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Predictability of geophysical fluid dynamics at various scales remains a crucial challenge for accurate weather and cli-

mate forecasting. Following the pioneering framework established by Lorenz, numerous studies on homogeneous and

isotropic turbulence have demonstrated that flows characterized by diverse scales may exhibit limited predictability.

This limitation arises from the inevitable amplification of errors in the initial conditions from small scales to larger

scales, even if the initial error is confined to small scales. This research investigates the predictability of freely decay-

ing homogeneous stratified turbulence, which serves as a representative model for small-scale geophysical turbulence

where rotational effects are negligible. Direct numerical simulations are employed to assess predictability by analyzing

the growth of errors introduced in pairs of simulations with near-identical initial conditions; errors are modeled as the

difference field of the pair. Previous studies have established a connection between the finite range of predictability

and the slope of the kinetic energy spectrum. In the context of stratified turbulence, the shape of the energy spectrum

exhibits a dependence on the buoyancy Reynolds number (Reb), particularly at lower values of Reb. This work conducts

a comparative analysis of both the energy spectra and the error growth behavior across different regimes of stratified

turbulence, encompassing a range of Reb values from O(1) to O(10). The sensitivity of the obtained results to the in-

troduced error is investigated. Modifying the geometrical shape of the error (spherical vs. cylindrical complement) and

the cutoff wavenumber while maintaining the initial error kinetic energy did not significantly alter the error dynamics.

The results are robust to variations in the method of error introduction.

Keywords: stratified turbulence, predictability, direct numerical simulations, buoyancy Reynolds number

I. INTRODUCTION

Within the realm of geophysical fluid dynamics, the tension

between the inherent chaos of turbulence and its finite pre-

dictability remains a captivating problem. While turbulence is

an inherently chaotic problem, in which minute perturbations

rapidly amplify and spread, the degree of predictability in

modern numerical simulations, including numerical weather

prediction (NWP), is impressive (e.g. Kalnay, 2002).

Following early efforts to tackle the atmospheric pre-

dictability problem (e.g. Richardson, 1922; Thompson,

1957), in his pioneering paper, Lorenz (1969) proposed to

classify deterministic systems into different categories de-

pending on how they statistically evolve with respect to errors

imposed in the initial conditions. Due to sparse observational

networks, initial conditions in geophysical fluid simulations

inevitably have errors at small scales. Lorenz (1969) stud-

ied the evolution of this error with pairs of simulations, the

difference of which was called error (and can be considered

an example of epistemic uncertainty, e.g. Oberkampf et al.,

2002). The main distinction between Lorenz’ categories rest

on whether at subsequent times the magnitude of the differ-

ence between the “real or reference” and the “observed or

predictor” system can always be controlled by restricting the

initial error to sufficiently small scales or whether it is in-

evitable that the discrepancy will become large, for any ar-

bitrarily small initial error.

The signature conclusion of Lorenz (1969), when analyz-

ing several experiments, is that errors initially confined ex-

clusively to the smallest scales of motion (i.e. the velocity in

a)Electronic mail: mfdiazro@uwaterloo.ca
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the real and observed systems only differ at a specific range

of high wavenumbers, which corresponds to the unobserved

small scales) may lead, by a continual process, to errors at the

largest scales in a finite time, even as the initial error is re-

stricted to smaller and smaller scales. This is what it is com-

monly denoted as an inverse cascade for the propagation of

error and it encapsulates the fact that, in some cases, errors

at small scales tend to gradually contaminate the larger scale

dynamics. However, the dependency of whether a determin-

istic system posses an intrinsic range of predictability (i.e. an

inherent time interval within which errors surpass any precho-

sen magnitude) is tightly related with the slope of the inertial

range of the kinetic energy spectrum of said system.

Lorenz’s groundbreaking work gave birth to the classi-

cal school of turbulence predictability, where numerous re-

searchers tried to expand his model or make a distinctive con-

tribution within the subject (Leith, 1971; Lilly, 1972; Leith

and Kraichnan, 1972; Herring et al., 1973). The cumulative

evidence from these studies lends strong support to the notion

that the existence of an inverse cascade of error propagation is

a direct consequence of the characteristic shape of the power

law in the inertial range of the energy spectrum. Likewise, the

amount of predictability described by the rate of error propa-

gation has a direct association with the steepness of the slope

of the inertial range. Systems with steeper slopes tend to carry

more predictability than those with shallower slopes, which is

crucial if we point to the fact that 2D and 3D turbulence differ

significantly in that aspect. Let us recall that 2D turbulence

usually presents a kinetic energy spectrum with a “-3” power

law in the enstrophy cascade (Kraichnan, 1967), whereas 3D

turbulence exhibits the famous “-5/3” slope in the energy cas-

cade (Kolmogorov, 1941; Lundgren, 2003). Furthermore, the

energy error spectrum E∆(k, t), which is the spectrum of the

kinetic energy of the difference of the fields’ velocities, grows
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Predictability of Decaying Stratified Turbulence 2

with time in a self-similar fashion.

Subsequent research reaffirmed and further explored the pi-

oneering findings of the classical predictability school, using

closure models, large eddy simulations, and direct numeri-

cal simulations (DNS) of different fluid models (Métais and

Lesieur, 1986; Chollet and Métais, 1989; Rotunno and Sny-

der, 2008; Morss et al., 2009; Ngan et al., 2009; Durran and

Gingrich, 2014; Boffetta and Musacchio, 2017; Yoshimatsu

and Ariki, 2019; Liu et al., 2022; Ge et al., 2023), lead-

ing to a richer understanding of predictability across various

contexts. For instance, Morss et al. (2009) concluded that in

quasi-geostrophic turbulence, the key difference in error be-

havior between shallow spectral slopes (like -5/3) and steeper

ones (like -3) lies in how the kinetic energy spectrum reacts

to small-scale errors. In flows with a -5/3 slope, the peak

of the error spectrum initially appears at small scales due to

their faster turnover time. However, as these scales saturate

with errors, the peak shifts towards larger, energy-containing

scales, leading to a slowdown in error growth. Conversely,

flows with a -3 slope, typical of 2D turbulence, exhibit a con-

stant turnover time across scales. Consequently, the error

spectrum peaks at the large scales from the beginning, and

saturation of even smaller scales has minimal impact on the

overall error growth rate. Concurrently, Ngan et al. (2009)

aimed to build a bridge between theoretical understanding of

turbulence and the inherent complexities of numerical weather

prediction models by studying rotating stratified turbulence.

While their primary focus centered on discerning the varia-

tions in predictability across various geophysical scales, nu-

merous results can be derived by adopting a similar frame-

work to theirs. In addition, Lorenz’s original predictabil-

ity framework has been expanded and studied within modern

NWP models (e.g. Tribbia and Baumhefner, 2004; Lo and

Ngan, 2015; Sun and Zhang, 2020).

In their work, Ngan et al. (2009) called for an imple-

mentation of modern statistical diagnostics (such as relative

entropy or finite-size Lyapunov exponents) from interdisci-

plinary fields like information theory and complex systems

analysis, to act as a much needed complement to the classical

picture of turbulence predictability As a response, and build-

ing upon some of their prior research (Boffetta and Musac-

chio, 2001), Boffetta and Musacchio (2017) investigated pre-

dictability in isotropic homogeneous stationary turbulence us-

ing high-resolution DNS across various Reynolds numbers.

They found predictability persists despite turbulence’s chaotic

nature, attributing it to the ratio between fast perturbation

time scales and the time scale for perturbations to signifi-

cantly influence large-scale dynamics. Their results revealed

a Reynolds number dependency on Lyapunov exponents, de-

viating from dimensional analysis predictions.

Following the above review of predictability, we give a re-

view of the characteristics of stratified turbulence (Riley and

Lelong, 2000; Riley and Lindborg, 2008). In the context of

atmospheric and oceanic flows, stratified turbulence plays a

crucial role because the buoyancy forces (represented by the

Brunt–Väisälä frequency N) significantly outweigh the Cori-

olis force (represented by the Coriolis parameter f ). This im-

balance, typically observed in mid-latitudes with N/ f ∼ 100,

creates a unique range of length scales where buoyancy dom-

inates. Notably, these length scales roughly correspond to the

atmospheric mesoscale (Waite, 2014). It is natural to consider

independently the effects on the dynamics of two characteris-

tic length scales inside a stratified fluid: the vertical (l↑) and

the horizontal (l↔). Likewise, we need to impose certain re-

strictions by the means of dimensionless quantities; hence, we

require the following conditions to be fulfilled as in Riley and

Lindborg (2012):

• The ratio of the inertial forces with respect to buoyancy

forces to be small, which implies small Froude number

F↔ =
u

Nl↔
≪ 1, (1)

where u denotes the characteristic velocity.

• Weak rotational effects, which implies a large Rossby

number

Ro↔ =
u

f l↔
≥ 1. (2)

On Earth’s atmosphere, the range of scales where

Fr↔ ≪ 1 ≲ Ro↔ is usually denoted as the mesoscale

(O(100) km and smaller), where the effects of stratifi-

cation are greater than the ones of rotation.

• Large buoyancy Reynolds number

Reb = F2
↔Re↔ =

u3

νN2l↔
≫ 1, (3)

where we take the Reynolds number as Re↔ = ul↔/ν
with ν being the kinematic viscosity. As indicated by

Brethouwer et al. (2007), for a fixed Re the stratification

may suppress turbulence as F↔ decreases, implying that

strong stratification requires even larger Reynolds num-

bers. Reb is effectively the Reynolds number due to

vertical gradients in the horizontal momentum equation

when l↑ ∼ u/N (Brethouwer et al., 2007).

Typical values in the atmospheric mesoscale are: U = 10

ms−1, l↔ = 100 km, N = 10−2s−1, and ν = 10−5m2s−1,

which yields the following dimensionless quantities:

Fr↔ = 10−2, Re↔ = 1011, Reb = 107 (4)

(e.g. Waite, 2014). However, such large values of Reb are not

attainable in most experiments or DNS, where Reb is typically

O(1)−O(10) (e.g. as surveyed by Brethouwer et al., 2007).

Both experimental and numerical set-ups have been essen-

tial and complementary to unravel the phenomenology in-

volved with the development of freely decaying and stationary

stratified turbulence. On the experimental side, works like Lin

and Pao (1979) point to the fact that turbulence initially grows

in the usual chaotic manner, thereafter stratification promotes

organization of the vorticity structures. Vertical motions are

generally inhibited, highlighting the emergence of quasi-two-

dimensional structures. For example, Billant and Chomaz

(2000) showed how a vertical columnar vortex present a new
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Predictability of Decaying Stratified Turbulence 3

kind of zig-zag instability due to being immersed in a strat-

ified fluid, noting the formation of horizontal structures as

well. These experimental observations coexist in agreement

with a lot of their numerical simulation counterparts. For in-

stance, Kimura and Herring (1996) found scattered “pancake-

shaped" vortex patches lying in the horizontal plane suggest-

ing them as a good candidate for the final structures in de-

caying stratified turbulence. The presence of these horizontal

layers of eddies is found in multiple references (e.g. Riley and

deBruynKops, 2003; Waite and Bartello, 2004; Brethouwer

et al., 2007; Maffioli and Davidson, 2016) regardless of the

different initial conditions or the introduction of forcing.

The development of isotropic turbulence is famously char-

acterized by the Kolmogorov scale, expressed by

η =
(ν3

ε

) 1
4 , (5)

where ε is the viscous dissipation of kinetic energy per unit of

mass. However, due to aforementioned collapse of the vertical

scale, it is natural to wonder if there exists a small enough

scale such that turbulence would no longer be affected by the

effects of stratification. Indeed, if we take the hypothesis from

Taylor (1935) for the energy dissipation rate (ε ∼ u3/l) and

search for a length scale lO such that the associated Froude

number is unitary (at this scale buoyancy no longer reigns as

the main actor in the balance of forces), this yields what it is

commonly known as the Ozmidov scale

lO =
( ε

N3

)1/2
. (6)

According to Riley and Lindborg (2008) this scale can also

be interpreted as well as the largest horizontal scale possess-

ing sufficient kinetic energy to overturn. Moreover, we can

now rewrite the buoyancy Reynolds number in terms of this

characteristic scale as

Reb ∼
( lO

η

)4/3
(7)

(Dillon and Caldwell, 1980; Gargett et al., 1984; Brethouwer

et al., 2007).

Lastly, instead of solely analyzing the full kinetic energy

spectrum E(∥k∥), where k = (kx,ky,kz) is an arbitrary wave

vector, it is insightful to separate the contributions from hori-

zontal scales (k↔ =
√

k2
x + k2

y ) and vertical scales (k↑ = |kz|).
As shown by Lindborg (2006), for the horizontal spectrum,

asymptotic analysis reveals ε as the sole shared parameter

across scales, leading to a similar form as in isotropic turbu-

lence:

E(k↔) =C1ε2/3k−5/3
↔ , (8)

which holds whenever Reb ≫ 1. For Reb ≲ 1, the horizontal

spectrum gets steeper, reaching magnitudes as steep as k−5
h

(Waite, 2014). Similarly, for the vertical spectrum, Riley and

Lindborg (2012) highlight that u and N govern the large-scale

range, while ε and N dominate the small-scale range. Since N

is the only shared parameter, dimensional analysis yields:

E(k↑) =C2N2k−3
↑ . (9)

The diverse slopes observed within the stratified turbulence

regime present a unique opportunity to explore its behavior

within the predictability framework and further analyze its dif-

ferences from isotropic turbulence. This work utilizes direct

numerical simulations (DNS) of stratified turbulence employ-

ing a non-hydrostatic Boussinesq model. Various predictabil-

ity diagnostics are implemented on a baseline case of twin

simulations (Section III A). Subsequently, we compare differ-

ent cases to assess how varying the buoyancy Reynolds num-

ber (Section III B) affects predictability, potentially revealing

the impact of stratification. Finally, Section III C explores the

impacts of varying the error introduction in the twin simula-

tions, evaluating the robustness of our findings.

II. NUMERICAL MODEL AND PROCEDURE

A. Equations of motion

Neglecting the effects of planetary rotation or any other ex-

ternal forces, the Boussinesq equations for a uniformly strati-

fied fluid are:

∂u

∂ t
+u ·∇u =− 1

ρ0
∇p+bêz +ν∇2

u, (10)

∂b

∂ t
+u ·∇b+N2w = κ∇2b, (11)

∇ ·u = 0, (12)

where u = (u,v,w) is the velocity field, êz is the unit vector

in the vertical direction, p and ν are the kinematic pressure

and viscosity respectively, κ is the thermal diffusivity and we

define the buoyancy as b = − g
ρ0

ρ ′, where the density is de-

composed as ρ = ρ̄(z)+ρ ′, with |ρ ′|≪ ρ̄ and ρ0 is a constant

reference density. We take the buoyancy frequency

N2 =
g

ρ0

dρ̄

dz
(13)

to be constant. These equations are useful to portray geophys-

ical fluids across scales, at which stratification is important but

Coriolis effects are weak.

We can present equation 10 in terms of the vorticity:

∂ω

∂ t
=∇× (u×ω)+





∂b/∂y

−∂b/∂x

0



+ν∇2
ω. (14)

Notice that the term in square brackets is the baroclinic gen-

eration of vorticity. As a consequence, the vertical component

of vorticity is not directly influenced by the buoyancy force.

The main advantage of equation 14 is that if we are able to

solve it, via a numerical method, we can always return to our

original velocity variable by solving the associated Poisson

equation:

∇2
u =−∇×ω. (15)
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Predictability of Decaying Stratified Turbulence 4

Elliptic equations such as equation 15 are conveniently solved

in their associated Fourier domain. Hence, equation 15 takes

the form:

−||k||2û = ik× ω̂, (16)

where the hatted variables represent the Fourier counterpart

of the original velocity and vorticity. We can readily see that

the velocity is obtained by simply dividing the previous ex-

pression by the ||k||2 factor. In order to avoid problems at the

origin (k = 0), we can consider all variables to be zero at the

zero wave vector, which can be interpreted as the absence of

a uniform mean flow.

B. Numerical model

Our numerical model employs a spectral transform method

with periodic boundary conditions on a cubic domain of size

L3, an isotropic grid and with the parameters displayed on ta-

ble I. We integrate equations 11-14 in time and Fourier space

using an appropriate scheme, while storing variables in phys-

ical space. The Fast Fourier Transform (FFT) bridges the two

domains, allowing us to exploit the most convenient domain

for calculations. To mitigate aliasing errors, introduced by

point-wise multiplication, we restrict the scales by truncating

the number of Fourier coefficients using the “two-thirds rule”

at K j = n j/3 (with j ∈ {x,y,z} and n j denoting the number of

grid points in each direction). This is superior to the natural

truncation of K j = n j/2, which is insufficient to counter alias-

ing errors (Durran, 2010). We use isotropic resolution with

n j = n. The equations are solved using a third order Adams

Bashford method (AB3), with the viscous and diffusion terms

treated with a trapezoidal approach. The timestep dt is chosen

for stability to keep the Courant number less than 0.7/π (Dur-

ran, 2010). We are interested in resolving at every point of the

grid the whole range of spatial and temporal scales associated

with turbulence, from the Kolmogorov scale, up to the integral

scale. By this means, our numerical set up is commonly clas-

sified as a DNS, which in practice translates to having ηK j ≳ 1

for all j ∈ {x,y,z}. We assume unit Prandtl number and set

κ = ν .

This model is based on established frameworks and has

been used successfully to study various problems over the

years, including the zigzag instability (Waite and Smo-

larkiewicz, 2008, appendix A.2), forced stratified turbulence

(Legaspi and Waite, 2020) and rotating-stratified turbulence

(Waite, 2016).

C. Procedure

Following in the footsteps of several previous numerical

studies of predictability (e.g. Lilly, 1972; Leith and Kraich-

nan, 1972; Métais and Lesieur, 1986; Chollet and Métais,

1989; Morss et al., 2009; Ngan et al., 2009), our general

objective is to characterize the predictability error that arises

from the divergence between almost identical twin experi-

ments that sprout from a common precursor run. Each of the

parent runs presented in this work is initialized with isotropic

random-phase velocity fields with a specified energy spectrum

following Maffioli and Davidson (2016):

E(k) = µk4 exp
(
−k2/k2

p

)
, (17)

where E(k) = 1
2
⟨û∗ · û⟩ is the three dimensional energy spec-

trum which is calculated summing over spherical shells of ra-

dius k and µ is the amplitude of the initial spectrum. This am-

plitude is selected to ensure that the initial domain-averaged

kinetic energy is normalized to one, meaning that the veloc-

ity scale is O(1). We set kp = 5, which sets the amplitude

of the peak of the initial spectrum, located at
√

2kp. The

length scale of our experiments is characterized by this peak

as l = 2π/
√

2kp ∼ 0.89. We take their initial condition set-up

as the base of our simulations because they initialize both po-

tential vorticity and internal gravity waves in stratified turbu-

lence, without giving a particular preference to either of them

(Maffioli and Davidson, 2016). From these initial conditions

we can estimate the characteristic flow speed using the nor-

malization of kinetic energy and the isotropic set up as follows

E =
1

2
(u2 + v2 +w2) =

3

2
u2,

therefore u =
√

2/3 and the associated turn over time is l/u =
1.08. Notice that we make use of these quantities to calculate

the Froude and Reynolds numbers of the initial conditions.

Four viscosities are considered. For each, we let the parent

simulation run until nearly reaching full development of tur-

bulence, from 0 to 0.5 time units which is roughly half a turn

over time, and gather all the respective model variables. We

take those outputs and use them as the initial conditions for

the twins simulations, running for an additional 5 time units

with the same overall parameters as their parent simulation.

Throughout this work we have named the twins Apollo and

Artemis, while identifying the precursor simulation (used as

the reference name for each numerical experiment) as differ-

ent versions of their respective mythological parents (Jupiter,

Zeus, Leto, and Latona). Keep in mind that the runs are taken

sufficiently long –in terms of the characteristic turn over time–

that they are able to capture adequately the development and

then decay of turbulence. The key point in the twins’ set up is

that we introduce error to one of them (Artemis), while leav-

ing the other one (Apollo) unperturbed, playing the role of the

reference simulation. In this regard, the latter differs initially

from the former on account of a small random perturbation

introduced at all wavenumbers beyond a defined wavenumber

cutoff (||k|| > kc), which is meant to represent the resolution

of the observational network.

Taking this general scheme, we conducted four sets of ex-

periments where we change the value of the viscosity, along

with the resolution in accordance with resolving the Kolmoro-

gov scale, while keeping the buoyancy frequency fixed, thus

obtaining different values of Reb. Simulations are referred to

by their parent name and resolution n; e.g. Leto (1024) refers

to the pair of simulations with n = 1024. Consequently, we

have changed the amplitude of the introduced error so we have
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Predictability of Decaying Stratified Turbulence 5

Jupiter (256) Zeus (512) Leto (1024) Latona (2048)

ν 2.0×10−3 8.0×10−4 3.1×10−4 1.2×10−4

N 10 10 10 10

Re 363 907 2285 5758

F 0.09 0.09 0.09 0.09

Reb 2.4 4.6 12.1 35.5
kO 46 52 51 47

kd 88 163 331 688

kmax/kd 0.97 1.04 1.03 0.99

dt 0.001 0.0005 0.00025 0.000125

TABLE I. Simulation parameters, non-dimensional numbers, and

wavenumbers for all numerical experiments. The number next to

the name of the numerical experiment alludes to its resolution n (e.g.

Jupiter was set up with a resolution of 2563). Notice that in order to

calculate kO = 1/lO, kd = 1/η and Reb = ε/(N2ν) we use the maxi-

mum value of dissipation rate (ε) presented on the twin-simulations,

while for parameters like Re and F we make use of the initial condi-

tions.

the same initial total error kinetic energy for all the experi-

ments. In this way we can analyse the effects of having differ-

ent Re and Reb with same stratification. We use equation 7 to

calculate buoyancy Reynolds number.

Afterwards, we explore the effects of error introduction,

since it is, by itself, a key factor over all the fore mentioned

studies. We emphasize on the implications of the geom-

etry and range of error introduction. Taking our base ex-

periment, Leto (1024), we carried out similar simulations,

keeping the same general model parameters and just chang-

ing the wavenumber cutoff of error introduction (keeping the

same initial total error energy), passing through the Ozmi-

dov wavenumber as it characterizes two separate regions of

the stratified turbulence spectrum. Likewise, we conducted an

experiment where we added the error in a cylindrical portion

of the domain instead of having it introduced by the domain

complement of a sphere, making sure that the total amount of

initial error keeps the same magnitude as in the base exper-

iment. The advantage of studying so, in the frame of strati-

fied turbulence, is to appraise if a cylindrical geometry would

significantly change the results in the horizontal and vertical

energy spectrum, as there is an initial contribution of error at

every horizontal plane.

D. Diagnostics

In order to assess and quantify the amount of error propa-

gation, we used a compilation of diagnostics presented across

the numerical predictability literature (such as Leith and

Kraichnan (1972); Chollet and Métais (1989); Ngan et al.

(2009)). An immediate first tool, having the velocity fields

of each twin, is to calculate the (3D, horizontal and vertical)

ensemble energy spectrum at each timestep. Although this

does not tell us much about predictability, we can compute in

a similar manner the error energy spectrum, which measures

the wavenumber distribution of the decorrelation between the

two fields. Given our periodic boundary conditions, we can

define this quantity as the kinetic energy spectrum of the dif-

ference of the velocity fields as follows

E∆(k, t)δ =
1

2
∑

k′∈I

|| ûp(k, t)
︸ ︷︷ ︸

Apollo

− ûr(k, t)
︸ ︷︷ ︸

Artemis

||2, (18)

where

I = {k
′|k− δ

2
≤ k′ < k+

δ

2
},

δ = 2π/L, û corresponds to the velocity in the Fourier domain

and the subscripts p and r denote Apollo and Artemis, and

similarly for E(k↔) and E(k↑). The next step is to quantify

the ratio of the ensemble and error spectra. Thus, the ratio

energy spectrum is defined by

R(k, t) =
E∆(k, t)

E(k, t)
. (19)

It is important to recall that Leith and Kraichnan (1972)

showed that in both isotropic 2D and 3D turbulence this ratio

spectrum develops and moves towards lower wavenumbers in

a “self-similar” form (i.e. it retains its shape and scaling prop-

erties as it evolves in time). Notice that for an arbitrary wave

vector k0, we can express the error kinetic energy as

2 · 1

2

(
∥
∥ûp(k0, t)

∥
∥2

2
+

∥ûr(k0, t)∥2

2

)

︸ ︷︷ ︸

Ensemble KE

−Re
{

ûp(k0, t) · û∗
r (k0, t)

}

︸ ︷︷ ︸

Correlation

,

(20)

where the ensemble KE refers to the average of the kinetic

energy of each of the twins. Therefore as the fields reach full

decorrelation at a given scale, the preceding function reaches

its maximum value at R(k, t) = 2, in which case we will con-

sider that the error is saturated.

As it is rather challenging to interpret all the implications

and subtleties by looking just at spectra, it is convenient to

consider time series that illustrate the overall error evolution.

For instance, the total error kinetic energy is

e(t) = ∑
k

E∆(k, t), (21)

which describes the total amount of dissimilitude between

velocity fields and summarizes the global error propagation.

The error kinetic energy at the time of error introduction is

e(0.5) = 3.97× 10−5, which is 0.004% of the initial (t = 0)

kinetic energy. Nonetheless, our main interest lies in the lo-

cal (in scale) error dynamics since the existence of an inverse

error cascade is usually attributed to the interaction between

neighboring scales. For that reason, we have incorporated the

time series of the error ratio at given scales of interest, namely:

rK(t) = R(K, t).
The last implemented diagnostic is also heavily inspired by

the error inverse cascade. Under the premise of a progressive

phenomenon, given the insertion of error at small scales, we

are interested in characterizing the wavenumber from which

the error has contaminated all the subsequent scales at any

given time. This is commonly referred as the error wavenum-

ber or error wavefront (Chollet and Métais, 1989; Ngan et al.,
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Predictability of Decaying Stratified Turbulence 6

2009) and is defined by the wavenumber at which the ratio

spectra reaches a pre-established threshold:

κe(t) : R(κe, t) = γ, (22)

with γ ∈ (0,2). One immediate advantage is that κe describes

the time evolution of error locally.

Even though several studies take γ = 1
2

(inspired by

Lorenz’s original interest in the doubling error time), Chol-

let and Métais (1989) argue that this quantity should be small

enough in order to place the wavenumber κe both in the cor-

rect range of error spectrum (k4 for isotropic decaying turbu-

lence) and in the rage of explicitly computed wave numbers.

Following Chollet and Métais (1989), we have taken γ = 0.01.

Note that κe(t) is expected to be a monotonically decreasing

function as the front propagates to larger scales and previ-

ous studies have obtained a respective power-law scaling for

this quantity (Leith and Kraichnan, 1972; Chollet and Métais,

1989).

III. RESULTS

A. Leto (1024), in depth

In order to understand the overall evolution of the experi-

ments and the contrast between them, we first show a detailed

dissection of a single experiment: Leto (1024). In that way,

the reader becomes better familiarized with stratified turbu-

lence simulations and the interpretation of the subsequent re-

sults.

We first exhibit the vorticity fields in figure 1. We com-

pare the time progression of the y-component of vorticity in

the ΠXY and ΠY Z planes. In the first row, at t = 0.5, we can

observe the general initial evolution of all our numerical ex-

periments. The isotropic random-phase velocity fields have

just barely developed and, as a result, we encounter a similar

picture across the different planes. In other words, at the time

of the conception of the twins, the turbulence has not signifi-

cantly lost its isotropic nature inherited from the initial condi-

tions. At the subsequent times (t = 2.9 and t = 5.30), the full

display of anisotropy is observed, as the vertical slices show

how the turbulence unfolds and organizes in horizontal layers.

On the right panel, layers of strong shear are clearly visible,

especially at later times, along with disturbances resembling

shear instabilities (as observed in e.g. Riley and deBruynKops,

2003; Brethouwer et al., 2007). Lastly, on the third row, we

can identify that the stratification has organized those insta-

bilities in wider horizontal layers on the right panel, which

is a direct reference to the famous pancake-eddies addressed

earlier. As time goes by, the overall vorticity magnitudes de-

crease as expected when dealing with decaying turbulence.

Next, we discuss the time series of two important quanti-

ties that characterize turbulence. In the top panel of figure

2 we have the kinetic energy dissipation rate of both twins.

As expected, the time series are identical for t ∈ [0,0.5] (as

this part represent the parent run), but once the error is intro-

duced we can see a significant jump for the perturbed twin

Artemis. This shouldn’t be surprising, as we have abruptly

changed the small scales by introducing the error kinetic en-

ergy, some of which is rapidly dissipated, leading to a short

increase in dissipation in the perturbed twin. After that jump,

we can see that both graphs share a similar path, as expected

from Taylor’s hypothesis (Taylor, 1935) that the dissipation is

determined by the large scales. In other words, the dissipation

rate of Artemis returns to the expected value as determined

by the unperturbed large scales. If we take a look at the bot-

tom panel of figure 2, we can appreciate the hierarchy of the

large scales as well. There we can see that in spite of altering

the domain averaged energy while adding the perturbations,

as they are introduced at small scales, they do not cause a sig-

nificant change as the mean energy is dominated by the large

scales.

Now, to transition towards the predictability diagnostics,

we commence by introducing the ensemble kinetic energy

spectra in terms of total, horizontal and vertical wavenumbers

at different times (figure 3). If we concentrate our attention

on the first couple of outputs at times t = 0.5 and t = 1, we

can observe that the initial spectrum is steep and then, as the

dissipation increases, the spectrum gets shallower, which is

characteristic of decaying turbulence. We can also see that

the spectra are equally spaced at the beginning and then they

start to get closer, for large wavenumbers. As these figures

are set in a logarithmic scale, given the spacing between lines,

we may infer an exponential decay at early times. Moving

on to the horizontal and vertical counterparts of the ensemble

spectra, there is a clear distinction with respect to the general

shape and slopes. For instance, the horizontal spectra resem-

bles in both aspects the 3D spectra, having that concentration

of spectra at large scale (there is less decay at the smallest

wavenumbers and more distance between spectra as k↔ gets

larger) and a somewhat similar slope. On the other hand the

distinctive shape of the vertical spectra helps us to understand

the anisotropy of this type of turbulence as well. Here the

spacing between lines is similar across all vertical wavenum-

bers at early times.

As discussed in section II, we can begin exploring the real

consequences of the addition of perturbations regarding pre-

dictability by referring to the error spectra. Spectra of error

KE are shown in figure 4. We can observe how the initial er-

ror is introduced by looking at the lightest spectrum of the top

panel in figure 4. Keeping in mind that the error is introduced

at k ≥ 20, then the initial 3D spectrum has naturally the shape

of a step function. Moreover, the error grows hastily over all

possible wavenumbers in a rather explosive fashion. Right

away, the error grows very high at large k, but it is relatively

low for small wavenumbers. We can also see that the spectrum

develops in a “self-similar” fashion, which alludes to the fact

that it retains the same shape as the error propagates towards

larger scales. As elaborated upon by Ngan et al. (2009), the

self-similar nature of the turbulence cascade of energy most

likely yields the self-similar behavior of the error spectra.

Following the time evolution of the spectra, we can appre-

ciate the emergence of two distinctive regions due to their

contrasting behavior, as highlighted by the arrows in the top

panel of figure 4. At large scales the error grows progressively
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Predictability of Decaying Stratified Turbulence 7

FIG. 1. Slices of the y-component of vorticity taken at the middle of the domain of Leto (1024). From left to right column, the ΠXY , ΠXZ

planes are respectively displayed, marking their temporal development with each row (from top to bottom: t = 0.5, 2.9, 5.3).
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Predictability of Decaying Stratified Turbulence 8

FIG. 2. Time series of domain averaged kinetic energy dissipation

rate and kinetic energy of each twin simulation for Leto (1024).

–characterizing the famous inverse error cascade–, while at

small scales, the error saturates quickly and then decreases

mainly because of the decaying nature of our experiment.

Even though it is difficult to assign a clear separation between

those regions, notice that there is an intermediate range of

scales, around k ∼ 10, where both error growth from the in-

verse error cascade, and turbulent decay, are present. This in-

termediate scale may be a function of the buoyancy Reynolds

number and its meaning could become relevant for further re-

search.

An interesting story unfolds when we decompose the error

spectra into horizontal and vertical wavenumber components

as shown in the bottom panels of figure 4. Starting with the

shape of the initial error spectrum, we have a line with positive

slope for the horizontal wavenumbers, while it is a constant

for all the vertical wavenumbers. This is a direct consequence

of the geometry involved with the error introduction. Remem-

ber that we have introduced random noise with a constant am-

plitude for all wave vectors such that k ≥ 20 (i.e. filling the

cube in Fourier space with error outside the sphere of radius

20). In that way, if we sweep through vertical wavenumbers,

we would find the same amount of error in each plane with

exception of those planes that pass through the empty sphere;

however, the cross-section of the sphere space is negligible

with respect to the total amount of wavenumbers, the result is

an almost constant distribution for the initial error spectrum.

Analogously, as we go to larger k↔ (now with cylinders) the

amount of error grows proportionally to the radius, having as

FIG. 3. On top, we have the 3D ensemble kinetic energy spectra of

Leto (1024); on bottom, the horizontal and vertical ensemble spectra

of Leto (1024) are presented. The time progression is given by the

color gradient at each spectral line, from lighter to darker tones. The

spectra are plotted each 0.5 time units from 0.5 to 5.5, highlighting

the spectrum at t=0.5 with a different color. The reference slope is

calculated at the time of maximum dissipation for the unperturbed

twin, which roughly coincides with one turnover time.

a result a linear initial horizontal spectrum. After the initial er-

ror introduction, we have two completely different stories. For

the horizontal spectra, there is a similar inverse cascade of er-

ror using the same arguments as in the isotropic case. Whereas

for the vertical spectra, the error grows uniformly and instan-

taneously to all possible vertical scales from t = 0.5 to 1.0,

after which it decreases. There is no visible inverse cascade

of error in vertical scale.

Lastly, we have the error ratio spectra presented in figure

5. These figures complement the picture of predictability on

stratified turbulence due to their discernible characteristics.
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Predictability of Decaying Stratified Turbulence 9

FIG. 4. The top panel displays the 3D error kinetic energy spectra

of Leto (1024). The arrows are added to emphasize the time evolu-

tion direction of the spectra. Below, the horizontal and vertical error

spectra for Leto (1024) are presented. All the spectra are plotted each

0.5 time units from 0.5 to 5.5, highlighting the spectrum at t=0.5 with

a different color.

Starting with the 3D wavenumber, the error propagation to-

wards larger scales is evident, as the spectra move to smaller

wavenumbers. In fact, we can appreciate that the error sat-

urates rather quickly for k ≳ 70, which means that for small

scales there is an almost instantaneous complete loss of pre-

dictability as both twin fields present total decorrelation be-

tween each other. At an intermediate scale, we can see how

far upscale the loss of predictability extends by focusing on

an arbitrary threshold. For instance, R(k) ≥ 1 for all k ≥ 30

at t = 1, right after the initial spectrum, before gradually de-

creasing. In fact, at the end of the run, R(30) ∼ 0.5. If we

were dealing with forced turbulence instead, it is likely that

the error would have had the opportunity to contaminate and

FIG. 5. 3D error ratio spectra of Leto (1024) on top and horizontal

and vertical error ratio spectra on bottom. The dotted reference line

is a constant at R(k) = 2, which denotes the saturation value of the

error ratio. The spectra are plotted each 0.5 time units from 0.5 to

5.5, highlighting the spectrum at t=0.5 with a different color.

saturate even larger scales.

The horizontal and vertical decomposition of error ratio

spectra neatly corroborates the assertion of an inverse error

cascade for the horizontal case, and the lack of it for the verti-

cal case. That is due to the fact that in the left panel of figure

5, we can notice the same type of self-similar and continu-

ous growth of error towards smaller horizontal wavenumbers,

while in the right panel the relative error grows just in the first

couple of outputs, then it stabilizes and remains practically

the same for the subsequent times. For the vertical spectra,

the error dynamics are mostly driven by the decaying nature

of turbulence instead. Even though the error dynamics are dif-

ferent, we still observe error saturation for the small scales in
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Predictability of Decaying Stratified Turbulence 10

both horizontal and vertical spectra. Indeed, for the horizontal

ratio spectra the range of saturated wavenumbers is even wider

than in the three-dimensional case, beyond k↔ ∼ 30 there is

full saturation of error; whereas in the vertical ratio spectra,

the saturation interval starts around k↑ ∼ 80. These results are

consistent with our stratified turbulence cartoon of pancake

eddies. The independence or decorrelation between layers

translates to a rapid loss of predictability at all vertical scales,

deviating from the cascading behavior observed in horizon-

tal flows. Horizontal error growth is subject to the horizon-

tal vortical structures and eddies, leading their error dynamics

to resemble the classical isotropic inverse cascade scenario,

where energy flows towards larger scales. We can argue that

the overall amount of predictability in the three-dimensional

case is therefore a result of the different predictability con-

tributions from the vertical and horizontal wavenumbers, and

the balance between them.

B. Predictability dependency on buoyancy Reynolds number

Now that we are familiarized with the schematic methodol-

ogy and analysis, we exhibit four experiments with the same

stratification, keeping the buoyancy frequency fixed at N = 10,

while decreasing the viscosity (and therefore increasing the

resolution) in order to gradually increase Re and Reb as dis-

played in table I. Notice that as Fr is being held constant for

all the experiments, we cannot effectively distinguish the de-

pendence of the results with respect to Re or Reb. However,

we have decided to keep the focus on the buoyancy Reynolds

number as it is a critical parameter that distinguishes between

different flow regimes in stratified turbulence (Brethouwer

et al., 2007).

Regarding the predictability insight that these experiments

can offer us, we would beforehand expect all of them to ex-

hibit an inevitable loss of predictability. That is because they

would fall into the third predictability category of Lorenz

(1969), which states that the error of flows with spectrum

slope shallower than −3 cannot be reduced no matter how

small the initial error is taken. At first sight, this premise could

be further extended to the horizontal and vertical ensemble

spectra. However, there is a clear distinction between the be-

havior of these last two. Keep in mind that numerous studies

indicate the existence of a direct energy cascade for the hor-

izontal spectrum (Lindborg, 2006; Brethouwer et al., 2007),

whereas it is not the same case for the vertical scales. There-

fore, even though the vertical spectra present a shallow slope

(compared to −3), this does not automatically implies the ex-

istence of an inverse cascade of error as set out in Lorenz’s

framework.

The error ratio spectra are presented in figure 6. This di-

agnostic allows us to quantify the growth of the relative error

normalized by the amount of ensemble kinetic energy. For

this quantity, the effects of the buoyancy Reynolds number

are most contrasting, as we don’t see the exact same story un-

veiling through the panels. At first glance, the Jupiter (256)

behavior is notably different. That is because the error at

large wavenumbers has not been able to saturate as in the

case of Leto (1024) or even more evidently in the case of

Latona (2048), due to the strong viscous effects in Jupiter

(256), which has Reb = 2.4. This aspect is difficult to discern

by looking at the ensemble spectra and error spectra on their

own; however, with the ratio spectra we are able to observe the

speed at which a wide range of small scales end up decorre-

lated and the progression of error contaminating neighbouring

scales. Even though the relative amount of saturated scales

with respect to the total range of wavenumbers grows as Reb

increases, we can recognize that the region dominated mainly

by decaying error –which was unable to reach full saturation–

is in 10 ≲ k ≲ 100 for all the experiments. Likewise, we can

appreciate how the relative error of the largest scales (take

k = 1 for example) gets gradually bigger. This breakdown al-

low us to state that the stratified flows are less predictable as

the buoyancy Reynolds number increases. However, this as-

sertion is limited given that this study does not assess the sep-

arate dependence on Reb and Re, since our simulations have

fixed Fr.

FIG. 6. Error ratio spectra of Jupiter (256), Zeus (512), Leto (1024)

and Latona (2048). The spectra are plotted each 0.5 time units from

0.5 to 5.5.

Proceeding with the horizontal ratio spectra in figure 7, the

predictability trend of the isotropic case is well preserved as

expected. Starting with Jupiter (256), which does not exhibit

error saturation at any horizontal scale, there is still a back-

ward propagation of error at small horizontal wavenumber. It

seems that the relative error tends to a rather linear distribu-

tion (in log-log scale) instead of a self-similar curve as in the
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Predictability of Decaying Stratified Turbulence 11

other experiments with higher Reb. Moving on to the rest of

the experiments, we still can see that there is a wider range of

saturated scales in comparison to the 3D wavenumber case. In

fact, unlike the three dimensional case of error ratio spectra,

in figure 7 the horizontal energy ratio spectra of all the ex-

periments trace a continuous evolution towards larger scales

–as smaller scales become completely decorrelated– without

any visible decaying region. Besides that, all the experiments

share qualitatively the same behavior. The observation that

the horizontal error cascade behaves more similarly to 3D

isotropic turbulence than the 3D wavenumber case aligns with

the proposed existence of a horizontal energy cascade reported

in various studies of stratified turbulence (e.g. Lindborg, 2006;

Brethouwer et al., 2007).

FIG. 7. Horizontal error ratio spectra of Jupiter (256), Zeus (512),

Leto (1024) and Latona (2048). The spectra are plotted each 0.5

time units from 0.5 to 5.5.

In figure 8 we present the vertical error ratio spectra. Here,

as Reb increases, the final spectrum seems to stay constant at

large scales, with a linear distribution for intermediate scales

and it ends with the saturation region. Even though the dissi-

pative nature of turbulence plays a leading role on predictabil-

ity (or the loss of it to be more precise), we can observe that it

presents a stronger influence on the vertical scales than in the

horizontal ones. Notice that the saturation region is practically

entirely defined in the second spectral line, which corresponds

to t = 1, or around half a turnover time after the birth of the

twins.

FIG. 8. Vertical error ratio spectra of Jupiter (256), Zeus (512), Leto

(1024) and Latona (2048). The spectra are plotted each 0.5 time units

from 0.5 to 5.5.

Moreover, it is interesting to examine the range of

wavenumbers at which the error is saturated to assess its

possible connection to Reb for both horizontal and vertical

wavenumbers. We can characterize the saturation range by

identifying the smallest wavenumber at which the horizon-

tal error ratio spectra approaches an arbitrary value near sat-

uration. To illustrate, consider the smallest wavenumber at

which R(k↔) > 1.8 across the panels of figure 7, which rep-

resents an almost fully saturated scale. Keeping in mind that

Jupiter (256) does not reach values ever so close to saturation,

we can move on and see that Zeus (512) reaches this value

at k↔ = 55, Leto (1024) at k↔ = 25, and Latona (2048) at

k↔ = 20. Likewise, in Figure 8, we can see that Zeus (512)

reaches this value near saturation at k↑ = 160, Leto (1024) at

k↑ = 70, and Latona (2048) at k↑ = 60. Hence, for both hor-

izontal and vertical wavenumbers, the error saturation range

extends to smaller wavenumbers as Reb increases. We notice

that even though Reb increases in a similar proportion from

Zeus to Leto and from Leto to Latona, the saturation range

does not extend by the same proportion, pointing to possible

convergence of the saturation range for increasing Reb or infer

to a non-linear relationship between the saturation range and

Reb.

All of these results are a direct consequence of the charac-

teristic anisotropy presented in stratified flows. Let’s resume
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Predictability of Decaying Stratified Turbulence 12

our discussion from section III A, regarding the extent of the

saturation regions with respect to k, k↔ and k↑. In the case

of Latona (2048), structures with k↔ ∼ 20 –where the error

starts to saturate– must be associated, because of anisotropy,

to larger k↑ ∼ 60 in order to reconcile the outcome of the

isotropic wavenumber.

FIG. 9. At the top panel, the total kinetic energy error time series

for Jupiter (256), Zeus (512), Leto (1024) and Latona (2048) is pre-

sented. In the bottom-left panel, we present a closer look at the same

total error from t = 0.5 to t = 1 with linear axes scales. In the bottom-

right panel, we present the same time series but with log-y-axis.

Lastly, we present the time series analysis, starting with the

top panel of figure 9, which displays the total error kinetic

energy for each of the four experiments of this section as a

function of time. In that panel, we can observe how the spa-

tial average of the difference energy between fields increases

at first and reaches a global maximum. That is a straight con-

sequence of the propagation and saturation of error in gen-

eral. Notice that the global maxima gets higher and is reached

at earlier times as the buoyancy Reynolds number increases.

The amplitude increment may be attributed to the wider range

of small scales (which saturate faster) existing in the higher

resolution experiments; nevertheless, we have to acknowledge

that this diagnostic only contains global information, so there

is likely a shared contribution across scales. Subsequently, the

function decreases as turbulence decays. In the bottom panels

of figure 9, we take a closer look at the initial development

of the total error. This particular emphasis has been previ-

ously taken in some other studies, (e.g. Boffetta and Musac-

chio, 2017; Ge et al., 2023), where the initial growth rate

was found to be exponential. Even though we observe a rapid

growth of the error energy at early times in our experiments,

the bottom-right panel of figure 9 fails to rigorously deter-

minate due to the limited time resolution of the error energy

field.

One important thing to remember looking back at the spec-

tral analysis is that we have a wider range of wavenumbers as

simulations grow in resolution (as a result of decreasing the

viscosity to increase the Reynolds number), which can repre-

sent an inconvenience when trying to directly compare them

by eye. For that reason we show in figure 10 the time se-

ries of the relative error rK(t) at three different scales shared

by all experiments which gives us a more detailed picture of

what is happening at a local scale. For instance, at the small-

est wavenumber k = 1, r1(t) just exhibits a steady growth, as

the cumulative result of the backwards error propagation to

the largest scales; in addition, we can see that the error ratio at

k = 1 increases with increasing Reb. At k = 10, after the initial

surge of relative error, we see that the growth of the error ra-

tio stagnates across all the experiments, resulting in a concave

function. Going back to figure 6, it is around this scale where

we were able to identify the fore mentioned balance scale.

The similar shape, but different amplitude between the cases

is remarkable, as they present consistent local error dynamics

apparently modulated by the amount of total error.

At k = 60 the error ratio immediately reaches values close

to saturation followed by a subtle decrease after approxi-

mately one turn-over time. It is important to notice that there

is a considerable jump in the behavior of the functions as we

go from Zeus (512) to Leto (1024) across the last two panels.

On the other hand, it is remarkable how close the Leto (1024)

and Latona (2048) ratios are to one another for k = 10 and

k = 60, even though there is a significant difference in their

buoyancy Reynolds numbers and in their total error energy.

At the end of this section, we turn our attention to the cross-

over wavenumber or error wavefront presented in figure 11,

that is the scale at which the error ratio reaches a certain

threshold as it propagates towards larger scales. Given that

Jupiter (256) is not able to exhibit the full development of an

inverse cascade, we only display the diagnostic on Zeus (512),

Leto (1024) and Latona (2048).

Both the isotropic and horizontal wavefronts present a

negative power law progression with κe(t) ∼ t−1, in close

agreement with previous studies such as Leith and Kraich-

nan (1972) and Chollet and Métais (1989). The slope of

the power law for the hortizontal wavenumber wave front

(−1.34) is steeper than that for the isotropic wavenumber, and

it aligns even closer to the κe ∼ t−3/2 scaling derived by di-

mensional analysis and later corroborated by the numerical

findings in 3D isotropic turbulence, as highlighted by Boffetta

and Musacchio (2017). This lends more support to the preced-

ing claim that horizontal scales exhibit a stronger resemblance

to those observed in 3D turbulence.

There is no similar behavior for the vertical wavenum-

bers as the error propagation perish rapidly, which we would

expect as there is no inverse cascade of error in vertical

wavenumber. Despite having a similar behavior, we can ob-

serve how there is a stronger backwards propagation of er-

ror for k↔ inasmuch as having a steeper slope in comparison

with the isotropic wavefront. In fact, the horizontal wavefront
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Predictability of Decaying Stratified Turbulence 13

FIG. 10. Relative kinetic energy error as a function of time at a fixed

wavenumber for Jupiter (256), Zeus (512), Leto (1024) and Latona

(2048). From left to right, k ∈ {1,10,60}.

FIG. 11. Isotropic, horizontal and vertical error wave front for Zeus

(512), Leto (1024) and Latona (2048). The reference line is a linear

fit of Leto (1024).

posses a slope closer to the stationary isotropic turbulence

studied by Métais and Lesieur (1986) than their decaying case,

which could be a direct consequence of the anisotropy of our

experiments. We can appreciate that both Leto (1024) and

Latona (2048) present a faster upscale propagation compared

with Zeus (512), which mirrors our previous discussion in-

dicating that there may exist a phenomenological jump from

Zeus (512) to Leto (1024).

C. Error introduction

Several questions may naturally arise regarding the afore-

mentioned results and their applicability under diverse condi-

tions. In particular, how exactly does the specific choice of

noise addition influence the final outcome of the numerical

experiments? In any predictability study, the implications of

this issue are crucial, as they provide robustness and generality

to the results. This section is concerned with dissecting that

question and providing a reply to some of the natural inquiries

related to error introduction. For instance, all the experiments

in section III B have shared the same wavenumber error cutoff

at kc = 20, while changing the amplitude of the random per-

turbations accordingly so that all experiments share the same

amount of initial error. In the stratified turbulence realm this

could have great significance given the existence of a transi-

tional scale such as the Ozmidov wavenumber. It may be the

case that the error dynamics present some kind of conversion

if the cutoff wavenumber is placed behind or ahead of that

threshold.

1. Wavenumber cutoff dependency

Let’s start exploring the sensitivity of the predictability re-

sults with respect to the wavenumber cutoff selection. Our

approach is fairly simple, taking the base experiment, Leto

(1024), and selecting a different cutoff wavenumber kc ∈
{20,40,60,80}1, while still keeping the same amount of to-

tal initial error and the same parameters such as stratification,

viscosity, etc.

This fact lead us to figure 12, which shows the error ratio

spectra. The highlighted initial spectrum across the panels of

figure 12 is the only spectrum that depends on kc. Note that

the initial spectrum changes in height as a mere consequence

of the condition of having the same total initial error. Besides

that initial spectrum, the strong resemblance of the spectra is

uncanny. We have omitted the horizontal and vertical decom-

position of the error and ratio spectra, as the nearly indistin-

guishable tendency continues within the spectral analysis of

these quantities as well. Conversely, it is worth remembering

that the Ozmidov wavenumber for these experiments takes a

1 An important remark is that we kept the same unperturbed twin (Apollo)

for all the following experiments, and we just run modified versions of

Artemis.
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Predictability of Decaying Stratified Turbulence 14

value of kO = 50 and there is no discernible change at either of

the spectral diagnostics when we sweep the cutoff wavenum-

ber through that value.

FIG. 12. Ratio energy spectra of the modified Leto (1024) experi-

ment with cutoff wavenumbers at k = 20,40,60,80. The initial ratio

spectrum is highlighted in blue.

Moving on, in figure 13 we present the total error and error

wavefront time series for simulations with different kc. The

total error of each experiments ends up being identical again,

as is the case with the error wavefront. This result is quite re-

markable, as it implies that both on the local and global scale,

the experiments undeniably share the same error propagation

characteristics. The overall conclusion is that there is no cor-

relation or dependency between the studied range of cutoff

wavenumbers and the final outcome of the experiments.

One is definitely tempted to push a little further the studied

range, insomuch as to know what would be the consequences

of inserting the perturbations at the region mostly character-

ized by the inverse cascade of error, setting kc ∼ 10 for exam-

ple.

2. Geometrical implications: Cylinder v. Sphere

Another question is how our results depend on the geometry

of the error introduction. Our numerical experiments add ran-

dom noise with a pre-established amplitude for all wavenum-

bers beyond the cutoff wavenumber (i.e. for all k in our nu-

FIG. 13. Time series of the total error and error wavefront for the

modified Leto (1024) experiment with cutoff wavenumbers at kc =
20,40,60,80.

merical domain such that k2
x + k2

y + k2
z ≥ k2

c ). This means that

we are uniformly adding random perturbations to the velocity

field at each grid-point of our cubic Fourier domain outside

the sphere of radius kc, which is reasonable given the isotropic

initial conditions but presents a clear asymmetry when deal-

ing with anisotropic stratified turbulence. Now, it is natural

to ponder whether this spherical geometry of error introduc-

tion can expressively alter the amount of error that is injected

into each level of what would later become the layered struc-

ture. This inquiry leads us to present another modification to

our base case, changing the geometry of the error introduc-

tion from the domain-complement of a sphere, to the domain-

complement of a cylinder (i.e. for all k in our numerical do-

main such that k2
x + k2

y ≥ k2
c ) while modifying the noise am-

plitude in order to keep the same total initial error as our ref-

erence experiment. In that way, all the horizontal planes in

the wave vector domain are supplied with approximately the

same amount of initial error.

Similarly to the case of the modified cutoff wavenumbers,

we find no dependence on the error introduction geometry ex-

cept for the initial error spectrum. The horizontal spectra of

error energy effectively showed that there is a uniform amount

of initial error insertion at each horizontal plane (not shown).

Regardless, we obtain practically the same result in every sub-

sequent spectrum. For the vertical error spectra, even the ini-

tial spectrum is indistinguishable. Moving on, the 3D error

ratio spectra were calculated accordingly, but they are not dis-

played due to their inability to add something different to the
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Predictability of Decaying Stratified Turbulence 15

FIG. 14. Horizontal error ratio spectra of Leto (1024) with spherical

and cylindrical complement error addition.

FIG. 15. Vertical error ratio spectra of Leto (1024) with spherical

and cylindrical complement error addition.

discussion. In figure 14 and figure 15, we present the horizon-

tal and vertical error ratio spectra, respectively, for the spher-

ical and cylindrical cases. Specifically, in the horizontal case,

we can distinguish between the two cases in the initial spec-

trum: in the cylindrical case, we observe a step function as

there is no error contribution at any k↔ < 20, while in the ver-

tical case, there is still no discernible distinction between both

geometries. We present figure 16 and figure 17 to complete

the picture that both at the local and global scales, the experi-

ments present the same error growth characteristics. There is

no visible dependence on the geometry of the error introduc-

tion both on the total error time series nor in the error wave-

front.

The overall results presented in this section strongly suggest

that the total amount of error likely carries a more significant

weight in the error dynamics compared to the geometrical im-

plications of error introduction and wavenumber cutoff.

FIG. 16. Total error time series of Leto (1024) with spherical and

cylindrical complement error addition.

FIG. 17. Isotropic, horizontal and vertical error wave front for Leto

(1024) with spherical and cylindrical complement error addition.

IV. SUMMARY AND DISCUSSION

Predictability studies have been built upon Lorenz’s orig-

inal scheme since its conception and have been developed to

analyze predictability on a wide variety of fluid systems. Such

a framework establishes that certain systems possess an in-

trinsic range of predictability not extendable by reducing the

initial error of observation. In these cases, errors at the small-

est scales lead to progressive error propagation toward larger

scales, termed an inverse cascade of error, closely related to

the system’s kinetic energy spectrum slope. Stratified turbu-

lence’s anisotropy and different slopes for isotropic and hor-

izontal kinetic energy spectra at various buoyancy Reynolds

numbers present an opportunity to apply the classical analysis

to this rich problem.

Near-identical twin simulations studied the effects of buoy-

ancy Reynolds number on predictability of decaying strati-

fied turbulence, displaying vortical layered structures and ap-

proaching k
−5/3
↔ energy spectra with increasing Reb. Pre-

dictability diagnostics showed an inverse cascade of error on

both isotropic and horizontal wavenumbers, with characteris-

tic regions dominated by inverse cascade at large scales and

decay at intermediate scales. A scale balancing both regions
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Predictability of Decaying Stratified Turbulence 16

remains stable with respect to Reb.

We qualitatively corroborated self-similar error spectra evo-

lution and the decorrelation being independent of the cutoff

scale for error introduction, which aligns well with the re-

sults of the aforementioned classical school of predictability

(e.g. Lilly, 1972; Leith and Kraichnan, 1972; Herring et al.,

1973), noting uniform error propagation on vertical scales. Er-

ror ratio spectra revealed error saturation at various wavenum-

bers regardless of inverse cascade existence, expanding with

higher Reb. Error wavefront analysis showed negative power

law progression, faster with higher Reb, reducing predictabil-

ity. These findings are in line with with the picture of strati-

fied turbulence, developed e.g. by Brethouwer et al. (2007),

as having a direct energy cascade from large to small hori-

zontal scales. Experiments exhibited independence regarding

error introduction and geometry, indicating total initial error’s

greater importance. The insensitivity of predictability to the

scale of error introduction is consistent with the picture of

Lorenz (1969).

Similar to the results presented by Chollet and Métais

(1989), we infer that the upscale transfer of error is local, in

terms of spectral space, and presumably dominated by interac-

tions between similar scales, as shown by the wavefront error

resemblance. Additionally, we have built upon the main ob-

jective of Morss et al. (2009), of exhibiting a link between the

steepness of spectral slopes and the error growth dynamics.

In line with the conclusions of Ngan et al. (2009), our results

reinforce the point of predictability being a function of scale

and subject to dimensionless parameters, such as Reb, in our

case, for stratified turbulence. Nevertheless, we were not able

to effectively confirm the existence of an exponential initial

growth of error for our experiments, as it was the presented in

previous studies like Boffetta and Musacchio (2017) and Ge

et al. (2023).

Our results underscore the limited predictability of small-

scale atmospheric and oceanic turbulence, where stratification

is strong but rotation is weak, and for large-eddy simulations

where parameterized sub-grid scale turbulence can be under-

stood as error with a grid-scale cutoff. This work can be fur-

ther extended by investigating the dependence on Fr of ex-

periments with similar buoyancy Reynolds number achieved

through different parameter combinations. One approach

would be to vary the stratification (represented by buoyancy

frequency) while keeping viscosity constant in experiments

with the same resolution. This would isolate the effect of strat-

ification on Fr for a given Reb. Future work may explore ex-

tending schemes to forced stratified turbulence to further ana-

lyze the effects of the buoyancy Reynolds number under sta-

tionary conditions, removing the decay phase and achieving

error saturation at the largest scales. Considering more vari-

ants of error introduction such as anisotropic perturbations or

addition of colored noise, like the Ornstein–Uhlenbeck pro-

cess as perturbations to velocity fields, could provide more re-

alistic implications. Furthermore, exploring how different ini-

tial conditions and boundary conditions influence predictabil-

ity in stratified turbulence systems could enhance our under-

standing of the phenomenon.
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