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Numerical simulations of forced stratified turbulence are presented, and the dependence on

horizontal resolution and grid aspect ratio is investigated. Simulations are designed to model the

small-scale end of the atmospheric mesoscale and oceanic submesoscale, for which high horizontal

resolution is usually not feasible in large-scale geophysical fluid simulations. Coarse horizontal

resolution, which necessitates the use of thin grid aspect ratio, yields a downscale stratified

turbulence energy cascade in agreement with previous results. We show that with increasing

horizontal resolution, a transition emerges at the buoyancy scale 2pU=N, where U is the rms

velocity and N is the Brunt–Väisälä frequency. Simulations with high horizontal resolution and

isotropic grid spacing exhibit a spectral break at this scale, below which there is a net injection of

kinetic energy by nonlinear interactions with the large-scale flow. We argue that these results are

consistent with a direct transfer of energy to the buoyancy scale by Kelvin–Helmholtz instability of

the large-scale vortices. These findings suggest the existence of a distinct subrange of stratified

turbulence between the buoyancy and Ozmidov scales. This range must be at least partially

resolved or parameterized to obtain robust simulations of larger-scale turbulence. VC 2011 American
Institute of Physics. [doi:10.1063/1.3599699]

I. INTRODUCTION

Turbulence in fluids with strong stable density stratifica-

tion is characterized by quasi-horizontal velocities and thin

layers of strong vertical shear1–4 (for a review of stratified

turbulence, see Riley and Lelong5). The wide scale separa-

tion between the horizontal and vertical in such flows

presents a difficulty for numerical simulation because it is

costly to resolve the finely layered structure with isotropic

grid spacing. This challenge is particularly serious in simula-

tions of the atmosphere and ocean, where the typical vertical

length scale may be orders of magnitude smaller than the

horizontal. In such applications, the usual compromise is to

employ grids with small aspect ratios, in which the vertical

grid spacing Dz is much less than the horizontal spacing Dx.

While such an approach may be appropriate for large-scale

geophysical flows,6 it cannot be expected to capture the tran-

sition to more isotropic three-dimensional turbulence at

smaller scales. In this work, we investigate the nature of this

transition, and its dependence on grid aspect ratio, in numeri-

cal simulations of homogeneous stratified turbulence.

There are two fundamental turbulent length scales asso-

ciated with density stratification: the buoyancy scale

Lb � 2p U=N; (1)

where N is the Brunt–Väisälä frequency and U is the rms ve-

locity, and the Ozmidov scale

LO � 2p �=N3
� �1=2

; (2)

where � is the total energy dissipation rate. The inclusion of

the 2p factor in Eqs. (1) and (2) reflects the fact that it is of-

ten the corresponding wavenumbers kb and kO that emerge in

applications. The buoyancy and Ozmidov scales have differ-

ent dependence on N and reflect distinct physical processes.

The buoyancy scale gives the thickness of the shear layers in

stratified turbulence,3,7 and is also associated with the zigzag

instability of columnar vortices8 and overturning of internal

gravity waves.9,10 By contrast, the Ozmidov scale is the

outer scale of isotropic three-dimensional turbulence in

stratified fluids.11–13 Both Lb and LO are much smaller than

the energy-containing horizontal scale in stratified turbu-

lence. Typical values in the atmosphere, assuming14

N¼ 0.01 s�1, U¼ 10 ms�1, and �¼ 10�4 m2 s�3, are Lb� 6

km and LO� 60 m.

Lindborg4 presented a theory and numerical evidence

for an energy cascade from large to small horizontal scales

in strongly stratified turbulence. From dimensional argu-

ments, the horizontal and vertical wavenumber energy spec-

tra associated with this cascade are predicted to be

EðkhÞ � �2=3k
�5=3
h and EðkzÞ � N2k�3

z , in agreement with

previous predictions.15,16 This theory assumes small horizon-

tal Froude number, i.e., that the energy containing horizontal

scale is much larger than both Lb and LO. Although it has the

same spectral slope, the stratified turbulence –5=3 spectrum

is distinct from the isotropic three-dimensional Kolmogorov

spectrum that is expected below the Ozmidov scale. Breth-

ouwer et al.17 have argued that a stratified turbulence inertial

range extends from large scales down to the Ozmidov scale,

where it transitions to isotropic three-dimensional turbu-

lence, though this has not been demonstrated in simulations

with a wide separation between Lb and LO.a)Electronic mail: mwaite@uwaterloo.ca.
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Recent computational studies of turbulence in stratified

fluids2–4,17–19 have yielded horizontal spectra that are largely

consistent with k
�5=3
h , while vertical spectral slopes are typi-

cally shallower than –3. However, stratified turbulence simu-

lations are quite sensitive to how the buoyancy scale

compares with the dissipation length scale Ld. Depending on

the context, Ld may be the Kolmogorov viscous scale or, in

numerical simulations with ad hoc diffusion, the scale of par-

ameterized sub-grid scale turbulence. For the stratified turbu-

lence cascade to be realized in numerical simulations, the

dissipation scale must be much smaller than Lb.3,4 When Lb

and LO are both inside the dissipation range, the turbulent

cascade is suppressed by diffusive forces from vertical gra-

dients, and a steep k�5
h spectrum results.3,17,18

The computational challenge of stratified turbulence is

that Lb and LO are very small relative to the large energy-

containing horizontal scales. It is simply impractical to per-

form simulations at geophysical Froude numbers with Lb and

LO well outside the dissipation range. Lindborg4 proceeded

by letting Dz� Dx and using an anisotropic dissipation op-

erator to keep the horizontal and vertical dissipation scales

on the order of Dx and Dz, respectively. These simulations

yielded an inertial range with EðkhÞ � �2=3k
�5=3
h provided

that Lb was resolved in the vertical (we use “resolved” in this

paper to mean much larger than the dissipation scale). This

agreement between theory and simulation gives support to

the hypothesis that the cascade is driven by anisotropic

eddies with horizontal scales much larger than Lb and thus

suggests that fine horizontal resolution is not necessary.

Despite these successes, the use of grids that resolve

Lb in the vertical but not the horizontal is potentially

problematic because it effectively filters near-isotropic

motions on small scales. There is a rich variety of motions

at the buoyancy scale that are not represented correctly

when Dz� Lb � Dx. These phenomena include Kelvin–

Helmholtz instabilities,18,20,21 overturning internal gravity

waves,9,10 saturating vortex instabilities,22,23 and subsequent

transition to isotropic three-dimensional turbulence.9,11–13

All of these effects have the potential to interact with the

downscale cascade of stratified turbulence, raising the possi-

bility that a transition from stratified turbulence may occur at

Lb rather than LO. Indeed, bursts of shear instability have

been found to excite intermittent peaks in the energy spec-

trum;17,18 Laval et al.18 suggested that the horizontal scale of

these peaks corresponds to the typical vertical scale of the

flow, which is presumably Lb.

The kinetic energy spectra in the atmospheric meso-

scale24–26 and oceanic submesoscale27,28 are frequently

observed to be close to k
�5=3
h and k�3

z . It has been proposed

that a stratified turbulence cascade may be the basic mecha-

nism behind these spectra.4,29 At smaller scales, there have

been some observations of transitions away from these spec-

tral forms around the buoyancy scale, though the results are

varied. In the free atmosphere, local maxima in kinetic

energy at horizontal scales of around 1 km have been

reported,30 as have transitions to steep k�3
h spectra at scales

of 6 km.31 By contrast, oceanic horizontal wavenumber spec-

tra have been observed that exhibit a k
�5=3
h range from hun-

dreds of meters down to the Ozmidov scale.28,32

The question of buoyancy-scale motions and the extent

that they need to be resolved in simulations of stratified tur-

bulence are relevant for the accurate numerical modeling of

the atmosphere and ocean. For the atmosphere, the connec-

tion between vertical resolution and energy spectrum is not

as straightforward in realistic geophysical simulations as it is

in idealized stratified turbulence experiments. A strong mes-

oscale cascade with an approximately –5=3 spectrum has

been obtained in climate and weather prediction models with

relatively coarse vertical resolution,33–35 while high vertical

resolution alone is not sufficient to guarantee a cascade.36 A

better understanding of the role of buoyancy scale dynamics

in setting the kinetic energy spectrum and the consequences

of not fully resolving them in the horizontal may help to clar-

ify the relationship between stratified turbulence and simula-

tions of the atmospheric mesoscale.

In this work, we use numerical experiments to explore

how the energy cascade of stratified turbulence is affected by

the resolution of small horizontal scales and how it ultimately

transitions to a different turbulent regime. Our aims are three-

fold: to discover the scale at which this transition occurs; to

understand the nonlinear transfers of energy across this scale;

and to assess the ability of simulations with Dz� Dx to cap-

ture the stratified turbulence cascade when this transition to

small-scale turbulence is not resolved. The remainder of the

paper is organized as follows. The numerical model and ex-

perimental set-up are outlined in Sec. II, and an overview of

the simulations is given in Sec. III. In Sec. IV we analyze the

sensitivity of the horizontal and vertical energy spectra to

horizontal resolution, and discuss the transition in the spec-

trum that emerges at small scales when sufficient resolution

is employed. In Sec. V we present the spectra of energy trans-

fer and buoyancy flux, and diagnose the effects of nonlinear

interactions between motions with large and small horizontal

scales. Conclusions are given in Sec. VI.

II. APPROACH

A. Equations and numerical model

We employ the three-dimensional Boussinesq equations,

@u

@t
þ u � $u ¼ �$pþ bêz þ Fþ DðuÞ; (3)

$ � u ¼ 0; (4)

@b

@t
þ u � $bþ N2w ¼ DðbÞ; (5)

where u ¼ êxuþ êyvþ êzw is the velocity, b is the buoy-

ancy, p is the dynamic pressure divided by a reference den-

sity, F is the velocity forcing, and D is the dissipation

operator. Coriolis forces are neglected. Constant N and tri-

ply-periodic boundary conditions are assumed, with domain

size L� L�H. This configuration allows the use of a trans-

form-based spectral method, which is integrated in time

using the third-order Adams-Bashforth scheme. We use

n� n�m wavenumbers, yielding an effective grid resolution

of Dx : Dy : 1.5L=n and Dz : 1.5H=m after aliasing

errors are eliminated with the 2=3 rule.37 The spacing of
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horizontal and vertical wavenumbers is Dkh : 2p=L and Dkz

: 2p=H.

At the length scales of interest in this work, direct nu-

merical simulation (DNS) is not feasible and some model of

sub-grid scale turbulence must be employed. Following a

number of previous studies on geophysical turbu-

lence,3,4,19,38–40 we use a hyperviscosity=hyperdiffusion op-

erator of the form

D � ð�1Þpþ1ð�h $2p
h þ �z @

2p
z Þ; (6)

where p is a positive integer. Larger values of p yield shorter

dissipation ranges, which is beneficial in problems that

require a wide range of scales unaffected by dissipation. This

scale selectivity is particularly necessary in the present work

due to the wide separation of the forcing and buoyancy

scales. Though ad hoc, hyperviscosity resembles other more

sophisticated spectral-based large-eddy simulation

approaches.41

We use p¼ 4, for which the dissipation scale is42

Ld � 2p �3
h=�

� �1=22
; (7)

and the corresponding dissipation wavenumber is kd

¼ 2p=Ld. We refer to the two terms in Eq. (6) as horizontal

and vertical diffusion, respectively. The coefficients �h and

�z are chosen to be as small as possible while keeping the

peak in the dissipation spectrum below the truncation wave-

number; in effect, we require Ld.Dx, as in DNS.43 The same

coefficients are used in the velocity and buoyancy equations.

The horizontal and vertical coefficients are related by assum-

ing that the grid-scale decay time is the same for both, i.e.,

�z � �hðDz=DxÞ8: (8)

In addition to D, a weak linear damping is applied to modes

with kh¼ 0 as a sink for the slow transfer of energy into

them.44

B. Set-up of simulations

A summary of parameters and length scales for each

simulation is given in Table I. The experiments are designed

to be representative of the inner range of the atmospheric

mesoscale and ocean submesoscale, with strong stratifica-

tion, small aspect ratio, and no rotation (see Table II for rep-

resentative parameter values and length scales in the

atmospheric context). As in previous studies on stratified tur-

bulence,1,3,4 kinetic energy is injected by random forcing of

barotropic vorticity with large-scale horizontal wavenumbers

around kf : 3Dkh. Low-level random noise is added to all

fields at t¼ 0 so that the ultimate forced-dissipative flow is

fully three-dimensional despite the two-dimensional forcing.

The strength of the stratification of the large scales is

characterized by the forcing-based Froude number4

Fr � �1=3k
2=3
f =N: (9)

We consider three stratifications, with Fr¼ 0.05, 0.02, and

0.01; these correspond to simulation sets A, B, and C in

Table I. The energy dissipation rate � is related to the forcing

amplitude and is therefore similar in all simulations; the

Froude number is varied by changing N.

The vertical extent of the domain H is chosen to be

approximately 4.5Lb, which is large enough to capture the

characteristic layers of stratified turbulence. Most simula-

tions use m¼ 128, yielding Lb=Dz � 20. The vertical grid

spacing is larger for smaller N and smaller for larger N to

ensure that Lb is equally well resolved in the vertical for

each stratification, as in Lindborg.4 Two additional simula-

tions with m¼ 256 are also presented to demonstrate conver-

gence with Dz.

In the horizontal, simulations are performed with a wide

range of Dx. The coarsest (with n¼ 128) does not resolve the

buoyancy scale, while the highest (n¼ 2048) is fine enough

to resolve Lb but not LO. The highest resolution grids have

aspect ratios of 1 or 1=2. For each stratification, simulations

are spun up at the lowest resolution for 40 nonlinear time-

scales sN, where

sN � ��1=3k
�2=3
f : (10)

TABLE I. Summary of parameters and scalar quantities for each simulation.

The values of Fr, Lb, LO, and Ld are based on time-averaged �. In the run

labels, A, B, C denote stratification; 1, 2, 3, etc. denote horizontal resolution;

and v denotes high vertical resolution.

Run Fr n M H=L Dz=Dx Dx=Lb Dx=LO Dx=Ld

A1 0.047 128 128 0.125 0.125 0.43 3.4 0.35

A2 0.047 256 128 0.125 0.25 0.21 1.7 0.35

A3 0.046 512 128 0.125 0.5 0.10 0.88 0.36

A4 0.046 1024 128 0.125 1 0.053 0.45 0.34

B1 0.024 128 128 0.0625 0.0625 0.87 9.7 0.35

B2 0.024 256 128 0.0625 0.125 0.43 4.9 0.37

B3 0.023 512 128 0.0625 0.25 0.21 2.5 0.37

B4 0.024 1024 128 0.0625 0.5 0.11 1.3 0.38

B5 0.025 2048 128 0.0625 1 0.048 0.56 0.37

B3v 0.023 512 256 0.0625 0.125 0.20 2.4 0.37

B4v 0.023 1024 256 0.0625 0.25 0.10 1.3 0.38

C1 0.012 128 128 0.03125 0.03125 1.7 28 0.35

C2 0.012 256 128 0.03125 0.0625 0.86 13 0.37

C3 0.011 512 128 0.03125 0.125 0.43 7.1 0.39

C4 0.011 1024 128 0.03125 0.25 0.21 3.7 0.39

C5 0.012 2048 128 0.03125 0.5 0.095 1.6 0.41

TABLE II. Dimensional parameter values and length scales for simulations

with Fr¼ 0.02 (runs B1-B5) in the atmospheric mesoscale context.

N Brunt–Väisälä frequency 0.01 s�1

L Horizontal domain size 50 km

H Vertical domain size 3.125 km

Dx Horizontal grid spacing 580 m down to 36.6 m

Dz Vertical grid spacing 36.6 m

� Energy dissipation rate �10�4 m2 s�3

U rms velocity �1 ms�1

Lb Buoyancy scale �700 m

LO Ozmidov scale �60 m

sN Nonlinear timescale �1.2 h
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Simulations are then continued for another 10sN for every

Dx. Reported values of Fr, sN, Lb, LO, and Ld are based on

time averages of � and kinetic energy over the last 8sN of the

restarted simulations.

III. OVERVIEW OF SIMULATIONS

Time series of kinetic and potential energy are plotted in

Fig. 1 for Fr¼ 0.02. Kinetic energy increases in the low-re-

solution simulations for the first 10sN, during which time the

flow is essentially two-dimensional. After this time, kinetic

energy decreases, potential energy increases, and the flow

transitions to a statistically stationary three-dimensional

state. The launching of the higher-resolution simulations at

t¼ 40sN is visible in Fig. 1. For our range of parameters, the

Ozmidov scale is an order of magnitude smaller than the

buoyancy scale, and the highest resolution simulations have

Dx� Lb and Dx�LO. The vertical Froude number Frz,

which is computed using the rms horizontal component of

the vorticity x � $� u, is approximately 1 for all simula-

tions, as expected3,7 (not shown).

Figure 2 shows vertical slices of the y-component of

vorticity from each simulation at Fr¼ 0.02. The physical

structures in the simulation display a significant dependence

on horizontal resolution. At the lowest resolution, the flow

comprises thin, vertically laminar shear layers. As the hori-

zontal resolution increases, structures with aspect ratios

closer to unity begin to emerge. At intermediate resolutions,

these structures resemble intermittent Kelvin–Helmholtz

instabilities. The highest-resolution simulation exhibits a

wide variety of structures: laminar shear layers, Kelvin–

Helmholtz instabilities, and what appears to be patches of

three-dimensional turbulence. Indeed, some of the structures

in the highest-resolution simulation look remarkably iso-

tropic, even at the scale of the shear-layer thickness. Regions

of three-dimensional turbulence are also visible in horizontal

slices of vertical vorticity (Fig. 3) at high resolution.

IV. ENERGY SPECTRA

A. Horizontal spectra

Horizontal wavenumber spectra of total energy are plot-

ted in Fig. 4. These spectra are computed by summing the

energy in each wave vector k over kz and binning into kh

intervals of width Dkh. For kinetic energy, the spectrum is

EKðkhÞ �
X

kh�Dkh=2	k0h<khþDkh=2

1

2
jûðk0Þj2; (11)

for kh corresponding to positive integer multiples of Dkh.

Here hat denotes Fourier coefficient and k
02
h ¼ k

02
x þ k

02
y . The

potential energy spectrum EP(kh) is defined similarly, and

E(kh) : EK(kh)þEP(kh). All spectra are averaged in time

over the last 8sN of the simulations.

For Fr¼ 0.02 (Fig. 4(b)), the spectrum obtained with

the coarsest horizontal resolution has a short power law

range between the forcing and dissipation scales with a spec-

tral slope of around –1.3 (here and below, slopes are meas-

ured by a least-squares power law fit between dimensionless

wavenumbers 6 and 20). Though shallower than the theoreti-

cal value of –5=3, this slope is nevertheless consistent with

previous findings at comparable Froude numbers.4 The low-

FIG. 1. (Color online) Time series of total kinetic energy EK and potential

energy EP in simulations with Fr¼ 0.02. Simulations are spun up with

Dx=Lb¼ 0.9 and then restarted at t¼ 40sN with different horizontal resolutions.

FIG. 2. (Color online) Vertical slices

through the y¼ 0 plane of xy=N for

Fr¼ 0.02 and (from top to bottom)

Dx=Lb¼ 0.9, 0.4, 0.2, 0.1, and 0.05 (runs

B1-B5 in Table I). For clarity, only half

the domain 0 	 x 	 L=2 is shown. All

fields are plotted at the end of the

simulation.
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resolution spectra at Fr¼ 0.05 and 0.01 are similar. Note

that the buoyancy wavenumber, marked (along with kO) by

arrows in Fig. 4, is not resolved in the horizontal by the low-

est-resolution simulations at any stratification.

As the horizontal resolution is increased, the hypervis-

cosity coefficient �h is reduced and the kh spectra extend to

higher wavenumbers. The spectra vary in two nontrivial

ways as Dx decreases towards Dz. First, the power law range

gets steeper as finer horizontal scales are resolved, and at the

highest resolution is noticeably steeper than k
�5=3
h . For

Fr¼ 0.02, the measured slopes are –1.6, –1.9, –2.0, and –2.1

for Dx=Lb¼ 0.4, 0.2, 0.1, and 0.05. For Fr¼ 0.01, the high-

est-resolution simulation has a slope of –2.2.

In addition to steepening, a transition in the kh spectrum

emerges as the horizontal resolution increases. At intermedi-

ate resolutions (e.g., Dx=Lb¼ 0.4 and 0.2 for Fr¼ 0.2) there

is a shallow tail in the spectrum. The position of this tail

appears to scale with kd, implying that it is likely an artifact

of the small-scale dissipation, possibly due to the bottleneck

effect.45 However, at the highest resolutions (Dx=Lb¼ 0.1

and 0.05 for Fr¼ 0.2) the location of the spectral transition

appears to be independent of kd; this robustness strongly sug-

gests that the spectral transition in the high-resolution simu-

lations is a real feature of the flow. In these high-resolution

simulations, the energy spectrum has two distinct ranges

between the forcing and dissipation scales: a large-scale

power law range with a slope of around –2 and a small-scale

bump. The position of the bump appears to be given by kb,

which can be seen by comparing the spectra at different reso-

lutions and stratifications with the arrows in Fig. 4 (see also

Fig. 10 below). We refer to the portions of the spectrum

upscale and downscale of kb as the mesoscale and microscale

ranges, respectively, based on the corresponding ranges in

the atmosphere. Simulation B5 has the widest microscale

range, with kd=kb¼ 8.

Figure 5 compares the energy spectra from simulations

with Fr¼ 0.02 to corresponding runs with double the vertical

resolution. Two cases are considered: Dx=Lb¼ 0.2, in which

the microscale transition is misrepresented as a shallow tail,

and Dx=Lb¼ 0.1, which gives a reasonably well-resolved

transition. In both cases, the sensitivity of the spectra to

FIG. 4. (Color online) Horizontal wavenumber spectra of total energy for

(a) Fr¼ 0.05, (b) 0.02, and (c) 0.01. Dash patterns correspond to horizontal

resolutions as indicated, and arrows mark the mean values of kb and kO.

FIG. 3. (Color online) Horizontal slices through the z¼ 0 plane of xz=N for

Fr¼ 0.02 and Dx=Lb¼ 0.05 (run B5 in Table I) at the same time as in Fig. 2.

Unlike in Fig. 2, the entire domain is shown.
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decreasing Dz is negligible, indicating that the transition at

kb is not an artifact of insufficient vertical resolution.

Figure 6 shows the decomposition of the total energy

spectra into kinetic, potential, vortex, and wave energy for

the highest-resolution simulation with Fr¼ 0.02. Vortex and

wave energies are computed using the linear normal mode ba-

sis,46 in which vortex energy is the horizontally rotational ki-

netic energy, while wave energy is the sum of the divergent

kinetic energy and potential energy. Kinetic and potential

energy have the same mesoscale spectral slope, with the am-

plitude of the kinetic energy spectrum is equal to twice that of

the potential. In the microscale range, the ratio of kinetic to

potential energy is somewhat higher. The contribution to the

kinetic energy from vertical motion (also plotted in Fig. 6(a))

is negligible at all scales. Interestingly, the vertical kinetic

energy spectrum is approximately flat in the mesoscale range

and has a local minimum at kb. Apart from the largest scales,

the total energy spectrum is dominated by wave energy. The

mesoscale spectrum of vortex energy is significantly steeper

than the wave spectrum, with a spectral slope of around –2.5.

Lindborg’s4 model kinetic energy spectrum EKðkhÞ
¼ 0:5�

2=3
K k

�5=3
h , where �K is the kinetic energy dissipation rate,

is plotted for reference in Fig. 6(a). The amplitude of this spec-

trum is in good agreement with our findings in the mesoscale

range, though, as noted above, our spectrum is somewhat

steeper. In the microscale range, by contrast, the Lindborg spec-

trum significantly underestimates the amount of kinetic energy.

B. Vertical spectra

Vertical wavenumber spectra of total energy are plotted

in Fig. 7. These spectra are computed by summing over all

kx and ky at each kzj j, i.e., for kinetic energy

EKðkzÞ �
X

kz�Dkz=2	jk0zj<kzþDkz=2

1

2
jûðk0Þj2: (12)

All of the vertical spectra are characterized by a transition

near kb, in good agreement with the prediction that Lb is the

dominant vertical scale in stratified turbulence.3,7 As found

by Waite and Bartello,3 the spectrum is relatively flat upscale

of kb and falls off rapidly downscale. There is an approxi-

mate power law range downscale of kb, the slope of which

converges as the horizontal resolution increases. As more

microscale turbulence is represented in the horizontal, the

full range of kz is affected; this dependence is to be expected

since most of the kz spectrum lies in the microscale. The

highest resolution simulations have kz spectral slopes of

–2.5, –2.6, and –2.7 for Fr¼ 0.05, 0.02, and 0.01. These

spectra are all shallower than k�3
z , though they may be

approaching this form as Fr decreases.

Figure 8 shows the vertical wavenumber spectra of ki-

netic, potential, vortex, and wave energy, again for the high-

est resolution simulation with Fr¼ 0.02. Downscale of kb, the

energy spectrum is dominated by kinetic over potential and

wave over vortex energy. As was the case for the horizontal

spectra, the amplitude of the kinetic energy spectrum is twice

that of the potential energy, while their slopes are approxi-

mately equal. The kinetic energy spectrum is shallower and

lower-amplitude than the predicted N2k�3
z , which is included

for reference in Fig. 8.

FIG. 6. (Color online) Horizontal wavenumber spectra of (a) kinetic, verti-

cal kinetic, and potential energy, and (b) vortex and wave energy, for the

highest-resolution simulation with Fr¼ 0.02 (run B5 in Table I). The Lind-

borg4 kinetic energy spectrum is also shown, along with a reference line

with a slope of –2.

FIG. 5. (Color online) Horizontal wavenumber spectra of total energy for

Fr¼ 0.02 with Dx=Lb¼ 0.2 and 0.1. Two vertical resolutions are shown: the

standard value m¼ 128 (runs B3 and B4 in Table I; solid) and double resolu-

tion m¼ 256 (runs B3v and B4v in Table I; dashed).
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V. TRANSFER AND BUOYANCY FLUX SPECTRA

A. Global energy budget

The time evolution of the horizontal spectra of kinetic

and potential energy is given by

@

@t
EKðkhÞ ¼ TKðkhÞ þ BðkhÞ � DKðkhÞ

� �hk8
hEKðkhÞ þ FðkhÞ; (13)

@

@t
EPðkhÞ ¼ TPðkhÞ � BðkhÞ � DPðkhÞ

� �hk8
hEPðkhÞ; (14)

where TK(kh) and TP(kh) are the nonlinear transfer spectra of

kinetic and potential energy, B(kh) is the buoyancy flux cross

spectrum, and F(kh) is the forcing spectrum. Since these are

horizontal wavenumber spectra, we consider the horizontal

and vertical diffusion terms separately. The terms propor-

tional to �hk8
h in Eqs. (13) and (14) are the horizontal dissipa-

tion of kinetic and potential energy, which are (by design)

non-negligible only in the horizontal dissipation range at

large kh. On the other hand, DK(kh) and DP(kh) are the hori-

zontal spectra of vertical dissipation, which may have a dif-

ferent dependence on kh.

The kinetic energy transfer spectrum TK(kh) is the kh

spectrum (computed as in Eq. (11)) of the nonlinear term in

the spectral kinetic energy equation

FIG. 8. (Color online) Vertical wavenumber spectra of (a) kinetic, vertical

kinetic, and potential energy, and (b) vortex and wave energy, for the

highest-resolution simulation with Fr¼ 0.02 (run B5 in Table I). The Lind-

borg4 kinetic energy spectrum is also shown, along with a reference line

with a slope of –2.5.

FIG. 7. (Color online) Vertical wavenumber spectra of total energy for

(a) Fr¼ 0.05, (b) 0.02, and (c) 0.01. Dash patterns correspond to hori-

zontal resolutions as indicated, and arrows mark the mean values of kb

and kO.
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TKðkÞ � �Im
X

kþpþq¼0

PijmðkÞûjðpÞûmðqÞûiðkÞ; (15)

where Pijm is the standard projection operator.47 The TP(kh)

and B(kh) spectra are computed similarly.

For kh between the forcing and horizontal dissipation

ranges, the energy budget at statistical stationarity is a bal-

ance between two or three of the terms in Eqs. (13) and (14):

nonlinear transfer, which transports kinetic and potential

energy conservatively between different kh; buoyancy flux,

which converts kinetic energy to=from potential energy

locally in kh; and possibly vertical dissipation, which is not

necessarily restricted to large kh. Figure 9 shows the transfer

and buoyancy flux spectra at four horizontal resolutions

for Fr¼ 0.02. With a relatively coarse grid spacing of

Dx=Lb¼ 0.4 (Fig. 9(a)), the mesoscale range is characterized

by small positive TK(kh) and negligible TP(kh) and B(kh). The

positive transfer of kinetic energy in the mesoscale is bal-

anced by vertical dissipation, which is weak but non-negligi-

ble in this simulation. At large kh the energy budget is

dominated by peaks in the transfer spectra, which are bal-

anced by the horizontal dissipation. These peaks are typical

of a well-resolved dissipation range,3,46,48 and are present in

all of our simulations. Furthermore, they are consistent with

the drop of the spectral energy flux to zero over the dissipa-

tion range.4 There is also a negative buoyancy flux—i.e.,

conversion of kinetic to potential energy—at large kh, sug-

gesting that the turbulent fluxes in this regime lead to an

excess of kinetic energy at the smallest horizontal scales.

The energy balance in the lowest resolution simulation

(Dx=Lb¼ 0.9, not shown) is similar.

With finer horizontal resolution, the mesoscale plateau

of positive kinetic energy transfer is reduced (Figs. 9(b)–

(d)). Energy transfer and buoyancy flux in this range are all

small, implying independent cascades of kinetic and poten-

tial energy from kh to kb with little net exchange between

them. However, a transition emerges around kb in the two

highest-resolution simulations (Figs. 9(c) and 9(d)). There is

FIG. 10. (Color online) Horizontal wavenumber km of minimum small-scale

buoyancy flux, scaled by kb and plotted against Lb=Dx for each simulation.

Dash patterns denote stratification.

FIG. 9. (Color online) Horizontal wave-

number spectra of kinetic energy transfer,

potential energy transfer, and buoyancy

flux from simulations with Fr¼ 0.02 and

Dx=Lb¼ (a) 0.4, (b) 0.2, (c) 0.1, and (d)

0.05 (runs B2, B3, B4, and B5 in Table I).

Note that the spectra are multiplied by kh

so that area is preserved with semilog

coordinates.
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a significant positive peak in the kinetic energy transfer spec-

trum downscale of kb, indicating an injection of kinetic

energy into the microscale range. Some of this energy is con-

verted to potential energy, as indicated by the negative peak

in buoyancy flux. The rest is removed by vertical dissipation,

which is not necessarily restricted to large kh. The shape of

the transfer and buoyancy flux spectra around kb is relatively

insensitive to a doubling of horizontal resolution from

Dx=Lb¼ 0.1 to 0.05, which strongly suggests that the injec-

tion of kinetic energy here is not an artifact of the dissipation

range but is rather a well-resolved physical phenomenon.

Interestingly, there is positive buoyancy flux—i.e., conver-

sion from potential to kinetic energy—at very large kh. Simi-

lar small-scale restratification has been observed in previous

simulations of stratified turbulence generated by breaking

gravity waves.9,48,49

The length scale of kinetic energy injection into the

microscale can be characterized by the horizontal wavenum-

ber of minimum buoyancy flux at small scales, which we

denote by km. Figure 9 suggests that this scale is proportional

to the horizontal dissipation scale at low resolution and the

buoyancy scale at high resolution, and this hypothesis is sup-

ported by our simulations at different stratifications. Figure

10 shows km=kb for all experiments; it is plotted against

Lb=Dx, which measures the degree to which the buoyancy

scale is resolved in the horizontal. At low resolution of Lb,

this quantity is approximately linear, indicating that

km / 1=Dx. In this regime, the small-scale negative buoy-

ancy flux is due to the effects of horizontal dissipation. As

horizontal resolution of the buoyancy scale increases, the

dependence of km=kb on resolutions weakens. For high reso-

lution, Fig. 10 suggests that km=kb may approach a constant

value. The curves for Fr¼ 0.05 and 0.02 show that km

� 1.5kb for Lb=Dx � 20. With Fr¼ 0.01, for which we attain

lower horizontal resolution of Lb, the value of kb=kb has not

yet converged. Higher resolution simulations are necessary

to confirm the asymptotic behavior of km=kb for Dx=Lb! 0.

Nevertheless, these results strongly suggest that, as long as

the microscale range of stratified turbulence is sufficiently

resolved in the horizontal, there is a significant transfer of ki-

netic energy into scales of around Lb.

B. Mesoscale–microscale interactions

Interactions between mesoscale and microscale motions

can be quantified by separating the sum over triads in Eq.

(15) into large- and small-scale contributions, as is often

done when diagnosing effective sub-grid scale dissipation.50

This separation leads to a natural definition for the mesoscale

energy transfer, in which ph, qh 	 kb in Eq. (15); and micro-

scale transfer, for which ph> kb and=or qh> kb. The resulting

mesoscale and microscale transfer spectra are shown in Fig.

11 for the highest-resolution simulations at Fr¼ 0.02 and

0.01. For clarity, only the mesoscale portion of the spectra

ðkh. kbÞ are shown.

Fig. 11 shows that while the transfer out of the large-

scale forcing range is predominantly due to interactions with

other mesoscale wavenumbers a nonnegligible amount is

due to interactions with the microscale. In both cases shown

in Fig. 11, microscale interactions correspond to approxi-

mately 15% of the total transfer out of kh � kf. In addition,

microscale interactions act as a drain on the energy through-

out the mesoscale inertial range. The magnitude of this leak-

age from the inertial range appears to decrease as the

separation between kf and kb increases, suggesting that it

may be less significant at stronger stratifications where there

is a wider separation between kf and kb.

The microscale transfer in Fig. 11 represents a direct,

non-local transfer of energy from the forcing scale into the

microscale. The microscale transfer around the forcing scale

involves triads

k ¼ pþ q; (16)

in Eq. (15) with kh � kf and at least one of p and q in the

microscale, i.e., with horizontal component greater than kb.

But if kb 
 kf , as it is in our simulations, then Eq. (16)

requires that both p and q be in the microscale. Energy trans-

ferred out of kb by such interactions must therefore be going

into p or q, implying that the transfer of energy must be

directly from large to small scales.

FIG. 11. (Color online) Mesoscale and microscale transfer spectra of total

energy for the highest resolution simulations at (a) Fr¼ 0.02 and (b) 0.01

(runs B5 and C5 in Table I). For the purposes of separating the sum over tri-

ads into mesoscale and microscale interactions, the mesoscale–microscale

transition is defined to be kh=Dkh¼ 50 for Fr¼ 0.02 and 100 for Fr¼ 0.01;

actual values are 65 and 130, respectively. For clarity, only the mesoscale

portion of the spectra is shown.
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VI. CONCLUSIONS

We have presented numerical experiments of forced

stratified turbulence that explore the nature and significance

of dynamics on the buoyancy scale. It has been recognized

for some time that these motions must be resolved in the ver-

tical to obtain a strong downscale energy cascade in numeri-

cal simulations of stratified turbulence.3,4 Such vertical

resolution is usually feasible since Lb is often the energy-

containing vertical scale of turbulent flows in stratified flu-

ids.7 However, horizontal resolution of the buoyancy scale is

more computationally demanding because of the wide sepa-

ration between the horizontal integral scale and Lb. One pos-

sible compromise, which is commonly made in numerical

simulations of atmospheric and oceanic flows, is to employ

numerical grids with small aspect ratios that resolve Lb in the

vertical but not the horizontal. In this work, we have ana-

lyzed simulations with a wide range of horizontal grids to

investigate the dynamics that emerge when the buoyancy

scale is resolved isotropically, and to diagnose the effect that

these motions have on the larger scales.

We have demonstrated that stratified turbulence simula-

tions are in fact quite sensitive to horizontal resolution of the

buoyancy scale. When Dx is coarse and Lb is not resolved,

we obtained horizontal wavenumber energy spectra some-

what shallower than k
�5=3
h between the forcing and dissipa-

tion scales. As Dx is decreased below the buoyancy scale, a

transition emerges in the energy spectrum around kb. At

scales below the buoyancy scale, i.e., the microscale, the

energy spectrum shallows into a broad bulge. The energy

budget in this range is distinct from the inertial range at

larger horizontal scales and is characterized by a significant

injection of kinetic energy from nonlinear interactions. The

microscale bulge does not appear to be an artifact of the dis-

sipation range: as long as high horizontal resolution

ðDx=Lb. 0:1Þ is employed, its position is relatively insensi-

tive to the dissipation scale Ld.

There is a physical explanation for this buoyancy-scale

transition in the energy spectrum that is largely consistent

with the stratified turbulence phenomenology described by

Lilly,20 with the exception of his conjecture of an inverse

energy cascade. In this description of stratified turbulence,

strong stable stratification leads to a vertical decoupling of

layerwise horizontal motions and a collapse of the character-

istic vertical scale. Ultimately, as foreseen by Lilly,20 the

vertical scale decreases sufficiently to make the Richardson

number O(1), at which point the flow becomes subject to

Kelvin–Helmholtz instability. For the largest-scale vortices,

which have a velocity scale given by the rms velocity U, this

critical vertical scale must be on the order of the buoyancy

scale. Indeed, the physical-space structures in our highest-re-

solution simulations strongly suggest the presence of inter-

mittent bursts of shear instabilities and the subsequent

transitions of these instabilities to three-dimensional turbu-

lence. It is reasonable to expect, as described by Laval et
al.,18 that such instabilities will manifest as bumps in the

horizontal energy spectrum.

It is significant that the small-scale breakdown of the

stratified turbulence cascade occurs at the buoyancy scale,

i.e., a scale larger than the Ozmidov scale in these simula-

tions. Both quantities give length scales at which the Froude

number is O(1); the difference is in the velocity used to con-

struct the Froude number. The buoyancy scale employs the

rms velocity U, corresponding to the large-scale vortices. By

contrast, the Ozmidov scale uses a spectrally local velocity

ðkhEðkhÞÞ1=2
along with a Kolmogorov51 or Lindborg4

energy spectrum. The emergence of a transition at Lb

strongly suggests that a non-local interaction, possibly Kel-

vin–Helmholtz instability of the large-scale vortices, is re-

sponsible for the injection of energy into the microscale. The

decomposition of the energy transfer spectra into large- and

small-scale contributions is consistent with this picture. The

implication is that there is a direct transfer of energy from

the energy-containing scales to the buoyancy scale. Deloncle

et al.22 called this type of transfer a “shortcut” to dissipation,

because it bypasses the turbulent cascade and provides a

direct link between the largest scales and the buoyancy

scale.

The buoyancy and Ozmidov scales have a different de-

pendence on N, and the separation between them grows with

increasing stratification. Assuming4 the relation � ¼ U3kf , it

can be shown that LO=Lb � Fr
1=2
f . As a result, there may be

three distinct spectral ranges in strongly stratified turbulence:

the mesoscale range, given by horizontal scales larger than

Lb; the microscale range, between Lb and LO; and the Kolmo-

gorov inertial range, corresponding to scales smaller than

LO. Since the length of the microscale range is Fr
1=2
f , it may

be too short to observe at only moderately small Froude

numbers, for which Lb and LO are of the same order. Higher-

resolution simulations are necessary to investigate how the

microscale transitions to isotropic three-dimensional turbu-

lence below kO.

Our experiments also indicate that simulations of the

mesoscale inertial range are sensitive to the resolution of

buoyancy scale motions. As the horizontal grid scale is

refined below Lb, the mesoscale energy spectrum steepens to

k�2
h , which is slightly different from the –5=3 spectrum pro-

posed by Lindborg.4 It may be that this difference results

from finite Froude number and that the spectral slope will

converge to –5=3 as the Froude number is decreased further.

However, this possibility seems unlikely given that Lind-

borg’s4 intermediate Froude number spectra were shallower,

not steeper, than k
�5=3
h . Indeed, spectral slopes of –2 have

been found in other studies of stratified turbulence.52 These

results raise the possibility that ad hoc sub-grid scale param-

eterizations, such as Eddy viscosity and hyperviscosity, may

yield a poor representation for the effects of unresolved

microscale turbulence on the mesoscale.

This study provides an illustration of the importance of

choosing a numerical truncation that is appropriate for the

underlying physics. At first glance, the large-scale anisotropy

of stratified turbulence suggest the use of a numerical grid

with Dz� Lb � Dx. Such a truncation effectively filters all

dynamics with horizontal scales on the buoyancy scale, and

is therefore only appropriate if these dynamics are unimpor-

tant. We have shown that they are in fact important because

of the direct transfer of energy into these scales. Spurious nu-

merical results from imposed grid anisotropy have also been
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found in other fluid dynamical contexts, such as thermal con-

vection.53 In real stratified fluids with a full spectrum of

motions, it is likely that this nonlocal transfer to the micro-

scale coexists with a cascade of stratified turbulence. Indeed,

it is possible that Lindborg4 obtained such clean –5=3 spectra

because his truncation eliminated this competing mecha-

nism, leaving only the downscale cascade to determine the

form of the energy spectrum.

Finally, isotropic resolution of the buoyancy scale in

simulations of geophysical turbulence is computationally

demanding, and so approximations must be made. One

approximation is the representation of sub-grid scale diffu-

sion with hyperviscosity; as computational resources

increase, the nature of the mesoscale-microscale transition

should ultimately be investigated with DNS with a suffi-

ciently wide separation between the buoyancy, Ozmidov,

and Kolmogorov scales. Another significant approximation

is the use of ad hoc forcing to represent the large-scale

source of energy. In geophysical turbulence, the ultimate

source of this energy is baroclinic instability at atmospheric

synoptic scales and the oceanic mesoscale. In such flows,

frontogenesis and frontal instabilities provide an alternate

mechanism for energy transfer to small scales.54 The ques-

tion of how large scale dynamics, for which Coriolis effects

cannot be neglected, interact with the microscale is an essen-

tial one that requires further study.
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