80/k;, that includes around 13L,. The magenta contours

present high values S =6 and 8 and the black contours show those of low values S =1
and 1.5.
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FIGURE 8. The Smagorinsky coefficient field ¢} on the x—z plane for the high-resolution
cases with (@) N=2 and (b) N=6 at y=0.25 and ¢t =450, where the vertical axes are
zoomed in to 80/k, to include around 13L,.

coefficient ¢/ show both small and large ¢ values. However, for large straining,
these dlstrlbutlons show small ¢ values. For example for S >7, the solid black line
in figure 7(b), ¢ values are smaller than (0.14)2. This trend is consistent with the
suggestion of Deardorff (1971) that the presence of shear implies small ¢} values.
In addition, looking at ¢} fields at different stratifications shows that increased
stratification at fixed resolution leads to vertical layers that are not fully resolved,
consistent with failure of the criterion on A/L, (see figure 8).

The time-averaged histograms of c¢; at different resolutions and buoyancy frequencies
are shown in figure 9(a). Increased stratification leads to decreasing standard
deviations, i.e. ¢, values tend to get smaller (consistent with figure 7). Interestingly,
the distribution of negative ¢, (before clipping is applied) is very similar to that of
positive c,; similar trends are seen in Kang, Chester & Meneveau (2003), Meneveau,
Lund & Cabot (1996) for probability distributions of local SGS dissipation, and
probability distributions of c¢;, respectively. As discussed in §2, negative c; values
occur when the resolved stress L; and Germano’s rate of strain M;; are not coaxial,
implying backscatter. Since we remove negative c; values at every time step to prevent
numerical instabilities, the clipping procedure removes some local information about
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FIGURE 9. (Colour online) (a) The averaged histograms of Smagorinsky coefficient c;
and (b) the time- and space-averaged c; versus A/L,. In (a), only the segment —0.25 <
¢; < 0.25 is shown. Histograms are normalized by bin size to give probability distributions,
and are computed with 100 bins over the given segment (Ac, =0.005). The dashed line
in (b) shows the average of all {c¢)) values.

the modelled SGS stress tensor and the dynamics of upscale energy transfer, which
are not appropriately represented with an eddy viscosity model. In addition, this plot
shows that the volume-averaged c; values are very close to zero. Figure 9(b) shows
the time-and-space average (denoted by double angle brackets (-)) of ¢ versus A/L,.
It is interesting that the time- and space-averaged c for stratified cases is around
{c) = (0.25)* (the dashed black line in figure 9b), which is only slightly larger
than that of the non-stratified case with (cf) = (0.23)?, and also larger than the
regular Smagorinsky constant ¢, = (0.17)?. This behaviour might suggest that the
presence of stratification decreases straining in turbulent flows and so the dynamic
Smagorinsky model implies larger ¢, in stratified turbulence, corresponding to changes
in dynamics of flows as stratification appears (see also figure 7). Interestingly, the
probability distributions of ¢, in stratified turbulence are symmetric, which is not the
case for ¢ (in line with the isotropic turbulence: Meneveau et al. 1996; Kang et al.
2003).

It is interesting that the self-similar assumption of the dynamic Smagorinsky model
works reasonably well in stratified turbulence when A ~ L,. A possible explanation
for this behaviour could be the development and breakdown of KH billows, which
are much more isotropic than the larger-scale layerwise structures. In addition, DNS
results of stratified turbulence show that the effective spectral eddy viscosity has self-
similar structure when the test cutoff k. is around &, or smaller (Khani & Waite 2013).

An alternative to clipping negative ¢, values is to use spatial averaging of ¢, over
the homogeneous directions, as is often done in boundary layer simulations (e.g.
Meneveau & Katz 2000; Pope 2000; Porté-Agel et al. 2000). Here, since we are
considering homogeneous stratified turbulence, this approach amounts to taking a
spatial average of ¢, before evaluating the eddy viscosity (1.2). We have evaluated
this approach by performing an additional simulation with n =256 and N =2, in
which ¢ values are averaged over the entire domain instead of clipping negative c
values. Because of the lack of sufficient dissipation at small scales, the simulation in
this case blew up at around ¢ = 356 (see the dot-dot-dashed (magenta online) curve
in figure 4, which clearly shows an artificial pile-up of energy at large wavenumbers).
The averaged probability distribution of ¢, for this simulation over 300 < r < 356 is
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also shown in figure 9(a), in which shorter tails and a larger peak are seen. For this
case, the standard deviation is half of that seen when clipping negative ¢, values.

5. Conclusions

A systematic analysis of the performance of the dynamic Smagorinsky model
in stratified turbulence has been studied in this paper. Our results show that if
A/L, < 0.24, several key features of stratified turbulence — including an energy
spectrum with an approximately —5/3 slope in the horizontal, KH instabilities
and overturning — are captured in LES of stratified turbulence using the dynamic
Smagorinsky model. Other SGS models have different criteria for A/L,. For example,
Khani & Waite (2014) argued that for the Smagorinsky and Kraichnan model A/L,
should be less than 0.17 and 0.47, respectively, to ensure these features of stratified
turbulence are captured. As a result, the resolution limit on A in the dynamic
Smagorinsky model is 40 % larger than that of the Smagorinsky model (see figure 4).
In addition, this study shows that spectra of SGS energy transfers in stratified
simulations are significantly different in the horizontal and vertical directions, in
line with other LES models (Khani & Waite 2014). The maximum eddy dissipation
spectra in stratified cases occur at large horizontal and small vertical scales. This
behaviour suggests that spectra of SGS energy transfer are anisotropic in stratified
turbulence. Overall, the eddy dissipation from the dynamic Smagorinsky LES with
N =2 and n = 512 looks similar to the regular Smagorinsky LES at the same
buoyancy frequency with n = 768.

The dynamic eddy viscosity coefficient ¢ shows a layerwise field in the presence of
stratification, consistent with the familiar layered structure of stratified turbulence. This
finding implies that the dynamic Smagorinsky model can make a connection between
the SGS model and stratification and that this connection yields an improvement on
the performance of traditional SGS models like the Smagorinsky model in stratified
turbulence. It is interesting that large values of ¢ correspond to regions with weak
straining. Consistently, in regions with large shears (strong vertical straining), the
values of ¢ are very small. This behaviour explains why the dynamic Smagorinsky
model is overall less dissipative than the regular Smagorinsky model. Also, the overall
relationship between ¢! and shear S is similar to what has been discussed in the
literature on unstratified turbulence. In addition, local distributions of negative ¢, are
very close to positive ¢, implying that local negative dissipation (i.e. backscatter)
might be important in the dynamic Smagorinsky model. Nevertheless, negative values
of ¢, are set to zero in this study to stabilize the simulations and ensure sufficient
small-scale dissipation. Ultimately, the appropriate inclusion of backscatter in LES
requires a different approach from the eddy viscosity model (e.g. Carati, Ghosal &
Moin 1995; Ghosal et al. 1995).

At the same resolution, the dynamic Smagorinsky model is much more expensive
than the regular Smagorinsky model; wall clock run times are approximately twice
as long. This increase in run time is due to the significant increase in the number of
fast Fourier transforms (FFTs) required to compute ¢;. On the other hand, the dynamic
Smagorinsky model can be run at lower resolution and still give similar results to the
regular Smagorinsky model. Decreasing the resolution by 33 % (i.e. from n =768 to
n=>512) cuts the run time by a factor of 5. Halving the resolution (i.e. from n =512
to n=256) cuts the run time by a factor of 16, and still gives dynamic Smagorinsky
results similar to regular Smagorinsky. Despite the increased number of FFTs, the
ability to run at lower resolution implies that the dynamic Smagorinsky approach is
clearly more efficient than the regular Smagorinsky method.
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Overall, we have now looked at three SGS models: Kraichnan, Smagorinsky
and dynamic Smagorinsky. Despite the fact that these models were designed for
unstratified turbulence, they work well for stratified turbulence when L, is resolved
sufficiently. The interpretation of ‘sufficiently’ depends on the model. The Kraichnan
model is clearly the best — i.e. it requires the lowest resolution to give the same results
— but it only works for triply periodic spectral models. Otherwise, the dynamic
Smagorinsky model is better than regular Smagorinsky. However, none of these
models work well when L, is not resolved. Eliminating this barrier, i.e. running
LES without fully resolving L,, would require a major rework. For future work,
performing LES of stratified turbulence with anisotropic eddy viscosity terms could
be considered. In addition, considering local backscatter in the dynamic SGS models
is another potential avenue in studying of stratified turbulence. Ultimately, we need
to perform a high-resolution DNS of stratified turbulence to study the dynamics of
energy transfer around the buoyancy scale L, and maybe the Ozmidov scale L,.

Acknowledgements

Computations were performed on the GPC supercomputer at the SciNet HPC
Consortium. SciNet is funded by the Canada Foundation for Innovation under the
auspices of Compute Canada, the Government of Ontario, Ontario Research Fund
— Research Excellence, and the University of Toronto. Also, this work was made
possible by the facilities of the Shared Hierarchical Academic Research Computing
Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada. Financial
support from the Natural Sciences and Engineering Research Council of Canada is
gratefully acknowledged.

REFERENCES

ALMALKIE, S. & DE BRUYN Kors, S. M. 2012 Kinetic energy dynamics in forced, homogeneous,
and axisymmetric stably stratified turbulence. J. Turbul. 13, 1-32.

BARTELLO, P. & TOBIAS, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds
number. J. Fluid Mech. 725, 1-22.

BRETHOUWER, G., BILLANT, P., LINDBORG, E. & CHOMAZ, J.-M. 2007 Scaling analysis and
simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343-368.

CARATI, D., GHOSAL, S. & MOIN, P. 1995 On the representation of backscatter in dynamic
localization models. Phys. Fluids 7 (3), 606-616.

DEARDORFF, J. W. 1971 On the magnitude of the subgrid scale eddy coefficient. J. Comput. Phys.
7, 120-133.

DOMARADZKI, J. A, LiUu, W. & BRACHET, M. E. 1993 An analysis of subgrid-scale interactions
in numerically simulated isotropic turbulence. Phys. Fluids A 5 (7), 1747-1759.

GERMANO, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325-336.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W. H. 1991 A dynamic subgrid-scale eddy
viscosity model. Phys. Fluids A 3 (7), 1760-1765.

GHOSAL, S.,LunD, T. S., MOIN, P. & AKSELVOLL, K. 1995 A dynamic localization model for
large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229-255.

HEBERT, D. A. & DE BRUYN KOPs, S. M. 2006a Relationship between vertical shear rate and
kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Lett. 33, L06602.

HEBERT, D. A. & DE BRUYN KoPs, S. M. 2006b Predicting turbulence in flows with strong stable
stratification. Phys. Fluids 18, 066602.

HERRING, J. R. & METAIS, O. 1989 Numerical experiments in forced stably stratified turbulence.
J. Fluid Mech. 202, 97-115.


http://www.sharcnet.ca

LES of stratified turbulence: the dynamic Smagorinsky model 343

JIMENEZ, J. R. & MOSER, R. D. 2000 Large-eddy simulations: where are we and what can we
expect? AIAA J. 38 (4), 605-612.

KANG, H. S., CHESTER, S.& MENEVEAU, C. 2003 Decaying turbulence in an active-grid-generated
flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129-160.

KHANI, S. & WAITE, M. L. 2013 Effective eddy viscosity in stratified turbulence. J. Turbul. 14 (7),
49-70.

KHANI, S. & WAITE, M. L. 2014 Buoyancy scale effects in large-eddy simulations of stratified
turbulence. J. Fluid Mech. 754, 75-97.

KLEISSL, J., KUMAR, V., MENEVEAU, C. & PARLANGE, M. B. 2006 Numerical study of dynamic
Smagorinsky model in large-eddy simulation of the atmospheric boundary layer: validation in
stable and unstable conditions. Water Resour. Res. 42, W06D10.

KRAICHNAN, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521-1536.

LAvAaL, J.-P., MCWILLIAMS, J. C. & DUBRULLE, B. 2003 Forced stratified turbulence: successive
transition with Reynolds number. Phys. Rev. E 68, 036308.

LESIEUR, M. & METAIS, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev.
Fluid Mech. 28, 45-82.

LiLLy, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments.
In NCAR Manuscript 281, National Center for Atmospheric Research, Boulder, CO, USA,
pp- 99-164.

LiLLy, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys.
Fluids A 4 (3), 633-635.

LINDBORG, E.2006 The energy cascade in strongly stratified fluid. J. Fluid Mech. 550, 207-242.

Lu, H. & PORTE-AGEL, F. 2014 On the development of a dynamic nonlinear closure for large-eddy
simulation of the atmospheric boundary layer. Boundary-Layer Meteorol. 151 (3), 429-451.

MENEVEAU, C. 2012 Germano identity-based subgrid-scale modeling: a brief survey of variations
on a fertile theme. Phys. Fluids 24, 121301.

MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for large-eddy simulation.
Annu. Rev. Fluid Mech. 32, 1-32.

MENEVEAU, C.,LUND, T. S. & CABOT, W. H. R. 1996 A Lagrangian dynamic subgrid-scale model
of turbulence. J. Fluid Mech. 319, 353-385.

ORSZAG, S. A. 1971 On the elimination of aliasing in finite-difference schemes by filtering high-
wavenumber components. J. Atmos. Sci. 28, 1074-1074.

PaoLi, R., THOURON, O., ESCOBAR, J., PicOT, J. & CARIOLLE, D. 2013 High-resolution large-eddy
simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere. Atmos.
Chem. Phys. Discuss. 13, 31891-31932.

PIOMELLI, U. 1999 Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35,
335-362.

PoPE, S. B. 2000 Turbulent Flows. Cambridge University Press.

PoPE, S. B. 2004 Ten questions concerning the large-eddy simulation of turbulent flows. New J.
Phys. 6 (35), 1-24.

PORTE-AGEL, F., MENEVEAU, C. & PARLANGE, M. B. 2000 A scale-dependent dynamic model
for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech.
415, 261-284.

REMMLER, S. & HICKEL, S. 2012 Direct and large eddy simulation of stratified turbulence. Intl J.
Heat Fluid Flow 35, 13-24.

RILEY, J. J. & DE BRUYN KOPS, S. M. 2003 Dynamics of turbulence strongly influenced by
buoyancy. Phys. Fluids 15, 2047-2059.

SIEGEL, D. A. & DOMARADZKI, J. A. 1994 Large-eddy simulation of decaying stably stratified
turbulence. J. Phys. Oceanogr. 24, 2353-2386.

SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations. Part I. The
basic experiment. Mon. Weath. Rev. 91 (3), 99-164.

SMITH, C. M. & PORTE-AGEL, F. 2014 An intercomparison of subgrid models for large-eddy
simulation of katabatic flows. Q. J. R. Meteorol. Soc. 140 (681), 1294-1303.

WAITE, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids A 23, 066602.



344 S. Khani and M. L. Waite

WAITE, M. L. 2014 Direct numerical simulations of laboratory-scale stratified turbulence. In Modeling
Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical
Simulations (ed. T. von Larcher & P. Williams), American Geophysical Union, pp. 159-175.
Wiley & Sons.

WAITE, M. L. & BARTELLO, P.2004 Stratified turbulence dominated by vortical motion. J. Fluid
Mech. 517, 281-303.

WAaN, F. & PORTE-AGEL, F. 2011 Large-eddy simulation of stably-stratified flow over a steep hill.
Boundary-Layer Meteorol. 138, 367-384.



	Large eddy simulations of stratified turbulence: the dynamic Smagorinsky model
	Introduction
	Background
	Methodology
	Results and discussion
	Buoyancy scale effects on the dynamic Smagorinsky model
	The dynamic Smagorinsky model versus the Smagorinsky model
	The dynamic Smagorinsky coefficient cs

	Conclusions
	Acknowledgements
	References




