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Stratified turbulence generated by
internal gravity waves
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We present numerical simulations of randomly forced internal gravity waves in a
uniformly stratified Boussinesq fluid, and compare the resulting vertical wavenumber
energy spectra with the saturation spectrum Ez(kz) = c N2k−3

z (N is the Brunt–
Väisälä frequency) observed in the atmosphere and ocean. Overall, we have been
unsuccessful at reproducing the observed spectrum in our simulations. Our spectra are
shallower than k−3

z , although they steepen towards it with increasing stratification as
long as wave breaking (in the form of static instability) is resolved. The spectral
amplitude increases like N1.1 rather than N2. For a single stratification, our spectrum
agrees well with the saturation spectrum with c = 0.1, but only because it is
spuriously steepened by insufficient resolution. We show that overturning occurs
when the length scale lc = urms/N is larger than the dissipation scale, where urms is
the root mean square velocity. This scale must be at least three times larger than the
dissipation scale for the energy spectrum to be independent of Reynolds number in
our simulations. When this condition is not satisfied, the computed energy spectrum
must be interpreted with caution. Finally, we show that for strong stratifications, the
presence of vortical energy can have a dramatic effect on the spectrum of wave energy
due to the efficiency of interactions between two waves and a vortical mode. Any
explanation of the energy spectrum involving resonant interactions must take into
account the effect of vortical motion.

1. Introduction
In the presence of stable density stratification (found in the mean atmosphere

and ocean), fluids admit both slow quasi-horizontal vortical motion and fast internal
gravity waves (e.g. Riley & Lelong 2000). At large geophysical scales where the Earth’s
rotation is important, vortical (quasi-geostrophic) motion dominates. Internal waves
coexist with vortical motion downscale in the atmospheric mesoscale and oceanic
submesoscale, where rotational effects are weaker (e.g. Cho, Newell & Barrick 1999;
Polzin et al. 2003). At sufficiently small scales, waves and vortices destabilize and break
down into turbulence. This process dissipates energy and mixes various quantities,
and is parameterized in most large-scale atmosphere and ocean models. In a previous
paper, we performed a detailed study of the dynamics and breakdown of vortical
motion in a stratified non-rotating fluid (Waite & Bartello 2004). Here, we continue
this analysis by examining the generation of turbulence by internal waves (for reviews
of internal waves, see Müller et al. 1986; Staquet & Sommeria 2002).

A key result from the study of atmospheric and oceanic turbulence is that
the vertical wavenumber kinetic energy spectrum is approximately universal. The
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atmospheric spectrum often resembles

Ez(kz) = c N2 k−3
z , (1.1)

where N is the Brunt–Väisälä frequency (e.g. Smith, Fritts & VanZandt 1987; Tsuda
et al. 1989; Allen & Vincent 1995). However, deviations from this spectrum have been
reported. Nastrom, VanZandt & Warnock (1997) found spectral amplitudes scaling
like N0.6 rather than N2, and spectral slopes of only −2.6 in the troposphere. In
addition, a spectrum of the form k−5/3

z is sometimes observed in place of (1.1) at small
scales (1–10 m) (Alisse & Sidi 2000).

In the ocean, the observed energy spectrum is represented by the Garrett–Munk
(GM) spectrum, which has the form k−2

z , down to scales of around 10 m (see Munk
1981, for a review and the current formulation of the spectrum). Munk (1981) argued
that the small-scale end of the GM range is set by the onset of instability, implying
a spectral transition at kz = kc ≡ N/urms , where urms is the root mean square (r.m.s.)
velocity. Downscale of the GM range, the energy spectrum resembles (1.1) (Gargett
et al. 1981). When the Ozmidov buoyancy scale lb = (ε/N3)1/2 is sufficiently larger
than the dissipation scale ld =(ν3/ε)1/4 (ε is the energy dissipation rate and ν is the
kinematic viscosity), a transition at kb = 1/lb from (1.1) to the isotropic Kolmogorov
spectrum ε2/3k−5/3 is observed (Gargett et al. 1981; Gargett, Osborn & Nasmyth
1984). The transition from k−3 to k−5/3 at kb has been predicted by different theories
(Lumley 1964; Holloway 1983).

The spectra observed in the atmosphere and ocean are generally attributed to
internal wave processes, but the details are not well-understood. In the atmosphere, the
spectrum is thought to result from saturating internal waves. Vertically propagating
waves grow with height until they become unstable and break. The limiting spectrum
in which all waves are on the threshold of breaking is called the saturation spectrum.
The simplest models of this process are the linear saturation theories, which assume
linear instability as the breaking mechanism and predict a spectrum of the form
(1.1) (Dewan & Good 1986; Smith et al. 1987). The linear saturation theories are
widely accepted because they appear to explain the observations. However, their
theoretical foundations have been seriously undermined, particularly the assumption
that waves at different wavenumbers saturate independently (Hines 1991). Breaking
is fundamentally not a spectral process; it occurs when all waves superpose to
produce a region of instability. At most, the linear saturation theories yield an
upper bound on the true saturation spectrum. Hines (1991, 1996) has proposed a
theory of nonlinear saturation, in which Doppler shifting of small waves by large
ones determines the spectrum. He argues that the transition between the linear and
nonlinear (i.e. unsaturated and saturated) parts of the spectrum occurs at kz = kc, as
suggested by Munk (1981) for the oceanic spectrum.

For the ocean, there was substantial debate in the early 1980s about whether
the GM spectrum, which satisfies the internal wave dispersion and polarization
relations, is composed of weakly or strongly interacting waves, and the issue has
not been fully resolved (e.g. McComas & Müller 1981; Holloway 1982). Either way,
the GM spectrum neglects the role of vortical motion, which can interact resonantly
with waves to transfer wave energy downscale (Lelong & Riley 1991; Godeferd
& Cambon 1994; Bartello 1995; Babin et al. 1997; Embid & Majda 1998). These
authors have argued that resonant interactions between waves and vortical motion
are more efficient than three-wave interactions at transferring wave energy. If the GM
range is governed by resonant interactions and vortical motion is important, then
the categories of three-wave interactions (elastic scattering, induced diffusion and
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parametric subharmonic instability) considered by McComas & Bretherton (1977)
provide at best an incomplete understanding of the dynamics of the GM spectrum.

Numerical simulations of breaking internal waves have had mixed success at
reproducing the observed energy spectrum. An early study by Orlanski & Cerasoli
(1981) had insufficient resolution to reproduce realistic spectral slopes. Nevertheless,
they anticipated the argument of Hines (1991) by showing that large-scale waves can
be at equilibrium without being on the edge of instability, since growth in such waves
can produce instability at small scales. Bouruet-Aubertot, Sommeria & Staquet (1996)
performed two-dimensional simulations of a breaking standing wave at two different
resolutions (2562 and 5122). In both cases, spectra resembling (1.1) with c =0.1 were
obtained. In neither simulation was the buoyancy wavenumber kb resolved. In three
dimensions, Carnevale, Briscolini & Orlandi (2001) forced a standing wave in a large-
eddy simulation (LES) at 1283, with stratification chosen to resolve kb. Downscale
of kb, they produced a spectral slope of −5/3; upscale, they reported slopes of
around −3, but the spectra are quite bumpy. High-resolution LES (up to 5123) of
stratified turbulence produce a clear spectral transition at kz ≈ kb (Yoshida, Ishihara
& Kaneda 2002). Upscale of the transition, the spectrum is proportional to k−2.3

z ,
which is significantly shallower than (1.1). There are few experimental studies of the
energy spectrum produced by wave breaking because of the difficulty of obtaining
measurements. Benielli & Sommeria (1996) forced a standing internal wave, and
measured a frequency spectrum of the form ω−3 for ω >N , which they transformed
to k−3

z for kz > kc using Taylor’s hypothesis. The validity of this transformation is not
clear.

In this paper, we use idealized numerical simulations to study stratified turbulence
generated by randomly forced large-scale internal gravity waves. As in the numerical
studies described above, we assume a homogeneous environment, with a constant
background stratification and no shear. However, unlike past studies, we examine a
wide range of stratifications, from weakly stratified turbulence to weakly interacting
waves. We also consider the effect of vortical motion on the wave dynamics. We
attempt to answer the following questions: Under what conditions, if any, does wave
breaking in a uniformly stratified fluid produce the saturation spectrum (1.1)? How
sensitive are the simulated spectra to changes in Reynolds number? What is the
physical significance of the wavenumber kc? What effect does the presence of vortical
energy have on the spectrum of wave energy? In § 2, we introduce the equations of
motion and describe the decomposition of the flow into wave and vortical parts. In
§ 3 we discuss our numerical approach. We then present simulations in which wave
energy is forced alone at different stratifications (§ 4), at different resolutions (§ 5), and
with different amounts of vortical forcing (§ 6). Conclusions are given in § 7.

2. Equations and wave–vortical mode decomposition
We take as our equations of motion the three-dimensional Boussinesq equations,

∂u
∂t

+ u · ∇u = −∇p + b′ ẑ + Fu + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ + w ẑ is the velocity, b′ = − gρ ′/ρ0 (in the ocean) or gθ ′/θ0 (in
the atmosphere) is the buoyancy, ρ ′ and θ ′ are potential density and temperature
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perturbations, ρ0 and θ0 are constant reference values, and p is the dynamic pressure
divided by ρ0. The Brunt–Väisälä frequency N is assumed to be constant. Du and Db′

are dissipation operators, and Fu and Fb′ are forcing functions.
The strength of the stratification can be quantified by the vertical and horizontal

Froude numbers Frz = U/NLz and Frh = U/NLh, where U is a characteristic
horizontal velocity and Lz and Lh are characteristic vertical and horizontal length
scales. We obtain U/Lz and U/Lh from the r.m.s. horizontal and vertical vorticity,
and define

Frh =

√[
ω2

z

]
N

, Fr z =

√[
ω2

x + ω2
y

] /
2

N
, (2.2)

where [·] denotes a volume average and ω = ∇ × u. We will see below that internal
waves generate only small amounts of ωz, leading to artificially small values of Frh (see
table 3). We therefore use Fr z to characterize the strength of the stratification. Note
that the prediction of Billant & Chomaz (2001) that Fr z ≡ 1 applies to turbulence
dominated by vortical motion, not internal waves.

The Ertel potential vorticity (PV) for (2.1) is Π/ρ0, where

Π = ω · ∇b, (2.3)

and b = N2z + b′. The PV can be used to separate a flow into vortical motion and
internal waves, with the waves being defined to have no PV (Lelong & Riley 1991).
In practice, however, the linear normal mode decomposition is often used. This
procedure classifies the normal modes of the Fourier transform of (2.1) as either wave
modes (fast) or vortical modes (slow) according to their linear frequencies. Following
the notation of Bartello (1995), the normal mode amplitudes (B (+)

k , B
(−)
k , B

(0)
k ) at

wavevector k satisfy

dB
(j )
k

dt
+ iλ(j )

k B
(j )
k =

∑
k= p+q

∑
r,s=±,0

Γ
jrs

k pqB
(r)
p B (s)

q + F̂
(j )
k + D̂

(j )
k , (2.4)

where j is 0, + or −. The 0 mode has linear frequency λ
(0)
k = 0 and is called the

vortical mode. The ± modes have internal wave frequencies λ
(±)
k = ± σk, where

σk =
Nkh

k
, (2.5)

and are the two independent wave modes (upward and downward propagating) at k.
The normal mode decomposition can be applied to any flow. However, because of

the conservation of PV, it is most physically meaningful when it coincides with the
PV decomposition. When do the two decompositions agree? PV has both linear and
quadratic contributions in (ω, b), i.e. Π = Π1 + Π2 where

Π1 = N2ωz, (2.6a)

Π2 = ω · ∇b′. (2.6b)

By the normal mode identities, the Fourier transform of Π1 satisfies

Π̂1k = N2 kh B
(0)
k (2.7)

(Bartello 1995), and so the vortical modes account for all of Π1. As long as Π2 � Π1,
the PV is approximately linear, and the normal mode decomposition approximates the
PV decomposition. This approximation requires that b-surfaces be nearly horizontal.
When vortical motion dominates, Π2/Π1 ∼ Fr2

z and so the agreement between Π and
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Π1 is good when Fr z � 1 (Waite & Bartello 2004). However, when waves dominate, the
agreement is lost. The quadratic PV scales as max(WB/L2

h, UB/LhLz) where w ∼ W

and b′ ∼ B . The fact (from 2.1b) that W � ULz/Lh, along with the assumption that
Lz � Lh, implies that Π2 � UB/LhLz. Following Riley & Lelong (2000) and setting
B ∼ NU yields Π2 � NU 2/LhLz. How does Π1 scale? Internal waves generate ωz

only at first order in Fr z (Lelong & Riley 1991) and so ωz ∼ Fr zU/Lh. Therefore,
Π1 ∼ Fr zN

2U/Lh and hence Π2/Π1 ∼ 1. The simulations described below confirm this
result. The linear PV is thus not a good approximation to Π when waves dominate
the flow. However, Π1 and Π2 are both small under these conditions. Despite its
limitations, the normal mode decomposition is attractive because of its simplicity. As
we will see below, its usefulness is demonstrated when the wave and vortical energy
spectra are different from one another.

The wave/vortical decomposition breaks down when kh =0, since in this case all
modes have zero frequency and no PV. These are the shear modes, which correspond
to vertically sheared, horizontally uniform flow. The total energy E = E(±) +E(0) +E(S)

is therefore the sum of the wave, vortical, and shear energy, defined as

E(±) =
1

2

∑
kh �=0

∣∣B (+)
k

∣∣2 +
∣∣B (−)

k

∣∣2, (2.8a)

E(0) =
1

2

∑
kh �=0

∣∣B (0)
k

∣∣2, (2.8b)

E(S) =
1

2

∑
kh=0

|ûk|2 + |v̂k|2 + |b̂k|2/N2. (2.8c)

The nonlinear term in (2.4) is a sum over wavevector triads k = p + q. Different
classes of triads, involving different combinations of wave and vortical modes,
contribute to the sum. In the limit of strong stratification, interactions are dominated
by triads satisfying the resonance condition

λ
(j )
k = λ(r)

p + λ(s)
q , (2.9)

where j , r and s are 0 or ±. The nonlinear evolution of the wave modes is governed by
three classes of triads: three wave modes (±, ±, ±), two wave modes and a vortical
mode (±, 0, ±), and a single wave mode with two vortical modes (±, 0, 0) (for a
detailed discussion of the different classes of resonant triads, see Riley & Lelong
2000). Resonant (±, ±, ±) triads have been well-studied, and much work has gone
into interpreting the GM spectrum in the light of them (e.g. McComas & Bretherton
1977). However, in the presence of vortical motion, resonant (±, 0, ±) interactions
can also affect the wave dynamics. The (±, 0, 0) interactions, on the other hand, are
never exactly resonant.

3. Numerical approach
3.1. Methodology

The equations of motion (2.1) were integrated in a periodic domain of size 2π for
a variety of stratifications, resolutions and forcings. A pseudo-spectral code was
employed with leapfrog time stepping and a Robert filter parameter of 0.04 (Asselin
1972). Aliasing errors were eliminated by truncating cylindrically at kh, |kz| = kt , where
kt = M/3 for a spatial grid of size M3 (we refer to M as the resolution). Velocity and
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buoyancy were dissipated by cylindrical hyperviscosity and hyperdiffusion, with

Du = νh(−1)n+1∇2n
h + νz(−1)n+1

(
∂

∂z

)2n

, (3.1a)

Db = κh(−1)n+1∇2n
h + κz(−1)n+1

(
∂

∂z

)2n

. (3.1b)

We set the vertical and horizontal hyperviscosity and hyperdiffusion coefficients to ν,
and use n= 4 (as in Bartello, Métais & Lesieur 1996). Hyperviscosity modifies the
dissipation wavenumber kd = 1/ld , which becomes

kd =

(
ε

ν3

)1/(6n−2)

. (3.2)

In order to compare time-averaged quantities at different stratifications, statistically
stationary Froude numbers are desirable, and so we have performed forced
simulations. Expressed for the normal mode equation (2.4), our forcing has the
form

F̂ k
(j )

=

{
A(j )(k) G

(j )
k (t), k ∈ Sf

0, k /∈ Sf ,
(3.3)

where j is 0 or ±. The G
(j )
k are complex Gaussian random processes with zero mean

and a decorrelation time scale τ , which is set to be O(10) time steps to avoid exciting
the leapfrog computational mode. Sf is the set of forced wavevectors, which is centred

around k = (k2
x + k2

y + k2
z )

1/2 =
√

2 kf at an angle ±φf from the horizontal:

Sf = {k | kf − ∆k � kr � kf + ∆k; r = h, z; cosφf − ∆φ � cosφ � cosφf +∆φ}, (3.4)

where kh = (k2
x + k2

y)
1/2, ∆k = 1 and ∆φ = 0.1. We have chosen to force waves of

relatively large scale and intermediate frequency (as in previous studies), and so
we set φf = π/4 and kf =3. Sf therefore contains 60 independent wavevectors. The
amplitude function A(j )(k) is quadratic in cos φ and centred around cos φf :

A(j )(k) = 100a(j )(cos φf + ∆φ − cos φ)(cosφ − cosφf + ∆φ). (3.5)

Wave and vortical modes are forced by different amounts by choosing a(+), a(−) and
a(0). We set a(+) = a(−) ≡ a(±), and so the two wave modes at every k are forced
independently at the same amplitude.

Five sets of simulations will be presented in the following sections. Set 1 contains
a single long simulation at a modest resolution of 90, in which only wave modes
were forced. This simulation illustrates the difficulty we face in obtaining statistically
stationary fields in forced stratified turbulence. In set 2 (the main simulations of this
study), we forced waves at a higher resolution of 180 for eight different stratifications.
The set of N values was chosen to span the range of dynamically significant values
from Frz � 1 to Fr z � 1. In set 3, we consider the sensitivity of our results to
changes in Reynolds number Re = (kd/kf )4/3: the simulations were repeated at lower
resolutions of 90 and 128 and a higher resolution of 240. In a fourth set, a subset of
the above simulations at M = 180 were repeated with the addition of vortical forcing.
Different vortical forcing amplitudes were employed, with forcing ratios R ≡ a(0)/a(±)

of 1/8, 1/4, 1/2 and 1. Finally, we present a single high-resolution simulation with
strong stratification and strong vortical forcing. The different values of M , N and R

for each set are given in table 1.
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Set Resolution N R

1 90 16 0
2 180 1/2, 1, 2, 4, 8, 16, 32, 64 0
3 90, 128, 240 1/2, 1, 2, 4, 8, 16, 32, 64 0
4 180 4, 8, 16, 32 1/8, 1/4, 1/2, 1
5 240 32 1

Table 1. Summary of the simulations to be discussed. The resolution is given by M , the number
of spatial grid points in each direction. N is the Brunt–Väisälä frequency and R ≡ a(0)/a(±) is
the relative amplitude of the vortical forcing.

Resolution ∆ t ν

90 0.0039 5.0 × 10−11

128 0.0027 3.0 × 10−12

180 0.0019 2.0 × 10−13

240 0.0014 2.0 × 10−14

Table 2. Time steps and hyperviscosity coefficients used for different resolutions.

We used equal time steps and hyperviscosity coefficients for all simulations of a
given resolution, and these quantities are listed in table 2. The ν values were chosen to
maintain kd ≈ 0.75 kt , and so changes in resolution imply changes in Re. The forcing
memory was τ =0.019, corresponding to between 5∆ t (when M = 90) and 13∆ t

(when M = 240). The wave forcing amplitude was kept constant at a(±) = 0.072, which
has an associated time scale Tf =(a(±)kf )−1/2 ≈ 2. All simulations were initialized
with a small amount of Gaussian random seed energy with an isotropic spectrum
centred around k = kf . The initial energy was less than 1% of the levels at statistical
stationarity.

Spectra of vortical and wave energy were computed by binning the normal mode
variances into integer wavenumbers, i.e.

E
(j )
h (khi

) =
∑

k′∈Ih(khi
)

1

2

∣∣B (j )
k′

∣∣2, E(j )
z (kzi

) =
∑

k′∈Iz(kzi
)

1

2

∣∣B (j )
k′

∣∣2, (3.6a, b)

where j is 0 or ± and

Ih(khi
) = {k′ | khi

− 1/2 � k′
h < khi

+ 1/2}, (3.7a)

Iz(kzi
) = {k′ | kzi

− 1/2 � |k′
z| < kzi

+ 1/2, kh �= 0}. (3.7b)

The spectra of shear and total energy are defined similarly.

3.2. A very long simulation

We began this work by performing a number of simulations at a low resolution of 90.
Our aim was to proceed in the standard way: force until statistical stationarity, and
then average various quantities in time. However, at certain stratifications we found
a slow, systematic transfer of energy into a few modes, as encountered in previous
studies (Smith & Waleffe 2002; Laval, McWilliams & Dubrulle 2003). This growth
makes it impractical to reach stationarity, since very long integrations are required.
The growing modes include shear modes (with kh = 0, as in the previous studies) as
well as others with small but non-zero kh.
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Figure 1. Time series of wave energy E(±), vortical energy E(0) and shear energy E(S) with
M = 90, N = 16, and R =0.

Run 1 is an example of a very long simulation which has not yet reached stationarity.
The wave, vortical and shear energy are plotted against time in figure 1. This figure
spans 300 forcing time scales Tf and 5000 nonlinear turnover times defined (following
Bartello & Warn 1996) as

nt =

∫ t

0

[ω2]1/2 dt ′. (3.8)

From t = 0 to 50 (nt =0 to 200) the simulation spins up as expected: the total energy
increases linearly as the forced modes are excited, until the energy spectrum fills
out and dissipation balances the forcing. Statistical stationarity, however, does not
follow. From t = 50 to 300 (nt =200 to 2000) the wave and shear energies grow. This
growth is concentrated near (kh, |kz|) = (1, 5) and (0, 6). Around t = 300, E(±) drops
off while E(S) continues to rise. By this time, the total shear energy is of the same
order as the wave energy. Nonlinear interactions between wave and shear modes
permit the energy trapped around (kh, |kz|) = (1, 5) to be transferred to large kz and
dissipated. Beyond t = 450 (nt = 3000), the wave energy is stationary while the shear
energy grows linearly. This regime can be understood simply: the shear modes form
a stable vertically sheared horizontally uniform mean flow which absorbs the energy
of small-amplitude perturbations injected at a constant rate.

The mechanism driving this slow, systematic growth is not fully understood (at
least not at early times, when modes with kh �= 0 are not small perturbations around
a stable horizontally uniform basic state), and more work is required to determine if
it is relevant to atmospheric and ocean dynamics. In any case, long simulations like
this one are beyond our capabilities at higher resolution. Our present interest is in
the turbulence generated by wave breaking, which emerges at relatively early times.
In the absence of statistical stationarity over long times, we restrict ourselves to the
approximate stationarity occurring once the energy spectrum has filled out but before
the growing modes dominate the flow (e.g. between t ≈ 40 and 100 in this run).
This is presumably the same approach followed unknowingly in forced simulations of
stratified turbulence before Smith & Waleffe (2002) discovered the slow growth of the
shear modes. The quasi-stationary range exists in all cases, although, as illustrated in
this simulation, it can be quite short.
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Figure 2. Time series of wave energy E(±) for M = 180, 1/2 � N � 64 and R = 0.

N t0–t1 nt0–nt1 Frz F rh

1/2 20–30 110–170 5.5 5.2
1 20–30 110–180 2.9 2.6
2 20–30 110–170 1.4 1.2
4 20–30 90–160 0.80 0.51
8 30–40 140–220 0.45 0.20

16 40–50 190–280 0.28 0.078
32 50–60 250–350 0.16 0.024
64 100–110 510–610 0.078 0.0054

Table 3. Intervals over which time averages are computed for set 2, given in terms of time t
(t0–t1) and nonlinear turnover time nt (nt0–nt1 ). The corresponding time-averaged vertical and
horizontal Froude numbers are also provided.

4. Primary simulations
In our second set of simulations we forced wave modes alone at a resolution of 180

with eight different stratifications between N = 1/2 and 64. The initial linear growth
rates of wave energy are independent of N for N � 32 (time series of wave energy
are plotted in figure 2), indicating that energy is injected at the same rate in each
case. When N � 1, the time series are nearly identical. In the other simulations,
the peak in wave energy occurs at later times for larger N . As the stratification is
increased, nonlinear interactions are increasingly restricted to the resonant set, and
the downscale transfer of energy is less efficient; the simulations therefore take longer
to spin up. When N =64, approximate stationarity is not reached until t ≈ 100, but
by this time, the slow growth in wave energy has begun for N = 16 and 32. No single
interval exists which contains an approximately stationary range in every simulation,
and so different averaging intervals have been used for each N (see table 3). Each
interval (t0, t1) has a length of 10, which corresponds to five forcing time scales and
between 60 and 100 nonlinear turnover times. Unless otherwise specified, all quantities
in the following sections have been averaged over these intervals. The shear energy,
which is growing when N � 4, is never more than 2% of the total energy at these times.

Table 3 also lists time-averaged vertical and horizontal Froude numbers, as defined
in (2.2). The Froude numbers provide a more meaningful characterization of the
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N Lz (atmosphere) Lz (ocean)

1/2 200 m 20 m
1 300 m 30 m
2 700 m 70 m
4 1 km 100 m
8 2 km 200 m

16 4 km 400 m
32 6 km 600 m
64 10 km 1 km

Table 4. Characteristic vertical scales Lz = U/(NFr z) implied by the vertical Froude numbers
in table 3 assuming N = 0.01 s−1 and U = 10 m s−1 in the atmosphere and 1 m s−1 in the ocean.

10–2

10–1

100

 0.1 1 10
Frz

E(±)

E(0)

Frz
2

Figure 3. Total wave energy E(±) and vortical energy E(0) plotted against Frz when
M = 180 and R = 0.

stratification than the N , which are, to a certain extent, arbitrary. By identifying
realistic values for N and U , we can use the Froude numbers to determine the
characteristic vertical length scales Lz = U/(NFrz) in each of our simulations. We
assume typical values of N = 0.01 s−1 and U = 10 m s−1 in the atmosphere and 1m s−1

in the ocean. The corresponding vertical scales for each simulation are given in table 4.
This relationship between our simulations and the real atmosphere and ocean should
be kept in mind but treated with caution. At our strongest stratifications, Lz ∼ 10
km; at these scales, the Boussinesq approximation is no longer appropriate.

4.1. Integrated quantities and length scales

The total wave energy (plotted, along with the vortical energy, against Fr z in figure 3)
depends on the spin-up time, which depends on the stratification. There is a transition
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around Frz ≈ 1, below which the wave energy increases with increasing stratification.
This transition is consistent with the emergence of a stratification-dependent spin-up
time seen in figure 2. The vortical energy also increases with increasing stratification,
until a second transition at Fr z ≈ 0.3. Further decrease in Fr z leads to a rapid drop
in vortical energy. How do we understand the dependence of the vortical energy on
stratification? Vortical modes are not forced directly, but are generated by nonlinear
interactions with the wave modes. At weak stratifications, these interactions are
strong, but the physical distinction between wave and vortical modes is lost. Waves
become unstable and break, yielding small-scale turbulence which, even if not perfectly
isotropic, projects onto all three normal modes. This process is visualized in figure 4,
which shows snapshots of the b field at different stratifications. The regions of
static instability (or overturning, where ∂b/∂z < 0 and vortical modes are generated)
decrease in volume with rising N . As a result, the vortical energy is a decreasing
fraction of the wave energy as Fr z is decreased over 0.3 � Fr z � 1, even though it
increases in absolute value.

What happens when Frz passes through 0.3 (N = 16)? Small patches of static
instability are visible in figure 4 when N = 16 but not 32. We define fs to be
the fraction of the spatial domain that is statically unstable (plotted against N in
figure 5a). When N = 32, fs is only intermittently non-zero; the time average and
standard deviation are equivalent to just 3 and 6 unstable grid points, respectively,
and so there is essentially no overturning. When N =64, fs is identically zero at all
times. The transition at Fr z ≈ 0.3 is from a regime (at larger Fr z) in which wave
breaking is resolved to one in which all static instability is inhibited by stratification
and dissipation. The turbulent generation of vortical modes is suppressed in the
absence of instability, and so E(0) falls off with decreasing Frz. It decreases like Fr1.5

z

rather than the Fr2
z that one might expect from the work of Lelong & Riley (1991).

We have plotted fs against N rather than Fr z because of the remarkable exponential
dependence it displays when N � 16. The time average of fs is equivalent to the
probability of static instability, i.e.

fs =

∫ −N

−∞
PN (X) dX, (4.1)

where PN (X) is the probability density function (p.d.f.) of X = ∂θ ′/∂z (or, equivalently,
−∂ρ ′/∂z) at a given N . If the negative tails of PN (X) were exponential and independent
of N , then the exponential decay of fs would follow. However, as seen in figure 5(b), the
situation is more complicated. The tails are exponential (as seen in Métais & Lesieur
1992) but they are not independent of N . The negative tail moves in towards zero as
N increases to 2; when N increases further, the tail moves out. Nevertheless, these
changes in the p.d.f. are such that its integral from −∞ to −N remains exponentially
dependent on N .

The total energy dissipation rate is

ε = 2ν

(∫ kt

0

k8
hEh(kh) dkh +

∫ kt

0

k8
zEz(kz) dkz

)
, (4.2)

and equals the energy injection rate at statistical stationarity. This quantity is only
weakly dependent on Fr z when Frz � 0.2 (figure 6a). With ε we can compute the
buoyancy and dissipation wavenumbers kb and kd which, along with kc, are plotted in
figure 6(b). This figure illustrates the two transitions noted above. As Frz falls below
1, kb overtakes kd , and no small-scale Kolmogorov inertial range is possible. We must
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(a) (b)

(c) (d)

(e) ( f )

Figure 4. Vertical (x, z) slices of total buoyancy b = N2z + b′ when M = 180, R =0 and
(a) N = 1, (b) N =2, (c) N = 4, (d) N = 8, (e) N = 16 and (f ) N = 32. The fields are shown at
t = t1 (see table 3). Contour intervals are ∆b = 2π N2/50, so that the background state has 50
contours in each case.
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Figure 6. (a) Total energy dissipation rate ε; and (b) the dissipation, buoyancy and
overturning wavenumbers kd , kb and kc , plotted against Frz when M = 180 and R = 0.

therefore check the sensitivity of these results to changes in Reynolds number (see
§ 5). Overturning and stratified turbulence persist even when kb > kd . As Fr z decreases
below 0.3, kc approaches and surpasses kd , and overturning is suppressed. Does kc

have to be sufficiently smaller than kd to obtain overturning? We will argue below
that it does, and so we refer to kc as the overturning wavenumber.

The identification of urms/N with the overturning scale is reinforced by noting that
it is approximately equal (to within 10% when Fr z < 1) to b′

rms/N
2, where b′

rms is
the r.m.s. buoyancy. This quantity is related to the Thorpe scale, which is used by
oceanographers to quantify the scale of overturning (Thorpe 1977). The Thorpe scale
is the r.m.s. displacement required to rearrange a finite number of fluid elements to
obtain a statically stable density profile. The length scale b′

rms/N
2 corresponds to the

r.m.s. displacement required to obtain a state with no available potential energy, and
so it provides us with an upper bound on the Thorpe scale.
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z (kz) when M = 180 and R = 0.

A remarkable feature of figure 6(b) is that the gap between the overturning
and buoyancy wavenumbers widens with increasing stratification. This behaviour
is inconsistent with the usual assumption that the overturning scale is proportional
to lb (e.g. Itsweire, Helland & Van Atta 1986). When Fr z < 1, the dependence of kb

on Fr z may be affected by the fact that we are not resolving kb, and so the kb scaling
should be interpreted with caution. We will check the robustness of the kb scaling in
§ 5. If the widening range between kc and kb is real, it illustrates a major challenge
facing numerical simulations of strongly stratified turbulence. To resolve kc and kb

at a small Froude number requires significantly more resolution than employed here.
For example, kb ≈ 500 when Frz = 0.3, and so a resolution of at least 1500 would be
necessary. The best we can do with current resources is to resolve overturning but not
the small isotropic scales, and explore whether the results are sensitive to resolution.
As we will see below, they sometimes are.

4.2. Spectral quantities

The horizontal and vertical wavenumber spectra of vortical and wave energy have
a strong dependence on stratification. The kh spectra of vortical energy (figure 7a)
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Figure 8. (a) Horizontal and (b) vertical wavenumber spectra of wave energy using the
standard forcing (solid) and a restricted forcing (dashed) obtained by setting ∆φ = 0.001 in
(3.4) and (3.5). The kh spectrum is insensitive to the change in Sf , but the bumps in the kz

spectrum are modified.

steepen rapidly as N is increased beyond 4. The kz spectra of vortical energy (figure 7b)
become increasingly flat as N increases, but the flat range does not extend beyond
kz ≈ 20. In Waite & Bartello (2004), we interpreted the flat range as resulting from
decoupled layers of vortical motion. The vortical and wave energy spectra are parallel
at large kz when N � 16, suggesting a breakdown of the utility of the normal mode
decomposition at these scales. Note that the amplitudes of the vortical spectra drop
rapidly as N is increased beyond 16.

For the wave energy, the kh spectra (figure 7c) are shallower than k
−5/3
h when N � 2

(i.e. when kb < kd), and they steepen rapidly at stronger stratifications. Our main
interest, however, lies in the vertical wavenumber spectra of wave energy (figure 7d).
When the stratification is weak (N � 2) the spectra are approximately independent
of N and have slopes around −5/3. As N increases, the spectra become bumpier,
steeper, and higher in amplitude. When N = 4, a small bump emerges at kz = 6. It
grows at higher stratifications and moves through kz = 8 and 9 as N is increased to
16. We have checked that these bumps have kh = 1, and account for the systematic
growth of wave energy observed at later times. The spectra are smooth beyond the
bump, at least when N � 16. As N is increased to 32, overturning is suppressed and
the spectrum becomes extremely bumpy down to kz ≈ 20. Wave amplitudes cannot
be limited by breaking in the absence of overturning, and so the energy spectrum is
not saturated. Furthermore, at such small Froude numbers, resonant interactions are
expected to dominate the nonlinear transfer. The intersection of the set of resonant
triads with the finite set of modes in our simulations is relatively small, and so bumpy
spectra are produced. These bumps are sensitive to the details of the forcing, as seen
in figure 8. This figure plots the wave energy spectra at N = 32 from figure 7 along
with those obtained with a slightly restricted set of forced modes (with ∆φ =0.001
and a(±) = 0.11).

How well do the spectral slopes and amplitudes in figure 7(d) agree with the
saturation spectrum (1.1)? Slopes of E(±)

z (kz) (measured by a least-squares fit to a
power law over the range 10 � kz � 30) are listed in table 5 along with the spectral
spread (the r.m.s. distance between the spectrum and the best-fit power law). The
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N Slope Spread N Slope Spread

1/2 −1.7 5.0 × 10−5 8 −2.3 1.2 × 10−4

1 −1.7 5.2 × 10−5 16 −2.8 4.3 × 10−4

2 −1.8 3.9 × 10−5 32 −3.2 5.6 × 10−3

4 −1.9 3.4 × 10−5 64 −3.7 9.7 × 10−3

Table 5. The slopes m of E
(±)
z (kz), measured by a least-squares fit to akm

z over the range
10 � kz � 30. The spread is the r.m.s. difference between the spectrum and the best fit over
this range of kz.
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Figure 9. Vertical wavenumber spectra of wave energy (solid), along with the hypothetical
saturation spectrum 0.1 N2 k−3

z (dashed), for (a) N = 4, (b) N = 8, (c) N =16 and (d) N = 32
when M = 180 and R = 0.

spectra steepen as N increases, slowly at first, then rapidly. The slope passes through
−3 as N goes from 16 to 32, just before overturning is suppressed and the long
bumpy range emerges. The spread jumps by more than an order of magnitude as the
spectrum is overwhelmed by bumps. As for the amplitudes, figure 9 plots the spectra
for 4 � N � 32 along with the corresponding saturation spectra with c = 0.1 (as in
Bouruet-Aubertot et al. 1996). The growth in amplitude with N is visibly slower than
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N =8, and (d) N = 32, when M = 180 and R = 0.

N2. As N increases from 4 to 32, the amplitude (taken to be the value of the spectrum
at kz =15) grows instead like N1.1. While this is a serious departure from (1.1), it is
better than some atmospheric observations (e.g. Nastrom et al. 1997). Interestingly,
the amplitudes and slopes in our simulations agree best with the saturation spectrum
at the same stratification (N = 16).

Transfer functions of wave and vortical energy are given by

T (j )(k) = 2 Re
∑

k= p+q

∑
r,s=±,0

Γ
jrs

k pqB
(j )
k

∗
B (r)

p B (s)
q , (4.3)

where j is 0 or ± and ∗ denotes the complex conjugate. Transfer spectra are defined
analogously to the energy spectra. By restricting the summation over r and s, we can
define the contributions to the energy transfer of different classes of triads, i.e.

T (j )(k) = T (j,±,±)(k) + T (j,0,±)(k) + T (j,0,0)(k), (4.4)

where j is 0 or ± (in practice, the transfer decomposition is computed by filtering out
wave or vortical modes before computing the nonlinear term). For example, T (±,0,±)(k)
represents the transfer of wave energy at k due to triads of two wave modes and a
vortical mode, and T (0,±,±)(k) is the transfer of vortical energy at k due to the same
class of triads. Decomposed kz spectra of wave energy transfer are plotted in figure 10.
The transfer is naturally dominated by (±, ±, ±) interactions, since no vortical energy
is forced. However, when N � 2, (±, 0, ±) triads are important at intermediate kz.
At these weak stratifications, the normal modes lose their dynamical distinction, and
the turbulent cascade projects onto all classes of triads. When N = 8, a broad peak
is visible in the (±, ±, ±) transfer around kz =9. This injection of energy is only
partially balanced by a downscale transfer via (±, ±, 0) interactions. As a result, the
wave energy in these modes grows slowly. The transfer spectrum at N = 32, like the
energy spectrum, is very bumpy. The (±, 0, ±) interaction plays only a minor role in
this case, due to the small amount of vortical energy present. We will explore the role
of this interaction in the presence of greater amounts of vortical energy below.
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Figure 11. The dissipation, buoyancy and overturning wavenumbers kd , kb and kc plotted
against N when R = 0 and M = 90, 128, 180 and 240.

5. Sensitivity to Reynolds number
The nonlinear interactions of stratified turbulence are less local in wavenumber than

those of unstratified turbulence. The energy transfer at large and intermediate scales
may therefore involve interactions with small scales, and so the energy spectrum may
be dependent on the degree to which small scales are resolved (i.e. on Re). Given the
impracticality of resolving an inertial range below the buoyancy scale at every Froude
number considered here, we have instead examined the sensitivity of the results in
§ 4 to changes in Re. We have performed an additional set of simulations at three
different Reynolds numbers, using resolutions of 90, 128 and 240 (set 3). When M = 90
and 128, the methodology was exactly analogous to that discussed in § 4. Simulations
with M = 240, on the other hand, were first spun up at a resolution of 180 using
the simulations of set 2. The resolution was increased to 240 at time t = t0 − 10,
and averaged as above from t0 to t1. Our four resolutions have Reynolds numbers
of 13 (M = 90), 22 (M = 128), 36 (M = 180) and 55 (M = 240), which are admittedly
small. By choosing kf = 3 we avoid forcing the gravest mode, but at the cost of a
reduced Re compared with what could be obtained with a smaller kf . Since our Fr z

is calculated using the vorticity variance, increasing M at a given N has the effect
of increasing Fr z. As a result, we use N to distinguish stratifications in this section.

5.1. Length scales and instability

In figure 11, we plot the dissipation, buoyancy and overturning wavenumbers for
all four resolutions. The dissipation wavenumber kd , unlike kb and kc, depends
significantly on the resolution. The dependence of kb and kc on Froude number
appears to be robust to changes in Reynolds number. Furthermore, there is a
relationship between the ratio of kc/kd and the emergence of overturning. Compare
figure 11 with figure 12(a), which plots fs against N for each Re. Apart from two
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Figure 12. The fraction fs of the spatial domain which is statically unstable plotted against
(a) N and (b) 1/Fr z when R = 0 and M =90, 128, 180 and 240. Only non-zero values are
plotted. The error bars in (a) are computed using standard deviations.

exceptions, there is significant overturning when kc < kd , and no overturning at any
time when kc > kd . In two cases, kc ≈ kd and only marginal overturning is generated
(i.e. fs is only intermittently non-zero). When N = 16 and M = 90, kc/kd = 1.0 and the
time average and standard deviation of fs correspond to just 5 and 10 unstable grid
points, respectively. When N = 32 and M = 180, kc/kd =0.83 and there is an average
of just three unstable grid points, with a standard deviation of 6 (as seen above).
These results appear to justify our reference to kc as the overturning wavenumber:
kc/kd < 0.8 is necessary and sufficient for the generation of static instability in our
simulations. Having kb < kd , on the other hand, is not necessary.

As we saw above, fs decreases exponentially with increasing N , but the rate of
decay drops with increasing Re as finer scales of overturning are resolved. However,
N is dimensional, and is therefore not necessarily the most appropriate variable to use
in this context. In figure 12(b) we instead plot fs against 1/Fr z, a dimensionless N .
The curves are no longer exponential but, remarkably, they have collapsed onto one
another. Both Fr z and fs change with Re at a given stratification, but these changes
combine to make the dependence of fs on Fr z independent of Re.

5.2. Energy spectra

The vertical wavenumber spectra of wave energy (plotted for all resolutions in
figure 13) are naturally dependent on Re in the dissipation range, but are not
necessarily so at smaller kz. The spectra are independent of Re along kz < 20 at low
stratifications (N � 4). When N = 8, however, this independence is lost: as M goes
from 90 to 128, the spectrum gets shallower. The increase from M = 180 to 240 has
a more subtle effect on the spectrum, which appears to have nearly converged with
a slope of around −2.1. The convergence is less convincing when N =16, as the
M = 240 spectrum is noticeably shallower than the others. The agreement between
the simulated spectrum and (1.1) when N = 16 and M = 180 (figure 9c) was therefore
somewhat fortuitous, since the spectrum was steepened towards a slope of −3 by a
lack of resolution. Figure 13(e) suggests that, when N = 16, E(±)

z (kz) will be no steeper
than k−2.5

z as Re → ∞. When N = 32, the spectrum gets shallower with increasing
resolution, without converging.
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Figure 13. Vertical wavenumber spectra of wave energy at resolutions of 90, 128, 180 and
240 for R = 0 and (a) N = 1, (b) N = 2, (c) N = 4, (d) N = 8, (e) N = 16 and (f ) N = 32.

How much resolution is necessary (i.e. how large must kb be) to obtain spectra
which are independent of Re outside the dissipation range? It would appear that it is
not necessary to have kd > kb, as the simulations with N = 4 indicate. It is, however,
necessary to have kd > kc, but to what extent? All of the simulations with N =4 have
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Figure 14. Wave and vortical energy plotted against Frz for R = 0, 1/8, 1/4, 1/2 and
1 when M = 180.

kd > 3.1 kc, and have converged with respect to increasing Re. When N = 8, M = 128
yields kd ≈ 2.5 kc which is insufficient for convergence; M = 240, on the other hand,
gives kd ≈ 4.9 kc which appears to be enough. When N =16, none of the simulations
have sufficient resolution, and kd < 3.0 kc in each. So as a preliminary result, we may
say that the overturning scale lc = 1/kc must exceed the dissipation scale ld = 1/kd by
at least a factor of three in order for the spectra to be insensitive to changes in Re.
This claim should be verified at higher resolution.

6. Sensitivity to vortical forcing
Vortical motion coexists with internal waves in the atmosphere and ocean, and

because of the (±, 0, ±) interaction, its presence can affect the nonlinear transfer (and
hence the energy spectrum) of the waves. No vortical modes were forced in the above
simulations, and so this interaction did not play a significant role. In this section,
we examine the extent to which the addition of vortical mode forcing modifies the
above spectra of wave energy. We have repeated our simulations with 4 � N � 32
at a resolution of 180 with four non-zero vortical mode forcing amplitudes a(0). The
corresponding vortical/wave forcing ratios R = a(0)/a(±) take the values 1/8, 1/4, 1/2
and 1 (set 4; see § 3.1). Quantities were averaged over the same intervals used above,
and the resulting Frz values were not significantly different from those obtained when
R = 0 (table 3).

The time-averaged wave and vortical energy are plotted against Frz for each R in
figure 14. The vortical energy depends on R as well as stratification. When R � 1/4,
the vortical forcing is weak; vortical energy decreases as Fr z is decreased below 0.3
by the mechanism described in § 4.1. When R � 1/2, however, the vortical forcing
is sufficiently strong that the vortical energy increases with increasing stratification,
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Figure 15. Vertical wavenumber spectra of wave energy for R = 0, 1/8, 1/4, 1/2 and 1 when
M = 180 and (a) N = 4, (b) N = 8, (c) N = 16 and (d) N = 32.

which also occurs when vortical modes alone are forced (Waite & Bartello 2004).
The presence of vortical energy has only a weak effect on the amount of wave
energy at stationarity. The energy-containing range of the spectrum (around k = kf )
is insensitive to R, as we will see next.

The vertical wavenumber spectra of wave energy obtained with different amounts
of vortical forcing are shown in figure 15. When N = 4, the spectrum is insensitive
to the presence of vortical energy, except for the strongest case (R = 1) in which the
large wavenumbers are increased in amplitude. This stratification is weak, and so
the distinction between wave and vortical modes is blurred; increasing R raises the
dissipation rate, which produces a higher-amplitude spectrum at large kz. We see this
feature again when N = 8. When N � 8, however, the vortical modes have another
important effect: the bumps in the spectra get smaller as R increases, and essentially
disappear when R =1. This effect is most striking when N = 32. When R = 1, the
bumpy range (which extends to kz ≈ 20 when R = 0) is gone, and the spectrum is a
power law with a slope of approximately −2.1.

The wave energy spectra are smoothed by the presence of vortical energy through
the (±, 0, ±) interaction. Figure 16 shows the vertical wavenumber transfer spectra
of wave energy in the most strongly stratified case (N = 32) for each non-zero
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Figure 16. Vertical wavenumber spectra of wave energy transfer, decomposed into contribu-
tions from (±, ±, ±), (±, 0, ±) and (±, 0, 0) triads, for (a) R = 1/8, (b) R = 1/4, (c) R = 1/2
and (d) R =1, when N =32 and M = 180.

vortical forcing amplitude. When R =0, the transfer is dominated by three-wave
interactions, which remove wave energy from the forced modes and inject it into a
few intermediate kz values (the bumps in the energy spectrum) and the dissipation
range (see figure 10d). When R > 0, the presence of vortical energy allows the (±, 0, ±)
interaction to remove energy from the bumpy range and send it downscale. As R is
raised, there is an increasing balance between the injection of energy by (±, ±, ±)
interactions at intermediate wavenumbers, and its removal by (±, 0, ±) interactions.
No bumps remain when R = 1.

The energy spectrum which results from this balance between (±, ±, ±) and
(±, 0, ±) interactions is smooth, but it appears to be sensitive to changes in Re.
We performed an additional simulation with N = 32 at a resolution of 240 (run
5). The resulting kz spectrum of wave energy is shallower than that obtained with
M = 180, and resembles k−5/3

z (figure 17). There is essentially no overturning generated
(fs has a time average of 3 × 10−6), and so this regime is very different from the
strongly turbulent environment in which Alisse & Sidi (2000) also obtained a k−5/3

z

spectrum. Indeed, our rough estimate above gives a characteristic vertical scale of this
regime of O(10) km, while the observations of Alisse & Sidi (2000) were from 1 to 10
m (see table 4). The vortical energy spectrum in this simulation is approximately flat,
and so the total energy spectrum is actually much shallower than k−5/3

z (figure 17).

7. Conclusions
By performing simulations of randomly forced internal waves in a uniformly

stratified Boussinesq fluid, we have attempted to reproduce the saturation spectrum
Ez(kz) = c N2k−3

z observed in the atmosphere and ocean. Our simulated spectra steepen
and increase in amplitude with increasing stratification. However, they are generally
shallower than k−3

z , and their amplitudes increase like N1.1 rather than N2. In the
most strongly stratified simulation that resolves wave breaking (Fr z ≈ 0.3), the
spectrum appears to agree well with 0.1 N2k−3

z , but the agreement is spurious. At
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Figure 17. Vertical wavenumber spectra of wave, vortical and total energy for N = 32, R = 1
and M =240 (run 5).

this stratification, the spectrum is sensitive to changes in Reynolds number, and gets
shallower as Re increases; in the limit Re → ∞, it will be no steeper than k−2.5

z . These
results recall the findings of Nastrom et al. (1997), who observed similar departures
in amplitude and slope from the saturation spectrum in the atmosphere, especially in
the troposphere. Nevertheless, our results are inconsistent with most of the reported
observations in the stratosphere as well as the ocean. Perhaps this inconsistency should
not be surprising, since our approach is limited by the use of a constant N and the
Boussinesq approximation. The Brunt–Väisälä frequency varies significantly in the
thermocline where most observations are made in the ocean, and the Boussinesq
approximation breaks down over large vertical scales in the atmosphere. Indeed, non-
Boussinesq effects in the atmosphere cause vertically propagating waves to grow in
amplitude, which is an important part of the saturation process. We might represent
this growth in the current homogeneous Boussinesq framework by steadily forcing a
broad spectrum of waves down to kz = N/urms . Ultimately, however, the generation
of the observed spectrum should be studied in a more realistic atmosphere or ocean
model. The effects of rotation on the results presented here should also be considered.

The length scale lc = urms/N is the overturning scale in our simulations: static
instability is present only when lc is larger than the dissipation scale. At sufficiently
strong stratifications, lc is smaller than ld , no overturning is generated, and (when
only waves are forced) three-wave interactions dominate the flow. Our simulations
yield a bumpy spectrum in this limit which does not resemble the Garrett–Munk
k−2

z , even though the GM spectrum is often attributed to weakly interacting waves.
This discrepancy may result from our limited resolution, but it may also be due to
the absence of vortical modes. When vortical modes are introduced into our wave-
forced simulations, wave–vortical–wave interactions increase in importance and, when
sufficient vortical energy is present, they account for most of the downscale transfer
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of wave energy. When waves and vortical modes are forced with equal amplitudes,
the bumps disappear and the wave energy spectrum has a slope of approximately
−1.7. This slope resembles the GM value of −2 as well as −5/3; more resolution
is required to distinguish between these two possibilities. In any case, these results
indicate that the presence of vortical motion can strongly affect the wave spectrum
in the weakly nonlinear regime, and must be included in any explanation of the
GM spectrum. The wave–vortical–wave interaction may also play an important role
in the development of the atmospheric saturation spectrum, dissipating unsaturated
waves as they propagate upward. The importance of this effect should be further
investigated.

In our simulations, the slope of the energy spectrum is unaffected by changes in
Reynolds number as long as the overturning scale is at least three times larger than
the dissipation scale. Failure to satisfy this condition leads to a steepening of the
spectrum and, in one case, a spurious k−3

z . Care must be taken in interpreting the
energy spectrum in such cases. In the ocean, lc ≈ 10 m. Vertical grid spacings in
high-resolution ocean models are generally larger than lc below the mixed layer, and
so this scale is not resolved (e.g. Smith et al. 2000). In the atmosphere, however,
lc ≈ 1 km. High-resolution atmospheric models employ up to 100 grid points in the
vertical, which yields grid spacings of hundreds of metres away from the boundary (e.g.
Ohfuchi et al. 2004). Atmospheric models are therefore just beginning to resolve scales
smaller than lb. With such resolutions comes the potential to reproduce the observed
vertical wavenumber energy spectrum, a possibility which should be explored.
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