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ABSTRACT: Subgrid-scale (SGS) parameterizations in atmosphere and ocean models are often defined independently in

the horizontal and vertical directions because the grid spacing is not the same in these directions (anisotropic grids). In this

paper, we introduce a new anisotropic SGS model in large-eddy simulations (LES) of stratified turbulence based on hor-

izontal filtering of the equations of motion. Unlike the common horizontal SGS parameterizations in atmosphere and ocean

models, the vertical derivatives of the horizontal SGS fluxes are included in our anisotropic SGS scheme, and therefore

the horizontal and vertical SGS dissipation mechanisms are not disconnected in the newly developed model. Our

model is tested with two vertical grid spacings and various horizontal resolutions, where the horizontal grid spacing is

comparatively larger than that in the vertical. Our anisotropic LES model can successfully reproduce the results of

direct numerical simulations, while the computational cost is significantly reduced in the LES. We suggest the new

anisotropic SGS model as an alternative to current SGS parameterizations in atmosphere and ocean models, in which

the schemes for horizontal and vertical scales are often decoupled. The new SGS scheme may improve the dissipative

performance of atmosphere and ocean models without adding any backscatter or other energizing terms at small

horizontal scales.

KEYWORDS: Filtering techniques; Large eddy simulations;Model evaluation/performance; Numerical analysis/modeling;

Parameterization; Subgrid-scale processes

1. Introduction
Large-eddy simulation (LES) is a useful numerical approach

for simulations of geophysical turbulence at the small-scale end

of the atmospheric mesoscale, oceanic submesoscale, and

smaller scales, where there is forward kinetic energy transfer

from large to small horizontal scales. These scale ranges are

broadly characterized by strong stratification and weak rota-

tion (i.e., stratified turbulence) (e.g., Riley and Lindborg 2008).

It has been shown that fundamental characteristics of stratified

turbulence that are seen in direct numerical simulation (DNS),

such as a 25/3 spectral slope in the horizontal wavenumber

energy spectra (Waite and Bartello 2004; Lindborg 2006;

Brethouwer et al. 2007), layered structures with Kelvin–

Helmholtz (KH) instabilities (Bartello and Tobias 2013;

Khani and Waite 2016), nonlocal horizontal energy transfer

from large scales to the buoyancy scale (Waite 2011; Khani and

Waite 2013), and small or negative local Richardson number

associated with overturning (Waite and Bartello 2004; Bartello

andTobias 2013), can be captured by LES if the buoyancy scale

Lb 5 2purms/N is sufficiently well resolved (i.e., D , Lb; see

Khani andWaite 2014, 2015). Here, urms,N, andD are the root-

mean-square (rms) velocity, buoyancy frequency, and grid

spacing, respectively. These and other LES (e.g., Siegel and

Domaradzki 1994; Kang et al. 2003; Paoli et al. 2014) used

isotropic grid spacing in the horizontal and vertical directions

(i.e., Dh 5 Dz). However, coarser and anisotropic grid spacings

are usually employed in atmosphere and ocean simulations,

which require a different subgrid approach.

In large-scale atmosphere and ocean models, it is not pos-

sible to explicitly resolve the buoyancy scale Lb in the hori-

zontal direction, due to limits on computation. For example,

the horizontal grid spacing Dh in global weather prediction

models is often around 10 km or larger, whileLb is on the order

of 1 km in the atmosphere (see e.g., Augier and Lindborg 2013;

Brune and Becker 2013; Schaefer-Rolffs and Becker 2018).

Therefore, it is not computationally feasible to use isotropic

grid spacing to resolveLb, and therefore different grid spacings

in the horizontal and vertical directions (i.e., anisotropic grids)

are usually employed. Atmosphere and ocean models typically

use finer grid spacing in the vertical direction than in the hor-

izontal (i.e., Dz , Dh), and the question of sufficient vertical

resolution for capturing the 25/3 power law in the horizontal

wavenumber energy spectrum has been an active area of

discussion (see e.g., Brune and Becker 2013; Augier and

Lindborg 2013; Waite 2016; Schaefer-Rolffs and Becker

2018; Skamarock et al. 2019). Generally, most atmosphere

and ocean models use different dissipation schemes in the hor-

izontal and vertical directions because of the large difference in

horizontal and vertical grid spacings. These dissipation schemes

are typically independent of one another: for example, models

may use the horizontal Smagorinsky subgrid-scale (SGS)

model for horizontal mixing and a vertical stability-dependent

eddy viscosity, possibly as part of the boundary layer scheme,Corresponding author: Sina Khani, skhani@uw.edu
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for vertical mixing [see e.g., Griffies and Hallberg 2000;

Skamarock et al. 2008, for the Weather Research and

Forecasting (WRF) Model and the Modular Ocean Model

(MOM), respectively].

In this paper, we use homogeneous stratified turbulence as an

idealized problem in which to investigate the consequences

of using decoupled horizontal and vertical SGS dissipation

schemes in the limit of high vertical resolution. We develop an

anisotropic scheme for LES of stratified turbulence based on a

scale analysis of the SGSmomentum and potential temperature

fluxes in stratified turbulence. Initially, we setDz very small (as in

DNS) in our LES runs to evaluate the dependence of our new

anisotropic scheme on the horizontal grid spacing Dh by com-

parison with amore typical SGS scheme, in which the horizontal

and vertical dissipations are treated separately. Next, we study the

effects of vertical resolutions in our new scheme. The rest of this

paper is composed as follows: the governing equations and

mathematical formulations are given in section 2. Section 3 pres-

ents the methodology and numerical setup. Results are shown

and discussed in section 4, followed by conclusions in section 5.

2. Governing equations
The governing equations of motion under the Boussinesq ap-

proximation with uniform stratification can be written in the fol-

lowing nondimensional form (as in e.g., Khani and Waite 2013):

›u

›t
1u � =u52=p1

1

Fr2‘
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z
1

1

Re
‘

=2u , (1)

= � u5 0, (2)
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where u 5 (u, y, w) is the velocity vector; u and p are the po-

tential temperature and pressure perturbations, respectively;

and Re‘ 5U‘/n, Fr‘ 5U/(‘N), and Pr5 n/k are the Reynolds,

Froude, and Prandtl numbers, respectively. Here, the velocity

and length scales are taken to be unity (i.e., U[ 1 and ‘[ 1),

and n and k are the molecular viscosity and diffusivity, re-

spectively. In LES, the flow variables are filtered using a fil-

tering operator G. For example, the filtered velocity field u is

defined as follows (e.g., Pope 2000):

u(x, t)5

ð
D

u(x1 r, t)G(r) dr , (4)

where x 5 (x, y, z) are the Cartesian coordinates and D is the

spatial domain. Applying the filtering operator G to the

equations of motions [Eqs. (1)–(3)] is straightforward except

for the nonlinear terms, which lead to the subgrid-scale (SGS)

momentum stress:

t
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and SGS potential temperature flux:

h
j
5 uu

j
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j
, (6)

which are not known in terms of the filtered variables and

must be parameterized in LES. In summary, the filtered

Navier–Stokes equations under the Boussinesq approxima-

tion can be written as
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Before introducing SGS models for the momentum and po-

tential temperature fluxes, it is useful to investigate the SGS

momentum stress tij using Taylor series and the definition of

the filtering operator. A similar procedure is also done for the

potential temperature SGS flux hj.

We can expand the velocity field u(x 1 r) using a Taylor

series at a given point x in r, which is on the order of the filter

width D (see e.g., Pope 2000; Meneveau and Katz 2000; Khani

and Porté-Agel 2017a,b):
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Using this expansion, we can find the following nonlinear ap-

proximation for the SGS stress tensor (see appendix A for

details):

t
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k
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l
G(r) dr . (11)

The SGS stress tij depends on the filtering function G and the

integral over the associated domain. For example, if G is an

isotropic Gaussian function with varianceD2/12, Eq. (11) yields

t
ij
(x)’

D2

12
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j
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k

. (12)

Horizontal SGS mixing parameterizes the effects of small un-

resolved horizontal scales. As a result, it can be investigated by

applying a filter to horizontal scales only [i.e.,G5G(rx, ry)]. In

this case, the dummy indices l and k in Eq. (11) will span {1, 2}

and Eq. (11) will not include z derivatives. Therefore, using an

isotropic horizontal Gaussian filter, Eq. (12) becomes

t
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, i, j5 1, 2, 3. (13)

The vertical components of the SGS stress tij (i.e., t13, t23, and

t33) are not zero because the horizontal derivatives of vertical

motions (i.e., ›w/›x and ›w/›y) are nonzero.

Similarly, for the SGS flux term hj(x)5 u(x)uj(x)2 u(x)uj(x),

we can write (see appendix B for more information):

h
j
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›x
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Again, assuming a horizontal Gaussian filter function G, we

obtain

h
j
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1
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#
, (15)

where the vertical component of the SGS potential tempera-

ture flux hj is nonzero because ›w/›x and ›w/›y are nonzero

[similar to Eq. (13)]. Note that we do not use Eqs. (13) and (15)

as a parameterization, but rather as a guide to determine what

terms in tij and hj should be retained and parameterized.

Overall, from Eqs. (13) and (15) it is clear that vertical com-

ponents of SGS fluxes are not zero even when the focus is on

only unresolved horizontal scales (i.e., with a purely horizontal

filtering operator G).

We use scale analysis to estimate the size of the various

terms in Eqs. (13) and (15) in geophysical simulations. Let lh
and lz be the horizontal and vertical scales, respectively, where

lz � lh. In this case, the horizontal and vertical components of

the SGS tensor tij can be scaled as (recall that tij is symmetric)

t
ij
;
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for i, j5 3,

(16)

where tilde (;) denotes order ofmagnitude,U is the horizontal

velocity scale, and we have used the continuity equation to

scale the vertical velocity as lzU/lh (as in e.g., Riley and Lelong

2000). Using a similar scale analysis, the SGS stress tensor di-

vergence in Eq. (7) can be scaled as

›t
ij

›x
j

;
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(17)

The horizontal derivatives of horizontal stress (i, j 5 1, 2) and

vertical derivatives of SGS stresses with i5 1, 2 and j5 3 are of the

same order of magnitude, and therefore the latter terms are not

negligible in comparison with the former when a horizontal filter

function is employed. Yet these terms, ›t13/›x3 and ›t23/›x3,

are not included in purely horizontal mixing schemes (e.g.,

horizontal Smagorinsky in WRF; see Skamarock et al. 2008).

Similarly, we can scale the SGS potential temperature flux

divergence ›hj/›xj as

›h
j
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j

;
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, (18)

whereQ is the potential temperature scale.Again, both horizontal

and vertical derivatives of hj are of the same order of magnitude.

The SGS term ›tij/›xj includes the following terms in the x, y,

and z directions, respectively,

�
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, x direction, (19)
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23
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�
, zdirection, (21)

where only the term ›t33/›zx is negligible [see Eq. (17)]. Also,

the potential temperature flux ›hj/›xj includes the follow-

ing terms:

�
›h

1

›x
1
›h

2

›y
1
›h

3

›z

�
, (22)

where all terms are important [see Eq. (18)]. In later sections,

we will perform LES runs with anisotropic dissipation follow-

ing Eqs. (19) to (22), and compare the results with DNS, and

classic LES where the horizontal and vertical dissipation

schemes are not connected (i.e., the vertical components t13,

t23, and h3 are omitted).

3. Methodology
We consider a domain with periodic boundary conditions.

The horizontal side length is L h 5 2p, and the vertical side

length, depending on the simulation, is L y 5 2p or p.

Decaying stratified turbulence is simulated: we have scaled

the velocity amplitude to set an initial energy of 0.13

with random phases over a spherical wavevector shell ki 2
0.5 , k # ki 1 0.5, where k5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y 1k2
z

q
is the total

wavenumber and ki 5 3 is the initial wavenumber (a simi-

lar initial condition is used in Bartello and Tobias 2013).

The initial potential temperature fluctuation is zero. The

buoyancy frequency is N 5 2.1 or 4.2, both of which en-

sure small initial Froude numbers in our simulations (i.e.,

Frl 5 1/N). Grid sizes vary from nx 5 ny 5 240 to 960.

For the DNS, nz 5 nx (for L y 5 2p) or nz 5 nx/2 (for

L y 5p), where ni is the number of grid points in the i 5 x,

y, and z directions. Spatial derivatives are discretized using

the spectral transform method, and the two-thirds rule

(Orszag 1971) is employed to eliminate aliasing errors,

which leads to an effective grid spacing Dh 5 3L h/(2nx) and

Dz 5 3L y/(2nz). The third-order Adams–Bashforth scheme

is employed for the time stepping of all terms in the trans-

port equations, except the molecular dissipation terms,

which are treated with a Crank–Nicolson approach (see e.g.,

Durran 2010).

A new anisotropic1 LES method, in which the verti-

cal derivatives of the SGS stress and flux are retained

1Here, ‘‘anisotropic’’ refers to an SGS closure based on hori-

zontal filtering only.
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as shown in Eqs. (19)–(22), is tested. We employ the

dynamic Smagorinsky SGS model because it has the best

overall performance in comparison with other SGS param-

eterizations in LES of stratified turbulence (see Khani and

Waite 2014, 2015). The eddy viscosity and diffusivity terms

in the anisotropic dynamic Smagorinsky model are given as

follows:

›

›x
(2Ss

11
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›y
(2Ss

12
)1

›
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(2Ss

13
),
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y-direction momentum equation, (24)
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z-direction momentum equation, (25)
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potential temperature equation, (26)

where

s
ij
5 (1/2)(›u

i
/›x

j
1 ›u

j
/›x

i
) (27)

is the rate-of-strain tensor, S52csD
2
h(2sijsij)

1/2 is propor-

tional to the total strain rate, cs is the time and space de-

pendent Smagorinsky coefficient, which is calculated using

an isotropic explicit coarse filter scale ~D5 2Dh (negative cs
values are clipped, see Khani and Waite 2015); the turbu-

lent Prandtl number Prt 5 1. Since the anisotropic LES

approach is based on horizontal-only filtering, these sim-

ulations use high (DNS) resolution in the vertical.

For comparison, classic LES and DNS runs are also

performed. In the classic LES runs, the vertical dissipa-

tion scale is resolved with high (DNS) vertical resolu-

tion, and therefore terms including vertical derivatives in

Eqs. (23)–(26) are neglected in the classic horizontal SGS

parameterization. The spatial resolution of DNS runs

is high in all directions and no SGS model is included.

The DNS resolution of the Kolmogorov scale Ld is

kmax/kd * 0:67, which is in line with the criterion given by

Moin and Mahesh (1998). Here, kmax is the maximum

wavenumber and kd is the Kolmogorov wavenumber, cal-

culated over the time interval of maximum kinetic energy

dissipation. Our setup with small Dz (DNS) is not standard

in atmosphere and ocean simulations—indeed, the vertical

grids in such models do not ever resolve the Kolmogorov

scale—but it is a sensible experiment in which to in-

vestigate the parameterization of subgrid horizontal scales.

In current SGS models, which we call here classic LES,

the limit of Dz / 0 would shut off the requirement for

a vertical mixing scheme; here we show that simulations with the

classic LES model will fail in such a limit, for example, the ki-

netic energy spectra are underdissipated (see below), thereby

illustrating a problem with the classic approach.

Simulation results are averaged over a time interval

around which the kinetic energy dissipation rate � is max-

imum. The rms velocity urms 5
ffiffiffiffiffiffiffiffiffiffiffiffiffihE(t)ip

, where the angle

bracket h�i denotes time averaging and E(t) is the domain-

averaged kinetic energy. The buoyancy scale Lb 5 2purms/N,

the Ozmidov scale Lo 5 2p(«/N3)1/2, and the Kolmogorov

scale Ld 5 2p(y3/«)1/4. In our LES, unless there is no

eddy viscosity/diffusivity terms (i.e., in cases with high verti-

cal resolution Dz), molecular viscosity and diffusivity are

switched off. Table 1 shows a list of averaged variables and

parameters for the DNS and anisotropic LES runs.2 In the

rest of this paper, simulation names start with ‘‘D’’ for

DNS, ‘‘LA’’ for anisotropic LES with the same vertical res-

olution as DNS but coarser horizontal resolution, and

‘‘LAV’’ for anisotropic LES with half the vertical resolution

compared with ‘‘LA’’ runs (see Table 1). For LAV runs, the

Kolmogorov scale is not resolved in the vertical direction, and

there is no extra vertical SGS parameterization (only the

anisotropic SGS model is employed). The classic LES simu-

lations, which are labeled with ‘‘LC’’ (see the caption of

TABLE 1. List of numerical simulations with DNS and LES.

DNS N nx,y nz Lx,y Lz h«i h«pi hE(t)i Reb Frh kb ko

D18N2 2.1 960 960 2p 2p 7.42 3 1023 4.22 3 1023 0.074 30.3 0.048 7.7 35.3

D22N4 4.2 960 480 2p p 4.93 3 1023 2.67 3 1023 0.076 6.2 0.015 15.2 122.6

LES N nx,y nz Lx,y Lz h«i h«pi hE(t)i kc Frh kb ko

LA18N2a 2.1 480 960 2p 2p 8.34 3 1023 4.29 3 1023 0.074 158 0.054 7.7 33.3

LA18N2b 2.1 240 960 2p 2p 6.94 3 1023 3.77 3 1023 0.082 78 0.040 7.4 36.5

LA22N4a 4.2 480 480 2p p 5.75 3 1023 3.23 3 1023 0.079 158 0.017 15.0 113.5

LA22N4b 4.2 240 480 2p p 5.21 3 1023 3.15 3 1023 0.082 78 0.015 14.7 119.2

LAV18N2b 2.1 240 480 2p 2p 6.69 3 1023 3.75 3 1023 0.081 78 0.036 7.1 37.2

LAV18N2c 2.1 120 480 2p 2p 7.10 3 1023 3.86 3 1023 0.078 38 0.043 7.5 36.1

LAV18N2d 2.1 160 480 2p 2p 6.26 3 1023 3.41 3 1023 0.083 52 0.036 7.3 38.5

2 Simulations in Table 1 are named by their initial Reynolds

numbers Rel and buoyancy frequencies N (51/Frl).
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Fig. 5), are not reported in Table 1 because these runs are

underdissipated (see below).

4. Results and discussion

a. Overview of simulations

Figures 1a–d show the time evolution of the total, kinetic, and

potential energy, respectively, for the DNS and anisotropic LES

runs. The total energy is almost constant up to approximately

t 5 5, and then it decays due to the onset of turbulence (see

below). The time series of the kinetic and potential energy

(KE and PE) show oscillations, mainly before turbulence

decay, due to buoyancy exchanges between KE and PE, since

only KE is present at t 5 0 (Figs. 1c,d). The oscillation time

scale is related to the frequency of the gravity waves excited

by the initial conditions, and therefore becomes smaller in the

case with stronger stratification (Figs. 1c,d). The anisotropic

LES runs correctly capture the energy oscillations and onset

of dissipation from the DNS runs, although the anisotropic

LES cases with coarser horizontal resolution (i.e., cases

LA18N2b and LA22N4b) slightly underestimate the total

energy level after the occurrence of turbulence, which is due

to larger eddy dissipation in these coarse LES simulations.

Moreover, the onset of turbulence happens earlier in the

anisotropic LES cases with the lowest horizontal resolution

(see green and magenta dash–dot lines in Figs. 1a,b).

The kinetic energy dissipation rate « for cases with the initial

Reynolds number Rel 5 18 000, buoyancy frequency N 5 2.1,

and Rel 5 22 200, N 5 4.2 are displayed in Figs. 2a and 2b,

respectively. The solid black line in Fig. 2a shows « for theDNS

run, to which we compare the « in the anisotropic LES cases

(red dash and green dash–dot lines). A similar comparison is

provided in Fig. 2b, in which the solid gray line shows « for the

DNS case, and the blue dash and magenta dash–dot lines show

« in the anisotropic LES runs. The kinetic energy dissipation

rate has a maximum around t 5 7 and t 5 8 in Figs. 2a and 2b,

respectively, for the DNS runs. These maxima give the ap-

proximate time at which turbulence onset occurs. The onset

time for turbulence is relatively well estimated by the aniso-

tropic LES cases with finer horizontal resolutions (i.e., cases

LA18N2a and LA22N4a), although the magnitudes of « at the

maximum times are a little higher in these LES cases in com-

parison with the DNS. If the horizontal grid spacing decreases

further in the anisotropic LES cases (LA18N2b and LA22N4b),

turbulence onset occurs earlier while the maximum « values

would be around or a little smaller than the corresponding DNS

runs (solid versus dash–dot line in Fig. 2). Overall, the aniso-

tropic LES runs show larger « at early times compared to the

DNS cases, but differences between the kinetic energy dissipa-

tion rates in theDNS and anisotropic LES cases are smaller after

the onset of turbulence (Fig. 2).

Figures 3 and 4 show the y component of vorticity on the x–z

plane at y 5 0.25 and t 5 15 for weak and strong stratification

cases, respectively (Figs. 3a and 4a for DNS and Figs. 3b,c and

4b,c for anisotropic LES). In the DNS, the vorticity snapshot

shows layers, KH instabilities, and regions of more isotropic

FIG. 1. Time series of (top) total energy and (bottom) the kinetic and potential energy for DNS and anisotropic

LES runs with (a),(c) weak and (b),(d) strong stratification. Potential energy curves in (c),(d) are those that start

from zero.
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small-scale turbulence (see e.g., regions around z 5 2 and x 5
[0–3], or z ’ 0.8 and x 5 [5–6] in Fig. 4a). Layering is more

pronounced in the simulation with larger stratification, which

has smaller Reb and is therefore more influenced by dissipation

(as shown in Fig. 4a, and also see Brethouwer et al. 2007;

Bartello and Tobias 2013; Khani and Waite 2014). For exam-

ple, Fig. 3b depicts many regions with small-scale isotropic

turbulence, while layered structures are more visible in Fig. 4b

where stratification is increased. If we further decrease the

horizontal resolution in the anisotropic LES, similar large-

scale structures are generally seen in both weak and strong

stratification cases. Interestingly, the anisotropic LES runs with

larger grid spacing (i.e., coarser resolution compared to DNS)

reproduce similar structures that are seen in the DNS runs with

smaller grid spacing. The horizontal layers are much more

pronounced in these low-resolution simulations due to signif-

icantly larger horizontal dissipation because Dh is much larger

here, which reduces the transition to small-scale isotropy

(Figs. 3c and 4c).

b. Kinetic energy spectra
The horizontal and vertical wavenumber kinetic energy

spectra for DNS, anisotropic LES, and classic LES runs are

shown in Fig. 5 (Figs. 5a,b show simulations with Rel 5
18 000 and N 5 2.1, and Figs. 5c,d show simulations with

Rel 5 22 200 and N 5 4.2). The spectra are averaged over a

time interval Dt 5 4 around the maximum kinetic en-

ergy dissipation rate. The high-resolution anisotropic LES

(LA18N2a and LA22N4a cases) show almost identical ver-

tical wavenumber kinetic energy spectra to those for DNS

(red and blue dashed versus black and gray solid lines in

Figs. 5b,d). This trend may not be unexpected since both the

DNS and high-resolution anisotropic LES have the same

vertical resolution, but the horizontal resolutions are dif-

ferent. The horizontal wavenumber kinetic energy spectra

of the anisotropic LES and DNS are also very similar with

higher horizontal resolution in the LES (with DLA
h 5 2DD

h ;

red and blue dashed versus black and gray solid lines in

Figs. 5a,c). If we further reduce the horizontal resolution in

the anisotropic LES to 4DD
h , we still can obtain reasonable

results at large scales, although both the vertical and

horizontal wavenumber kinetic energy spectra are less en-

ergetic at smaller scales due to the larger eddy dissipation at

small horizontal scales (see green and magenta dash–dotted

lines in Fig. 5). Overall, the anisotropic LES model is able to

capture the inertial subrange of stratified turbulence similar

to the DNS, with significantly less computational cost.

Nevertheless, the kinetic energy spectra in the coarse

horizontal-resolution cases (LA18N2b and LA22N4b) are

more steep at small resolved scales.

The coarser resolution anisotropic LES cases have more

dissipation at small vertical scales, as evidenced by the

steeper vertical spectra, in comparison with DNS (or high-

resolution anisotropic LES), despite the fact that they have

the same Dz. This behavior suggests that horizontal resolu-

tion can have a significant impact on the resolution of small

vertical scales in LES of stratified turbulence, and that the

dissipation mechanisms in the horizontal and vertical di-

rections are actually connected.

If the vertical derivatives of the SGS stress and flux are

omitted in our LES runs (i.e., classic LES), the impact on the

kinetic energy spectra are significant. Indeed, the spectra

are underdissipated; there is insufficient small-scale dissi-

pation and, as a result, energy accumulates around the

smallest resolved scales in both horizontal and vertical

wavenumber spectra (see cyan lines in Fig. 5). The vertical

derivatives of SGS fluxes, which are missing in the classic

LES runs, therefore play an important role in removing

energy from small horizontal and vertical scales. Neglecting

these terms can lead to unrealistic results, even with fine

(DNS) grid spacings in the vertical. Overall, the results of

this section show that the scale analyses in Eqs. (17) and

(18), which lead to the anisotropic LES parameterizations

that are shown by Eqs. (19)–(22), are confirmed using nu-

merical simulations.

If we further reduce the horizontal resolution in the an-

isotropic LES model, the results become underdissipated

when Dh/Dz . 4 (not shown). This trend suggests that the

ratio Dh/Dz can also play a role in dissipation terms of an-

isotropic LES runs. To investigate this point further, we

consider a series of additional anisotropic LES runs in the

case with Rel 5 18 000 and N 5 2.1, for which the vertical

FIG. 2. Time series of the kinetic energy dissipation rate for DNS and anisotropic LES runs with (a) weak and

(b) strong stratification.
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grid spacing is double the vertical grid spacing of DNS runs,

with different horizontal resolution (these runs are labeled with

‘‘LAV’’). Figure 6 shows the horizontal and vertical wave-

number kinetic energy spectra with DLAV
z 5 2DD

z , where cases b,

c, and d show simulations with different horizontal resolutions:

that is, DLAV
h,b 5 1/2DLAV

h,c 5 2/3DLAV
h,d 5DLA

h,b (see Table 1). We

should mention here that the coarse horizontal resolution in

cases c and d gave underdissipated results with high vertical

resolution DD
z (not shown), but interestingly, these cases are

not underdissipated when coarser vertical grid spacing 2DD
z

is used (Fig. 6). Anisotropic LES with coarser vertical res-

olution (LAV) and DNS curves show very similar kinetic

energy spectra when kh and ky are &20. For larger wave-

numbers, however, LAV runs are much more dissipative

than the DNS. This behavior is expected because both

horizontal and vertical grids are larger than those in DNS;

for example, the curve with dash–dot green line in Fig. 6 is

for a simulation with DLAV
z 5 2DD

z and DLAV
h 5 8DD

h . In this

case, we can significantly save on computational resources

since this anisotropic LES run is ’300 times cheaper than

FIG. 4. Vorticity field in y direction on the x–z plane at y 5 0.25

and t 5 15 for the case with Re‘ 5 22 200 and N 5 4.2: (a) DNS,

(b) high-horizontal-resolution anisotropic LES, and (c) low-hori-

zontal-resolution anisotropic LES.

FIG. 3. Vorticity field in y direction on the x–z plane at y 5 0.25

and t 5 15 for the case with Re‘ 5 18 000 and N 5 2.1: (a) DNS,

(b) high-horizontal-resolution anisotropic LES, and (c) low-hori-

zontal-resolution anisotropic LES.
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the DNS run because of having larger grid spacing and time

step for running simulations. From DNS to anisotropic LES,

we can successfully reduce computational costs remarkably

while the accuracy of results are still high.

Overall, we found that retaining the vertical deriva-

tives of SGS fluxes as given by Eqs. (19)–(22) is a key in our

anisotropic LES scheme to reproduce DNS results. Also,

our results show that by increasing the ratio of horizontal

to vertical grid spacing in the anisotropic LES model,

we can help to prohibit underdissipative LES results.

Nevertheless, this latter parameter setup needs to be fur-

ther investigated in the realistic atmosphere and ocean

FIG. 5. The time-averaged (left) horizontal and (right) vertical wavenumber kinetic energy spectra for (top)

weak and (bottom) strong stratification cases. Simulations labeled with ‘‘LC’’ are the same as LA, but

the horizontal derivatives of vertical motions are omitted. Time averaging is performed over a window (Dt 5
4) around the maximum kinetic energy dissipation rate. The solid black line segments show 25/3 and 23

slopes.

FIG. 6. The time-averaged (left) horizontal and (right) vertical wavenumber kinetic energy spectra for DNS and

vertically reduced resolution anisotropic LES for the weak stratification case. Time averaging is performed over a

window (Dt5 4) around the maximum kinetic energy dissipation rate. The solid black line segments show25/3 and

23 slopes.
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models with our new horizontal dissipation scheme along

with an appropriate vertical mixing scheme. Implementing

this parameterization in atmosphere and ocean models

would require geometrical adjustments for spherical coor-

dinates (some geometrical modifications for diffusion co-

efficients in spherical geometry have been introduced, as in

e.g., Gordon and Stern 1982; Smagorinsky 1993; Becker and

Burkhardt 2007).

c. Mixing efficiency
Mixing efficiency is a key parameter in atmospheric sciences

and physical oceanography, where breaking internal waves in

stratified shear layers and diapycnal mixing in the upper ocean

are significantly influenced by the efficiency of turbulent

mixing (see e.g., Riley and Lelong 2000; Gregg et al. 2018).

The irreversible mixing efficiency gi is defined as the ratio of

the molecular potential energy dissipation to the total mo-

lecular dissipation rates «p/(« 1 «p) (Winters and D’Asaro

1996; Caulfield and Peltier 2000). This quantity has been ex-

tended to be used in LES with SGS eddy dissipation rates

(Khani 2018). The SGS mixing efficiency gi depends on the

turbulent Prandtl number Prt as follows:

g
i
;

1

11 2Pr
t

, (28)

implying gi ’ 1/3 in stratified turbulence with Prt 5 1

(Khani 2018).

Figure 7 shows the irreversible mixing efficiency gi ver-

sus the resolution of the Ozmidov scale Lo in the hori-

zontal direction, for DNS and anisotropic LES approaches.

As expected, the ratio Lo/Dh is larger in DNS compared to

that in LES. Nevertheless, values of gi in LES overlap well

with those from DNS and are in line with the theoretical

estimate of 1/3 for LES of stratified turbulence (Fig. 7).

This agreement is due to the resolution of the Ozmidov

scale Lo in LES runs (see Khani (2018) for more informa-

tion). Noteworthy, unlike in the simulations in Khani

(2018), where only large-scale vortical modes were initially

excited, here we excite large horizontal and vertical mo-

tions, which results in more efficient energy exchange be-

tween KE and PE through the buoyancy fluxes. In this case,

gi is slightly larger than 1/3 for both DNS and LES

runs (Fig. 7).

5. Conclusions
A new anisotropic SGS model in LES of stratified

turbulence is introduced. The new scheme uses coarse

grid spacing in the horizontal direction, and also re-

tains the vertical derivatives of horizontal motions in

the eddy dissipation terms, which are omitted in the

classic LES approach for horizontal dissipation. Therefore,

our new model maintains anisotropy in the resolution,

and the connection between the horizontal and verti-

cal motions in the eddy dissipation. The new anisotropic

SGS parameterization is tested in LES of decaying strat-

ified turbulence, and the results are compared with those

from DNS: the time series of total energy and kinetic

energy dissipation rate, vorticity field, horizontal and

vertical wavenumber spectra, and mixing efficiency are

fairly well reproduced in the new LES scheme similar to

those in DNS, while the computational cost is largely de-

creased in LES.

It has been shown that if we neglect the vertical deriva-

tives of SGS motions in our eddy dissipation terms, our

results will be underdissipated at small scales. We think a

similar story should exist in atmosphere and ocean models

(e.g., Griffies and Hallberg 2000; Griffies et al. 2004;

Skamarock et al. 2008), where the vertical derivatives of

SGS fluxes are neglected by horizontal mixing schemes.

As a result, we hypothesize that the horizontal eddy

dissipation parameters may sometimes be artificially in-

creased in atmosphere and ocean models to ensure model

convergence since the zonal and meridional SGS eddy

fluxes do not include fluxes from vertical motions. This

unrealistically enhanced horizontal eddy dissipation can

affect the results of atmosphere and ocean models, and

may be compensated by adding an energizing term in

the form of a stochastic or negative Laplacian backscat-

ter (as in Mana and Zanna 2014; Jansen and Held 2014)

to the equations of motion, in order to improve the

performance of these models. Our work suggests that

if we keep the neglected terms in the horizontal eddy

dissipation scheme, the model performance may be im-

proved without adding any additional energizing terms to

the zonal and meridional momentum equations. Nevertheless,

this suggestion has to be tested in large-scale atmosphere and

ocean models since the flow regime in such models, even at the

grid scale, is affected by rotating, unlike the stratified turbu-

lence considered here. In addition, as model resolutions con-

tinue to increase, gridscale motions in suchmodels will become

closer to the stratified turbulence regime, and our findings will

become increasingly relevant.

In atmosphere and ocean models, different types of SGS

eddy viscosity and diffusivity parameterizations can be used. In

addition to the Smagorinsky model, a common SGS model in

atmosphere and ocean simulations is the turbulent kinetic

energy (TKE) model, where the term S in Eqs. (23)–(26) is

replaced by Ktke 5 ckLme
1/2. Here, ck is a constant coefficient,

Lm is a mixing length that is usually proportional to the grid

spacing, and e is the SGS turbulence kinetic energy that is

computed by solving a transport equation for the TKE budget

(see e.g., Sommeria 1976; Deardorff 1980; Schumann 1991;

FIG. 7. Irreversible mixing efficiency gi vs the ratio Lo/Dh for

DNS and anisotropic LES runs. LES and LES vert. refer to those

anisotropic LES runs with high and low vertical resolutions (LA

and LAV), respectively.
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Kaltenbach et al. 1994). Our anisotropic horizontal-filtering

framework can be easily adapted to suchmodels. Furthermore,

our approach can also be used in more complicated atmo-

sphere and ocean models where, for example, water vapor or

other scalars are considered. For these cases, we would need to

perform scale analysis for the SGS fluxes, which are propor-

tional to the gradient of corresponding quantities, and include

the vertical derivatives of quantities in the horizontally filtered

transport equations. Meanwhile, we should evaluate the per-

formance of our anisotropic SGS parameterization in atmo-

sphere and ocean simulations, which have much lower vertical

resolution than what we consider here, with a hierarchy of

vertical subgrid schemes. We will consider simulations with

and without current vertical SGS parameterizations in at-

mosphere and ocean models. Also, depending on the ratio of

Dh/Dz, we can develop a new SGS scheme based on a

vertical-filtering approach. For future work, we plan to test

the performance of our new anisotropic SGS parameteri-

zation in atmosphere and ocean models considering these

modifications and complexities.
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APPENDIX A

A Nonlinear Approximation for the SGS Stress tij
Using the Taylor series expansion of the velocity field u, the

nonlinear tensor ui(x1 r)uj(x1 r) can also be expanded,

keeping up to cubic terms in r, asA1
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(A1)

We can apply the filter function G(r) to Eqs. (10) and

(A1), respectively, and integrate over the domain D in

order to find the filtered variables. For velocities ui(x)

and uj(x), keeping up to the cubic terms in the Taylor se-

ries, we have
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Similarly for ui(x)uj(x), keeping up to cubic terms, we have
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Using Eqs. (A2) and (A3), we can also approximate the non-

linear filtered product ui(x)uj(x), keeping up to cubic terms, as

follows: A1 For simplicity, partial derivatives with respect to the variable

rkjrk50 are written as partial derivatives with respect to xk because

term x 1 r reduces to x when r 5 0 (as in e.g., Pope 2000).
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Subtracting Eq. (A5) from Eq. (A4) results in a mathe-

matical formulation for the approximate SGS stress tij(x)5
ui(x)uj(x)2ui(x)uj(x), written as

t
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where we have assumed that the odd moments of the filter

function G(r) are zero, and O (D4) shows the order of leading

error in this approximation, since the fourth-order moments of

G(r) are proportional to D4.

APPENDIX B

A Nonlinear Approximation for the SGS Flux hj
We can expand the potential temperature field u using the

Taylor series at a given point x in r, which is of the order filter

width D (again we keep up to cubic terms):
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If we employ the filter functionG(r) to the Eq. (B1), and keep

up to cubic terms, we obtain
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Similarly, we can expand the SGS potential tempera-

ture flux u(x)uj(x) and resolved potential temperature

flux u(x)uj(x), keeping up to cubic terms, in the follow-

ing forms:
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and

u(x)u
j
(x)’ u(x)u

j
(x)1

›[u(x)u
j
(x)]

›x
k

ð
D

r
k
G(r) dr1

�
›u(x)

›x
l

ð
D

r
l
G(r)dr

�"
›u

j
(x)

›x
k

ð
D

r
k
G(r)dr

#
1
1

2
u(x)

›2u
j
(x)

›x
k
›x

l

ð
D

r
k
r
l
G(r) dr

1
1

2
u
j
(x)

›2u(x)

›x
k
›x

l

ð
D

r
k
r
l
G(r)dr1

1

2

�
›u(x)

›x
m

ð
D

r
m
G(r)dr

�"
›2u

j
(x)

›x
k
›x

l

ð
D

r
k
r
l
G(r)dr

#

1
1

2

"
›u

j
(x)

›x
m

ð
D

r
m
G(r) dr

#�
›2u(x)

›x
k
›x

l

ð
D

r
k
r
l
G(r) dr

�
1

1

6
u(x)

›3u
j
(x)

›x
m
›x

k
›x

l

ð
D

r
k
r
l
r
m
G(r) dr1

1

6
u
j
(x)

›3u(x)

›x
m
›x

k
›x

l

ð
D

r
k
r
l
r
m
G(r)dr .

(B4)

Therefore, the SGS potential temperature flux term hj(x)5
u(x)uj(x)2 u(x)uj(x) is

h
j
(x)5

›u(x)

›x
l

›u
j
(x)

›x
k

ð
D

r
k
r
l
G(r)dr1O (D4) , (B5)

where we have again assumed that the odd moments of the

filter function G(r) are zero.
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