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Abstract: Potential vorticity (PV) is an important quantity in stratified flows because it is conserved
following the flow in the absence of forcing and viscous and diffusive effects. However, as shown
by previous work for unstratified turbulence, viscosity and diffusion, when present, are not purely
dissipative and can create potential vorticity even when none is present initially. In this work, we use
direct numerical simulations to investigate the viscous and diffusive generation of potential vorticity
and potential enstrophy (integrated square PV) in stratified turbulence. Simulations are initialized
with a two-dimensional standing internal gravity wave, which has no potential vorticity apart from
some low-level random noise; as a result, all potential vorticity and enstrophy comes from viscous
and diffusive effects. Significant potential enstrophy is found when the standing wave breaks, and
the maximum potential enstrophy increases with increasing Reynolds number. The mechanism for
the initial PV generation is spanwise diffusion of buoyancy perturbations, which grow as the standing
wave three-dimensionalizes, into the direction of spanwise vorticity. The viscous and diffusive terms
responsible are small-scale and are sensitive to under-resolution, so high resolution is required to
obtain robust results.

Keywords: stratified turbulence; potential vorticity; direct numerical simulation

1. Introduction

The Ertel potential vorticity (PV) is an important quantity in geophysical fluid dynam-
ics. PV characterizes the component of vorticity normal to the isosurfaces of a conserved
scalar, and it is materially conserved in the absence of forcing and molecular viscosity and
diffusion. In quasi-geostrophic (QG) dynamics, where the PV can be inverted to find the ve-
locity and buoyancy, conservation of PV is everything. Even for the primitive dynamics of
the atmosphere and ocean, where large-scale QG turbulence interacts with inertia–gravity
waves, weakly rotating stratified turbulence at intermediate scales, and isotropic turbulence
at small scales, PV is a useful quantity for analyzing the vortical part of the flow. Indeed,
PV is the basis of various decomposition methods for separating slow, quasi-horizontal
vortical motion, which has PV, from fast, propagating inertia–gravity waves, which have
no PV [1–4].

QG dynamics break down at intermediate length scales in the atmosphere and ocean,
where stratification is strong but rotation is weaker than at large scales. Stratified turbulence
is often used as an idealization of turbulent dynamics at these scales [5,6]. In stratified
turbulence, PV is a useful diagnostic for quantifying the role of vortices and gravity
waves. In the Craya–Herring decomposition [7] and the closely related vortical/wave
mode decomposition [2], the vortical component of the flow accounts for the linear PV.
Lilly [5] proposed that conservation of linear PV might constrain stratified turbulence
and lead to an inverse energy cascade, as in two-dimensional turbulence. However, an
inverse cascade does not occur in stratified turbulence [6,8], due to a leakage of energy from
vortices to gravity waves [9] and the importance of nonlinear terms in the PV [10,11] due to
the development of small vertical scales [6,12]. Nevertheless, the question of whether the
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downscale cascade of energy through such scales in the atmosphere and ocean is dominated
by vortices or waves has not yet been fully resolved [13,14].

Since PV is used to diagnose and separate vortices and gravity waves in geophysical
flows and stratified turbulence, it is important to know where PV comes from. In QG
turbulence, the integrated square PV, called potential enstrophy, cascades conservatively to
smaller scales, analogously to the enstrophy cascade in two-dimensional turbulence. As
a result, the QG enstrophy cascade from the large-scale circulation is one source of PV at
intermediate and small scales in the atmosphere and ocean, where QG breaks down and
stratified turbulence may be present.

However, viscosity and diffusion can also create PV. Because PV depends nonlinearly
on vorticity and buoyancy, viscous and diffusive effects are not purely dissipative or
necessarily restricted to small length scales, as they are for regular vorticity. This effect was
explored in unstratified turbulence with a passive scalar by Herring, Kerr, and Rotunno [15].
By analyzing the evolution of PV in decaying turbulence, they found that viscous and
diffusive effects on PV may occur at large scales. By considering a Taylor–Green vortex
oriented with zero initial PV, they demonstrated that viscosity and diffusion can create
large-scale PV even when none is initially present. These findings raised doubts about
whether the notion of a potential enstrophy cascade is meaningful in the absence of QG
turbulence. Subsequent work suggested that a potential enstrophy cascade may be possible
in certain parameter regimes of geophysical turbulence [16], but the role of viscous and
diffusive generation of potential vorticity in stratified turbulence has not been explored.

In this paper, inspired by [15], we use direct numerical simulation (DNS) to investigate
the role of viscosity and diffusion on the evolution of PV in stratified turbulence. Compared
to [15], we explore the effects of stratification and the impact of larger Reynolds numbers.
A two-dimensional standing internal gravity wave is used to initialize simulations of
decaying stratified turbulence. A standing wave is a linear solution to the equations
of motion, but instabilities and nonlinearities inevitably cause the wave to break down
into smaller-scale turbulence. Standing waves have been used in laboratory [17] and
numerical [18–20] studies of stratified turbulence. More generally, numerical simulation is
an important tool for studying breaking gravity waves, which are a key source of turbulence
in the atmosphere [21–23]. A breaking standing wave is a useful flow configuration for
quantifying the viscous generation of PV because, like the Taylor–Green case in [15], the
initial wave has no PV. As a result, any PV in the resulting turbulence must come from
viscous generation. We will explore the magnitude and mechanisms of PV generation, the
associated length scales, and the dependence on viscosity and stratification.

2. Materials and Methods
2.1. Equations

We use the uniformly stratified, non-rotating Boussinesq equations to describe strati-
fied turbulence. The equations of motion are

Du
Dt

= −∇p + bẑ + ν∇2u, (1)

∇ · u = 0, (2)
Db
Dt

+ N2w = κ∇2b, (3)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, u = (u, v, w) is the velocity, b is
the buoyancy, p is the pressure scaled by a reference density, N is the constant buoyancy
frequency, ν is the kinematic viscosity, κ is the buoyancy diffusivity, and ẑ is the vertical
unit vector. There is no forcing. The buoyancy b is proportional to the negative fluctuation
of density from the linear basic state, and N2 is proportional to the background density
gradient; the total buoyancy btot = N2z + b is proportional to the (negative) density.
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The Ertel PV for (1)–(3) is

q = ω ·
(

N2ẑ +∇b
)
= N2ωz + ω · ∇b, (4)

where ω = ∇× u = (ωx, ωy, ωz) is the vorticity [24]. The PV evolves according to

Dq
Dt

= ν
(

N2ẑ +∇b
)
· ∇2ω + κω · ∇2(∇b)

= νN2∇2ωz + ν∇b · ∇2ω + κω · ∇2(∇b). (5)

In the absence of viscosity and diffusion, Dq/Dt = 0 and the PV is materially conserved.
When ν, κ > 0, the evolution of q is more complicated. Due to the nonlinear dependence of
q on ω and b, the viscous and diffusive terms in the q Equation (5) are not simply diffusive.
Viscous effects can modify q by viscous diffusion of the vorticity into the direction of the
buoyancy gradient, either by diffusion of ωz along the background buoyancy gradient N2

or by diffusion of ω in the direction of ∇b. In addition, buoyancy diffusion can modify
q by diffusion of the buoyancy gradient into the direction of the vorticity. As a result, as
indicated by [15], viscosity and diffusion may create PV even when none is initially present.

The potential enstrophy is the integrated square PV, and is given by

V =
1
2
〈q2〉, (6)

=
1
2

N4〈ω2
z〉+ N2〈ωz ω · ∇b〉+ 1

2
〈(ω · ∇b)2〉, (7)

where 〈·〉 denotes domain average. Assuming no flux through the boundary, the potential
enstrophy satisfies

dV
dt

= 〈νN2q∇2ωz + νq∇b · ∇2ω + κqω · ∇2(∇b)〉

= Dν + Dκ , (8)

where Dν is the term with viscosity ν and Dκ is the term with buoyancy diffusivity κ. The
viscous and diffusive terms are not necessarily dissipative, and may be a source or sink of
potential enstrophy.

2.2. Scale Analysis

We can estimate the magnitude of the potential enstrophy in stratified turbulence
using scale analysis. In stratified turbulence with large buoyancy Reynolds number
Reb = ε/(νN2), where ε is the kinetic energy dissipation rate, there should be a Kol-
mogorov inertial range at small scales between the Ozmidov and Kolmogorov scales

LO =
( ε

N3

)1/2
, η =

(
ν3

ε

)1/4

, (9)

respectively [25–27], since LO/η ∼ (Reb)
3/4 [28,29]. Since the PV is a function of the

velocity and buoyancy gradients, it should be dominated by the smallest scales when such
an inertial range is present.

Consider the third term in (7), which is likely to be the largest term when the Reynolds
number is large since it depends on the squared vorticity and squared buoyancy gradient.
Using Kolmogorov scaling gives ω ∼ υ/η, where υ = (νε)1/4 is the Kolmogorov velocity
scale. We assume that the small-scale buoyancy fluctuations are b ∼ υN. As a result,
estimating V using the third term in (7) gives

V ∼ N2ε2

ν2 ∼ N4U2

L2 Re2Fr2 ∼ N4U2

L2 RebRe, (10)
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where the second and third ∼ use Taylor’s hypothesis ε ∼ U3/L [6], U and L are the large-
scale velocity and length scales, Re = UL/ν is the Reynolds number, and Fr = U/(NL) is
the Froude number. Note that N4U2/L2 is the magnitude of the potential enstrophy from
the large energy-containing scales. This estimate suggests that stratified turbulence may
have significant potential enstrophy at small scales, and that potential enstrophy increases
with increasing Re and Reb.

2.3. Numerical Approach

Simulations are performed in a cubic domain with size 2π and periodic boundary con-
ditions. The initial conditions for a two-dimensional standing wave with unit wavenumber,
following [19], are

u = a sin x cos z, (11)

w = −a cos x sin z, (12)

b = 0, (13)

where a > 0 is the amplitude and v = 0. In the linear equations, these initial conditions
excite a standing wave

u = a sin x cos z cos(ωt), (14)

w = −a cos x sin z cos(ωt), (15)

b =
aN2

ω
cos x sin z sin(ωt), (16)

with frequency ω = N/
√

2. Since the initial buoyancy and vertical vorticity are zero, the
initial standing wave has no PV. Standing waves eventually break and generate small-scale
turbulence [19,20]. In particular, the standing wave (14)–(16) is overturning and subject to
convective instability when

√
2a/N > 1. In our simulations, the wave amplitude is fixed at

a = 1. Stratification and the overturning of the standing wave are controlled by varying N.
Equations (1)–(3) are simulated with a Fourier-based spectral transform model. Time-

stepping is third-order Adams–Bashforth and the viscous and diffusion terms are handled
with a Crank–Nicolson approach [30]. Aliasing is removed using the two-thirds rule, so
with n3 grid points, wave vectors k = (kx, ky, kz) are truncated at |kx|, |ky|, |kz| = kT = n/3,
i.e. we keep −n/3 < kx, ky, kz < n/3. The resolution n is chosen to resolve the Kolmogorov
scale with ηkT ≥ 2.5, where η is calculated using the maximum value of ε = ν〈|ω|2〉. As
discussed below, high resolution is required to resolve the viscous terms in the q equation
properly. While recent studies have shown that stratified turbulence may be sensitive to
increasing Prandtl number Pr = ν/κ at Re-values that are attainable in DNS [31,32], in this
work we set Pr = 1 for computational efficiency, so κ = ν. A small amount of random
noise is added to the initial velocity, with uniform distribution and magnitude a/100, to
facilitate three-dimensionalization. This noise introduces a small amount of initial q and V
that is quickly removed by viscous and diffusion terms, as shown below.

Since the initial standing wave has unit velocity and unit wavenumber, Equations (1)–(3)
can be interpreted as dimensionless with ν = 1/Re, N = 1/Fr, and unit turnover time.
We use ν, N and Re, Fr interchangeably in what follows to distinguish stratification and
viscosity. Several simulations at different Re and Fr are discussed below and summarized
in Table 1. The control simulation (Main) has n = 1024, N = 1 (Fr = 1), ν = 0.0003
(Re = 3333), and

√
2a/N =

√
2, so the standing wave overturns and quickly breaks down

into stratified turbulence. Sensitivity to Reynolds number is explored in simulations High
Visc and Low Visc, in which Re is decreased to 1667 and increased to 4500. Sensitivity to
stratification is explored in simulations High Strat and Higher Strat, in which Fr is reduced
to 1/

√
2 and 1/2. Finally, sensitivity to resolution is investigated in simulations Low Res

and High Res by reducing and increasing the resolution to 512 and 1536 grid points.



Atmosphere 2023, 14, 881 5 of 13

Table 1. Summary of simulations.

Run Fr
√

2a/N Re n Max ε ηkT Max Reb

Main 1
√

2 3333 1024 0.0037 3.2 12.2
High Visc 1

√
2 1667 512 0.0047 2.5 7.9

Low Visc 1
√

2 4500 1728 0.0060 3.8 26.9
High Strat 1/

√
2 1 3333 1024 0.0052 2.9 8.6

Higher Strat 1/2 1/
√

2 3333 1034 0.0030 3.3 2.5
Low Res 1

√
2 3333 512 0.0041 1.5 13.8

High Res 1
√

2 3333 1536 0.0040 4.6 13.2

3. Results
3.1. Main Simulation

We begin by examining the potential enstrophy evolution in the Main simulation,
which has Fr = 1, Re = 3333, and a large, overturning wave amplitude. Time series of
kinetic and potential energy, energy dissipation, turbulent Froude number, and potential
enstrophy are shown in Figure 1. The wave period for this simulation is T = 2π

√
2 ≈ 8.9.

The wave makes two periods with negligible dissipation. By t = 20, the energy dissipation
begins increasing and the energy begins to decrease more significantly. The potential
energy dissipation reaches a maximum at t = 26, followed by the maximum kinetic energy
dissipation at t = 30. Table 1 gives ηkT = 3.2 and Reb = 12.2, both of which are based
on the maximum value of ε in the simulation, which is also given in Table 1. Figure 1c
shows that the turbulent Froude number Frt = ε/(NEK) . 0.1 , where Frt is defined using
velocity scale

√
EK, where Ek is the domain-averaged kinetic energy, and length scale from

Taylor’s hypothesis [29].
The potential enstrophy in this simulation is shown in Figure 1d. The potential

enstrophy is negligible until t ≈ 24. The inset shows V at early times with a log scale; the
small potential enstrophy introduced by the random noise decays rapidly until t ≈ 15, and
then begins to increase. A maximum value of V = 1.9 is reached at t = 29. To put this
number in perspective, we can calculate the potential enstrophy that would be associated
with the initial velocity field if it was rotated by 90◦:

V0 =
1
2

N4〈
(

ω0
y

)2
〉 = 1

2
, (17)

where ω0
y is the vorticity associated with (11)–(13). Therefore, we can see that significant

potential enstrophy is generated in this simulation, about four times larger than what one
would expect from the initial velocity field and stratification alone.

Vertical (x, z) slices of the total buoyancy btot, normal component of vorticity ωy, and
potential vorticity q are plotted in Figure 2 for a selection of times from t = 16, before the
onset of significant dissipation, to t = 36, when the turbulence is decaying. First, we discuss
the evolution of the buoyancy and normal vorticity (left and centre columns of Figure 2).
At t = 16, the buoyancy (Figure 2a) shows the structure of the standing wave with some
overturning isopycnals, as expected. At t = 20, the overturning isopycnals have collapsed
(Figure 2b) with significant spanwise vorticity in the overturning regions (Figure 2g). By
t = 24, the buoyancy field of the standing wave has been significantly altered by breaking
(Figure 2c), and smaller spanwise vortices are present (Figure 2h). At t = 28 and 36, the
wave has largely broken down into turbulence, with the vorticity dominated by small
scales (Figure 2d–e,i–j).
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Figure 1. Time series from the Main simulation of (a) kinetic and potential energy, (b) kinetic and
potential energy dissipation, (c) turbulent Froude number, and (d) potential enstrophy. The inset in
(d) shows potential enstrophy on a log scale to illustrate the decay of the initial potential enstrophy
from random noise.

The potential vorticity is shown in the right column of Figure 2. There is no significant
PV visible until t = 24. At t = 24, thin bands of positive and negative PV appear, mainly in
the lower overturning region (similar bands are apparent in the upper overturning region
at other y). By t = 28, the PV structure has become more rich and complex, with both
small-scale bands and vortex structures visible. At this time, the PV is still mainly located
in the upper and lower breaking regions, avoiding z = 0, π, and 2π. This time corresponds
to the maximum V in Figure 1d. The PV occupies more of the domain at t = 36, but the
amplitude is lower, consistent with the decay of V seen in Figure 1d.

To investigate the increase in PV around t ≈ 24, time series of the terms in the potential
enstrophy Equation (8) are shown in Figure 3. These terms are negligible for t . 24, but
begin to deviate from zero for t & 24. From 24 < t < 26, the buoyancy diffusivity term Dκ

dominates, and is responsible for the initial creation of V as the wave begins to break. At
these times, the viscous terms are slightly dissipative. V grows rapidly from 24 < t < 26,
but the growth slows around t = 26 (Figure 1d). At t = 26, the growth in V increases again,
this time, as seen in Figure 3, due to a sharp increase in the viscous term Dν. After around
t = 28, the combined viscous and diffusion term is negative and V decreases, apart from a
short increase in V around t = 36.
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Figure 2. Vertical (x, z) slices of (a–e) btot, (f–j) ωy, and (k–o) q at (from top to bottom) t = 16, 20, 24,
28, and 36 from Main simulation. All slices are shown at y = 0.

Figure 3 indicates that the initial generation of PV, as seen in the rise in V, is a result of
the κ term in the V equation, which corresponds to diffusion of the buoyancy gradient into
the direction of vorticity. The κ term can be decomposed as

Dκ = κqω · ∇2(∇b) = κqωx∇2 ∂b
∂x

+ κqωy∇2 ∂b
∂y

+ κqωz∇2 ∂b
∂z

. (18)

For 24 < t < 26, Dκ is dominated by the second term, which involves ωy and ∂b/∂y (not
shown). The mechanism of PV generation by this term is illustrated in Figure 4, which
shows a vertical slice of q and two horizontal slices of b at t = 24. The flow is still mainly
two-dimensional at this time, but three-dimensionalization of the buoyancy field is visible
along a few lines parallel to the y-axis in Figure 4b,c. The planes z = z1 and z = z2 cut
through bands of PV in the lower breaking region. Along z1, the PV bands occur precisely
where the buoyancy field is three-dimensionalizing, as seen in Figure 4b, where the ticks
mark the locations of the PV along z1 in Figure 4a. Similarly, the PV bands along z = z2
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occur at the same location as the buoyancy three-dimensionalization at that height. Three-
dimensionalization of b promotes growth of ∂b/∂y, which diffuses into the direction of
ωy, which at this time is still the dominant component of the vorticity. Therefore, PV first
emerges at the locations where three-dimensionalization of the buoyancy develops, via the
second term in (18).

Figure 3. Time series of the terms in the potential enstrophy Equation (8) from the Main simulation.

Figure 4. (a) Vertical (x, z) slice of q, and horizontal (x, y) slices of b through (b) z = z1 and (c) z = z2,
for the Main simulation at t = 24. Note that z1 and z2 are shown in (a). The vertical line segments in
(a) mark the locations of significant PV along z = z1 and z = z2; these locations are marked with ticks
in (b) for z1 and (c) for z2, respectively.

Kinetic energy spectra E(k) and potential enstrophy spectra V(k), plotted as functions
of the total wavenumber k = |k|, are shown in Figure 5. Spectra are calculated at t = 28,
which is the time of maximum potential enstrophy. As expected, the energy spectrum
is peaked at the primary standing wave wavenumber k = 1, oscillates at the lowest few
wavenumbers, and then falls off like a power law until the Kolmogorov wavenumber,
which is marked in the figure. By contrast, the potential enstrophy spectrum is peaked
at large wavenumbers. It has a positive slope of around 3.3 for 1 ≤ k ≤ 20. Despite the
fact that V is generated by viscous and diffusive effects, V(k) has a broad peak around
k ≈ 20 to 40, which is just beyond the Ozmidov wavenumber, which is marked in the
figure. However, we will see below that this peak is not set by the Ozmidov wavenumber.

Figure 5. Energy and potential enstrophy spectra from the Main simulation at t = 28. The Ozmidov
and Kolmogorov wavenumbers kO = 1/LO and kd = 1/η are shown.
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3.2. Sensitivity to Reynolds and Froude Numbers

We investigate the dependence of viscous and diffusive PV generation on Reynolds
number with two additional simulations with lower and higher Reynolds numbers. The
Reynolds number is varied by changing ν, and the resolution is adjusted to resolve the
Kolmogorov scale. Time series of the potential enstrophy for these simulations, along with
the Main simulation, are shown in Figure 6a. With smaller Re, the maximum potential
enstrophy is reduced from around 1.9 to 0.4. The time of maximum potential enstrophy
is also delayed, from around t = 28 in the Main simulation to t = 37 in the High Visc
simulation. On the other hand, for the Low Visc simulation with larger Re, the maximum
potential enstrophy is much larger, reaching a value of around 64 at t = 27, which is slightly
earlier than the Main simulation. Potential enstrophy spectra from these simulations
are shown in Figure 7a. The potential enstrophy spectra for the Main and High Visc
experiments are similar at small k but increase with increasing Re at larger k, indicating
that the increased potential enstrophy with higher Reynolds number is primarily at small
scales going from High Visc to Main. However, the potential enstrophy in the Low Visc
case is increased at all scales, not just small scales.

Figure 6. Time series of potential enstrophy from simulations with (a) different Re and (b) different
Fr. A log scale is used in (a) with a linear scale in the inset.

Time series of potential enstrophy from simulations with increased stratification are
shown in Figure 6b. Increasing the stratification delays the onset of wave breaking and,
as a result, the growth in potential enstrophy is also delayed. The High Strat simulation
has
√

2a/N = 1 and is therefore on the threshold of convective instability; this simulation
reaches a maximum potential enstrophy of 3.1 at t = 49, which is larger and later than
in the Main simulation. The Higher Strat simulation has

√
2a/N = 1/

√
2 and reaches

a maximum V of 2.5 at t = 82. This is a smaller maximum V than in the High Strat
simulation, and it also occurs later. Potential enstrophy spectra from these simulations are
shown in Figure 7b. The peak in potential enstrophy remains around k ≈ 20 to 40, even
as the Ozmidov wavenumber, which is shown in the figure, increases from 16 to 37 with
increasing stratification. The peak in the potential enstrophy spectrum therefore does not
scale with the Ozmidov wavenumber. In addition, the large-scale potential enstrophy, with
k < 20, increases with increasing stratification.

To make sense of the dependence of V on viscosity and stratification, we can compare
our simulation results with the prediction (10). The dependence on stratification in partic-
ular is difficult to understand, because the maximum V seems to increase, then decrease,
with increasing stratification. However, analyzing the dependence of V on Fr or N alone
presents an incomplete picture, because the strength of the turbulence, as captured by
the maximum ε, also changes with stratification (Table 1). Equation (10) suggests that



Atmosphere 2023, 14, 881 10 of 13

the maximum V should depend on ν, N, and ε. Figure 8 shows the maximum V plotted
against N2ε2/ν2, where the maximum value of ε is used (maximum ε generally occurs
around the same time as maximum V). While the agreement with (10) is not particularly
good, we do find that maximum V increases with increasing N2ε2/ν2, which accounts
for the non-monotonic dependence on stratification. In all cases, the maximum potential
enstrophy is less than what was predicted by (10), but the Low Visc case, which has the
highest Re and Reb, is closest to (10).

Figure 7. Potential enstrophy spectra from simulations with (a) different Re and (b) different Fr,
at the time of maximum potential enstrophy. The vertical line segments mark the Kolmogorov
wavenumbers in (a) and the Ozmidov wavenumbers in (b).

Figure 8. Maximum potential enstrophy V plotted against N2ε2/ν2, where the maximum value of
ε is used, for the Main simulation (black), simulations with different stratifications (High Strat and
Higher Strat, in blue), and simulations with different viscosities (Low Visc and High Visc, in red).
The reference lines are V = N2ε2/ν2 (solid) and V = 0.01N2ε2/ν2 (dashed).
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3.3. Sensitivity to Numerical Resolution

High spatial resolution is required to accurately resolve the viscous and diffusive
terms in the PV equation. Under-resolution can lead to spurious generation of PV. The
dependence on resolution is illustrated in Figure 9, which shows time series of V for
the Main simulation and simulations with higher and lower resolution. The Low Res
simulation, which has ηkT = 1.5, has a maximum V of around 4.6. This value is more
than double the maximum V of 1.9 in the Main simulation, which has ηkT = 3.2. By
contrast, the High Res simulation, which has ηkT = 4.6, has a maximum V of 1.8, which
is just slightly smaller than the value in the Main simulation. The timing of maximum V
is slightly accelerated in the Main simulation compared to the High Res simulation, but
these simulations are much closer to one another than to the Low Res case. Inadequate
resolution results in accelerated and artificially high potential enstrophy growth.

Figure 9. Time series of potential enstrophy from simulations with different resolutions.

4. Discussion

A breaking standing gravity wave is a useful case for studying viscous and diffusive
generation of PV in stratified turbulence because such flows have no initial PV. Any PV
that develops must come from viscous and diffusive effects. Our simulations indicate
that significant PV and potential enstrophy are created as these waves break, much more
than would be expected from the velocity and length scales of the breaking wave. Indeed,
more potential enstrophy is created at higher Reynolds numbers, because even though the
viscosity and diffusion coefficients are smaller, the velocity and buoyancy gradients in the
turbulence are correspondingly larger. The Reynolds numbers in this work, while large
compared to what was possible in [15], are still small compared to geophysical fluid values.
It therefore seems likely that viscous and diffusive generation of PV from breaking gravity
waves may be even more significant in the atmosphere and ocean.

The mechanism of the initial PV generation is diffusion of spanwise buoyancy fluctua-
tions, which develop as the waves three-dimensionalize, into the direction of the spanwise
vorticity, which is initially dominant. As a result, the initial PV generation occurs at
small length scales associated with three-dimensionalization of the flow. Once significant
potential enstrophy is present, spectra are peaked at intermediate wavenumbers 20–40,
corresponding to scales smaller than the wavelength of the breaking wave, but much
larger than the Kolmogorov scale. Interestingly, this intermediate scale does not vary like
the Ozmidov scale, and indeed does not change much with Reynolds or Froude number,
indicating that it might be related to the scale of the breaking wave. The potential enstrophy
at large scales, while relatively small, increases with increasing Reynolds numbers and
decreasing Froude numbers.

The mechanism of PV generation in breaking standing waves is somewhat different
from the Taylor–Green vortices considered by [15]. The Taylor–Green vortices were oriented
so that they had no initial PV, like the standing wave. Potential enstrophy in their case
was initially created at large scales, followed by more intense generation at small scales;
they confirmed that the small-scale generation was due to viscous and diffusive effects
rather than transfer from large scales. The standing wave does not have significant large-
scale potential enstrophy at early times. However, for both the Taylor–Green vortex
in [15] and our standing wave, viscous and diffusive effects are primarily a source of
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potential enstrophy; dissipation takes over only at late times. By contrast, for the decaying
turbulence with Gaussian initial conditions considered in [15], viscous and diffusive effects
were primarily dissipative. More work is required to determine if the differences between
our results and the pioneering work of [15] are due to the different Reynolds numbers,
initial configuration, or the presence of stratification. In addition, it would be interesting to
examine the role of viscous and diffusive effects in stratified turbulence with large-scale PV
from random initial conditions or forcing.

Viscous and diffusive generation of potential enstrophy is sensitive to numerical
resolution. DNS requires resolution of the Kolmogorov scale. Resolutions with ηkT ≈ 1
are typical for DNS of breaking gravity waves [23] and decaying stratified turbulence [33].
However, our findings show that under-resolution can lead to spurious generation of PV
when ηkT = 1.5. Instead, larger values of ηkT ≥ 2.5 are needed for robust simulations of
potential enstrophy generation. Such high resolution is not routinely employed for DNS
of stratified turbulence. This finding, while perhaps not surprising given the small-scale
mechanisms at play, suggests that some DNS studies of stratified turbulence and gravity
wave breaking may have unrealistically high potential enstrophy due to under-resolution
of the viscous generation processes. More work is required to understand the implications
on the dynamics of turbulence with artificially enhanced potential enstrophy.
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