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Stratified turbulence has a horizontally-layered structure with quasi-two-dimensional
vortices due to buoyancy forces that suppress vertical motion. The Prandtl number
Pr quantifies the relative strengths of viscosity and buoyancy diffusivity, which damp
small-scale velocity and buoyancy fluctuations at different microscales. Direct numerical
simulations (DNS) require high resolution to resolve the smallest flow features for large
Pr . To reduce computational demand, Pr is often set to 1. In this paper, we explore how
varying Pr affects stratified turbulence. DNS of homogeneous forced stratified turbulence
with 0.7 6 Pr 6 8 are performed for four stratification strengths and buoyancy Reynolds
numbers Reb between 0.5 and 60. Energy spectra, buoyancy flux spectra, spectral energy
flux, and physical space fields are compared for scale-specific Pr -sensitivity. For Reb & 10,
Pr -dependence in the kinetic energy is mainly found at scales around and below the
Kolmogorov scale. The potential energy and flux exhibit more prominent Pr -sensitivity.
As Reb decreases, this Pr -dependence extends upscale. With increasing Pr , the spectra
suggest eventual convergence to a limiting spectra shape at large, finite Pr , at least at
scales at and above the Ozmidov scale. The Pr -sensitivity of the spectra in the most
strongly stratified Reb < 1 case differed from the rest, since large horizontal scales are
affected by viscosity and diffusion. These findings suggest that Pr = 1 DNS reasonably
approximate Pr > 1 DNS with large Reb, as long as the focus is on kinetic energy at
scales much larger than the Kolmogorov scale, but otherwise strays from Pr > 1 spectra
around and below the Kolmogorov scale, and even upscale when Reb . 1.

1. Introduction

In the turbulent flows of the atmosphere and ocean, buoyancy forces and stable strati-
fication restrict vertical motion. At sufficiently small scales, the effects due to rotation are
minor: stratification dominates these scales while Coriolis forces are weak (e.g. Riley &
Lindborg 2013). Fluid velocities in stratified turbulence are approximately horizontal and
layers containing quasi-two-dimensional vortices develop (e.g. Riley & Lelong 2000), along
with gravity waves (e.g. Staquet & Sommeria 2002). At very small scales, fluctuations
of variable fields (e.g. velocity, vorticity, density, temperature, etc.) are smoothed out by
viscosity and buoyancy diffusivity, which typically occur at different inner scales. Direct
numerical simulations (DNS) of stratified turbulence require that the smallest features
are resolved, necessitating adequately fine grid spacing. The computational cost for these
DNS is often reduced by setting the smoothing processes to be equally strong, but is done
at the expense of misrepresenting the two disparate inner scales.

The relative strength of viscosity and buoyancy diffusivity is quantified by the dimen-
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sionless Prandtl number

Pr ≡ ν/κ, (1.1)

for kinematic viscosity ν and thermal diffusivity κ, with temperature as the buoyancy-
influenced scalar. Typical values for Pr are 0.7 for heat in air and 7 for heat in water;
for salinity in water the analogous Schmidt number for the ratio of viscosity to mass
diffusivity is about 700. We use Pr in this paper to refer to this ratio. Using large Pr
values for DNS is computationally expensive: since buoyancy diffusivity can be several
times weaker than viscous diffusion, the smallest temperature fluctuations can be reduced
to extremely small scales, demanding high spatial resolution. By setting Pr = 1, the
equally strong viscous dissipation and buoyancy diffusivity forces the two inner scales
to coincide, relaxing the need for high resolution. Stratified turbulence dynamics could
be sensitive to Pr , but the Pr 6= 1 problem has not been studied in depth for forced
homogeneous stratified turbulence with no mean shear. In this paper, we investigate
the effect of varying Pr in numerical simulations of homogeneous stratified turbulence,
therefore additionally evaluating the suitability for Pr = 1 simulations to reproduce
Pr 6= 1 results.

Stratified turbulence is characterized by several length scales and dimensionless num-
bers, which we begin to review here (e.g. Riley & Lelong 2000; Riley & Lindborg 2013;
Davidson 2013). The Kolmogorov microscale

kd ≡ (εk/ν
3)1/4, (1.2)

with kinetic energy dissipation rate εk, is the inner scale of velocity fluctuations where
kinetic energy is viscously dissipated into heat (Kolmogorov 1941). Analogous to the
viscous dissipation scale, the temperature fluctuations, θ, have an inner scale (Corrsin
1951; Tennekes & Lumley 1972)

kθ ≡ (εk/κ
3)1/4, (1.3)

for thermal diffusion. There is also the Batchelor scale for the inner scale that describes
passive scalar fluctuations (Batchelor 1959; Davidson 2015),

kB ≡ (εk/νκ
2)1/4. (1.4)

These two inner temperature scales are related by

kθ/kB = (ν/κ)1/4 = Pr1/4. (1.5)

Depending on the size of Pr , either kθ or kB describes the dissipation scale for potential
energy. When Pr . 1, kθ is most applicable, and when Pr � 1, kB is most applicable
(Wyngaard 2010; Gotoh & Yeung 2013). When Pr > 1, we have that kθ > kd, meaning
that viscosity will begin to destroy velocity fluctuations at a scale where buoyancy
diffusivity will not yet be effective. This subrange k ∈ [kd, kθ] is referred to as the viscous-
convective subrange. If Pr � 1, theory suggests that in the viscous-convective subrange,
the potential energy spectrum has the form

EP ∼ εp(εk/ν)−1/2k−1, (1.6)

with potential energy dissipation rate εp, as predicted by Batchelor (1959). In the opposite
case when Pr < 1, buoyancy diffusivity will act on small scales where viscous effects
are not yet significant, and the subrange k ∈ [kθ, kd] is the inertial-diffusive subrange
(Wyngaard 2010). In the atmosphere, these inner scales typically correspond to lengths
on the order of millimeters.
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The buoyancy frequency N characterizes stratification strength: for temperature strat-
ification,

N2 ≡ g

θ0
β, (1.7)

where g is gravitational acceleration, θ0 is a reference temperature, and β is the back-
ground potential temperature gradient (e.g. Kundu et al. 2012). The potential energy
dissipation rate can be related to the diffusion of temperature fluctuations by

εp =
g/θ0
β

κ
∂θ

∂xj

∂θ

∂xj
, (1.8)

where (·) denotes a mean quantity.
The Pr 6= 1 problem in strongly stratified turbulence becomes complicated by the

horizontally-layered structure of the flow. In stratified turbulence, quasi-two-dimensional
vortices become thinner with stronger stratification (Billant & Chomaz 2001), introduc-
ing additional small scales that must be adequately resolved in DNS. The horizontal
Froude number

Frh = U/NLh, (1.9)

for rms velocity U and horizontal length scale Lh, is a dimensionless number that quan-
tifies stratification strength in stratified turbulence (Billant & Chomaz 2001; Brethouwer
et al. 2007). While turbulence is characterized by a large Reynolds number

Re = ULh/ν, (1.10)

stratified turbulence can fall into one of two regimes depending on its buoyancy Reynolds
number (Smyth & Moum 2000; Riley & de Bruyn Kops 2003; Brethouwer et al. 2007)

Reb = ReFr2h. (1.11)

Typical mesoscale flows (e.g. squall lines and sea breezes) have tropospheric values
U ∼ 1 ms−1, Lh ∼ 1−100 km, N ∼ 10−2 s−1, and ν ∼ 10−5 m2s−1, giving ranges
of dimensionless numbers Frh ∼ 10−3−10−1, Re ∼ 108−1010, and Reb ∼ 104−106 (e.g.
Lilly 1983; Waite 2013). From the approximation εk ∼ U3/Lh (e.g. Taylor 1935; Lindborg
2006), these values give a corresponding εk ∼ 10−5−10−3 m2s−3 (similar to dissipation
values in the stratosphere, e.g. Dewan 1997).

Stratified turbulence also has the buoyancy scale

kb ≡ N/U, (1.12)

and Ozmidov scale

kO ≡ (N3/εk)1/2, (1.13)

which characterize different small-scale processes in the flow. The thickness of the
horizontal layers in stratified turbulence, and thus the largest vertical overturning scale
corresponds to kb (Carnevale et al. 2001; Billant & Chomaz 2001; Waite & Bartello 2004).
The Ozmidov scale is the largest scale for which the flow resembles small-scale three-
dimensional isotropic turbulence (Ozmidov 1965). Whether kO is upscale or downscale
of the dissipation range depends on the regime of stratified turbulence, such that

kd/kO ∼ Re3/4b , (1.14)

using the εk ∼ U3/Lh assumption (Lindborg 2006; Maffioli & Davidson 2016).
Past investigations that set Pr = 1 revealed important properties of stratified turbu-

lence and confirmed various scaling arguments. Stratified turbulence has two regimes:
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on the scale of the thickness of the quasi-two-dimensional vortices, viscosity may be
weak enough that small eddies may emerge and the layers are turbulently coupled
(characterized by Reb > 1), or viscosity may be strong enough that the layers are non-
turbulent and become viscously coupled (characterized by Reb < 1) (Riley & de Bruyn
Kops 2003; Brethouwer et al. 2007). Within the horizontal layers, Kelvin-Helmholtz (KH)
instabilities emerge when Reb & 1 and break down into small-scale turbulence (Lilly
1983; Riley & de Bruyn Kops 2003; Laval et al. 2003; Brethouwer et al. 2007; Waite
2011). The kinetic and potential energy spectra in terms of horizontal wavenumber kh
and vertical wavenumber kv have been extensively examined in studies with stratified
turbulence simulations. Forced simulation results have shown the horizontal kinetic and
potential energy spectra to exhibit k

−5/3
h scaling (Brethouwer et al. 2007; Almalkie &

de Bruyn Kops 2012). In some instances, there is a noticeable bump at kh ∼ kb due to
KH instabilities (Laval et al. 2003; Brethouwer et al. 2007; Waite 2011). In the limit of
strong stratification, the one-dimensional horizontal wavenumber spectra for kinetic and
potential energy (where kh is the wavenumber magnitude in either the x- or y-direction,
as in Lindborg & Brethouwer 2007) resemble:

EK(kh) = C1ε
2/3
k k

−5/3
h , (1.15)

EP (kh) = C2
εp

ε
1/3
k

k
−5/3
h , (1.16)

where C1 and C2 are the Kolmogorov and Obukhov-Corrsin constants. The present work
uses the two-dimensional horizontal wavenumber: the corresponding constants for the
two-dimensional spectra, C ′1 and C ′2, are related to the one-dimensional values by C ′ ≈
1.40C, for which Lindborg (2006) and Brethouwer et al. (2007) use C ′1 = C ′2 = 0.71 as a
reference value for their simulation results.

Scaling arguments have suggested k−3v scaling for the vertical kinetic and potential
energy spectra for a limited range of wavenumbers (Billant & Chomaz 2001; Lindborg
2006); simulations have exhibited similarly steep vertical spectra past kb (Waite &
Bartello 2004; Brethouwer et al. 2007; Almalkie & de Bruyn Kops 2012). The behaviour
of vertical spectra is scale-dependent: at large horizontal scales, agreement with k−3v
scaling was shown for both kinetic and potential energy, but for different ranges of
wavenumbers in simulations forced at large scales (Maffioli 2017). Decaying simulations

also supported the horizontal k
−5/3
h scaling for kinetic and potential energy found in

forced simulations (Bartello & Tobias 2013; Maffioli & Davidson 2016), and were not
influenced by stratification strength for large Re (Lindborg 2006; Bartello & Tobias 2013).
The conversion from potential to kinetic energy can be quantified by the buoyancy flux
term in the energy budget (Holloway 1988; Waite 2014). In the buoyancy flux spectrum,
restratification describes the small-scale subrange with positive buoyancy flux, where
potential energy is converted to vertical kinetic energy, restratifying the flow (Holloway
1988; Bouruet-Aubertot et al. 1996; Carnevale et al. 2001). The relationship between the
characteristic wavenumbers and spectral scaling laws is summarized in figure 1.

Stratified turbulence with Pr > 1 has not been as well-studied as the Pr = 1 case,
but previous studies have analyzed such simulations with some compromises in other
simulation parameters. Comparisons of decaying stratified turbulence DNS with Pr = 7
and Pr = 700 revealed Pr -dependence in the energy spectra (Okino & Hanazaki 2017,
2019, 2020). The Pr = 700 potential energy spectra initially exhibited k−1 scaling at
large wavenumbers (as predicted in the viscous-convective subrange for passive scalars
(Batchelor 1959)), and by the final decay period, a flat spectrum developed in the
dissipation range. However, the initial Reynolds number in this study was necessarily
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Figure 1. A schematic diagram of the expected spectral scaling laws and characteristic
wavenumbers for stratified turbulence with Frh � 1, Reb � 1, and Pr = 1.

small (initial Re0 = 50) to accommodate the very large Pr , limiting the extent of the
inertial range; while small-scale changes due to Pr have been identified, it is also of
interest to determine any possible Pr -dependence upscale of the dissipation range. In
Okino & Hanazaki (2019), more DNS of decaying stratified turbulence were performed
with a larger initial Reynolds number Re0 = 100 (corresponding to a microscale Reynolds
number of Reλ = 42) for Pr = 1, 7, and 70. Each decaying DNS had an initial
buoyancy Reynolds number of about 50 which quickly dropped to Reb ∼ 1 within the
first quarter of the simulation. A k−1 power law region is again observed in the horizontal
and vertical potential energy spectra for the largest Pr (70 in this study) early in the
simulation before any significant decay. The authors note less of a difference in kinetic
energy spectra between Pr = 7 and Pr = 70 than the difference between Pr = 1
and Pr = 7. An older study which performed DNS of stably stratified homogeneous
turbulent shear flow concluded higher-Pr flows were more likely to exhibit counter-
gradient heat flux (i.e. restratification) in the vertical direction, but their moderate Re
limits its applicability to geophysical flows (Gerz et al. 1989). Another study where DNS
of density-stratified turbulent wakes were performed for Pr = 0.2, 1, and 7 concluded that
using the Pr = 1 case to approximate the Pr = 7 case was reasonable, though the grid
spacing was four times the smallest length scale of the flow (de Stadler et al. 2010). The
Pr = 7 case induced small-scale changes with little influence on the wake’s large-scale
features, and the differences between the Pr = 1 and Pr = 7 cases were small compared
to the substantial difference in computational costs. Mixing efficiency, which is often
studied in DNS with Pr = 1 (e.g. Caulfield & Peltier 2000; Maffioli et al. 2016; Howland
et al. 2020), has been found to decrease with increasing Pr (Smyth et al. 2001; Stretch
et al. 2010; Salehipour et al. 2015). In comparison, the dependence of mixing efficiency
on stratification strength and the Richardson number is more complicated (Peltier &
Caulfield 2003; Howland et al. 2020).

In this work, we address the following question: in DNS of stratified turbulence with
Frh < 1, are the dynamics at scales on the order of the Ozmidov and Kolmogorov
scales and larger independent of Pr for Reb ∼ O(10)? Or put another way: are DNS
with Pr = 1 able to reproduce results with Pr > 1, at least at large scales? Many DNS
studies of stratified turbulence consider Reb . O(10), especially with strong stratification
(e.g. Kimura & Herring 2012; Bartello & Tobias 2013; Maffioli 2017; Okino & Hanazaki
2019), and many of these studies set Pr = 1; answering this question will shed light
on the applicability of their results to Pr > 1 flows. Since varying Pr affects the
relative strengths of small-scale processes, we anticipate that most Pr -induced changes
will occur around the small viscous dissipation and buoyancy diffusion scales. If the
viscosity is held fixed while Pr is increased, we would also predict that changes in the
temperature and potential energy would be more pronounced than in the velocity and
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kinetic energy. Further, for fixed viscosity, the dissipation of potential energy (or of
temperature fluctuations, as in equation (1.8)) is expected to be especially Pr -sensitive
as kB is modified. Equation (1.14) expresses a scale separation in stratified turbulence
in terms of the characteristic Reb, suggesting that sensitivity to Pr may depend on the
regime of stratified turbulence. Indeed, for Reb . 1, stratified turbulence is dominated
by large, thin, viscously coupled layers, and therefore large horizontal scales are affected
directly by viscous dissipation (e.g. Brethouwer et al. 2007) and may be sensitive to
Pr . As a small-scale phenomenon involving potential energy, restratification is another
candidate for Pr -dependence. Due to the complicated dependence of buoyancy flux on
the stratification strength, varying Pr may also affect the restratification range in regime-
specific ways (Lucas et al. 2017).

In this paper, DNS of homogeneous forced stratified turbulence are performed and
analyzed to explore the effect of varying Pr on flow dynamics. The choices of Pr and
stratification span a range of Reb so that the Reb = 1 stratified turbulence regime
transition may also be studied. In section 2, the numerical model, equations, and setup
of simulations are explained. In section 3, the simulation results are analyzed in terms of
scale-specific observations of Pr -dependence in the energy spectra, buoyancy flux spectra,
spectral energy flux, and snapshots of physical space fields. Conclusions, discussion, and
future work are given in section 4.

2. Methods

2.1. Equations and model

For the stratified turbulence simulations presented here, the governing equations
are the incompressible uniformly stratified non-rotating Boussinesq equations in three
dimensions:

Du

Dt
= −∇p+ αθẑ + F u + ν∇2u, (2.1)

Dθ

Dt
+ βw = Fb + κ∇2θ, (2.2)

∇ · u = 0, (2.3)

where u is velocity, p is pressure scaled by a reference density, θ is the potential
temperature fluctuation (or negative density fluctuation), ẑ is the upward vertical unit
vector, F u is the velocity forcing, Fb is the temperature forcing, ν is viscosity, κ is
diffusivity, α is thermal expansivity, and β is the background potential temperature
gradient (Herring & Métais 1989).

The DNS code computes the fluid velocity by first solving for vorticity (ω = ∇ × u)
from the vorticity formulation of (2.1):

∂ω

∂t
= ∇× (u× ω) + α

 ∂θ/∂y
−∂θ/∂x

0

+ F ω + ν∇2ω (2.4)

and (2.2), then inverting the result for u. This inversion assumes no mean velocity. In this
formulation, the second term on the right hand side of (2.4) corresponds to the baroclinic
generation of vorticity, and F ω = ∇× F u is the vorticity forcing.

The spectral transform method is used on a triply periodic domain to solve the
uniformly stratified Boussinesq equations (2.2), (2.3), and (2.4). The domain is a cube
of size L × L × L and grid size n × n × n in both the physical and Fourier domains
where u, ω, and θ are stored. Nonlinear terms are computed in the physical domain, and
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spatial derivatives are computed in the Fourier domain, and a Fast Fourier Transform
is used to go between domains (Frigo & Johnson 2005). Third-order Adams-Bashforth
time stepping is used with constant time step ∆t, and viscous and diffusive terms use a
Crank-Nicolson scheme (Durran 2010). Aliasing issues are countered by a less restrictive
wavenumber truncation than the 2/3 rule, which is known to eliminate all aliasing error
(Durran 2010). Previous DNS studies have used wavenumber truncations as high as
15/16, which still managed to remove the dominant aliasing error (Riley & de Bruyn
Kops 2003). In the following simulations, the Fourier coefficients are cubically truncated
at a maximum wavenumber kmax = (n2 )( 8

9 ) = 4n/9. The effective resolution is then
∆x = ∆y = ∆z = 9L/8n with wavenumber spacing ∆kx = ∆ky = ∆kz = 2π/L. This
model has been used in numerous studies of stratified turbulence, e.g. Waite (2011, 2017);
Lang & Waite (2019).

The equations for the kinetic and potential spectral energy budget for each wavevector
k are (e.g Wyngaard 2010; Riley & Lindborg 2013):

∂EK
∂t

(k) = TK(k) +B(k)−DK(k) + F (k), (2.5)

∂EP
∂t

(k) = TP (k)−B(k)−DP (k). (2.6)

The first terms on the right hand side of (2.5)-(2.6),

TK(k) ≡ −Im
∑

k+p+q=0

Pijm(k)ûj(p)ûm(q)ûi(k), (2.7)

TP (k) ≡ −α
β

Im

(
kj

∑
k+p+q=0

θ̂(k)θ̂(p)ûj(q)

)
, (2.8)

are the nonlinear kinetic and potential energy transfer respectively, using the standard
projection operator Pijm (e.g. Rose & Sulem 1978). The spectral buoyancy flux, B, is

B(k) ≡ αRe
(
θ̂(k)ŵ∗(k)

)
, (2.9)

the kinetic and potential energy dissipation are

DK(k) ≡ 2νk2EK(k), (2.10)

DP (k) ≡ 2κk2EP (k), (2.11)

and F is the forcing. Horizontal and vertical wavenumber spectral budgets are found
from (2.5-2.6) by summing over all wavevectors k for particular horizontal wavenumber
kh or vertical wavenumber kv.

The spectral buoyancy flux B is the cross spectrum of buoyancy and vertical velocity,
and can be interpreted as the transfer of potential to kinetic energy (e.g. Holloway 1988).
Holloway (1988) suggested that restratification, i.e. positive B at small scales, occurs
because the downscale transfer of potential energy to small scales was more efficient
than for kinetic energy, leading to a tendency for more potential energy than kinetic
energy to accumulate at small scales. Oppositely, when only kinetic energy is forced,
more kinetic energy would accumulate at large scales than potential energy, and so these
imbalances drive the conversion of kinetic to potential energy at large scales (B < 0) and
potential to kinetic energy at small scales (B > 0, restratification).

The transfer terms represent the conservative transfer of potential and kinetic energy
to different wavenumbers. Since they are conservative, the spectral fluxes of kinetic and
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Run Pr Frh Frf Re Ref Reb εk εp εp/εk kd kB kmax/kd kmax/kB kO kb
A0 0.7 0.0911 0.46 3310 286 27.5 0.718 0.395 0.550 181 151 3.77 4.50 15 5
A1 1 0.0947 0.46 3197 286 28.7 0.750 0.379 0.505 183 183 3.73 3.73 15 5
A2 2 0.0983 0.46 3094 286 29.9 0.783 0.335 0.427 185 261 3.69 2.61 14 5
A3 4 0.103 0.46 2941 286 31.2 0.816 0.306 0.374 187 374 3.65 1.83 14 5
A4 8 0.106 0.46 2839 286 31.7 0.829 0.276 0.333 188 531 3.64 1.29 14 5

A1h 1 0.0884 0.46 6554 571 52.0 0.681 0.359 0.527 300 300 2.84 2.84 16 5
A4h 8 0.0955 0.46 6197 571 56.5 0.740 0.294 0.398 307 867 2.78 0.98 15 5

B0 0.7 0.0402 0.23 4304 286 6.94 0.727 0.397 0.547 181 152 3.76 4.49 42 9
B1 1 0.0420 0.23 4130 286 7.28 0.762 0.357 0.468 184 184 3.71 3.71 41 8
B2 2 0.0452 0.23 3877 286 7.92 0.829 0.296 0.357 188 265 3.64 2.57 40 8
B3 4 0.0479 0.23 3658 286 8.38 0.877 0.243 0.277 190 380 3.59 1.79 39 8
B4 8 0.0499 0.23 3491 286 8.71 0.911 0.205 0.225 192 543 3.55 1.26 38 8

C0 0.7 0.0191 0.12 5279 286 1.93 0.808 0.401 0.496 186 156 3.66 4.37 114 16
C1 1 0.0201 0.12 5041 286 2.03 0.850 0.352 0.414 189 189 3.61 3.61 111 16
C2 2 0.0218 0.12 4670 286 2.22 0.930 0.267 0.287 193 273 3.53 2.50 106 16
C3 4 0.0233 0.12 4381 286 2.37 0.993 0.199 0.201 196 392 3.48 1.74 103 16
C4 8 0.0244 0.12 4179 286 2.49 1.041 0.149 0.143 199 562 3.43 1.21 100 16

D0 0.7 0.00896 0.058 6737 286 0.541 0.907 0.344 0.380 192 160 3.56 4.25 304 29
D1 1 0.00935 0.058 6485 286 0.567 0.949 0.302 0.319 194 194 3.52 3.52 297 29
D2 2 0.0101 0.058 6045 286 0.613 1.026 0.221 0.216 198 280 3.45 2.44 286 29
D3 4 0.0107 0.058 5674 286 0.654 1.094 0.153 0.134 201 402 3.39 1.70 277 29
D4 8 0.0112 0.058 5423 286 0.684 1.145 0.102 0.0889 203 575 3.35 1.19 270 29

Table 1. Simulation parameters, nondimensional numbers, and wavenumbers for all simulations.
The run label letter A/B/C/D indicates a common stratification strength. The run label
number 0/1/2/3/4 indicates a common Prandtl number. All simulations have the same viscosity,
resolution, and maximum wavenumber: ν = 0.12 cm2/s, n = 1536, kmax = 682 with the
exception of runs A1h and A4h where ν = 0.06 cm2/s, n = 1920, kmax = 853. Wavenumbers
are nondimensionalized by 2π/L; energy dissipation is nondimensionalized by forcing power P .

potential energy are obtained from the transfer terms as

ΠK(k) = −
∫ k

0

TK(k) dk, (2.12)

ΠP (k) = −
∫ k

0

TP (k) dk, (2.13)

where k can be the isotropic, horizontal, or vertical wavenumber magnitude. As conserved
quantities, the transfer terms satisfy∫ ∞

0

TK(k) dk = 0, (2.14)

∫ ∞
0

TP (k) dk = 0, (2.15)

which also manifest as ΠK = 0 and ΠP = 0 at kmax.
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2.2. Simulation setup

The parameter values, nondimensional numbers, and wavenumbers for all simulations
presented here are given in Table 1 and described here. Most simulations are performed
on cubic domains with n = 1536 grid points in each direction. Two additional higher-
resolution simulations, A1h and A4h, use n = 1920.

Large-scale vortical motion is excited by directly forcing vortical modes, i.e. flow with
rotational horizontal velocity and no vertical velocity (vortical mode forcing was also
used by e.g. Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007). Gravity
waves are not directly forced. Time dependence of the forcing follows an AR(1) red noise
process with a short decorrelation time scale τ = of 10 time steps (i.e. nearly white noise,
e.g. Waite 2017),

G(k, tn) = α̃G(k, tn−1) + β̃g(k, n), (2.16)

for a random complex number g(k, n). The random number’s real and imaginary parts
follow a Gaussian distribution with a mean of 0 and variance of 1. The coefficients in
equation (2.16) satisfy

α̃ = exp(−∆t/τ), β̃2 = 1− α̃2. (2.17)

A specified forcing amplitude A(k) multiplies G(k, tn) and is nonzero only in the spherical
shell k ∈ [3, 5] centred on forcing wavenumber kf = 4. The amplitude is given by

A(k) =

{
a(kf + 1− |k|)(|k| − kf + 1) , kf − 1 6 |k| 6 kf + 1,

0 , ||k| − kf | > 1.
(2.18)

The forcing injects kinetic energy only. The time-averaged rate of energy injection by the
forcing is approximately determined by the forcing amplitude as

P = 2τ
∑
k

A(k)2, (2.19)

(see Waite 2017, who found that the time averaged energy injection rate scaled like
P when τ was short). Note, this forcing approach is different from that employed by
Lindborg (2006), in which the instantaneous, not time-averaged, energy injection rate
is fixed. The simulations are initialized with a prescribed kinetic and potential energy
at a chosen wavenumber k = 3. Damping is applied to the kh = 0 modes to prevent
the accumulation of energy in vertically sheared horizontal flow (Smith & Waleffe 2002).
More details on the code used for these simulations can be found in past studies (Waite
2011, 2017).

The simulations are described with dimensional parameters L, ν, N , etc. as well as
dimensionless parameters. The dimensional parameters are chosen to be broadly similar
to laboratory values following Waite (2014): L is set to be 2π metres for convenience,
and the forcing amplitude is chosen to give velocities on the order of 1 cm/s and
energy dissipation rates on the order of 0.01 cm2/s3. The forcing amplitude is the same
in all simulations, and gives P = 0.02586 cm2/s3, which yields a forcing eddy time

scale of Tf = P−1/3k
−2/3
f . Stratification is changed by varying N . Viscosity is fixed at

ν = 0.12 cm2/s in all simulations except for A1h and A4h. The quantities in table 1
are nondimensionalized by P and kf as in Lindborg (2006). Energy time series, energy
dissipation time series, energy spectra, and energy transfer spectra computed for each
simulation are nondimensionalized by P and kf . A Froude number can be defined from
the forcing parameters: Frf = (Pk2f )1/3/N (note that we use kf , not kf/2π, so our
Frf values are larger at the same stratification than those used by Lindborg 2006). This
forcing Froude number Frf is reported in table 1 (Frf = 0.46, 0.23, 0.12, 0.058) in
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place of our dimensional N values (N = 0.075 s−1, 0.15 s−1, 0.3 s−1, 0.6 s−1). A forcing

Reynolds number, Ref = P 1/3/νk
4/3
f , is also reported in table 1. The total dissipation

rate εk + εp is approximately equal to (but slightly larger than) P in all cases, consistent
with Waite (2017), who found that the actual energy injection rate was a little larger
than (1.1 times) that determined by the forcing amplitude.

The total integration length for all simulations corresponds to approximately 17.3
forcing eddy timescales, and the time step is ∆t/Tf = 0.000216. Time series are used
for the calculated values in Table 1, based on values for εk and εp averaged over t/Tf ∈
[10.4, 17.3]. The length scale used in Frh and Re is computed from Lh = U3/εk, where
U is the root mean square velocity (as in Brethouwer et al. 2007). While questions have
been raised about the appropriateness of this Lh in stratified turbulence (e.g. Maffioli
& Davidson 2016), we include the corresponding Frh for comparison with other studies
that used it. Velocity, vorticity, and temperature fields in physical space are output at
equidistant times over the integration length (either 5 or 9 output times depending on
the case).

The first set of simulations has a fixed stratification, thus setting Frf , and separate
trials for each Prandtl number. This approach was repeated for a total of 4 stratification
strengths and 5 Prandtl numbers, resulting in 20 simulations at the same resolution with
Pr = 0.7, 1, 2, 4, and 8 (runs with labels 0, 1, 2, 3, and 4 respectively) and Frf = 0.46,
0.23, 0.12, and 0.058 (runs with labels A, B, C, and D respectively). The stratification
strengths were chosen to give a range of Frh, and values for Reb of O(1) and larger.
The resolution n = 1536 ensures that the Kolmogorov and Batchelor scales are resolved
(kmax/kd ≈ 3 and kmax/kB > 1). While the forcing amplitude and viscosity are fixed in
all the n = 1536 runs, the mixing efficiency depends on Frf and Pr . As a result, εk and
kd are also slightly dependent on Frf and Pr . In addition to studying dependence on Pr ,
these parameter values explore both regimes of strongly stratified turbulence, Reb < 1
and Reb > 1. Two additional simulations, A1h and A4h, have the same stratification but
larger Re and Reb than the other A cases, and are discussed in section 3.3.

The horizontal and vertical kinetic energy spectra are (e.g. Waite & Bartello 2004)

EK(kh)δ =
1

2

∑
k′∈Ih(kh)

|û(k′)|2, (2.20)

EK(kv)δ =
1

2

∑
k′∈Iv(kv)

|û(k′)|2, (2.21)

where

Ih(kh) = {k′ | kh − δ/2 6 k′h < kh + δ/2}, (2.22)

Iv(kv) = {k′ | kv − δ/2 6 |k′v| < kv + δ/2}, (2.23)

δ = 2π/L, and û corresponds to the velocity in the Fourier domain. The horizontal and
vertical potential energy spectra are similarly defined:

EP (kh)δ =
1

2

∑
k′∈Ih(kh)

|b̂(k′)|2/N2, (2.24)

EP (kv)δ =
1

2

∑
k′∈Iv(kv)

|b̂(k′)|2/N2, (2.25)

where b̂ corresponds to the buoyancy in the Fourier domain.



Prandtl number dependence of stratified turbulence 11

Figure 2. Energy spectra and time series for run C1: Pr = 1, Frf = 0.12. Left column: time
series of (a) kinetic and potential energy and (c) energy dissipation. Right column: compensated
kinetic and potential energy spectra in terms of (b) horizontal and (d) vertical wavenumber.
Characteristic wavenumbers kb, kO, and kd are denoted with vertical solid lines. Note that kB
is coincident with kd for Pr = 1.

3. Results

In this section, we analyze kinetic and potential energy spectra, spectral budget terms,
and physical space fields of the simulations. We start with Pr = 1, first focusing on
the Frf = 0.12 case (section 3.1.1), then we look at the effect of varying Frf for the
Pr = 1 cases (section 3.1.2). In section 3.2 we analyze the spectra and snapshots for
Pr -dependence. In section 3.3 we briefly discuss the effect of further increasing Reb on
the present results.

3.1. Overview of Pr = 1 cases

3.1.1. Overview of the Frf = 0.12, Pr = 1 case

We start with an overview of the Pr = 1 case with intermediate stratification Frf =
0.12 (run C1). Time series of kinetic and potential energy and dissipation are plotted in
figure 2(a,c). The energy and dissipation rates increase for the first 8 forcing timescales
until the flow develops into statistically stationary turbulence, after which these quanti-
ties equilibrate. The energy and dissipation plots are fairly steady for t/Tf ∈ [10.4, 17.3],
which is chosen as the time averaging interval. Approximate stationarity at these times is
observed for all the simulations, so the same time averaging interval is used for all cases.

Compensated horizontal and vertical wavenumber spectra are plotted in figure 2(b,d)
(the full wavenumber energy spectra are omitted as they closely resemble the vertical
spectra). Spikes in the kinetic energy spectra for small wavenumbers are a consequence
of the large-scale forcing for k ∈ [3, 5]. For Pr = 1, kd and kB (label omitted) are



12 J. D. Legaspi and M. L. Waite

coincident. Beyond the forcing interval, the horizontal spectra are close to the expected

k
−5/3
h scaling law (Lindborg 2006, represented by a plateau in the compensated spectra)

for less than one decade, as expected for Reb = 2.03. The uncompensated vertical kinetic
energy spectrum is flat out to kb (not pictured in figure 2 but can be deduced by the
approximate slope of +3 in the compensated plots), while the potential energy spectrum
is peaked at kb. Beyond kb, the vertical spectra steepens to approximately k−3v , appearing
as a short plateau in the compensated plot. Due to the modest Reb = 2.03 in this case,
there is only a small separation between the Ozmidov and dissipation scales. Since Pr = 1,
the kinetic and potential energy are expected to behave similarly at very small scales as
both momentum- and buoyancy-diffusive scales are equivalent; indeed, in the dissipation
range beyond kd (or kB), the spectra are nearly the same.

Figure 3 shows vertical and horizontal slices of horizontal velocity and vorticity at the
end of the simulation. With Reb = 2.03 and Frh = 0.019, run C1 is in the strongly
stratified and slightly viscous regime where the flow is arranged into layers of pancake
eddies. This run is only slightly past the Reb = 1 transition from viscously to turbulently
coupled layers. In figures 3(a,b), the layerwise arrangement and intermittent small-scale
Kelvin-Helmholtz (KH) instabilities can be seen clearly in the vertical slices of the velocity
and y-component vorticity fields. The buoyancy wavenumber kb = 16 for run C1 is
approximately the number of layers in the flow. Since the thickness of the horizontal
layers in stratified turbulence is set by the buoyancy length scale Lb (Billant & Chomaz
2001; Waite & Bartello 2004), the corresponding wavenumber kb = N/U = 2π/Lb is
approximately the number of layers in our domain of height 2π. The horizontal slices of
velocity and z-component vorticity fields in figures 3(c,d) clearly show the signature of
the large-scale vortical forcing. In addition, small horizontal scales associated with KH
billows are visible in figure 3(d).

The potential energy dissipation field (equation (1.8)) is shown in figure 4. Run C1
has few regions that are highly dissipative, and in figure 4(a) the dissipative regions
resemble small quasi-horizontal features in contrast with the intermittent worms expected
in unstratified homogeneous 3D turbulence (e.g. Burgers 1948; Siggia 1981; Ishihara et al.
2013). These dissipative regions also appear to be arranged in horizontal layers (figure
4(b)), like the vertical slices of u and ωy in figure 3(a,b).

We now consider the spectral budget for run C1. The spectra of TK , TP , DK , DP , and
B from the energy budget (2.5)-(2.6) are plotted for run C1 in figure 5(a,b). Excluding
the dissipation terms, the horizontal and vertical spectral budgets are similar at large
scales; the shape of the spectra at small wavenumbers is primarily influenced by the large-
scale forcing. In the forcing interval, there is substantial transfer of the injected kinetic
energy out of the forced wavenumbers, as indicated by large negative spikes in TK(kh)
and TK(kv). The potential energy budget terms TP (kh), TP (kv), B(kh) and B(kv) are
very small and negative in this range, indicating that, while there is no direct forcing
of potential energy, there is some conversion of the remaining injected kinetic energy to
potential energy.

In the horizontal spectral budget, downscale of the forcing interval, TK(kh) is positive
and has a small peak at kb. Some of the kinetic energy deposited at these wavenumbers
is converted to potential energy, as indicated by the negative buoyancy flux in this
range. Indeed, between the forcing interval and kb, TP (kh) and B(kh), both of which
are negative, increase to near zero. The dissipation spectra in this range reveals that
much of the energy going into these horizontal scales is lost to dissipation: dissipation at
large and intermediate horizontal scales can occur at large Re through the vertical part
of the dissipation term, which is restricted to small vertical scales but not necessarily
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Figure 3. Top row: vertical slices (x, z) at y = 0 of (a) x-component velocity u and (b)
y-component vorticity ωy. Bottom row: horizontal slices (x, y) at z = 0 of (c) x-component
velocity u and (d) z-component vorticity ωz. All fields are computed at the end of run C1.
Numerical values on the colourbars correspond to dimensional quantities.

small horizontal scales, since Reb is not very large in this case. Dissipation at small
wavenumbers disrupts the formation of a distinguishable true inertial subrange, which
will be apparent in the spectral energy flux.

At kb, TP (kh) and B(kh) exhibit negative peaks coinciding with TK(kh)’s positive
peak, but are much smaller in comparison. Overturning from the formation, instability,
and breakdown of horizontal layers characteristically occurs at the buoyancy scale, so
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Figure 4. Potential energy dissipation field, εp, computed at the end of run C1: (a) isosurfaces
of 5% of the maximum value, (b) vertical slice (x, z) at y = 0; numerical values on the colourbar
correspond to dimensional quantities.
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Figure 5. (a,b): Spectra for kinetic and potential energy transfer terms, kinetic and potential
energy dissipation, and buoyancy flux for run C1. Spectra are multiplied by wavenumber to
preserve area under the curve for linear-log axes. (c,d): Spectral energy fluxes for run C1.

some conversion of kinetic to potential energy is expected at kb, as seen in Holloway
(1988) and Waite (2011, 2014).

The vertical spectral budget shows different behaviour between the forcing interval
and the buoyancy scale. At kb, TK(kv) has a prominent positive peak while TP (kv) and
B(kv) have negative peaks, and they are all comparable in magnitude indicating a smaller
energy loss to dissipation than in the horizontal spectral budget. It is clear that in the
vertical spectral budget, the overturning occurring at kb is far more efficient at converting
kinetic energy to potential energy than the horizontal.

Downscale of kb and into the dissipation range, the horizontal and vertical spectral
budgets behave similarly again. Between kb and kO, all of TP (kh), TP (kv), B(kh) and
B(kv) increase to positive spectral peaks. At length scales below the buoyancy scale,
buoyancy-driven processes dominate and large amounts of potential energy are expended
to restratify the flow. Past kO, viscous dissipation and buoyancy diffusion take over as
the transfers and buoyancy flux decrease to zero.

The spectral energy fluxes ΠK and ΠP are shown in figure 5(c,d). While the fluxes
are positive beyond the forcing scale, consistent with a downscale transfer of kinetic and
potential energy, they do not exhibit discernable wavenumber ranges where downscale
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Figure 6. Top row: vertical slices (x, z) at y = 0 of y-component vorticity. Bottom row:
horizontal slices (x, y) at z = 0 of z-component vorticity. Pr = 1 for (a,e) Frf = 0.46, (b,f)
Frf = 0.23, (c,g) Frf = 0.12, and (d,h) Frf = 0.058. The same colourmap is used as in figure
3 with a modified range for visibility across Frf . The colourmap range shared by the vertical
slices is different from the range shared by the horizontal slices.

energy flux is constant. However, since TP (kh) is almost zero for a short wavenumber
interval, there is more of a range of constant flux in potential than kinetic energy. The
absence of a long inertial subrange is not unexpected, given the modest Re and Reb
of this case (Brethouwer et al. 2007). Beyond the forcing interval, ΠK(kh) and ΠK(kv)
exhibit a large positive peak at larger wavenumbers. Dissipation at these large scales
reduces the available energy for downscale transfer, inhibiting the development of a true
inertial subrange.

The spectral fluxes for potential energy are smaller than the kinetic spectral fluxes at
small horizontal and vertical wavenumbers, as the extreme negative spikes in TK(kh) and
TK(kv) are directly caused by the large-scale forcing of kinetic energy. However, beyond
the buoyancy scale, the kinetic and potential fluxes converge. The horizontal spectral
fluxes in run C1 are small compared to the vertical spectral fluxes; this tends to depend
on N , and will be further discussed in section 3.2.3.

3.1.2. Frf -dependence for Pr = 1

With fixed Pr = 1, decreasing Frf from 0.46 to 0.058 decreases Reb from 28.7 to
0.567, and Frh from 0.0947 to 0.00935. Through the vertical slices in panels (a)-(d)
of figures 6 and 7, we observe the transition in regimes from nearly isotropic small
and intermediate scales to horizontally-layered flow in the vorticity and temperature
fluctuation fields. Obvious layers are not visible in the vorticity field at the weakest
stratification Frf = 0.46; the vertical temperature field slice in figure 7(a) better
shows the slight anisotropy at Reb = 28.7. At intermediate stratifications Frf =
0.23 and 0.12, KH instabilities are visible within recognizable horizontal layers in both
the vorticity and temperature fields. Decreasing Frf reduces the thickness of these
layers, corresponding to an increase in kb. The turbulence becomes increasingly patchy
with increasing stratification and the corresponding decrease in Reb, with small-scale
turbulence and overturning increasingly restricted to intermittent patches surrounded
by viscously coupled layers (as in e.g. Brethouwer et al. 2007; Bartello & Tobias 2013;
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Figure 7. Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices (x, y)
at z = 0 of θ. Pr = 1 for (a,e) Frf = 0.46, (b,f) Frf = 0.23, (c,g) Frf = 0.12, and (d,h)
Frf = 0.058. The colourmap range shared by the vertical slices is different from the range
shared by the horizontal slices.

Waite 2014). For the strongest stratification Frf = 0.058, overturning is restricted to
very small vertical scales and only a few instabilities are visible in figures 6,7(d).

The horizontal slices in panels (e)-(h) of figures 6 and 7 show the loss of small scale
features, as the small scales become less turbulent with smaller Frf . This loss of small
features can be attributed to kO growing from 15 to 297 between Frf = 0.46 and 0.058
while kd is only slightly increased. At larger Frf , the flow resembles small scale isotropic
turbulence for a wider wavenumber range k ∈ [kO, kd], so the loss of small-scale features
at Frf = 0.058 is in line with greater anisotropy. At Frf = 0.058, signatures of KH
billows are still visible in the horizontal slices (figures 6,7(h)). These panels also exhibit
the least extreme values in temperature and vorticity: as the horizontal layers are reduced
to vertical scales near kd (and kB in the case of Pr = 1), fluctuations in these fields are
eliminated by viscous dissipation and buoyancy diffusivity.

The compensated kinetic and potential energy spectra for Pr = 1 at each Frf are
plotted in figure 8 in terms of horizontal and vertical wavenumber. For the horizontal
kinetic energy spectra in figure 8(a), the Frf = 0.46, 0.23, and 0.12 cases are very similar.
Slightly more kinetic energy is found at large scales for smaller Frf , and these cases show

agreement with the k
−5/3
h scaling law for almost a decade after the forcing interval. The

vertical kinetic energy spectra in figure 8(b) are also affected by Frf . As kb increases
with decreasing Frf , the compensated spectra approximately exhibit the +3 slope (as
in section 3.1.1) for a longer range of small wavenumbers, but eventually converge at
kv ≈ 100. A short plateau region corresponding to limited agreement with k−3v scaling is
observed at the three lowest stratifications.

The horizontal potential energy spectra for Frf = 0.46, 0.23, and 0.12 follow the same
patterns as the kinetic energy, but with marginally more Frf -dependence at intermediate
and large kh. Downscale of kb, the spectra steepen more for smaller Frf but eventually
converge far into the dissipation range. More potential energy is found at intermediate
to large kh at weaker stratification which is consistent with more small scale overturning
in the temperature field. The compensated vertical potential energy spectra nearly have
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Figure 8. Energy spectra in terms of horizontal and vertical wavenumbers for Pr = 1 at
different Frf . Vertical dash-dotted lines are buoyancy scales corresponding to Frf colours. The
average kd and kB are the same for Pr = 1.

the +3 slope up until their respective kb, and exhibit similar dependence on Frf as in
the vertical kinetic energy spectra.

In all panels, the Frf = 0.058 spectra have a distinct shape compared to the three
weaker stratifications. Since Reb = 0.6 < 1, in this case, the cascade to small horizontal
scales is suppressed and there is a consequent steepening of the horizontal spectra (e.g.
Brethouwer et al. 2007; Waite 2014). The steepening of the Frf = 0.058 horizontal

spectra at small wavenumbers is severe enough that there is little k
−5/3
h scaling law

agreement just downscale of the forcing. Similarly, the steepening from kb onwards causes
the Frf = 0.058 vertical spectra to deviate from k−3v scaling. Except in figure 8(b),
the Frf = 0.058 case does not converge to the other three cases until the end of the
wavenumber range. Strong stratification will restrict vertical advection, which greatly
reduces the potential energy found at small vertical length scales.

3.2. Pr-dependence

3.2.1. Energy spectra

We now examine the effects of varying Pr in fixed-Frf groups, starting with the
kinetic and potential energy spectra. The effect of Pr on the horizontal and vertical
kinetic energy spectra, shown in figure 9, is more obvious and extends to larger scales,
as Frf and Reb decrease. Specifically, while Pr -dependence for Frf = 0.46 and 0.23
are mostly downscale of kO and around kd (figures 9(a-d)), the Frh = 0.12 and 0.058
cases show Pr -dependence that extends upscale past kO and into intermediate scales
(figures 9(e-h)). Otherwise, as in figure 2, spikes at small wavenumbers are from the
large-scale forcing, and the vertical spectra roughly have a +3 slope until kb regardless
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Figure 9. Compensated kinetic energy spectra in terms of horizontal and vertical wavenumbers
for different Pr . From top to bottom the rows are Frf = 0.46, 0.23, 0.12, 0.058. Vertical
dash-dotted lines are kB corresponding to Pr colours.
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Figure 10. Compensated potential energy spectra in terms of horizontal and vertical
wavenumbers for different Pr . From top to bottom the rows are Frf = 0.46, 0.23, 0.12, 0.058.
Vertical dash-dotted lines are kB corresponding to Pr colours.
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Figure 11. Compensated horizontal wavenumber spectra for dimensional kinetic energy (left
column) and potential energy (right column). From top to bottom the rows are Frf = 0.46, 0.23,
0.12, and 0.058. Vertical dash-dotted lines are kB corresponding to Pr colours. Horizontal lines
are reference Kolmogorov and Obukhov-Corrsin constants of the two-dimensional horizontal
spectra: C′

1 = C′
2 = 0.71 (Lindborg 2006; Brethouwer et al. 2007).
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Run Frf Pr KE(kh) KE(kv) PE(kh) PE(kv)
A0 0.46 0.7 -2.04 -2.43 -1.98 -2.21
A1 0.46 1 -2.01 -2.41 -1.84 -2.07
A2 0.46 2 -1.97 -2.39 -1.67 -1.90
A3 0.46 4 -1.95 -2.36 -1.55 -1.77
A4 0.46 8 -1.93 -2.35 -1.47 -1.69

B0 0.23 0.7 -2.09 -2.79 -2.20 -2.59
B1 0.23 1 -2.04 -2.76 -2.07 -2.43
B2 0.23 2 -1.96 -2.70 -1.87 -2.20
B3 0.23 4 -1.92 -2.66 -1.75 -2.07
B4 0.23 8 -1.89 -2.64 -1.67 -1.98

C0 0.12 0.7 -2.35 -4.07 -2.51 -3.91
C1 0.12 1 -2.26 -3.97 -2.35 -3.53
C2 0.12 2 -2.13 -3.82 -2.13 -3.00
C3 0.12 4 -2.05 -3.70 -1.98 -2.67
C4 0.12 8 -2.00 -3.62 -1.89 -2.47

D0 0.058 0.7 -2.92 -5.85 -2.46 -5.86
D1 0.058 1 -2.76 -5.63 -2.31 -5.26
D2 0.058 2 -2.55 -5.26 -2.13 -4.33
D3 0.058 4 -2.43 -4.97 -2.02 -3.69
D4 0.058 8 -2.38 -4.77 -1.96 -3.27

Table 2. Slopes from linear regression analysis of kinetic and potential energy spectra in figures
9 and 10. For horizontal spectra, the linear regression is performed over kh ∈ [6, 60] except for
Frf = 0.058, where kh ∈ [6, 29] is used. For vertical spectra, the wavenumber interval is one
decade starting at kb; i.e. kv ∈ [6, 60], [8, 80], [16, 160] for Frf = 0.46, 0.23, 0.12 respectively. The
vertical spectra for Frf = 0.058 uses kv ∈ [29, 200] since the average kd ≈ 198.

of Frf and Reb. For Frf = 0.46, 0.23, and 0.12, the horizontal spectra follow the k
−5/3
h

scaling law just after the forcing interval for about one decade as in run C1 (see table 2).
The Frf = 0.058 spectra are steeper than those at larger Frf , with a more pronounced
bump at kb (Waite 2014). Similarly, in the vertical wavenumber spectra, a short plateau
corresponding to the k−3v scaling law is observed for almost one decade for all groups
except Frf = 0.058. Beyond these short scaling law intervals, both the horizontal and
vertical spectra shallow slightly when Pr is increased (table 2). Larger-Pr simulations
contain more kinetic energy at small scales since buoyancy-induced velocity fluctuations

can persist as kB increases. As a result of the spectra shallowing, the k
−5/3
h and k−3v

scaling laws extend to slightly smaller scales.

As stratification increases, the dependence on Pr extends to smaller wavenumbers.
For example, the compensated horizontal kinetic energy spectra for different Pr start to
diverge at kh ≈ 30 (between the Ozmidov and Kolmogorov wavenumbers) for Frf = 0.46
and kh ≈ 20 (well upscale of the Ozmidov scale) for Frf = 0.12 in figures 9(a) and 9(e)
respectively. Only for the horizontal spectra with Frf = 0.058 and Reb < 1 (figure
9(g)) do the spectra for each Pr separate shortly after the forcing interval, and at a
wavenumber smaller than kb.

The potential energy spectra in figure 10 show similar but more pronounced changes
as Pr is varied. Both horizontal and vertical spectra exhibit the same shallowing with
increased Pr at large wavenumbers as in the kinetic energy spectra (table 2). In the
horizontal spectra, the shallowing that results from increasing Pr again lengthens the



Prandtl number dependence of stratified turbulence 23

wavenumber range for which there is agreement with k
−5/3
h scaling. Decreasing Frf

increases the average kb, where a break in the vertical spectra is observed: immediately
after kb, the spectral slopes decrease toward a k−3v scaling region. In the vertical spectra
for Frf = 0.46, 0.23, and 0.12, the shallowing from larger Pr causes the spectra to
become shallower than the k−3v scaling law downscale of kb.

The Frf = 0.058 potential energy spectra (figure 10(g,h)) behave similarly to the
kinetic energy spectra at this stratification: here, both the horizontal and vertical spectra
visibly separate just after the forcing interval and before kb. The separation occurs at
a noticeably smaller wavenumber for the horizontal spectra than the vertical, as in the
kinetic energy case. All simulations with Frf = 0.058 have Reb < 1; horizontal scales
between the forcing interval and the buoyancy scale are sensitive to Pr because of diffusive
effects between the layers of quasi-horizontal vortices. Figure 10(g) for Frf = 0.058 also
shows a break in the horizontal spectra at kb, after which each curve steepens beyond

k
−5/3
h .

The Kolmogorov and Obukhov-Corrsin constants from (1.15)-(1.16) can be determined

for each simulation from the fully compensated energy spectra, ε
−2/3
k k

5/3
h EK(kh) and

ε
1/3
k ε−1p k

5/3
h EP (kh) (figure 11). Since the simulations in this work use the two-dimensional

horizontal wavenumber kh, the converted C ′ ≈ 1.40C values will be discussed. The
compensated spectra generally show C ′1 and C ′2 to be larger than the value C ′ = 0.71,
corresponding to C = 0.51 referenced in Lindborg (2006); Brethouwer et al. (2007).
The kinetic energy spectra in the left column show C ′1 to be insensitive to Pr when
Reb > 1. However, as Reb increases and stratification decreases, the value of C ′1 tends
to increase, which is consistent with the results of Brethouwer et al. (2007); Bartello &
Tobias (2013) (compared to figure 12 and figure 9a therein, respectively). Further, the
present simulations with Reb ≈ 8 (figure 11c) show C ′1 slightly larger than 0.71, similar
to comparable simulations in Brethouwer et al. (2007) (figure 13a therein, Reb ≈ 9) and
Bartello & Tobias (2013) (figure 9a therein, cyan curve, Reb ≈ 10). The compensated
potential energy spectra show C ′2 to be increasingly dependent on Pr as stratification
increases and Reb decreases. This may be attributed to the Pr -dependence of the mixing
efficiency: across all simulations, the sum εk+εp is nearly held fixed, while the ratio εp/εk
decreases with larger Pr . The potential energy spectra compensated with wavenumber
only (figure 10, left column) are much less dependent on Pr when Reb > 1. The larger-Pr
simulations simultaneously exhibit increasing εk and decreasing εp, thereby resulting in

C ′2 being strongly dependent on Pr through the premultiplication factor ε
1/3
k ε−1p .

For each increase in Pr , there appears to be less of a change in the shape of the
spectra, and this behaviour is observed at all Frf . Excluding Pr = 0.7, each jump in Pr
is from doubling the previous Pr , but the shallowing or separation between successive
curves slightly decreases, as evident in Table 2. This is especially true at scales around
and above the Kolmogorov scale. For instance, at the average kd = 193 for Frf = 0.12,
between Pr = 1 and Pr = 2 the horizontal kinetic energy increases by 67% compared
to a 38% increase from Pr = 4 to Pr = 8. The vertical potential energy for the same
Frf and kd increases by 310% between Pr = 1 and Pr = 2 compared to a 76% increase
from Pr = 4 to Pr = 8. Simulations where Pr is much greater than 8 may be expected
to continue exhibiting less of a change in the potential energy spectra shape as Pr is
increased. That is, the diminishing increase and shallowing of spectra at larger Pr may
become so inappreciable that these higher-Pr spectra converge to a shape not vastly
different from the Pr = 8 case, at least at wavenumbers at and below kd. At larger
wavenumbers, for very large Pr ∼ O(103), buoyant scalars have been shown to behave as
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passive scalars (i.e. potential energy spectra proportional to k−1), and plateaus (∝ k0)
eventually develop in the potential energy spectra (Okino & Hanazaki 2017, 2019, 2020).

3.2.2. Buoyancy flux

Buoyancy flux spectra are shown in figure 12 at different Pr in fixed-Frf groups as
in section 3.2.1 for the energy spectra. Overall, an increase in buoyancy flux is observed
in all cases as Pr is increased. The increase in buoyancy flux is most significant at large
horizontal and vertical wavenumbers, where restratification occurs, and is amplified at
smaller Frf . This increase in small-scale buoyancy flux with increasing Pr is consistent
with the monotonic decrease in εp/εk, shown in table 1 and found in previous DNS studies
of stratified turbulence (Smyth et al. 2001; Stretch et al. 2010; Salehipour et al. 2015);
while the overall buoyancy flux is negative, an increase in small scale buoyancy flux means
that some small-scale potential energy is converted back to, and dissipated as, kinetic
energy. The one exception to this trend is for the strongest stratification and smallest
Reb (figure 12(g)), where the increased buoyancy flux is greatest at small horizontal and
large vertical wavenumbers. Additionally, at Frf = 0.058, the horizontal buoyancy flux
is positive for a short wavenumber range before kb, as well as at larger wavenumbers, for
Pr = 2, 4, and 8. It makes sense that a greater amount of potential energy is converted
to kinetic energy as Pr is increased: there is more potential energy available at large
wavenumbers for either nonlinear transfer or conversion to kinetic energy when buoyancy
diffusivity is weakened (figure 10). Restratification is less suppressed for less intense
turbulence (Holloway 1988); indeed, for these simulations, increasing Pr at a fixed Frf
is associated with a decrease in Re.

The right column of figure 12 shows restratification to consistently take place at small
vertical scales downscale of kb. Due to the tendency towards isotropy at small scales,
this positive spectral bump is also observed in the horizontal buoyancy flux spectra at a
comparable kh range, at least for Frf = 0.46, 0.23, and 0.12. The Frf = 0.058 case is
different. All these simulations have Reb < 1; as a result, there is no small-scale isotropy,
and these small vertical scales are associated with large horizontal scales by viscously
coupled layers. In this regime of stratified turbulence, it is reasonable that the buoyancy
flux at large horizontal scales is heavily affected by Pr , since buoyancy diffusion at small
vertical scales can characteristically occur between these layers. Figure 12(g) also reveals
that the Pr -dependence of buoyancy flux is sensitive enough at large horizontal scales to
even influence the direction of kinetic-to-potential energy conversion. Buoyancy diffusion
can become weak enough at a sufficiently large Pr so that at large horizontal scales,
enough surplus potential energy may be made available for a positive buoyancy flux.

The dependence on Pr seems to be decreasing with increasing Pr , as seen in the energy
spectra. For example, the separation between the buoyancy flux spectra in the Pr = 4
and Pr = 8 cases is noticeably smaller than for preceding Pr increments. This suggests
convergence of the buoyancy flux spectra at large Pr (even moreso than for the energy
spectra).

3.2.3. Spectral flux

The spectral energy fluxes ΠK and ΠP are shown in figures 13 and 14, respectively. The
spectral flux for kinetic energy is not significantly affected by varying Pr , especially for the
vertical wavenumber spectra (figure 13, right column). For the intermediate stratifications
Frf = 0.23 and 0.12, while there is a slight increase in flux with increasing Pr , the fluxes
at each Pr are scarcely distinguishable between the forcing interval and dissipation range
in both horizontal and vertical spectra.

The Frf = 0.058 case is different, and shows a greater dependence of ΠK(kh) and
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Figure 12. Buoyancy flux spectra multiplied by wavenumber to preserve area under the curve
for linear-log axes. From top to bottom the rows are Frf = 0.46, 0.23, 0.12, and 0.058. Horizontal
(left) and vertical (right) wavenumber spectra are shown. Vertical dash-dotted lines are kB
corresponding to Pr colours.
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Figure 13. Spectral kinetic energy flux, as in equation (2.12). From top to bottom the rows are
Frf = 0.46, 0.23, 0.12, and 0.058. Horizontal (left) and vertical (right) wavenumber spectra are
shown. Vertical dash-dotted lines are kB corresponding to Pr colours.
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Figure 14. Spectral potential energy flux, as in equation (2.13). From top to bottom the rows
are Frf = 0.46, 0.23, 0.12, and 0.058. Horizontal (left) and vertical (right) wavenumber spectra
are shown. Vertical dash-dotted lines are kB corresponding to Pr colours.
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ΠK(kv) on Pr . The horizontal flux ΠK(kh) changes with Pr at large horizontal scales
(figure 13), and is the only case where the fluxes are negative for a short wavenumber
range. At very small horizontal wavenumbers, upscale transfer and accumulation of
energy at large scales would appear as positive TK(kh) at small kh, corresponding to
the energy contained in vertically sheared horizontal layers when Reb < 1. Downscale of
the forcing interval, the Pr -dependence of ΠK(kh), while more apparent than at lower
stratifications, is still minor. From the buoyancy flux in figure 12(g), less kinetic energy
is lost by conversion to potential energy at greater Pr , slightly increasing the available
kinetic energy for downscale transfer. The vertical flux ΠK(kv) for Frf = 0.058 is the
closest to displaying a (short) constant flux range. Otherwise, varying Pr has little effect
on ΠK(kv).

The impact of Pr on the potential energy spectral flux is more pronounced than for the
kinetic flux (figure 14). In all cases, increasing Pr increases the potential energy spectral
flux. From figure 10, an increase in potential energy is found with larger Pr , but for a
limited wavenumber range. In the horizontal flux ΠP (kh) for cases Frf = 0.46, 0.23, and
0.12, the most significant change is at intermediate-to-high wavenumbers, but the large
horizontal scales are still minimally affected. The Frf = 0.46 case shows Pr -dependence
only for kh > kb, but for more strongly stratified cases, the Pr -dependence extends up
to the forcing interval. The termination of forward potential energy flux adjusts with Pr
as expected, and more potential energy is made accessible for downscale transfer at large
horizontal scales, since buoyancy diffusion acts on a shorter range of associated vertical
scales.

The vertical spectral fluxes are almost unaffected by Pr upscale of kb in all but the most
strongly stratified case. This is to be expected of stratified turbulence, as the buoyancy
scale characterizes the horizontal layer thickness and largest vertical overturning scale;
the processes responsible for potential energy transfer should be limited by kb.

Both the horizontal and vertical potential energy fluxes are far smaller for Frf = 0.058
than the three weaker stratifications. Notably, for Frf = 0.58, the influence of Pr on the
horizontal and vertical spectra persist for almost the entire wavenumber range. In the
vertical flux, Pr -dependence of the potential energy flux even occurs at vertical scales
larger than the layer thickness as the flow becomes more anisotropic with Reb < 1.
A change in ΠP would be expected when buoyancy diffusivity is weakened, but the
influence of Pr extends upscale past the dissipation range in figure 14. The potential
energy spectral fluxes are closer to exhibiting ranges of constant flux than for kinetic
energy, but Re may still be too small for a discernable inertial range.

Again, as in the buoyancy flux spectra and energy spectra, the difference in both
spectral energy fluxes between Pr = 4 and Pr = 8 is noticeably smaller than the
preceding increases of Pr . As Pr increases, ΠK and ΠK may also be expected to converge
to limiting curves.

3.2.4. Physical space fields

Lastly, slices of physical space fields are examined for fixed Frf = 0.12 as Pr is
increased (Pr = 0.7 is excluded as it is similar to the Pr = 1 case). Since they have
fixed Frf , these runs have a similar Reb ≈ 2; the only noticeable change in the velocity,
vorticity, and temperature fluctuation fields is that smaller scale features emerge as Pr
increases. The changes are subtle, but close inspection of the θ field slices in figure 15
reveal the finer structures that are able to persist with larger Pr . The patchiness of the
turbulence, which varies strongly with Reb, does not seem to depend much on Pr . This
trend is also observed in the velocity and vorticity fields, so only the temperature and
the potential energy dissipation field are shown in figures 15 and 16.
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Figure 15. Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices (x, y) at
z = 0 of θ. Fixed Frf = 0.12 for (a,e) Pr = 1, (b,f) Pr = 2, (c,g) Pr = 4, and (d,h) Pr = 8.
The same colourmap is used as in figure 3 with the range modified for visibility across Pr . The
colourmap range shared by the vertical slices is different from the range shared by the horizontal
slices.

Vertical slices of the potential energy dissipation field are plotted in figure 16 for
Pr = 1, 2, 4, and 8. The dissipative regions follow the horizontal layers, including the
small-scale overturning and instabilities. At smaller Pr , a bigger portion of the domain
is dissipative, since a wider range of small scales is accessible to the stronger buoyancy
diffusivity. The dissipative regions at Pr = 8 are limited to extremely fine scales, which is
in agreement with the largest kB for Frf = 0.12. Larger-Pr simulations are expected to
exhibit even smaller scale details in their physical fields, but may require higher resolution
than n = 1536 used here.

3.3. Reb-dependence

To consider possible Pr -dependence at even higher Reb, simulations A1 and A4
were continued at higher resolution and Reynolds number for approximately 7 forcing
timescales. These simulations have Reb ≈ 50 at Frf = 0.46, with half the original
viscosity ν = 0.06 cm2/s and increased resolution n = 1920. These simulations are
reported as A1h (Pr = 1, F rf = 0.46) and A4h (Pr = 8, F rf = 0.46) in table 1.
As discussed in section 3.2.2 for the lower Reb simulations, a decrease in εp/εk as Pr
increases from 1 to 8 is also found for Reb ≈ 50. However, the drop in this ratio as Pr
goes from 1 to 8 is less at Reb ≈ 50 (24%) than at Reb ≈ 30 (39%).

Energy and buoyancy flux spectra from the higher-Reb simulations are plotted in figure
17. The spectra are mostly consistent with the previous sections’ results with respect to
Pr -dependence. Kinetic energy spectra in figures 17(a,b) are minimally affected by the
increase in Pr from 1 to 8, even less than what was seen with Reb ≈ 30 in figure 9(a).
Potential energy spectra in figure 17(c,d) are far more sensitive than kinetic energy to
Pr downscale of the Ozmidov scale and into the dissipation range. A longer plateau in

the horizontal potential energy spectra, indicating a longer k
−5/3
h scaling law range, is

observed for Pr = 8 than for Pr = 1 past kb and into the kh ∈ [kO, kd] subrange, which
has been slightly widened in response to the larger Reb. The buoyancy flux spectra
show little influence from Pr outside of the restratification wavenumber ranges, as in the
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Figure 16. Vertical slices (x, z) at y = 0 of εp. Fixed Frf = 0.12 for (a) Pr = 1, (b) Pr = 2,
(c) Pr = 4, (d) Pr = 8. The same colourmap is used for all panels as in figure 4(b), with the
range modified for visibility across Pr .

previous buoyancy flux plots figures 12(a,b) at the same stratification, Frf = 0.46. As
above, this restratification leads to a decrease in the ratio εp/εk as Pr increases from 1
to 8.

To compare the effect of Reb on the examined energy spectra, ratios of Pr = 8 spectra
to Pr = 1 spectra are computed for Reb ≈ 30 and Reb ≈ 50 and plotted in figure 18. We
find that the kinetic energy spectra at and above the Kolmogorov scale, and therefore
also at and above the Ozmidov scale, are less sensitive to changes in Pr as Reb increases.
Even as large wavenumbers where the ratio increases from one, ratio values for Reb ≈ 30
at a particular wavenumber are not realized in the Reb ≈ 50 case until a wavenumber that
is greater by at least 100. Indeed, the ratio at kd with Reb ≈ 50 is smaller than the ratio
at kd with Reb ≈ 30, especially in the horizontal wavenumber spectrum. This finding
suggests that the kinetic energy spectra at scales at and above the Kolmogorov scale are
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Figure 17. Compensated kinetic and potential energy spectra, and premultiplied buoyancy
flux spectra for runs A1h (Pr = 1) and A4h (Pr = 8). Horizontal (left) and vertical (right)
wavenumber spectra are shown. Vertical dash-dotted lines are kB corresponding to Pr colours.

not very sensitive to Pr when Reb ≈ 50. By contrast, potential energy is different: figures
18(c,d) show that potential energy spectra are insensitive to Pr around and above the
Ozmidov scale, but they are much more sensitive to Pr than the kinetic energy spectra
around the Kolmogorov scale (a common vertical axis scaling is used for all four panels).
Indeed, the potential energy spectra ratios at the respective kd are approximately 10 for
both values of Reb, and show no evidence of decreasing with increasing Reb.

Overall, we can draw a few conclusions about the potential for Pr -independence of
stratified turbulence spectra at different Reb. The potential energy is clearly the most
sensitive to increases in Pr for all Reb. The main effect of increasing Pr is increased
potential energy at small scales, and associated enhanced positive buoyancy flux and
restratification as a consequence of the increased potential energy and vertical motion
permitted by larger Pr . Sensitivity to Pr is even observed upscale of the dissipative scales
at all Reb considered here. Much larger Pr may be needed to observe Pr -independence in
the potential energy around the Kolmogorov scale. The potential energy spectra at the
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Figure 18. Ratios of Pr = 8 to Pr = 1 spectra for Reb ≈ 30 (runs A1, A4) and Reb ≈ 50
(runs A1h, A4h). Ratios of horizontal (left) and vertical (right) wavenumber spectra are shown.
Vertical dash-dotted lines are kd corresponding to Reb colours.

Ozmidov scale, however, is far less sensitive to increases in Pr by Pr = 8, particularly for
the larger values of Reb & 8 (simulation groups A and B), i.e. for a wide scale separation
between the Kolmogorov and Ozmidov scales. As this scale separation increases with
increasing Reb, Pr -independence in the potential energy could possibly be reached at
the Ozmidov scale for even smaller Pr < 8 with larger Reb than considered here. On
the other hand, the kinetic energy spectra are independent of Pr at and upscale of the
Kolmogorov scale for Pr as small as 8, and as long as Reb > 1. When Pr is increased
from 4 to 8, the increase in buoyancy flux seems to be overcome by viscous dissipation
so that the kinetic energy at these scales does not change much. Therefore, using Pr = 8
seems adequate to simulate larger Pr flows with Reb > 1 as long as the main focus is
on kinetic energy. For larger Reb ≈ 30, Pr = 1 is adequate as the kinetic energy spectra
with Pr = 1 and Pr = 8 are very similar.

The buoyancy flux spectra with Reb & 8 also approach Pr -independence by Pr = 8
at the Ozmidov scale. However, for the large values of Reb ≈ 30 and 50, the positive
peak in buoyancy flux in the restratification range (which sees the most Pr -sensitivity)
occurs at scales smaller than the Ozmidov scale. As a result, the integrated buoyancy
flux does not become independent of Pr for any Reb considered here, which also suggests
no Pr -independence in the ratio εp/εk or the mixing efficiency unless Reb or Pr are even
larger. For comparison, Okino & Hanazaki (2020) show that the buoyancy flux spectra
are nearly unchanged between the Pr = 70 and Pr = 700 cases, suggesting that Pr -
independence might be observed in the spectra for Pr as small as 70. Given that the
decaying turbulence DNS in Okino & Hanazaki (2019, 2020) have a small Reb < 1 for
most of the integration time, it is possible that Pr -independence of the buoyancy flux,
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and possibly also the mixing efficiency (or εp/εk), may be realized at a smaller Pr < 70
with larger Reb where the separation between the Kolmogorov and Ozmidov scales is
wider. Results from the present simulations show that the change in the related quantity
εp/εk from Pr = 1 to Pr = 8 decreases as Reb increases, which relates to a similarly
smaller change in the integrated buoyancy flux. Additional simulations with Reb & 30 and
larger Pr would be needed to reliably determine how buoyancy flux, εp/εk, and mixing
efficiency is affected by Reb, a relationship that is possibly non-monotonic (Salehipour
et al. 2015).

4. Conclusions

Direct numerical simulations of stratified turbulence were performed to study the effect
of varying Pr and to investigate the suitability for Pr = 1 simulations to reproduce
Pr 6= 1 results. The simulations presented here employed random forcing of large-scale
vortical modes on cubic domains. A fixed viscosity and a set of Frf were chosen to
obtain a range of Reb and Frh as Pr was varied. Spectra of kinetic energy, potential
energy, buoyancy flux, kinetic energy flux, and potential energy flux were examined in
fixed-Frf groups to identify scale-specific results dependent on Pr , and the effect of Reb
on Pr -sensitivity was briefly examined. Snapshots of the velocity, vorticity, temperature
fluctuation, and potential energy dissipation fields in physical space were also visualized
for a qualitative analysis of Pr -dependence.

When varying Pr , changes were naturally expected at very small scales, which is
consistent with the change in kB (kd was nearly unchanged by Pr due to the fixed
viscosity and forcing amplitude). Indeed, the most obvious Pr -dependence in the kinetic
and potential energy spectra was found at large wavenumbers, where the potential and
kinetic energy grew with Pr . The increase in energy can be explained by larger Pr
permitting a wider wavenumber range of temperature fluctuations, possibly excited by
enhanced inter-layer instabilities, which influence both kinetic and potential energy before
viscous dissipation or buoyancy diffusion can occur. Since kd was not changed much by
Pr , the spectra of kinetic energy (and kinetic energy flux) were much less affected than
potential energy (and potential energy flux). Subtle changes in the physical fields were
found for different Pr , except of course in the potential energy dissipation field (figure
16). This was not unexpected, as Reb was only slightly changed for a fixed Frf , so no
change to the transition between stratified turbulence regimes was incurred by varying
Pr .

Pr -dependence was found upscale of the dissipation range in most of the examined
spectra. In some cases, this even extended upscale into the large-scale forcing interval,
particularly in the horizontal wavenumber spectrum. Intermediate-to-large-scale Pr -
dependence was visible more in the potential energy than kinetic energy spectra. The fully
compensated energy spectra showed little Pr -dependence of the Kolmogorov constant,
while the Obukhov-Corrsin constant was highly dependent on Pr , especially for stronger
stratification. In the spectral kinetic energy flux, Pr -dependence was peculiar in that
it only applied to kh and kv between the forcing interval and the dissipation range,
where an inertial range could have existed if Re and/or Reb were larger in these
simulations. The spectral potential energy flux was extremely sensitive to Pr for most
of the wavenumber range. The buoyancy flux spectra showed the strongest sensitivity
to Pr in the restratification range just before kd and kB , but also exhibited some Frf -
dependence. Following the description by Holloway (1988), it could be that for large Pr ,
the increased abundance of potential energy at these small scales even further amplifies
the conversion back to kinetic energy.
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Among all the examined spectra, the most strongly stratified Frf = 0.058 cases were
very different from the three weaker stratifications. The simulations with Frf = 0.058
were the only cases in the Reb < 1 regime; some of these observed differences may
be consequences of the flow’s transition to viscously coupled non-turbulent layers, as
viscous and diffusive effects are expected when Reb . 1, even at large horizontal scales
due to vertical viscous and diffusive effects of the viscously-coupled layers. Breaks in
the horizontal kinetic and potential energy spectra occurred at kb associated with the
suppression of the downscale energy cascade in this regime. The horizontal buoyancy
flux spectra in figure 12(g) showed that the forcing scales were most affected by Pr ,
rather than the restratification range. In the spectral energy fluxes, Frf = 0.058 was
unique in that ΠK(kh) was affected by Pr only at intermediate-to-large scales, and both
ΠP (kh) and ΠP (kv) showed Pr -dependence for most of the wavenumber range. The
Frf = 0.058 cases also exhibited negative horizontal kinetic energy flux at large scales,
implying an upscale transfer of energy when stratification is especially strong. None of
the spectral fluxes displayed any discernable range of constant flux at any Frf (except
possibly ΠK(kv) at Frf = 0.058). The development of a true inertial range may have
been hindered by the small Re and especially Reb. The comparison between the Reb ≈
30 and 50 simulations in section 3.3 (runs A1 and A4 versus runs A1h and A4h) show
that at larger Reb, the kinetic energy spectra tend to be less sensitive to changes in Pr ,
at least at scales around and above the Kolmogorov scale, which is reasonable given the
weaker viscosity at Reb ≈ 50.

Given the impact of Pr upscale of the dissipation range, setting Pr = 1 to simulate
realistic Pr > 1 flows appears to be reasonable when Reb & 30, when the focus is
on kinetic energy at scales around and above the Kolmogorov scale. For smaller Reb,
at smaller scales, and for other quantities involving potential energy, Pr = 1 is not a
suitable choice. Depending on Frf , Pr was shown to affect the examined spectra with
varied severity and at unexpected scales. In particular, the spectral potential energy flux
was especially sensitive to Pr , and was affected over more of its wavenumber range. For
any investigation that might be reliant on accurately measured potential energy transfer,
special care should be taken by properly computing these quantities using the appropriate
Pr if possible. In addition, the ratio of potential to kinetic energy dissipation seems to
be quite sensitive to Pr , even for Reb up to 50.

The exhibited shallowing of energy spectra with increasing Pr was consistent with the
results in Okino & Hanazaki (2017, 2020). Further, in all the examined quantities it was
suggested there could be convergence to a limiting spectra shape as Pr increases, at least
at scales around and above the Kolmogorov scale, as there was a declining growth in each
spectra with larger Pr . That is, for Pr larger than 8 (but not extremely large as in Okino
& Hanazaki 2017, 2020), and for large scales down to about kd, it is expected that these
examined spectra could converge to a shape not too different from the Pr = 8 case. Since
varying Pr results in different kB , it may only be at larger scales that convergence is
possible. Okino & Hanazaki (2019, 2020) also note less of a difference in spectra between
different Pr as these Pr increase beyond 1; Pr -independence could possibly be realized at
some Pr < 70 in stratified turbulence for large Reb (Reb ≈ 50 is not quite large enough).
The kinetic energy and spectral kinetic energy flux did not exhibit major dependence
on Pr , so performing DNS with Pr = 1 may be acceptable for those instances when
large-scale kinetic energy is the main focus, as long as Reb & 30. However, the potential
energy, buoyancy flux, and spectral potential energy flux might not exhibit similarly close
convergence until a much larger Pr > 8. Performing simulations with an accurate Pr
may be crucial to reliably study these quantities.

Additional simulations with Pr > 8 should be considered to further explore the extent
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of the predicted convergence in all of the observed spectra, but would demand a higher
resolution than n = 1536 used here. A wider range of Reb as well as larger-Re simulations
would allow for cases with identifiable inertial ranges to be studied. It may be of interest to
explore any effects due to Pr on constant flux ranges, and to also see how restratification
in the buoyancy flux spectra might change with more diverse cases. It would be very
interesting to consider how results are (or are not) Pr -dependent when Reb & O(100),
however, the original challenge still remains: attainable values of Pr , Re, and Reb will be
limited by the available computational resources. For example, to perform a simulation
with Pr = 100 with this setup, it is estimated that a resolution of n ≈ 5000 would be
needed for kmax/kB = 1.

Future work on Pr -dependence of stratified turbulence could include the effects of
rotation, which were neglected here. Based on the exhibited Pr -dependence of the
buoyancy flux, the effect of Pr on mixing efficiency may be an interesting extension
of the work here. Exploring the very small scales and looking into possible changes in
intermittency due to Pr is also of interest. Ultimately, the dependence of the small-scale
instabilities that develop between layers on Pr, and the potential role of Holmboe in
addition to KH instabilities (e.g. Peltier & Caulfield 2003; Salehipour et al. 2016), should
be investigated. The forced simulations presented here were varied in a limited way (only
Frf and Pr were changed), but the code which produced them has many options to
investigate stratified turbulence with different configurations. For example, one option
could be to force fields other than the large vortical modes as shown here (e.g. velocity
or temperature, possibly forcing large-scale gravity waves), or to modify some of the
other forcing parameters.

Acknowledgements

This research was enabled in part by support provided by the Shared Hierarchical
Academic Research Computing Network (SHARCNET), Compute/Calcul Canada, the
Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-
386456-2015), and the Canadian Foundation for Innovation.

Declaration of Interests

The authors report no conflict of interest.

REFERENCES

Almalkie, S. & de Bruyn Kops, S. M. 2012 Kinetic energy dynamics in forced, homogeneous,
and axisymmetric stably stratified turbulence. Journal of Turbulence 13 (29), 1–32.

Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy
Reynolds number. Journal of Fluid Mechanics 725, 1–22.

Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in
turbulent fluid Part 1. General discussion and the case of small conductivity. Journal
of Fluid Mechanics 5 (1), 113–133.

Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Physics
of Fluids 13 (6), 1645–1651.

Bouruet-Aubertot, P., Sommeria, J. & Staquet, C. 1996 Stratified turbulence produced
by internal wave breaking: two-dimensional numerical experiments. Dynamics of
Atmospheres and Oceans 23 (1-4), 357–369.

Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and
simulation of strongly stratified turbulent flows. Journal of Fluid Mechanics 585, 343–368.

Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. In Advances
in Applied Mechanics (ed. R. von Mises & T. von Kármán), , vol. 1, pp. 171–199. Elsevier.
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