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Flow over topography has been shown to generate finite amplitude internal waves
upstream, over the topography and downstream. Such waves can interact with
the viscous bottom boundary layer to produce vigorous instabilities. However, the
strength and size of such instabilities depends on whether viscosity significantly
modifies the wave generation process, which is usually treated using inviscid theory
in the literature. In this work, we contrast cases in which boundary layer separation
profoundly alters the wave generation process and cases for which the generated
internal waves largely match inviscid theory. All results are generated using a numer-
ical model that simulates stratified flow over topography. Several issues with using a
wave-based Reynolds number to describe boundary layer properties are discussed
by comparing simulations with modifications to the domain depth, background
velocity, and viscosity. For hill-like topography, three-dimensional aspects of the
instabilities are also discussed. Decreasing the Reynolds number by a factor of four
(by increasing the viscosity), while leaving the primary two-dimensional instabilities
largely unchanged, drastically affects their three-dimensionalization. Several cases
at the laboratory scale with a depth of 1 m are examined in both two and three
dimensions and a subset of the cases is scaled up to a field scale 10-m deep fluid
while maintaining similar values for the background current and viscosity. At this
scale, increasing the viscosity by an order of magnitude does not significantly
change the wave properties but does alter the wave’s interaction with the bottom
boundary layer through the bottom shear stress. Finally, two subcritical cases for
which disturbances are able to propagate upstream showcase a set of instabilities
forming on the upstream slope of the elevated topography. The time scale over which
these instabilities develop is related to but distinct from the advective time scale of the
waves. At a non-dimensional time when instabilities have formed in the field scale
case, no instabilities have yet formed in the lab scale case. © 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4929344]

. INTRODUCTION

Observations of the passage of topographically generated internal waves on the California
shelf and the subsequent increase in sediment concentration well above the bottom has fostered
the development of a branch of internal wave research focused on interactions with the bottom
boundary layer.! Internal waves, which are ubiquitous features in the coastal oceans, are formed
as a response to buoyancy forces in a stratified body of water. The passage of a stratified fluid
over bottom topography causes vertical displacements that result in wave motion, the amplitude of
which can reach tens of meters or larger.” The large wave-induced velocities can interact with the
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viscous bottom boundary layer resulting in instabilities and vortex shedding under certain condi-
tions.** Vortex shedding is of particular interest due to the production of high bottom stresses and
increased potential for systematic sediment transport into the water column. The conditions that
lead to instabilities that are efficient in transporting material out of the boundary layer are currently
under investigation.

The waves reported by Bogucki er al.' were hypothesized to be resonantly generated by flow
over topography and have been suggested to interact with the viscous bottom boundary layer to
cause sediment resuspension through vortex shedding and high bottom shear stress. Bogucki and
Redekopp® proposed a mechanism to explain the sediment resuspension behaviour and the ef-
fects of propagating internal solitary waves of elevation on the bottom. They observed that the
wave-induced velocities beneath an internal solitary wave of elevation led to an adverse pressure
gradient which, in turn, initiated a separation bubble within the boundary layer at the front of
the wave. Using two-dimensional numerical simulations, they found that under certain conditions
related to the wave amplitude and Reynolds number, this separation bubble could evolve into a
global instability with large variations in both space and time. Other numerical studies of weakly
nonlinear waves showed vortex shedding high into the water column.* Larger amplitude waves
induce a stronger adverse pressure gradient and, as such, are more susceptible to vortex shedding.
The vortex shedding and global instability produce strong bottom shear stresses which may enhance
sediment resuspension.® This behaviour has also been examined numerically by Stastna and Lamb’
who found that vortex shedding can occur when internal solitary waves of elevation travelled in the
presence of a background current (as would be the case for resonantly generated waves) and that a
trapped core was not necessary for vortex shedding to occur. Some observational and experimental
studies suggest internal wave induced pumping of sediments high into the water column.®’

Other computational and laboratory studies have worked to evaluate a critical wave amplitude
and Reynolds number required for vortex shedding.*!° In particular, the laboratory experiments
by Carr et al.,'"’ which involved internal solitary waves of depression, found qualitative agreement
in the behaviour of vortex shedding with the two-dimensional numerical results of Diamessis and
Redekopp.* However, several quantitative discrepancies were also found. For example, the critical
wave amplitude required for the onset of global instability found in the laboratory experiments was
roughly half that found by the numerical simulations. This is perhaps due to the three-dimensional
effects that are present in the laboratory experiments but not in the numerical studies. Another
possible reason for the discrepancy is that the weakly nonlinear representation of large waves used
by Diamessis and Redekopp* may lead to an overestimate in the prevalence of vortex shedding.’
Under certain stratification conditions, KdV or first order weakly nonlinear theory is known to over-
estimate wave speeds (and wave-induced currents) and underestimate wave widths for large waves,
or those beyond the formal range of validity for the theory. In fact, the absence of vortex shedding
in the laboratory experiments of internal solitary waves of elevation under parameter regimes where
shedding was observed in the numerical simulations of Diamessis and Redekopp” indicates that care
should be taken when studying this phenomenon numerically. Particularly, it is important for simu-
lations to include realistic nonlinear internal waves, either with the Dubreil-Jacotin-Long (DJL)
equation!! or direct simulation. Further, reports of stability regimes in two-dimensional simulations
of fully nonlinear waves'? and weakly nonlinear waves* both show inconsistencies with laboratory
experiments'? suggesting that three-dimensional effects are very important.

The mechanisms that lead to the generation of these large internal waves have been under
investigation for some time, with stratified flow over topography a primary example.!*!> One
particular case is the resonant generation of internal waves.'*!® Some of these large waves are found
in the lee of the topography, others advance slowly upstream and a third class remains trapped
over the topography. While the majority of past theoretical and numerical work has considered the
inviscid situation, it is likely that all three classes of waves may attain amplitudes large enough to
induce near bed instability. This has been suggested by multiple authors in field, experimental, and
numerical work."”'>!7 Recent numerical work has confirmed that sediment resuspension occurs
in a coupled hydrodynamic-sediment model.® More broadly, a wide variety of field studies have
pointed to a link between increased near-bed sediment concentrations and shoaling internal waves
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on a slope.'®?? Quaresma et al.® have offered clear evidence of nonlinear internal waves influenc-
ing sediment resuspension over the northern shelves of Portugal. Bottom shear stress calculations
suggested that the strongest nonlinear internal waves were capable of suspending sediment. The
laboratory experiments of Aghsaee and Boegman® show that the vertical velocities induced by
bursting motions in the boundary layer are important factors in sediment resuspension.

While the inviscid situation is clear, with large waves generated efficiently by topography when
the Froude number (the ratio between the background velocity and the linear long wave internal
wave speed) is near critical (i.e., Fr ~ 1), the viscous situation is somewhat more complex. His-
torically, a Reynolds number based on the channel depth and the linear long wave speed has been
quoted when describing flow conditions.*!” The dependence on the linear long wave speed is a
priori incorrect since a small wave with weak currents would have the same Reynolds number as
a large wave with strong currents. If one focuses on large waves, the typical horizontal current
magnitude will be well estimated by the linear long wave speed (though lower than the actual wave
speed for non-breaking waves). The appropriateness of the channel depth remains under discussion.
Recently, Aghsaee et al.'” have proposed an alternate Reynolds number based on the momentum
thickness for diagnosing and predicting vortex shedding behaviour. This alternate formulation has
the advantage that it does not depend on the stratification profile.

The present study uses numerical simulations to investigate the interaction between internal
waves generated by flow over isolated topography and the viscous boundary layer. In accord with
the current literature on internal waves and boundary layer interactions, our focus is on lab-scale
flows of 1 m depth, along with velocity and length scales typical of laboratory experiments.'” How-
ever, we do consider a few field-scale cases with depth increased to 10 m with similar values for the
viscosity and background current. At both laboratory and field scales, the dependence of the results
on viscosity is considered by changing the value of the viscosity. The intent is to consider situations
that would be equivalent in inviscid theory as far as wave generation is concerned, but for which
boundary layer effects occupy a different fraction of the water column. It is computationally expen-
sive to model these flows at field scales since both the internal waves and boundary layer must be
well-resolved. As such, prior numerical studies have primarily focused on two-dimensional simu-
lations; however, three-dimensional effects may be important in the evolution of instabilities asso-
ciated with separation regions.”> Some work has been completed on the three-dimensionalization
of internal waves shoaling over isolated topography and the generation of near-bed instabilities.®
This work also included a sediment resuspension model and found that three-dimensional ef-
fects can influence the deposition of suspended sediment. The three-dimensional characteristics
of boundary layer instabilities that form due to internal solitary wave interaction with isolated
topography has also been investigated®* finding that separation-induced instabilities exhibit strong
three-dimensionalization. Further, recent numerical studies of shoaling internal waves suggest
differences in the amount of dissipation and mixing in two versus three dimensions.?’ It is therefore
important to examine the three-dimensional nature of boundary layer instabilities in more detail.

This study aims to understand the three-dimensional aspects of bottom boundary layer instabil-
ities and the role that viscosity plays in their evolution. In all simulations, a fluid with a pycnocline
stratification initially at rest is gently accelerated from left to right until the background current
reaches a pre-determined constant value. The stratified fluid interacts with a bottom topography to
generate internal waves over and in the lee of the topography and the currents induced by these
waves interact with the viscous bottom boundary layer to produce bottom boundary layer instabil-
ities. Primarily, elevated topography with the pycnocline relatively close to the bottom boundary in
supercritical flows for which no upstream propagating modes exist is considered. Many lakes are
stratified with a pycnocline above the mid-depth but there are some examples of lakes with bottom
layer stratifications.”® Two cases with depression topography and a pycnocline stratification above
the mid-depth are also presented. Previous work using a steady inviscid theory has shown that very
large amplitude trapped internal waves exist over both elevated and depression topography in flow
conditions where no upstream propagating modes exist.'> These large wave states have motivated
the cases considered in this study which investigates wave formation in the presence of a viscous
boundary layer. Simulations in both two and three dimensions are considered.
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The article is organized as follows: First, a description of the methods used in this study is
provided in Section II. This includes an overview of the numerical model employed, the relevant
non-dimensional parameters, some calculations for useful diagnostics, and a description of the
domain and flow fields. Next, Section III introduces the results which examine boundary layer insta-
bilities downstream of flow over elevated topography, as well as a simple depression topography
case. Finally, a discussion which links this work to the relevant literature and outlines avenues for
future research is provided in Section I'V.

Il. METHODOLOGY

Numerical simulations of a stratified fluid flowing over elevation and depression topography
are discussed. The fluid density is initially given as a single pycnocline stratification and the up-
stream background current is set to a constant value Uy away from the boundaries. In most cases,
the flow is supercritical so that no upstream propagating modes exist. This condition is satisfied
when Uy > ¢}, where ¢; is the conjugate flow speed.?’?® One subcritical case for which upstream
propagating modes are permitted is also considered. In this case, the background flow satisfies
crw < Up < ¢, where ¢, is the linear long wave speed.

The undisturbed density profile is given by

o(z) = 1 — Aptanh (Z — ZO) .
do
This density profile has been normalized by a constant reference value py.>” A reference density
typical of water po = 1000 kg m~ is used in calculations of the bottom shear stress. Other density
parameters are zo = 0.3H, dop = 0.1H, and Ap = 0.02, where H is the depth of the domain. A
summary of the simulation parameters is provided in Tables I and II.
The topography profile is given by

h(x) = % (tanh (x-'-éﬁ) — tanh (x—a—xL/Z)) ,

X X

where hy is the topographic amplitude, x; defines the width of the topography, and ¢, is a param-
eter that determines the slope. The elevated topography uses hy = 0.1H, x; = 3H, and 6, = 0.5H
resulting in a flat-topped hill with gradual slopes. One case with depression topography is also
presented with sy = —0.1H and the location of the pycnocline center moved to zo = 0.7H.
Model runs are characterized by the Reynolds number, defined as
UyH

Re S
v

where v is the kinematic viscosity. There are several other definitions of the Reynolds number in the
literature pertaining to boundary layer instabilities and internal waves.*!? In some literature, vortex
shedding has been characterized with respect to a Reynolds number based on the linear long wave
speed, c;,,.%'° This wave speed based Reynolds number is defined as

Cle
4

ey =

TABLE I. Domain and stratification parameters for lab scale and field scale simulations. L (m), L, (m), and H (m) are the
length of the domain in the x, y, and z directions, respectively. Ax (m) and Ay (m) are the horizontal grid spacings and N
is the number of grid points in the vertical. The maximum and minimum vertical grid spacing Az (m) is also presented. The
velocity scales, ¢, and c¢;,, have units m s71 Finally, T is the time over which the fluid was accelerated from rest.

LxxLyxH Ax XAy XN Min/max Az Ap cj Clw T

Lab scale 14x0.1x1 0.005x0.002x 192 6 x 1073/0.008 0.02 0.28 0.25 1.8¢*
Field scale 150x0.1x10 0.006x0.001 x768 4 x 1075/0.02 0.005 0.44 0.4 0.88¢*
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TABLE II. Summary of simulation parameters. v is the viscosity (m? s~!)
and U is the background current (m s71). The two-dimensional simulations
(labelled 2D ) span the x and z directions only. Values for c¢; and ¢, are

listed in Table I.

Lab scale Simulation Re Rey, Uy v

Valley 2DLVa 35x10°  25%x10°  1.25¢; 107°
2DLVb 31x10°  25%x10°  lLllc; 1076

Hill 2DLI1 35x10°  25%x10°  1.25¢; 1076
2DL2 25x10°  25%x10% 1.25¢; 1077
3DLI 35x10°  25%x10°  1.25¢; 1076
3DL2 1.75%10° 1.25%x10° 125¢;  2x107°
3DL3  875x10* 625x10* 125¢;  4x107°
2DLS  2.63x10° 25x10° 105¢;, 1076

Field scale  Simulation Re Re,, Uy v

Hill 2DF1 5.5 10° 4x10%  1.25¢; 1076
2DF2 55x10° 4x10°  1.25¢; 1073
3DF1 5.5x 108 4x10%  1.25¢; 1076
2DFS 4.2 x 109 4%x10° 1.05¢;,  107°

and ultimately depends on the density stratification through c¢;,. This definition is problematic
because given a certain stratification, a large amplitude wave with large wave-induced velocities
would yield the same Reynolds number as a small wave with small wave-induced velocities. An
alternate definition based on the momentum thickness at the separation point has also been used
in the literature.'? Since the viscosity is the main parameter of interest in these simulations, the
Reynolds number defined by Re seems to be a natural choice for the current discussion. We
calculate Re,, for comparison with the other studies mentioned.

The simulations are performed using a pseudospectral model that integrates the Navier-Stokes
equations of motion for an incompressible fluid under the Boussinesq approximation.?’ The numer-
ical model includes several useful features such as grid mapping for topography, free slip or no slip
boundary conditions in the vertical, the ability to simulate two- and three-dimensional flows, and
adaptive time-stepping, all in a scalable, parallelized framework. The configuration employed here
consists of periodic horizontal boundary conditions and a Chebyshev discretization in the vertical
with no slip boundary conditions. The spectral method allows for high accuracy with only moderate
grid sizes, and the Chebyshev grid naturally clusters points in the boundary layer where instabilities
develop. The numerical model employs a filtering technique to eliminate aliasing errors introduced
by the spectral representation of the Navier-Stokes equations.?® The simulations are terminated prior
to the onset of significant turbulent break down where the smallest turbulent eddy scales become
smaller than the grid spacing, and also before wraparound effects associated with the periodic
horizontal boundary conditions occur.

The simulation is commenced by accelerating a fluid at rest over a period T (defined in
Table I) up to a constant background speed Up. In the three-dimensional simulations, the flow
is first integrated in two dimensions and the two-dimensional flow fields are used to initialize
a three-dimensional simulation with a small amount of white noise with amplitude less than
0.01 to perturb the flow and trip any spanwise instabilities that develop. This process allows
for three-dimensional runs in a more time efficient manner, since three-dimensional simulations
are very expensive computationally. The time step is mainly restricted by the small grid spacing
imposed by Chebyshev grid, even when the flow is primarily two-dimensional at the beginning of
the simulation, so including the third dimension at the start of the simulation adds no extra value.
Tables I and II outline the relevant physical parameters for the lab scale and field scale simulations.
Note that all simulations except 2DLVb, 2DLS, and 2DFS use a background speed U = 1.25¢;
and both of the subcritical lab scale (2DLS) and field scale (2DFS) simulations use Uy = 1.05¢;,.
The results are discussed in terms of non-dimensional values with distances scaled by the domain
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height H, velocities scaled by the conjugate flow speed c;, and times scaled by the advective time
scale t* = H/c;. The simulations were performed on the GPC supercomputer at the SciNet HPC
Consortium.*

The physical domain for both the lab scale and field scale simulations are outlined in Table I as
well as the details of the numerical discretization. In each simulation, the grid is stretched vertically
which results in higher resolution near the upper and lower boundaries leaving the boundary layer
instabilities very well resolved. For example, late into the lab-scale simulations at ¢ ~ 20¢* there
are approximately 30 grid points across the 0.04 m thick boundary layer. In the three-dimensional
simulations, the streamwise and spanwise grid spacings were chosen to be about the same order of
magnitude, however, Ay is slightly smaller than Ax.

Parameter choices for each simulation are outlined in Table II. In general, the parameters that
are varied between simulations are the background current Uy and the viscosity v which lead to
changes in the Reynolds number. Modifying the size of the domain also changes the Reynolds
number through the vertical length scale H. The purpose of increasing the vertical length scale is to
compare situations that would be equivalent in inviscid theory but for which boundary layer effects
occupy a different fraction of the water column.

An important factor when considering how internal waves interact with the bottom boundary is
the bottom shear stress. In the case of two-dimensional flow over a flat bottom, the expression for
the bottom shear stress is

TEp—— ey

where p = v/po. Over a sloping boundary, the expression is slightly more complicated but can be
derived from Cauchy’s stress theorem?! which relates the stress vector to the Cauchy stress tensor,
Tl'j’

1 = Tijn;, 2)
where #; is the stress vector in a plane with unit normal vector n;. The bottom shear stress is

the tangential component of the stress vector evaluated at the surface z = h(x). In the case of an
incompressible fluid this works out to

L 2uh’(x) (we = ux) + p (1 = H'(x)%) (uz + wy)
1+ h'(x)?
where the prime denotes differentiation with respect to x and the underscores represent partial
differentiation. After applying no slip and no normal flow boundary conditions, this expression
further simplifies to

3)

2=h(x)

_ p(W@w, +u)
1+ h'(x)?
To analyse the three-dimensional characteristics of the flow field, we make use of several
diagnostics based on the kinetic energy per unit mass,

“4)

2=h(x)

KE= 3 (@ +07+u7). )

First, the kinetic energy averaged in the spanwise direction scaled by the maximum kinetic energy
reveals parts of the flow with strong two-dimensional energy, and how the mean kinetic energy
profile relates to the pointwise maximum. Second, we calculate the standard deviation of the kinetic
energy in the spanwise direction scaled by the maximum kinetic energy. This diagnostic reveals
how three-dimensional the flow is and identifies areas of high three-dimensionality. Higher depar-
tures from the mean (or higher standard deviations) indicate that the flow is more three-dimensional.

lll. RESULTS

This study is focused on the formation of boundary layer instabilities and flow over topography.
First, a general overview of the internal wave generation and boundary layer interaction is included
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for both elevation and depression topographies at lab scales (14 m by 1 m). Next, a discussion of
the three-dimensionalization of these instabilities in cases of elevation topography is provided in
Section IIT A, followed by some examples of how these results carry over to larger scales (150 m by
10 m) in Section III B. Finally, several subcritical cases for which waves can propagate upstream are
examined in Section III C.

First, a comparison between flow over hill and valley topography in two dimensions is pre-
sented in Figure 1 as a general overview of the types of waves and instabilities generated in these
scenarios. As described by Soontiens et al.,'> large trapped waves over topography can be ex-
pected in inviscid, supercritical flow over depression topography when the pycnocline is centered
above the mid-depth and in flow over elevated topography when the pycnocline is centered below
the mid-depth. These large-amplitude cases have motivated simulations 2DL1 and 2DLVa which
examine flow over elevated and depression topography, respectively. The pycnocline is centered at
z0 = 0.3H in the elevation case and zo = 0.7H in the depression case. Both of these simulations
have the same Reynolds number as outlined in Table II. A third case, 2DLVb, with a lower back-
ground speed, and hence, lower Reynolds number, but larger amplitude inviscid solution is also
considered.

The elevation case exhibits a large wave over the topography followed by a depression wave in
the topographic lee depicted in Figure 1. The large velocities induced by this feature interact with
the viscous bottom boundary layer to produce the boundary layer instabilities in the topographic
lee observed in panels (a)—(c). At the earliest time ¢ = 5.6¢" in panel (a), the instabilities are just
beginning to form and are manifested as small oscillations within the boundary layer around x = 3.

z/H

z/H

z/H

vorticity (1/s)

FIG. 1. Comparison of evolution for hill (2DL1) and valley (2DLVa) lab scale simulations. Shaded contours of the vorticity
are overlaid with three white isopycnals. The times displayed are r =5.6¢%, r =7.8¢*, and ¢ = 10¢* from top to bottom. Arrows
aid in visualization of the instabilities in the depression case.
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Later, the vortical shape of the instabilities is more apparent and their vertical extent reaches high
enough to interact with the pycnocline as observed in the small undulations in the white isopycnals.

In the case of propagating internal waves, previous research has indicated that boundary layer
instabilities like the ones shown in Figures 1(a)-1(c) form due to the adverse pressure gradient
induced by the internal waves.* These studies have focused on internal solitary waves, however,
the depression wave in the topographic lee is not an exact solitary wave since its shape changes
slowly over time. Nonetheless, the large wave-induced velocities beneath this feature produce a
convergence zone at the front and a separation bubble within the boundary layer in a similar manner
as the adverse pressure gradient of internal solitary waves. This type of instability generation
mechanism has been discussed by Stastna and Lamb’ for resonantly generated internal waves over
topography. Although not shown here, instabilities also begin to form on the upstream slope of the
topography after longer integration times att ~ 17.5¢*.

The depression case in panels (d)—(f) exhibits instabilities that form in a different location
relative to the topography. A small wave of depression has formed over the topography along with
a rather small wave of elevation in the topographic lee. In this case, boundary layer instabilities
form on the leading slope of the topographic depression, most apparent at the latest time in panel (f)
at t = 10¢". These instabilities remain confined to the boundary layer and are formed due to sepa-
ration over the topographic slope. The small wave in the topographic lee for this depression case
is not associated with the strong wave-induced currents required to excite bottom boundary layer
instabilities downstream of the topography. By contrast, the elevation case exhibits a large lee wave
with very strong currents and subsequent instability generation. The same physical mechanism is
responsible for the development of these instabilities, that is, an adverse pressure gradient leads to
separation and instability generation.

A schematic diagram in Figure 2 provides a simple illustration of the development of the
separation bubble in each case. In the elevation case, panel (a), a large lee wave produces a region
of accelerated flow in the topographic lee resulting in convergence at the downstream edge of
the accelerated region. At this point, the fluid is decelerating and the resulting adverse pressure
gradient leads to a separation bubble and subsequent instabilities. The stratification plays a role in
the strength of the adverse pressure gradient. A large lee wave would lead to a stronger deceleration
and hence stronger adverse pressure gradient. The size of the lee wave is influenced by the depth of
the pycnocline and the strength of background current.

(a)

Accelerated

—_—— Flow
7l

Separation
bubble

(b)

— T

Separation
bubble

FIG. 2. Schematic diagram demonstrating the development of the separation bubble in the (a) elevation case and (b)
depression case.
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FIG. 3. Evolution of velocity fields for hill (2DL1) and valley (2DLVa) lab scale simulations. Shaded contours of the
horizontal velocity overlaid with white contours of vertical velocity. Contours for +[0.036 0.089 0.18]c; are displayed.
Solid lines are positive, dashed negative. The times are the same as those displayed in Figure 1.

In the depression case, panel (b), the instabilities develop on the upstream slope due to sepa-
ration from the topography. As the pycnocline dips slightly downwards, the fluid accelerates along
the slope and then decelerates near the bottom where the flow separates as a result of the adverse
pressure gradient.

The velocity fields displayed in Figure 3 further demonstrate the evolution of these instabil-
ities. The velocity fields are scaled by the conjugate flow speed c; listed in Table 1. Since both
stratifications have the same conjugate flow speed, the magnitude of the streamwise velocity is
easily compared through the intensity of the shaded contours. The elevation case produces much
higher streamwise velocities and exhibits a complicated interaction with the bottom boundary layer
that extends high into the water column. On the other hand, the depression case exhibits more
moderate streamwise velocities and the instabilities remain confined to the bottom boundary and do
not interact with the overlying wave of depression. Further, it is seen clearly that the instabilities
form in decelerating regions for both the elevation and depression cases. Note that the distribution
of the streamwise velocity is much different between the two cases. For the elevation case, a large
trapped wave over the topography results in reduced velocities beneath the pycnocline that extends
over much of topography at later times (panel (c)). In the depression case, no large trapped wave
has formed and at later times (panel (f)), the streamwise velocity away from the boundary layer but
below the pycnocline is roughly antisymmetric across the topographic midpoint.

An additional comparison is carried out in Figure 4 where we have plotted the departure of
the bottom shear stress from its upstream value over time for each case. In the elevation case, high
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FIG. 4. The departure of bottom shear stress from its upstream values at several times for cases (a) 2DL1 and (b) 2DLVa.
The vertical axis indicates the non-dimensional time (scaled by #*) of each stress calculation and the horizontal axis is the
streamwise position. The gray curve represents the topography. The maximum stress reached up to 13 times the upstream
value in 2DL1 and 15 times the upstream value in 2DLVa.

values of shear stress span a large distance downstream of the topography. The depression case ex-
hibits large stress values along the upstream topographic slope and a set of instabilities beginning to
form in the center of the depression. At later times, these instabilities grow and travel downstream.
Note that the onset of large stress in the depression case occurs later into the simulation.

These simulations were motivated by large amplitude solutions to a steady state inviscid prob-
lem.!> Next, we examine how the viscous boundary layer modifies trapped wave formation. In the
case of depression topography, the presence of the viscous boundary layer can greatly alter the wave
generation process, as demonstrated in Figure 5 where we plot the density field from inviscid steady
theory and time-dependent simulations using the parameters in simulations 2DLVa and 2DLVb. The
inviscid results are solutions to the DJL equation, a single nonlinear partial differential equation
for the isopycnal displacement that is equivalent to the steady Euler equations of motion. The
solution procedure is described by Soontiens et al.'> who found that very large trapped waves
over depression topography can exist if the background speed U is close to the conjugate flow
speed c;. Large waves over elevation topography also exist but do not reach the same amplitudes.
For the parameters given in 2DLVa, the inviscid theory in panel (a) produces a wave of moderate

0 0

-5 0 5 -5 0 5
x/H x/H

FIG. 5. Density field from inviscid theory (top) compared with density field from simulations (bottom) at 7 =10.6¢".
Parameters from simulation 2DLVa were used to generate the inviscid plot in (a) and simulation plot in (c). 2DLVb parameters
result in the inviscid plot (b) and simulation (d). The simulation plots also include gray vorticity contours in the bottom
boundary layer to showcase the instabilities.
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amplitude slightly larger than the topographic amplitude. Under viscous conditions, at the time
plotted (¢ = 10.6¢%), the simulation in panel (c) showcases a wave that is slightly smaller than that
expected based on inviscid theory, although a steady state has not yet been obtained. By reducing
the background speed slightly to Uy = 1.1c;, the inviscid theory in panel (b) predicts a very large
wave trapped over topography that is not reproduced by the viscous simulations in (d). The separa-
tion and boundary layer instabilities alter the wave generation process in this case. Outside of the
boundary layer and away from the wave disturbances, the horizontal velocity in both the inviscid
solution and the viscous simulation take on similar values (1.1¢; and 1.12c¢;, respectively). Simi-
larly, in the more supercritical case (panels (a) and (c)), the far-field horizontal velocity values in
the inviscid solution and viscous simulation are 1.25¢; and 1.28c;, respectively. The waves in each
of the simulations look very similar whereas the inviscid solutions are quite different. By contrast,
supercritical inviscid waves over elevated topography predicted by steady theory are similar to those
produced in the numerical simulations (not shown). It is likely that the separation on the slope of the
depression topography modifies the flow enough to prevent the formation of a large trapped wave
of depression. In the elevation case, the separation occurs downstream of the topography, hence,
the trapped wave is unmodified. These results underline the danger of extrapolating too much from
inviscid simulations.

A. Three-dimensionalization

Many numerical studies on internal waves and boundary layer interaction have been two-
dimensional, due to the high computational expense of resolving both the internal wave and the
bottom boundary layer.*”'> However, the often vigorous motions associated with the destabili-
zation of a separation bubble in the viscous boundary layer are undoubtedly subject to three-
dimensionalization in a physical flow environment.”> To investigate the potential for three-
dimensionalization and dependence on viscosity, we have performed several three-dimensional
simulations. The three-dimensional simulations are started at time ¢ = 5.04¢* and the velocity fields
are perturbed with white noise of amplitude 0.0001c¢;. The spanwise extent of the domain is 10 cm.
With these choices, three-dimensional effects become apparent around ¢ = 6.44¢*.

Three-dimensional characteristics are displayed in Figure 6 where we have plotted the results
for simulation 3DL1 with Re = 3.5 x 10° at time ¢ = 6.44¢*. First, in Figure 6(a) the mean kinetic
energy shows the signature of the internal wave overlying the topography as well as the down-
stream instabilities in the topographic lee. It is clear that the maximum kinetic energies occur in
the instabilities. This region is outlined by the dashed white rectangle. These instabilities induce
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FIG. 6. Results for simulation 3DL1 at time ¢ = 6.44¢". (a) The kinetic energy averaged across the spanwise direction scaled
by the maximum of the kinetic energy. Three black density contours are included. The white-dashed rectangle indicates the
viewing area of panel (b). (b) The spanwise standard deviation of the kinetic energy scaled by the maximum kinetic energy.
The white contours show the spanwise vorticity averaged across the spanwise direction. The contour level is 15 s~!. The
maximum pointwise kinetic energy at this time was 0.17 m? s~2.
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large fluctuations in the velocity fields, resulting in the high values of kinetic energy. The span-
wise standard deviation of the kinetic energy in this region is displayed in Figure 6(b) where the
instabilities induce significant three-dimensional structure with departures greater than 10% of the
maximum kinetic energy. Two vortical structures are observed in this plot at x = 3.6 and x = 4.1.
The first instance contains the largest departures from the mean and the three-dimensional structure
is concentrated at the center of the vortex. The second instance extends higher into the water column
and the largest departures from the mean occur along a longer vertical filament. This plot indicates
that significant three-dimensional motions can occur close to the boundary layer and higher into the
water column as the instabilities separate from the boundary. A three-dimensional simulation over
depression topography also demonstrated significant three-dimensionalization of the boundary layer
instabilities, although these instabilities remained confined to the boundary layer (not shown).

Further, we have examined the spanwise variation in the bottom shear stress at this time, as
well as the spanwise shear stress, pv,, in Figure 7. The spanwise shear stress (panel (b)) shows
a significant amount of structure in the spanwise dimension between x = 3.55 and x = 3.7. While
some spanwise variation is also visible in the bottom shear stress (panel (a)), it is not as significant
as the variation in the spanwise shear stress. At this time, the absolute maximum of the bottom shear
stress was about an order of magnitude larger than the absolute maximum of spanwise shear stress.

Two additional cases are considered from simulation 3DL2 with Re = 1.75 x 10° and simula-
tion 3DL3 with Re = 8.75 x 10, i.e., the viscosity has been increased by a factor of two in each
subsequent case. The results are displayed in Figures 8 and 9, respectively. In the 3DL2 simulation
(Figure 8), a similar scenario to that which was observed in the 3DL1 simulation occurs. The
largest values of the mean kinetic energy are located in the downstream boundary layer instabilities
displayed in Figure 8(a). Additionally, the two vortices in Figure 8(b) exhibit a similar structure to
that seen previously, however, the departures from the mean are smaller than the higher Reynolds
number case (the maximum kinetic energies are very similar in both cases). The increased viscosity
dampens the motion in the boundary layer, resulting in an overall decrease in three-dimensional
structure.

0.1
2
0.08 o
]
€
0.06 2
z 3
0.04 E
N
g
0.02 S
c
0
33 335 34 345 35 355 36 365 37 375 38
0.1
0.08
0.06
z
>

0.04

0.02

normalized spanwise stress

0
33 33 34 345 35 355 36 365 37 375 38
x/H

FIG. 7. Shear stress for simulation 3DL1 at time 7 = 6.44¢*. (a) Bottom shear stress defined in (4), scaled by its maximum
absolute value. (b) The spanwise shear stress, pv,, also scaled by its maximum absolute value. At this time, the maximum
bottom shear stress is about 3.6 times larger than the maximum spanwise shear stress.
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FIG. 8. As in Figure 6 but for 3DL2. The maximum pointwise kinetic energy at this time was 0.16 m? s~2.

Next, the Reynolds number is further reduced by a factor of two in simulation 3DL3 and the
results are displayed Figure 9. Here, changes in the three-dimensional structure are apparent. First,
the distribution of high kinetic energy in Figure 9(a) has changed. While high kinetic energy still
occurs in the area of the instabilities, the scale is roughly the same as the kinetic energy induced
by the topographic flow in the downstream accelerated region. This is qualitatively different from
the previous cases where the kinetic energy induced by the instabilities is much stronger than in the
other regions of the flow environment. Additionally, the three-dimensional structure has been very
much reduced, as indicated in Figure 9(b). Note that the colour bar has been rescaled so that the
maximum departures in this plot are less than 0.2% of the maximum kinetic energy, more than an
order of magnitude less than that observed in case 3DL1. Additionally, the maximum departures
occur in the second instability, i.e., the instability that is higher up into the water column. It is
not surprising that the decrease in Reynolds number reduces the propensity for three-dimensional
motions since the higher viscosity tends to damp all motion. However, the fact that the Reynolds
number has only been decreased by a factor of four, or indeed a factor of two between the latter
two cases, and still such different results are observed is interesting. These results suggest that it
is important to use a Reynolds number that is within a factor of two or so of that representative of
the flow environment if such instabilities are to be studied in great detail. Often numerical simu-
lations and laboratory simulations utilize a Reynolds number lower than that representative of the
geophysical scales of interest.
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FIG. 9. As in Figure 6 but for 3DL3. The maximum pointwise kinetic energy at this time was 0.12 m? s,
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FIG. 10. Results from simulation 2DF1 at t =4.28¢". (a) Shaded contours of the streamwise velocity overlaid with three
white density contours. (b) Shaded contours of the vorticity in the region of the white dashed rectangle from (a).

B. Field scale simulations

Many of the studies regarding the interaction of internal waves with the bottom boundary layer
have examined laboratory scale experiments or numerical simulations. It is important to consider
this interaction at field scales if sediment transport is an application of interest. As such, we have
included an additional simulation with depth 10 m in Figure 10. The parameters for this simulation
(2DF1) are outlined in Table II. Note that the Reynolds number has increased by an order of magni-
tude due to the use of the domain depth H as a typical length scale. The viscosity is the same as that
used in simulation 2DL1 (v = 107° m? s7!) and the background current is of a similar magnitude.

The situation is very similar to that described in simulation 2DL1; a large wave has formed over
the topography and large wave-induced velocities are found in the topographic lee in Figure 10(a).
A series of instabilities develop in the boundary layer downstream of the topography, shown in
detail in Figure 10(b). Since the ratio of the boundary layer thickness to the distance from the
pycnocline has decreased, the instabilities do not interact with the pycnocline in this case. However,
their role in transporting sediment laterally may be of interest in some applications.

This scaled-up case also exhibits strong departures in the bottom shear stress as demonstrated
in Figure 11(a). The instabilities develop rather quickly producing high values of bottom shear
stress covering a large area. A case with reduced Reynolds number by an order of magnitude to
Re = 5.5 x 10°, labelled 2DF2, suggests a much different evolution of the boundary layer instabil-
ities. First, the wavelength of the instabilities is much longer and they develop over a longer time
frame, resulting in a more coherent and organized spatial pattern. Yet, even with the lower Reynolds
number, the stress departure can reach very large values, although the number of peaks is smaller
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FIG. 11. The departure of the bottom shear stress from its upstream value for simulation (a) 2DF1 and (b) 2DF2. The
maximum stress reached up to 38 times the upstream value in 2DF1 and 19 times the upstream value in 2DF2.
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than the higher Reynolds number case. This suggests that an appropriate treatment of the viscous
bottom boundary layer, in particular, the use of physical values of the viscosity, is essential for
representing the behaviour of the bottom shear stress. The wave properties are not significantly
altered by an order of magnitude increase in the viscosity, but their interaction with the bottom
boundary is. These simulations both employed the same vertical and horizontal resolution.

The field scale simulations bring into question the appropriate definition of the Reynolds num-
ber in these flow environments. Motivated by previous studies on internal wave and boundary layer
interaction,*!” we have chosen a Reynolds number based on the speed of the background current,
the depth of the domain, and the kinematic viscosity, however, this choice results in an order of
magnitude increase in the Reynolds just by changing the depth of the domain, even though the
other flow properties such as the background current and viscosity are similar. This large change
in Reynolds number does not reflect the nature of the instabilities at field scale and lab scale. In
both cases, the instabilities have a characteristic vertical length scale on the order of 5-10 cm, as
displayed in the vorticity contours of Figures 1 and 10 in the lab scale and field scale, respectively.
This length scale, or the thickness of the bottom boundary layer (approximately 2 cm), may be a
more representative choice for a Reynolds number based classification of the flow regime. These
choices would lead to Re ~ O(1 x 10%) in both cases 2DL1 and 2DF1, which more accurately re-
flects their similar characteristics in both the wave field and the boundary layer. A Reynolds number
based on the momentum thickness of the boundary layer'? gives Reg,,,, = O(1 X 10%) in each case.
These Reynolds number definitions have the disadvantage that they are difficult to prescribe prior to
the commencement of the simulation and they may change in time as the boundary layer evolves,
however, formulae to relate the momentum thickness to the large scale flow features exist.'2 Further,
based on the boundary layer thickness one could formulate a Reynolds number criterion for the
onset of three-dimensionalization. Although more cases should be used to evaluate this criterion
in a future study, a simple comparison between the three lab scale simulations with changes in
viscosity (3DL1, 3DL2, 3DL3) at ¢ = 5.3t* would yield momentum thickness Reynolds numbers
approximately 640, 305, and 115, respectively, suggesting a momentum thickness Reynolds number
greater than 115 for the onset of three-dimensionalization. This Reynolds number calculation is
more applicable in scaling from lab to field scales.

This point is emphasized further by comparing changes in the Reynolds number at both field
and lab scales in Figure 12 where we plot the streamwise velocity field for four simulations. First,
two lab scale simulations 2DL1 with Re = 3.5 x 10° and 2DL2 with Re = 3.5 x 10° are shown in
panels (a) and (d), respectively. Between these two cases, the Reynolds number has increased by
an order of magnitude because the viscosity was decreased from 10% m? s~! to 10~ m? s~!. Note

lab Re=3.5x10e5, t=7.28t" field Re=5.5x10e5, t=4.88t"

¥ A."
0 4

lab Re=3.5x10e6, t=7.28t"

6

FIG. 12. Streamwise velocity field comparisons at different Reynolds numbers and scales. (a) Simulation 2DL1 with
Re=3.5x10° at t =7.28¢*. (b) Simulation 2DF2 with Re =5.5x 10° at r =4.88¢*. (c) A zoom in of the dashed rectangle in
panel (b). (d) Simulation 2DL2 with Re =3.5x 10° at r = 7.28¢*. (¢) Simulation 2DF1 with Re =5.55x 100 at r =4.34¢*. (f)
Zoom in of the dashed rectangle in panel (e).
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that it was necessary to increase the number of vertical grid points by a factor of two in order to
resolve the boundary layer in the lower viscosity case. Both plots are at # = 7.28¢*. The instabilities
are very similar between the two cases and they form at approximately the same time. By contrast,
similar Reynolds numbers at the field scale lead to a very different comparison. In panels (b) and
(c), the streamwise velocity for simulation 2DF2 with Re = 5.5 x 10° is shown at ¢ = 4.88¢*. Panels
(e) and (f) show the streamwise velocity for simulation 2DF1 with Re = 5.5 x 10° at ¢ = 4.34¢".
In these two cases, the viscosity was decreased from 107> m? s™! to 107® m? s~!. The boundary
layer structure between these two cases is very different. Even though the lower Reynolds number
simulation is shown at a later time, instabilities are only starting to form. In the high Reynolds
number case, the instabilities are well-developed. An order of magnitude increase in the Reynolds
number leads to a very different change in the boundary layer dynamics at lab and field scales,
suggesting that the Reynolds number has not been formulated correctly and supporting an alternate
definition as suggested above. The momentum thickness Reynolds number!? calculated at the times
shown in Figure 12 yields Req,,, = 502 for panel (a), Req,,, = 650 for panel (b), Req,,, = 1800 for
panel (d), and Req,,, = 1900 for panel (e).

Finally, a high resolution three-dimensional version of 2DF1 was performed by extending a
two-dimensional output into the spanwise dimension with white noise of scale 0.01. The spanwise
extent is 10 cm with 96 grid points, giving a spanwise grid spacing Ay ~ 0.001 m. Note that the
spanwise length is the same as that at the lab scale. This choice is justified because the streamwise
and vertical size of the instabilities (about 25 cm by 5 cm) does not change significantly between
the lab and field cases. The three-dimensional simulation was commenced at ¢ = 4.1¢* at which
point an array of instabilities are found in the boundary layer but have not yet undergone any
significant break down. Three-dimensional features of this experiment are presented in Figure 13
from ¢ = 4.15¢" at which point the simulation was terminated due to the extensive computational
requirements.
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FIG. 13. Results from simulation 3DF1 at t =4.15¢". (a) Spanwise standard deviation of the kinetic energy scaled by the
pointwise maximum of the kinetic energy. Horizontal slices of the kinetic energy scaled by the pointwise maximum of kinetic
energy at (b) z=0.001H and (c) z=0.005H. The dashed white lines in panel (a) indicate the height of these horizontal
surfaces.
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In the vicinity of the instabilities, the flow field three-dimensionalizes quickly. At this time,
the spanwise standard deviation of the kinetic energy has reached up to 10% of the pointwise
maximum Kinetic energy as seen in a set of three boundary layer instabilities shown in Figure 13(a).
Each instability exhibits a perimeter of strong three-dimensionalization surrounding a dark separa-
tion region in the centre. The structure looks different than that seen in the lab scale simulations
where three-dimensional structure appears less organized perhaps because they were allowed to
three-dimensionalize over a longer period of time. Another explanation could be that the spanwise
dimension has not been scaled up and the flow is too confined in that dimension. Some of the largest
standard deviations occur at the upper edge of each instability, through z ~ 0.005H. High values are
also seen very close to bottom boundary through z ~ 0.001H, just upstream of the separation bub-
ble associated with each instability. The three-dimensional structure at these two heights is shown
in horizontal cross-sections of the kinetic energy scaled by its pointwise maximum in Figures 13(b)
at z = 0.001H and 13(c) at z = 0.005H. Close to the bottom boundary, the three-dimensional struc-
ture around the dark separation regions is apparent in Figure 13(b), possibly indicating a region
associated with the onset of three-dimensional break down had the simulation been carried out for
longer. At z = 0.005H, some three-dimensional structure is observed along three bands associated
with the upper regions of the three largest instabilities.

In addition, the bottom shear stress and spanwise shear stress both contain significant span-
wise structure at this time (Figure 14). The areas of large spanwise variation are aligned between
both fields, and are also aligned with areas of three-dimensional structure in the kinetic energy
(Figure 13). The largest deviations in the bottom shear stress occur along the streamwise direction,
but small changes occur along the spanwise. The maximum absolute value of the bottom shear
stress is about four times larger than the maximum absolute value of the spanwise shear stress.
While the bottom shear stress is the larger contributor to high stress values, the spanwise shear stress
imposes significant variations in the spanwise dimension. This is a similar finding to what was seen
at lab scales.
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FIG. 14. Shear stress for simulation 3DF1 at time ¢ =4.15¢". (a) Bottom shear stress defined in (4), scaled by its maximum
absolute value. (b) The spanwise shear stress, pv,, also scaled by its maximum absolute value. At this time, the maximum
bottom stress is about 3.9 times larger than the maximum spanwise shear stress.



086602-18 Soontiens, Stastna, and Waite Phys. Fluids 27, 086602 (2015)

0.2
L
N
I
N
0 "
-2.5 -2 -1.5
x/H x/H
0 0.5 1 15 2 0.6 0.8 1
u/cI u/c
0 Iw

FIG. 15. Horizontal velocity field scaled by the linear long wave speed c;,, from two subcritical cases at # ~ 5.3t*. (a) Lab
scale simulation 2DLS. (b) Field scale simulation 2DFS. (c) A close up of the black dashed rectangle in (b).

C. Subcritical cases

Results from two additional subcritical simulations, one at laboratory scale and one at field
scale, are provided in Figure 15. Both of these simulations have a background speed Uy = 1.05¢;,,.
Although the background current is larger than the linear long wave speed, it is still smaller than the
conjugate slow speed c; in both cases, and so formally subcritical. As such, upstream propagating
disturbances could be expected after long enough simulation times. Additionally, the domain of the
lab scale case has been extended to 28 m in order to prevent wraparound effects. The grid spacing is
kept the same.

The horizontal velocity field at# ~ 5.3¢" is plotted for the laboratory scale case in panel (a) and the
field scale case in panel (b). Recall that the time scale ¢* is an advective time scale based on the wave
propagation speed, meaning that the wave-induced currents are in a similar position relative to the
topography in both the laboratory scale and field scale cases. Both figures display a wave with large
velocities of approximately the same scale relative to the linear long wave speed on the lee side of
the topography. However, the advective time scale is much larger in the field scale, so this simulation
extends longer into physical time than the laboratory scale simulation (120 s in field scale versus 20 s
in laboratory scale). As such, the instabilities downstream of the topography are much more developed
in the field scale simulation. Additionally, Figure 15(c) shows a set of instabilities beginning to form
on the upstream slope in the field scale case. The lab scale simulation does not exhibit any upstream
instabilities at this time, but they are well established later, at + = 14¢*, in addition to a significant
break down of the downstream instabilities (not shown). There is a clear separation of time and length
scales between the instabilities and the internal wave responsible for their generation. Although the
currents induced by the internal waves are responsible for the generation of these instabilities, the
amount of time that these currents spend interacting with the bottom boundary is an important factor
in determining where and when these instabilities develop, which can lead to different behaviours at
field and lab scales. Although it is common to non-dimensionalize when comparing between scales,
the time span of the current-boundary layer interaction is also important to consider. Note that the
boundary layer appears thicker in the lab scale simulation, but the vertical and horizontal dimensions
have been scaled by the domain depth H which is a factor of 10 larger in the field scale, so the boundary
layers are approximately the same height.



086602-19 Soontiens, Stastna, and Waite Phys. Fluids 27, 086602 (2015)

IV. DISCUSSION AND CONCLUSIONS

This study has produced numerical simulations of internal wave generation over isolated topog-
raphy and their interaction with a viscous bottom boundary layer. Simulations at laboratory scales
of 1 m depth and larger scales of 10 m depth have been considered, both resulting in the production
of boundary layer instabilities in the lee of an elevated topography when the pycnocline is placed
below the mid-depth. Differences in elevation and depression topography have been highlighted,
but both considering supercritical flows for which the background current speed is greater than
the conjugate flow speed. Over depression topography, instabilities form in a separation region on
the upstream slope of the topography. It is suggested that the presence of the viscous boundary
layer and the separation region can significantly alter the generation of an internal wave found over
the topography, reducing the wave amplitude when compared to what would be predicted by a
steady-state inviscid theory in the case of near-critical flows. Future work will examine whether or
not the pressure gradient is modified enough to preclude the formation of large trapped waves of
depression at field scales. Over elevated topography, accelerated flow over the downstream slope
leads to a convergence zone and the generation of boundary layer instabilities in the topographic
lee. As such, the internal wave over the elevated topography is not greatly altered from its inviscid
counterpart, at least in the case of the supercritical flows considered here. Comparisons between
elevation and depression topographies were motivated by previous inviscid studies that found much
larger amplitude trapped internal waves over depression topography. '

The bottom shear stress was examined for the instabilities near both the elevation and depres-
sion topography where large departures from the upstream values were found in both cases. How-
ever, the onset of large stress values occurs more quickly in the elevation case and covers a larger
proportion of the domain. Additionally, in the elevation case and after long integration times, insta-
bilities can form over the upstream topographic slope and are advected downstream, which may
be of consequence to sediment transport over ridges. These results suggest that supercritical flow
over elevated topography may affect sediment distribution over a larger geographical area than
supercritical flow over depression topography.

A set of three-dimensional simulations over elevated topography has been analyzed to deter-
mine the effect of viscosity on the three-dimensionalization of these instabilities. Three-dimensional
characteristics were quantified by examining the spanwise standard deviation and mean of the
kinetic energy, scaled by the pointwise maximum of the kinetic energy. It is found that minor
changes in the viscosity, for example, an increase by a factor of four, can significantly alter the
onset and strength of three-dimensionalization. This is an important consideration for simula-
tions that employ an overly diffusive boundary layer parametrization, particularly in the setting of
three-dimensional simulations which have a very high demand for computing resources. Other work
has shown that two-dimensional simulations of separation bubbles over airfoils do not adequately
represent the three-dimensional bursting motions.?* Simulations of shoaling internal waves found
major differences in the amount of dissipation and mixing when comparing between two and three
dimensions.? As such, simulations examining sediment resuspension due to vortex shedding should
carefully parametrize the effects of viscosity, as the three-dimensional nature of these instabilities
has been shown to be sensitive to this parameter.

Laboratory scale simulations of 1-m depth with elevated topography have been extended to
larger scales with a depth of 10 m. Boundary layer instabilities form in the lee of the elevated topog-
raphy under the same mechanisms as those simulations at lab scales. It was noted that extensions
to field scale should not use a Reynolds number length scale based on the depth of the domain as
has been suggested by some of the literature.*'” A length scale that measures the boundary layer
thickness, for example, the momentum thickness Reynolds number suggested by Aghsaee et al.,'"”
is more appropriate and reflects the similarities between lab and field scales. In particular, the
streamwise and spanwise extent of the instabilities is similar at both field and lab scales, given the
similar values of the background current and viscosity.

Finally, two formally subcritical simulations at both lab scale and field scale have been per-
formed with background currents Uy = 1.05¢;,, but Up < c¢;. These simulations demonstrated a clear
separation of time scales between the onset of the instabilities and the advection of the wave.
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Although the location of the wave relative to the topography was similar in each case, the large
currents induced by the wave at field scale acted on the bottom boundary layer over a longer period
of time and so the instabilities were more developed.

Further work examining the generation and evolution of these instabilities at field scales is war-
ranted. In particular, an evaluation of vortex shedding criteria at field scales with comparisons to lab
scales would advance our understanding of how these processes scale up and, hence, their impact on
sediment transport and resuspension in real world applications. Many observational studies suggest
a link between internal wave propagation and increased sediment concentrations.!>!332 Numerical
simulations and laboratory experiments enable a systematic investigation of the parameter regimes
associated with these processes.

While the parameter space available is very large, and three dimensional simulations cannot
span more than a select few points within it, our study has several important conclusions that have
not been addressed in the literature to date. We rank these conclusions in order of importance, as we
see it. First, our study suggests that at experimental scales, wave generation over broad depression
topography is affected by viscosity in a much more dramatic manner than corresponding elevation
topography, including a nearly complete absence of large waves. Second, the bottom boundary
layer instability and its three-dimensionalization is strongly affected by increases in the numerical
viscosity. This suggests that numerical methodology that treats the near bottom region in a different
manner from the wave body may be essential to pushing the Reynolds number to ocean relevant
values. Third, we have identified a novel instability over the upstream slope of elevation topography
which occurs due to the opposing effects of topography slope and wave-induced currents.
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