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Instability and breakdown of a vertical vortex
pair in a strongly stratified fluid
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The dynamics of a counter-rotating pair of columnar vortices aligned parallel
to a stable density gradient are investigated. By means of numerical simulation,
we extend the linear analyses and laboratory experiments of Billant & Chomaz
(J. Fluid Mech. vol. 418, p. 167; vol. 419, pp. 29, 65 (2000)) to the fully nonlinear,
large-Reynolds-number regime. A range of stratifications and vertical length scales is
considered, with Frh < 0.2 and 0.1 <Fr z < 10. Here Frh ≡ U/(NR) and Fr z ≡ Ukz/N

are the horizontal and vertical Froude numbers, U and R are the horizontal velocity
and length scales of the vortices, N is the Brunt–Väisälä frequency, and 2π/kz is the
vertical wavelength of a small initial perturbation. At early times with Fr z < 1, linear
predictions for the zigzag instability are reproduced. Short-wavelength perturbations
with Fr z > 1 are found to be unstable as well, with growth rates only slightly less than
those of the zigzag instability but with very different structure. At later times, the
large-Reynolds-number evolution diverges profoundly from the moderate-Reynolds-
number laboratory experiments as the instabilities transition to turbulence. For the
zigzag instability, this transition occurs when density perturbations generated by
the vortex bending become gravitationally unstable. The resulting turbulence rapidly
destroys the vortex pair. We derive the criterion η/R ≈ 0.2/Fr z for the onset of
gravitational instability, where η is the maximum horizontal displacement of the bent
vortices, and refine it to account for a finite twisting disturbance. Our simulations
agree for the fastest growing wavelengths 0.3 <Fr z < 0.8. Short perturbations with
Fr z > 1 saturate at low amplitude, preserving the columnar structure of the vortices
well after the generation of turbulence. Viscosity is shown to suppress the transition to
turbulence for Reynolds number Re � 80/Frh, yielding laminar dynamics and, under
certain conditions, pancake vortices like those observed in the laboratory.

1. Introduction
Vortices are ubiquitous in the atmosphere and oceans. The question of their stability

has important practical and theoretical consequences, since instability provides a
mechanism for energy transfer from large to small scales where dissipation occurs. A
counter-rotating columnar vortex pair oriented parallel to a stable background density
gradient is an elementary model for complicated geophysical vortical flows. Recent
laboratory experiments and linear analyses have shown that such vortices are unstable
to three-dimensional perturbations when density stratification is strong (Billant &
Chomaz 2000a , b, c; see also Otheguy, Billant & Chomaz 2006a, b for the case of
a co-rotating vortex pair). Here we examine the nonlinear, large-Reynolds-number
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evolution of these perturbations, from linear instability at early times to dissipation
(possibly turbulent) at late times. We neglect Coriolis effects as a first approximation
to the atmospheric mesoscale and oceanic submesoscale, which are characterized by
strong stratification but only moderate rotation.

Early work on vortex instability was concerned with neutrally stratified fluids. Lord
Kelvin (1880) studied disturbances to columnar Rankine vortices (Kelvin waves), and
found them to be neutrally stable. Interest in the instability of such disturbances
was revived by Crow (1970), who found that a pair of counter-rotating vortices
is unstable to axially varying displacements of the vortex cores (bending waves).
Unstable bending waves grow via resonance with the oscillating strain field induced
by each vortex on the other. The corresponding growth rate is maximum at axial
scales much larger than the vortex radii. Instabilities also exist at smaller axial
scales, driven by resonances with Kelvin waves of more complicated radial structure
than the bending waves. These instabilities have been studied extensively in the
context of a vortex filament in an externally imposed strain field (Moore & Saffman
1975; Tsai & Widnall 1976; Robinson & Saffman 1984; Vladimirov & Il’in 1988).
A separate approach has focused on the instability of two-dimensional flows with
elliptical streamlines to three-dimensional perturbations (Bayly 1986; Pierrehumbert
1986; Waleffe 1990). Both sets of short-wave instabilities are referred to as elliptic
instabilities (e.g. Kerswell 2002). Laboratory experiments by Thomas & Auerbach
(1994) and Leweke & Williamson (1998) demonstrated that a counter-rotating vortex
pair undergoes an antisymmetric short-wave instability. The latter authors suggested
that the instability is driven by the resonance mechanism of the elliptic instability,
and called it a cooperative elliptic instability. Linear simulations and analysis (Billant,
Brancher & Chomaz 1999; Le Dizès & Laporte 2002; Sipp & Jacquin 2003) and
direct numerical simulations (Laporte & Corjon 2000) support this view.

Density stratification modifies the elliptic instability by changing the dispersion
relation of the Kelvin waves. Miyazaki & Fukumoto (1992) showed that the elliptic
instability of a strained uniform vortex aligned with a stable density gradient is
inhibited by stratification and disappears when the Brunt–Väisälä frequency N

exceeds the vorticity. However, they found that other instabilities connected with
higher-order resonances emerge and persist at strong stratifications. For the case
of a vortex pair, Billant & Chomaz (2000 c) showed that the cooperative elliptic
instability is suppressed when Frh < 0.2. Here Frh ≡ U/(RN), where U and R are the
propagation speed and radius of the vortex pair (defined in § 2.1 below). At these
strong stratifications they found a distinct antisymmetric instability, which they call
the zigzag instability. Like that of Crow (1970), the zigzag instability bends and twists
the vortex cores horizontally with little change to their internal structure. It has been
studied with laboratory experiments, multiple-scale analysis, and linear numerical
simulations (Billant & Chomaz 2000a , b, c, respectively).

The linear analysis of Billant & Chomaz (2000 b) employs an asymptotic expansion
in small Frh and Fr z ≡ Ukz/N , where kz is the vertical wavenumber of the perturbation
to the vortex pair. It is therefore restricted to kz � N/U , or vertical scales much
larger than 2πU/N . In this strongly stratified regime, the dimensionless equations for
vortex motion describe decoupled layers of two-dimensional solenoidal flow at lowest
order in Frh and Fr z (Drazin 1961; Riley, Metcalfe & Weissman 1981; Lilly 1983).
Buoyancy and vertical velocity are slaved to the horizontal velocity via hydrostatic
balance, and gravity waves are filtered out. Billant & Chomaz (2000 b) showed that
the slaved vertical velocity induced by a bending and twisting perturbation of the
dipole stretches the vorticity in a way that amplifies the perturbation. This is the basic
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mechanism of the zigzag instability. Numerical simulations of the linear problem are
in broad agreement with the analytical work (Billant & Chomaz 2000 c). Given that
the fastest growing vertical wavenumber has Fr z ≈ 0.7, and thus is not formally small,
this agreement is remarkable.

In the laboratory, the zigzag instability grows to large amplitude while remaining
laminar (Billant & Chomaz 2000a). Vortices at different vertical levels, with thick-
nesses corresponding to Fr z ≈ 0.7, appear to decouple from one another and evolve
independently. Consequently, it has been proposed (e.g. Billant & Chomaz 2000a)
that the zigzag instability may explain the emergence of layering in simulations of
homogeneous stratified turbulence, which has been observed for columnar vortex
forcing (e.g. Herring & Métais 1989; Waite & Bartello 2004; Lindborg 2006), decaying
Taylor–Green vortices (Riley & deBruynKops 2003), and stratified shear layers
(Basak & Sarkar 2006). However, such simulations are often far from laminar,
exhibiting three-dimensional turbulent motion at scales of O(U/N ) when the
Reynolds number is sufficiently large (for a discussion of the strongly stratified
limiting dynamics with Fr z =O(1), see Billant & Chomaz 2001). Does the zigzag
instability likewise transition to turbulence at large Reynolds number? The experi-
ments of Billant & Chomaz (2000a), where Re ≡ UR/ν ≈ 400 (ν is the kinematic
viscosity), do not preclude this possibility.

In this work, we use numerical simulations to examine the full nonlinear evolution
of perturbations to a counter-rotating vortex pair in a strongly stratified fluid. Our
primary aim is to evaluate how the linear predictions of Billant & Chomaz (2000 b, c)
are manifested at finite amplitude, and particularly to determine whether the zigzag
instability saturates and breaks down into turbulence (and if so, how). We also consider
the dynamics of short-wave perturbations with Fr z > 1, which have stability properties
that are distinct from the zigzag instability. We obtain finite-amplitude dynamics that
are significantly different from the laboratory findings of Billant & Chomaz (2000a);
indeed, the vortices break down into turbulence for every Fr z considered. We argue,
however, that these results are consistent with the high Reynolds number of our
simulations.

In order to explore a wide region of parameter space, we have conducted a large
set of numerical experiments ( ≈ 50), each employing O(106)–O(107) grid points and
O(103) time steps. The temporal and spatial resolution adopted is adequate to capture
the large-scale aspects of the instability and breakdown of the vortex pair, while
leaving the handling of grid-scale features to a subgrid-scale model. Direct numerical
simulation (DNS) with Reynolds number high enough to capture not only secondary
instabilities but also the resulting transition to turbulence would require two orders
of magnitude more computing resources. Given the large number of simulations
performed here, an exclusively DNS approach was not practical. To minimize the
computational effort and maximize the effective Reynolds number of our simulations,
we employ the implicit large-eddy-simulation (ILES) approach (Margolin, Rider &
Grinstein 2006a; Grinstein, Margolin & Rider 2007) that exploits the properties of
high-resolution non-oscillatory finite-volume methods to mimic spectral viscosities
of standard LES (Domaradzki, Xiao & Smolarkiewicz 2003). The suppression of
secondary instabilities by viscosity is examined with DNS and LES, which verify the
accuracy of our approach.

In the following section we outline our equations, methodology, and numerical
model. In § 3, we present simulations of the vortex pair perturbed at distinct vertical
wavelengths spanning a wide range of Fr z on both sides of unity. At early times
and for Fr z < 1, the growth rates and instability structures agree well with the linear
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analysis of Billant & Chomaz (2000 c). Smaller perturbations, however, behave very
differently. In all cases, the linear instability ultimately saturates and gives way to
turbulence. Viscosity is shown to suppress the development of turbulence in line with
the laboratory experiments. Discussion and conclusions are given in § 4. Sensitivity
tests to model set-up, resolution, and numerics are described in Appendix A, and
mathematical details of the analysis in § 3 are given in Appendix B.

2. Formulation of the problem
2.1. Equations and initial conditions

Following Billant & Chomaz (2000 b, c), we consider a uniformly stratified Boussinesq
fluid with a Lamb–Chaplygin vortex dipole (Lamb 1895; Chaplygin 1903). The
Navier–Stokes equations with the Boussinesq approximation are

Du
Dt

= −∇φ − g
ρ

ρ0

ê3 + ν∇2u, (2.1a)

Dρ

Dt
= −dρ

dz
w + κ∇2ρ, (2.1b)

∇ · u = 0, (2.1c)

where D/Dt ≡ ∂/∂t + u · ∇, ∇ ≡ ê1∂/∂x + ê2∂/∂y + ê3∂/∂z, u ≡ uê1 + vê2 + wê3 is the
velocity, ρ is the density perturbation from a vertically varying background profile
ρ(z), ρ0 is a constant reference density, φ is the dynamic pressure divided by ρ0, g is
the gravitational acceleration, and ν is the kinematic viscosity. Density stratification
is assumed to result from the variation of salt concentration in water, and so κ is the
corresponding diffusivity. The Brunt–Väisälä frequency N is given by

N2 ≡ − g

ρ0

dρ

dz
, (2.2)

and is assumed to be constant.
The Lamb–Chaplygin dipole is an exact solution to the two-dimensional Euler

equations and therefore also, when oriented vertically, to (2.1) with ν ≡ κ ≡ 0. It gives
a good approximation to the vortices generated by the opening of a pair of flaps in
laboratory experiments (cf. Leweke & Williamson 1998; Billant & Chomaz 2000a).
In cylindrical polar coordinates (r, θ, z), where

x − x0 ≡ r cos θ, (2.3a)

y − y0 ≡ r sin θ, (2.3b)

the dipole is defined by its two-dimensional stream function S0, where

S0(r, θ) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2UR

μ1J0(μ1)
J1 (μ1r/R) sin θ, r � R,

−Ur

(
1 − R2

r2

)
sin θ, r > R,

(2.4)

or its vertical component of vorticity (hereafter vertical vorticity)

ωz0(r, θ) ≡ − ∇2
hS0 ≡

⎧⎨
⎩

μ2
1

R2
S0, r � R,

0, r > R,

(2.5)
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Figure 1. Horizontal (x,y) slices of Lamb–Chaplygin stream function S0 (a) and vertical
vorticity ωz0 (b) in the frame moving with the dipole with x0 = y0 = 0 in (2.3). Negative
contours are dashed. The direction of propagation is to the right.

where U is the dipole propagation speed, R is its radius, J0 and J1 are the zeroth- and
first-order Bessel functions, μ1 = 3.8317 is the first root of J1, and ∇h ≡ ê1∂/∂x+ê2∂/∂y.
Here S0 is related to the horizontal velocity by uh0 ≡ ∇h × (S0 ê3)† and ωz is the vertical
component of the vorticity ω ≡ ∇ × u. The dipole, which has ρ ≡ 0 and w ≡ 0, consists
of a pair of counter-rotating vertical vortices inside a cylinder of radius R centred
at (x0,y0); outside the cylinder, the flow is irrotational. Equations (2.4) and (2.5) are
valid in a frame of reference moving with the dipole; in the laboratory frame, the
dipole moves with speed U in the direction of positive x. The maximum speed occurs
at r = 0 and is equal to (1−1/J0(μ1))U ≈ 3.5 U in the laboratory frame. The structure
of the dipole in the moving frame is illustrated in figure 1.

In a stratified fluid, the vortex pair (2.4) is a dipole of potential vorticity (PV)

Π ≡ 1

ρ0

ω · ∇ (ρ + ρ) , (2.6)

which satisfies
DΠ

Dt
= 0, (2.7)

when ν ≡ κ ≡ 0. The Lamb–Chaplygin dipole has PV Π0 ≡ − ωz0N
2/g. The strength

of the stratification is expressed by the smallness of the horizontal Froude number,
Frh = U/(NR), which is the ratio of the buoyancy time scale 1/N and the vortex
turnover time R/U . Laboratory experiments and linear stability analysis indicate
that the zigzag instability requires Frh < 0.2; at larger Froude numbers, the elliptic
instability dominates (Billant & Chomaz 2000a , c). We restrict our attention to
this strongly stratified regime. Diffusive effects are characterized by the Reynolds
number, Re = UR/ν, and Schmidt number Sc ≡ ν/κ . Since the initial flow and Brunt–
Väisälä frequency are independent of z, perturbations to the Lamb–Chaplygin dipole
may be expressed as a sum of modes of the form⎛

⎝ û
ρ̂

φ̂

⎞
⎠ (x, y, t) eikzz + c.c., (2.8)

† This definition of the stream function follows Batchelor (1967), and differs in sign from that of
Billant & Chomaz (2000 b).



244 M. L. Waite and P. K. Smolarkiewicz

y

λz

λz

λz

z = 0

Maximum
displacement
levels

Inflection
levels

λz

3
4

1
2

1
4

–R R0η η

Figure 2. Vertical (y,z) slice of the perturbed vertical vorticity ω0z given by (2.5) with x0 = 0,
y0 = η cos(kzz), η = R/2, shown on the plane x =0. Contours are as in figure 1.

where c.c. is the complex conjugate. The vertical wavenumber kz of a single mode
defines a vertical Froude number, Fr z = Ukz/N; thus Fr z is the dimensionless
perturbation wavenumber. In the limit of small perturbations, the dependence on
t in (2.8) has the form eσ t .

At t = 0, we perturb the Lamb–Chaplygin dipole by displacing its centre in the
y-direction with a cosine in the vertical, i.e. by taking

x0 = 0, y0 = η cos(kzz), (2.9)

in (2.3). The perturbed dipole has the form

S∗
0 (x

∗, y∗ − η∗ cos z∗) = S∗
0 (x

∗, y∗) − η∗ cos z∗ ∂S∗
0

∂y∗ +
1

2
η∗2

cos2 z∗ ∂2S∗
0

∂y∗2
+ O(η∗3

), (2.10)

where ∗ denotes a dimensionless variable, S∗
0 ≡ S0/(UR), {x∗, y∗, η∗} ≡ {x, y, η}/R,

and z∗ ≡ kzz. The perturbation therefore excites only a single vertical mode (i.e. it has
the form of equation (2.8)) at first order in η/R; higher harmonics n kz are excited
at higher orders (η/R)n. Our initial displacement is small, with η/R = 0.001. The
largest displacement is at z = 0, λz/2, . . . , and so we refer to these levels as maximum
displacement levels; likewise, the largest curvature is at z = λz/4, 3λz/4, . . . , which we
call the inflection levels (see figure 2). Our perturbation of a single mode mimics the
forced experiment of Billant & Chomaz (2000a), and their leading-order perturbation
analysis (Billant & Chomaz 2000 b); in the forced laboratory experiment, a particular
vertical scale was excited by applying strips of tape to the flaps.

2.2. Numerical model and experimental set-up

The governing equations (2.1) are integrated numerically using a second-order-
accurate, semi-implicit, flux-form Eulerian, non-oscillatory forward-in-time (NFT)
approach, whose theory, implementation and applications are broadly documented
in the literature (see Smolarkiewicz & Margolin 1998; Smolarkiewicz & Prusa 2002,
2005, and references therein). We assume that all variables are co-located – a choice
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important for the efficacy of the semi-implicit integrals (see Smolarkiewicz et al.
2007) – and write the resulting finite-difference approximations in a compact symbolic
form,

Ψ n+1
i = Ai (Ψ̃ ) + 0.5tF n+1

i . (2.11)

Here Ψ represents a dependent prognostic variable (i.e. a velocity component or ρ);
F is the associated right-hand side in (2.1); A denotes a fully second-order-accurate

two-time-level non-oscillatory advection transport algorithm; and Ψ̃i ≡ Ψ n
i + 0.5tF n

i .
The indices i and n denote the spatial and temporal location on the grid, and t is a

temporal increment. Transporting the auxiliary field Ψ̃ rather than the fluid variable
alone has been shown to be important for the accuracy and stability of forward-
in-time approximations (Smolarkiewicz & Margolin 1993). The NFT algorithm
(2.11) is implemented in the high-performance model EULAG (Smolarkiewicz &
Margolin 2007), in which the transport operator A employs the monotone flux-form
MPDATA algorithm (Smolarkiewicz & Grabowski 1990; Smolarkiewicz & Margolin
1998; Smolarkiewicz 2006). For inviscid dynamics, all prognostic equations in (2.1)
are integrated with (2.11) using, effectively, the trapezoidal rule (Smolarkiewicz &
Margolin 1993), thus treating all forcings on the right-hand side implicitly. Viscous
terms are evaluated explicitly to the first order, and are included in A (Smolarkiewicz
et al. 2007). The semi-implicit NFT formulation leads to a complicated elliptic
problem for pressure (see Appendix A in Prusa & Smolarkiewicz 2003, for the
complete description), which is solved iteratively using the preconditioned generalized
conjugate-residual approach, a non-symmetric Krylov-subspace solver (Smolarkiewicz
& Margolin 2000). For recent succinct reviews of the complete model numerics in
diverse oceanic and atmospheric applications, the interested reader is referred to
Warn-Varnas et al. (2007) and Smolarkiewicz et al. (2007).

There are a few important benefits, relevant for this study, of formulating and
integrating the governing partial differential equations as described. First, transporting
only perturbations of density, while retaining the convective derivative of the
background state on the right-hand side, assures conservation of density perturba-
tions with accuracy to round-off error (section 3a in Smolarkiewicz, Margolin &
Wyszogrodzki 2001), tantamount to preventing dilution of the background strati-
fication due to the implicit viscosity of non-oscillatory advection. Second, truncation
terms of non-oscillatory finite-volume schemes such as MPDATA have been shown
to act as an effective subgrid-scale turbulence model, allowing efficient implicit LES
(Margolin, Smolarkiewicz & Wyszogrodzki 2002, Domaradzki et al. 2003; Margolin
et al. 2006a; Grinstein et al. 2007; Smolarkiewicz & Margolin 2007). These schemes
inhibit spurious grid-scale oscillations by construction, supplying a minimal amount
of dissipation necessary to keep the solution physical. As a result, viscosity and
diffusion are not required for nonlinear numerical stability, and so we let ν and
κ be non-zero only when considering the effects of finite Re and Sc. At a given
resolution, the effective viscosity of the scheme in the inviscid case has been shown
to be at least an order of magnitude smaller than the minimum explicit viscosity
required for DNS (Smolarkiewicz & Prusa 2002). Furthermore, the effective viscosity
is adaptive; the corresponding dissipation rate decreases as one approaches the DNS
regime, where it is much less than the explicit viscous dissipation rate (Margolin,
Smolarkiewicz & Wyszogradzki 2006b). Sensitivity to resolution and comparisons with
a spectral-transform model and standard LES model are given in Appendix A.2, where
the ILES approach is shown to adequately capture the large-scale features of the
instability and breakdown of the vortex pair. For a validation against a related
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Run Frh Fr z λz/R z/x λz/z

1 0.1 0.157 4 1 100
2 0.1 0.314 2 1 50
3 0.1 0.393 1.6 1 40
4 0.1 0.449 1.4 1 35
5 0.1 0.628 1 1 25
6 0.1 0.785 0.8 1 20
7 0.1 0.896 0.7 0.875 20
8 0.1 1.05 0.6 0.75 20
9 0.1 1.26 0.5 0.625 20

10 0.1 1.80 0.35 0.4375 20
11 0.1 2.51 0.25 0.3125 20
12 0.1 5.02 0.125 0.15625 20

13 0.05 0.157 2 1 50
14 0.05 0.314 1 1 25
15 0.05 0.628 0.5 0.625 20
16 0.05 0.785 0.4 0.5 20
17 0.05 1.05 0.3 0.375 20
18 0.05 1.26 0.25 0.3125 20
19 0.05 1.80 0.175 0.21875 20
20 0.05 2.51 0.125 0.15625 20

Table 1. Parameters used in the inviscid simulations. Runs 1–12 are the primary simulations
at Frh = 0.1, and 13–20 are analogous runs at Frh = 0.05.

laboratory experiment with density stratification and gravity waves see Wedi &
Smolarkiewicz (2006).

Boundary conditions for (u, φ, ρ) are periodic in all directions with periods
(Lx, Ly, Lz). In the horizontal, Lx and Ly are set equal to 20R, which is a factor of
two larger than that used in the linear simulations of Billant & Chomaz (2000 c);
we require a larger domain to ensure that gravity waves, which are generated by the
nonlinear evolution of the vortex pair, do not interact with the vortices after exiting
and re-entering the domain. In the vertical, Lz is set to one perturbation wavelength
λz ≡ 2π/kz. Since only a single wavelength is perturbed, the triadic wavevector
interactions of the quadratic nonlinearity in (2.1) are unable to excite larger vertical
scales, making, in theory, a deeper domain unnecessary. We have verified that
long-time integrations with deeper model domains are consistent with this theoretical
prediction. The dipole propagation speed U is chosen such that the vortex turnover
time R/U is the unit time scale, and so Frh is varied by changing N only. We
consider Frh = 0.1 and 0.05, which are both below the zigzag instability threshold of
0.2 (the laboratory value of 0.19 is also used for comparison with Billant & Chomaz
2000a). We concentrate below on the results for Frh =0.1; unless otherwise stated,
behaviour at a given Fr z is qualitatively similar to that at Frh = 0.05. The parameters
for each simulation are given in tables 1 and 2.

A wide range of perturbation wavenumbers kz is examined: Fr z varies by powers of
2 from O(0.1) to O(10), and additional Fr z are included in parameter-space regions
of interest. The horizontal grid spacing is x = R/25, while the vertical grid spacing
z is chosen as the minimum of x and λz/20. The vertical wavelength is therefore
resolved with at least 20 grid points, while the aspect ratio of the grid z/x � 1.
Though it would be preferable to employ an isotropic grid in all simulations, the
computational expense is prohibitive. The robustness of our results to increasing
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Run Frh Fr z λz/R z/x λz/z Re Sc ld/x

21 0.19 0.628 1.9 0.989 48 365 685 1.8
22 0.19 0.628 1.9 0.989 48 450 685 1.6
23 0.1 0.628 1 1 25 365 685 1.8
24 0.1 0.628 1 1 25 600 685 1.2
25 0.1 0.628 1 1 25 700 685 1.0
26 0.1 0.628 1 1 25 1000 685 0.75
27 0.05 0.628 0.5 0.625 20 700 685 1.3
28 0.05 0.628 0.5 0.625 20 1200 685 0.65
29 0.05 0.628 0.5 0.625 20 1400 685 0.56

30 0.19 0.628 1.9 0.989 48 450 1 1.6
31 0.19 0.628 1.9 0.989 48 600 1 1.2
32 0.1 0.628 1 1 25 700 1 1.0
33 0.1 0.628 1 1 25 800 1 0.91
34 0.05 0.628 0.5 0.625 20 1600 1 0.50
35 0.05 0.628 0.5 0.625 20 1800 1 0.46

Table 2. Parameters used in the viscous simulations. Runs 21–29 have Sc = 685, and runs
30–35 have Sc = 1. The Kolmogorov scale ld is defined in § 3.3.

resolution is demonstrated in Appendix A. The time step is set to t = 0.125x/U ,
which ensures an initial Courant number |u|max t/x of 0.35. The integration length
varies with Fr z but continues for several turnover times past the time of maximum
energy dissipation. In most instances, ν and κ are set to 0 to maximize the effective
Reynolds number. For a subset of cases (runs 21–35) we consider finite Reynolds
numbers, with Sc =1 and 685, the latter representative of salt in water.

3. Results
The evolution of the vortices proceeds through three phases: adjustment to the

initial conditions, exponential growth of the perturbation, and nonlinear evolution.
These different regimes are manifested in the evolution of the fluctuation energy,
defined as follows. The velocity can be separated into its vertical average u and
fluctuation u′ ≡ u − u, where

u ≡ 1

Lz

∫
u dz . (3.1)

The kinetic energy

EK ≡ 1

V

∫
u2 dx, (3.2)

where V ≡ LxLyLz, therefore has vertical average and fluctuation contributions given
by

EK ≡ 1

V

∫
u2 dx, E′

K ≡ 1

V

∫
u′2 dx . (3.3)

A similar decomposition can be applied to the available potential energy

EP ≡ 1

V

g2

ρ2
0N

2

∫
ρ2 dx . (3.4)

The unperturbed Lamb–Chaplygin dipole has E′
K ≡ 0 and EP ≡ E′

P ≡ 0. Three-
dimensional linear instability leads to exponential growth in E′

K and E′
P (EP remains
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� E′
P ). In what follows, fluctuations from the vertical average are employed in place

of deviations from the Lamb–Chaplygin dipole, a relation that is exact for all non-
zero vertical wavenumbers. The evolution of two-dimensional perturbations to (2.4)
requires a more careful decomposition and is not considered here. The symmetric
Lamb–Chaplygin dipole is believed to be stable to two-dimensional perturbations,
though subtle questions remain unanswered (see Meleshko & van Heijst 1994).

Time series of EK , E′
K and E′

P are plotted in figure 3 for a selection of Fr z ranging
from 0.157 to 5.02 by factors of 2. At t =0, E′

K/E0 =O(10−6), so the initial fluctuation
energy implied by the sinusoidal displacement of the vortices is indeed small. Since
the perturbation is not in hydrostatic balance, there is an initial transfer of kinetic to
potential energy. Oscillations in E′

P are visible at early times for small Fr z and are
due to internal gravity waves excited by the adjustment of the fluid to hydrostatic
balance.

3.1. Linear regime

After the initial adjustment, the fluctuation kinetic and potential energies grow
exponentially for several turnover times (with the exception of Fr z = 5.02). The
growth rates are plotted against Fr z in figure 4. They agree well with the linear
calculations of Billant & Chomaz (2000 c) for Fr z < 1 (shorter perturbations were not
considered in their work), reaching a maximum of nearly 0.7R/U for 0.6 <Fr z < 0.7.
The dependence on Frh is secondary. The growth rate decreases as Fr z is increased
above 0.7, and has a local minimum at Fr z ≈ 2. Further increase in Fr z results in a
small increase in σ , which is around 80% of the maximum zigzag growth rate at
Fr z = 2.51. Since the linear zigzag instability theory of Billant & Chomaz (2000 b)
requires Fr z < 1, it appears that a distinct short-wave instability is acting at vertical
scales with kz >N/U . When Fr z = 5.02 (figure 3f ), the fluctuation energy grows
rapidly but not exponentially, so we have not reported a growth rate in this case. The
oscillations in the time series are robust even when small random perturbations are
employed, suggesting that they are not a transient response to the initial perturbation
but rather are due to the emergence of an unstable oscillatory mode (i.e. with non-
zero imaginary part of σ ) at these large Fr z. By contrast, the small deviations from
exponential growth evident in figure 3(e) disappear when the same small-amplitude
random perturbation is employed; see Appendix A.3 for discussion of these random
perturbation tests.

The fluctuation fields preserve their spatial structure at early times as their
amplitudes grow exponentially. The vertical vorticity fluctuation ω′

z is plotted on the
left-hand side of figure 5 for six values of Fr z between 0.1 and 3. It is shown at z =0,
a maximum displacement level, where the amplitude of the vorticity perturbation
is greatest. For Fr z < 1 (figure 5a–d), the vorticity fluctuation closely resembles the
linear eigenfunctions computed in Billant & Chomaz (2000 c). It is characterized
by a broad negative perturbation oriented along the x-axis, flanked by positive
perturbations on either side in the y-direction (see figure 5a for terminology). This
perturbation translates the Lamb–Chaplygin dipole in the positive y-direction and
rotates it counter-clockwise with little change to its horizontal structure. As Fr z is
increased to 0.628, the maxima of each of the positive perturbations move towards
the front, while isolated minima appear behind them.

For shorter perturbations with Fr z > 1 (figure 5e, f ), the structure of the vorticity
fluctuation is fundamentally different from that of the zigzag instability. The positive
perturbations on each side of the vortex pair split in two, while the structure of
the central minimum increases in complexity. The topology of these fluctuations
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Figure 3. Time series of vertically averaged kinetic energy EK (solid), fluctuation kinetic
energy E′

K (dashed) and fluctuation potential energy E′
P (dotted) for Frh = 0.1 and Fr z = 0.157

(a), 0.314 (b), 0.628 (c), 1.26 (d), 2.51 (e) and 5.02 (f). Energies are normalized by EK (t =0).

resembles that of the elliptic instability for the Lamb–Chaplygin dipole in the absence
of stratification, though the fluctuations over the vortex cores are relatively weaker
in the present case (cf. Billant et al. 1999, figure 4a). Though the elliptic instability
is suppressed when Frh < 0.2, Miyazaki & Fukumoto (1992) found that related
instabilities emerge at stronger stratifications for an unbounded strained vortex. These
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Figure 4. Dimensionless growth rate σR/U vs. Fr z for Frh = 0.1 (�) and Frh = 0.05 (�). We
compute σ by fitting the line σ t + b to log E′

K/2 over a time interval during which the growth
is exponential: 4 � tU/R � 20 for Fr z = 0.157 and 4 � tU/R � 8 for the others. Also shown
are the growth rates computed in the linear simulations of Billant & Chomaz (2000 c) for
Frh =0.1 (+) and Frh = 0.05 (×) (after their figure 9).
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Figure 5. Horizontal (x,y) slices of vertical vorticity fluctuation ω′
z (left two columns) and

density ρ (right two columns) for Frh = 0.1 and Fr z = 0.157 (a, g), 0.314 (b, h), 0.628 (c, i),
0.896 (d, j ), 1.26 (e, k), and 2.51 (f, l). Vorticity is displayed at the maximum displacement level
z = 0 and density at the inflection level z = λz/4. All plots are at time tU/R = 5, are centred in
x on the vortex pair, and have the same x,y scales. Fluctuation fields have been normalized by
their root-mean-square values. Negative contours are dashed, and no zero contours are shown.
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instabilities are driven by higher-order resonances between internal gravity waves and
the oscillating strain field induced by the vortices. The instability we observe for
Fr z > 1 may be due to the analogous higher-order resonance for the vortex pair. A
rigorous study of the stability of the Lamb–Chaplygin dipole, which has a much more
complicated dispersion relation than the unbounded strained vortex considered by
Miyazaki & Fukumoto (1992), would be required to investigate this hypothesis.

Density perturbations are plotted on the right side of figure 5 at z = λz/4, an
inflection level, where they have maximum amplitude (the vorticity and density
perturbations are π/4 out of phase). For Fr z < 1 (figure 5g–j ) there is a pair of
opposite-signed perturbations on each side of the line of symmetry, which we call
inner and outer. The inner perturbation is adjacent to the line of symmetry and spans
its length, while the outer perturbation is centred over the sides (see figure 5g). As
Fr z approaches unity, the leading edge of the inner perturbation broadens. A train
of small-scale gravity waves (not mentioned in Billant & Chomaz 2000 b, c) follows
the vortex pair in all cases, but is most prominent for Fr z close to unity. As Fr z

is increased above unity (figure 5k, l), the inner perturbation breaks into two, and
a distinct pair of opposite-signed perturbations appears in the region of the split.
The leading half of the inner perturbation narrows and is swept around the outer
perturbation, while the trailing half extends far behind the vortex pair.

3.2. Nonlinear regime

The exponential growth of the linear regime ultimately gives way to nonlinear
interactions and, as we shall see, the breakdown of the vortex pair into turbulence.
The nature of this transition varies with Fr z. In § 3.2.1 we discuss the fastest growing
modes of the zigzag instability, which appear to share a common mechanism of
transition to turbulence. Taller and shorter perturbations have more complicated
nonlinear dynamics, and are discussed briefly in § 3.2.2 and § 3.2.3.

3.2.1. Dominant zigzag modes: 0.3 <Frz < 0.8

We begin by examining the nonlinear evolution of the nearly fastest growing
perturbation with Fr z = 0.628. Perturbations with 0.3 <Fr z < 0.8 behave similarly.
Figure 6 shows the vertical vorticity evolution at the maximum displacement level
z = 0 and inflection level z = λz/4. At early times the evolution agrees with the
linear predictions: the dipole is relatively unchanged at the inflection level, and
is slightly twisted and displaced at the maximum displacement level. The dipole
structure eventually gives way to small-scale vorticity, showing the emergence of
turbulence. This small-scale disturbance first appears at the inflection levels at time
9 � tU/R � 11, and then at other levels by tU/R = 13. The maximum displacement
of the dipole from its initial y-position appears to be less than R at the onset
of turbulence. This saturation amplitude is surprisingly low, considering that the
laboratory dipoles of Billant & Chomaz (2000a) displaced several times R without
saturating. It will be shown in § 3.3 that this distinction is due to the lower Reynolds
number of the laboratory experiments.

A three-dimensional visualization of the transition to turbulence is given in figures 7
and 8, which show the PV field (2.6) at tU/R = 9, 10, 11 and 12. The PV provides
an ideal representation of the dipole because it is materially conserved in the absence
of viscosity and diffusion (equation (2.7)). The Lamb–Chaplygin dipole has two
vertical tubes of PV, which by tU/R = 9 are bent and twisted, in line with the linear
zigzag instability theory (figures 7a, 8a). At tU/R = 10, a disturbance is visible on the
interior edges of the vortices around the inflection levels (figure 8b); narrow horizontal
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Figure 6. Horizontal (x,y) slices of vertical vorticity ωz at the inflection level z = λz/4 (top
row) and maximum displacement level z = 0 (bottom row) for Frh = 0.1 and Fr z = 0.628 at
tU/R = (from left to right) 5, 7, 9, 11, 13, 15, 17. All plots are centred in x on the vortex pair
and have the same x,y scales. Contour intervals are 2.5 U/R, negative contours are dashed,
and no zero contours are shown.

filaments have also appeared around the vortices at the same levels (figure 7b). By
tU/R = 11 the dipole PV structure at the inflection levels has completely disappeared,
replaced by small-scale filaments that increase in complexity at tU/R = 12. The dipole
structure persists at maximum displacement levels but by tU/R = 12 has begun to
break up there as well. Figure 8, like figure 6, indicates that the vortices break up first
at the inflection levels. What is happening in these regions?

The evolution of the density field provides further insight. Figure 9 shows the
evolution of the isopycnal (isosurface of total density ρ + ρ) with equilibrium height
at the inflection level λz/4. This isopycnal, along with that at z =3λz/4, has the
greatest displacement in the linear zigzag theory. Indeed, at tU/R = 9 (figure 9a) the
displacement largely follows the linear prediction illustrated in figure 5(i): moving
across the dipole in the direction of positive y, the isopycnal is displaced upward,
downward, upward, and downward from its equilibrium height. Superimposed on
these displacements are structures not accounted for by the linear theory. Particularly
striking is the train of gravity waves located behind the dipole. These waves are
approximately stationary in the frame moving with the vortices, and grow in amplitude
as the instability grows. They appear to be excited and maintained by nonlinear
interactions with the growing vortex instability. By tU/R =10 (figure 9b), a profound
transition has occurred: the upward perturbation located past the dipole centre (in
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Figure 7. Three-dimensional visualization of PV magnitude for Frh = 0.1 and Fr z = 0.628 at
tU/R = 9 (a), 10 (b), 11 (c), and 12 (d). The view is from the direction of positive x, negative
y, and positive z. Shading varies from white at |Π | = Π0/2 to black for |Π | � Π0, and opacity
increases with |Π |. For clarity, values with |Π | < Π0/2 are not plotted.
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Figure 8. As in figure 7, but from the direction of the positive x-axis.

terms of y) has tipped over the neighbouring depression on the other side of the
centreline, creating a gravitationally unstable region with dρ/dz + ∂ρ/∂z > 0 (see also
figures 19–21). The breakdown of the overturned isopycnal is co-located in time and
space with the emergence of small-scale vorticity associated with the transition of the
vortex pair to turbulence.

It can be shown that the onset of isopycnal overturning is consistent with the linear
zigzag instability theory extended to finite amplitude. A basic property of the vortex-
scaled dimensionless Boussinesq equations, on which the linear theory of Billant &
Chomaz (2000 b) is based, is that at lowest order in Frh and Fr z the density is slaved
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Figure 9. The isopycnal with equilibrium height at the inflection level z = λz/4 for Frh = 0.1
and Fr z =0.628 at tU/R = 9 (a), 10 (b), 11 (c), and 12 (d). The vertical coordinate has been
stretched by a factor of four, exaggerating the isopycnal displacement for clarity. The surface
has dimensions 4R × 4R.

to the velocity via hydrostatic balance (Drazin 1961; Riley et al. 1981; Lilly 1983).
Specifically,

∇2
hφ = −∇h · (uh · ∇huh) , (3.5)

g

ρ0

ρ = −∂φ

∂z
. (3.6)

In the linear theory, uh is taken to be uh0 with an infinitesimal bend η and twist ψ ,
i.e. y0 in (2.3) is given by

y0 = η cos(kzz), (3.7)

and the dipole is rotated by an angle

θ0 = ψ cos(kzz). (3.8)

Details of the twisting perturbation are given in Appendix B. The analysis then
proceeds by linearizing around η =0, ψ = 0 and determining the evolution of η and
ψ on the slow time scales defined by Fr z. In contrast, here we postulate that the
vortex pair evolves via the zigzag instability to uh0 with a finite η and ψ . This
constrained evolution is a natural second approximation for early times when η � R.
Indeed, it corresponds exactly to the lowest-order dynamics in an expansion in Frh,
Fr z. The resulting slaved density can be obtained by solving (3.5)–(3.6) with (2.4) and
(3.7)–(3.8), which yield

g

ρ0

ρ = kzU
2 sin(kzz)

( η

R
A(r/R, θ, θ0) + ψB(r/R, θ)

)
. (3.9)

The dimensionless functions A and B are given in Appendix B.
A schematic of the bend-induced slaved density perturbation (3.9) is shown in

figure 10 for the linear regime η � R (figure 10a) and the finite-amplitude regime
η ∼ R (figure 10b). The twist breaks symmetry in x but does not qualitatively change
this picture. The right-hand side of (3.9) depends on z explicitly through sin(kzz) and
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Figure 10. A schematic vertical (y,z) slice through the centre of the dipole for η � R (a)
and η ∼ R (b). In both cases, ψ is taken to be 0. The cylinders represent the vortex cores, the
ellipses mark regions of positive (unshaded) and negative (shaded) density perturbation (3.9),
and the dashed lines are isopycnals at the inflection levels.
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Figure 11. Vertical (y,z) slices of density perturbation ρ (a–d) and total density ρ + ρ (e, f ).
The left column shows simulation results for Frh =0.1 and Fr z = 0.628 at tU/R = 5 (a) and
tU/R = 9.6 (c, e); the right column shows the corresponding analytical prediction (3.9) with
η/R = 0.013, ψ = 0.013 (b); and η = 0.32, ψ = 0.28 (d, f ). All plots are drawn through the centre
of the dipole and have the same y,z scales. Contour intervals are 0.0008ρ (top), 0.016ρ
(middle), and 0.05ρ (bottom), where ρ = −dρ/dz λz. Negative contours are dashed, and no
zero contours are shown.

implicitly through the variation (3.7), (3.8) of y0 and θ0 with z. In the linear regime
the former explicit contribution dominates. Billant & Chomaz (2000 b) show that the
resulting density perturbation forces a vertical velocity field that stretches the vortices
at the maximum displacement levels and leads to exponential growth in η (see their
figure 4). At finite amplitude, the linear perturbation is bent and twisted significantly
via (3.7), (3.8). Horizontal density gradients are tilted towards the vertical, resulting
in isopycnal steepening at the inflection levels.

Figure 11 shows the simulation density at an early time tU/R =5 and a later time
tU/R = 9.6, immediately before the onset of overturning. The prediction (3.9) is also
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plotted. For the latter, the bend η, twist ψ and dipole centre x0 are obtained by
minimizing the difference between ωz from the simulation and ωz0 (equation (2.5)
with (3.7)–(3.8)) in a least-squares sense, yielding η/R ≈ 0.013, ψ ≈ 0.013 at tU/R = 5
and η/R ≈ 0.32, ψ ≈ 0.28 at tU/R = 9.6. The root-mean-square error of the fit is
O(0.1U/R). The simulation at both times is in qualitative agreement with (3.9),
although the simulation density perturbations are slightly smaller than the analytical
prediction. As suggested in figure 10, the bending and twisting of the slaved density
field by finite η produces large positive vertical gradients at the inflection levels; these
gradients ultimately overturn the isopycnals.

The vertical derivative of (3.9) is

g

ρ0

∂ρ

∂z
= k2

zU
2 cos(kzz)

( η

R
A + ψB

)

+ k2
zU

2 sin2(kzz)

(( η

R

)2

C +
η

R
ψD + ψ2E

)
, (3.10)

where the functional dependence of A, . . . , E has been suppressed for clarity (see
Appendix B). We can use (3.10) to determine the amplitude η at which vertically
oriented isopycnals will first appear. This occurs when dρ/dz + ∂ρ/∂z � 0, i.e. when

cos(kzz)
( η

R
A + ψB

)
+ sin2(kzz)

(( η

R

)2

C +
η

R
ψD + ψ2E

)
� Fr−2

z . (3.11)

The first (linear) term dominates when η/R, ψ � 1 and is the density gradient
induced by the bend and twist in the linear zigzag theory. The second (nonlinear)
term is a result of the finite-amplitude bending and twisting of (3.9).

The condition (3.11) has a complicated implicit dependence on η and ψ through
the functions A, . . . , E. We can simplify matters greatly by assuming that ψ = 0, i.e.
considering the effect of the bend η only. The maximum values of A and C are then
5.8 and 23, respectively (see Appendix B). In this case, the linear term predicts the
onset of overturning at the maximum displacement levels when

η/R ≈ 0.17/Fr2
z, (3.12)

which is large when Fr z is small; the nonlinear term therefore cannot be neglected.
It is maximum at the inflection levels (where the linear term vanishes), and leads to
overturning when

η/R ≈ 0.21/Fr z . (3.13)

In figure 12(a) we plot the values of η/R at which overturning first appears in our
simulations for 0.3 <Fr z < 0.9; Fr z = 0.157 is omitted for reasons discussed in § 3.2.2
below. Overturning is determined to have occurred when dρ/dz + ∂ρ/∂z > 0 at one
or more grid points, with ∂ρ/∂z computed to an accuracy of O(z4). For Fr z < 0.8,
our results agree remarkably well with (3.13) (solid curve). The points in this range
display a clear Fr−1

z scaling. The only exception is Fr z = 0.314 and Frh = 0.05. In this
case it appears that the large value of η results in thin layers of reduced stratification
that are poorly resolved by the vertical resolution employed; thus explicitly resolved
overturning occurs at a later time and larger η than for Frh =0.1. For Fr z > 0.8, the
critical η/R falls off faster than (3.13).

Neglecting the twist ψ leads to the simple expression (3.13), the accuracy of which is
seen in figure 12(a) to degrade gradually as Fr z increases. Indeed, ψ is non-negligible
at the onset of overturning, with a value of around 0.3 for 0.3 <Fr z < 0.8 (figure 12b).
When ψ 
= 0, the condition (3.11) is difficult to evaluate analytically. However, at fixed
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Figure 12. The normalized displacement amplitude η/R (a) and rotation amplitude ψ (b) at
which overturning isopycnals first appear, for 0.1 <Fr z < 0.9 and Frh = 0.1 (+) and Frh = 0.05
(×). Error bars indicate the uncertainty due to the discrete times at which model output was
analysed. The solid line in (a) is the analytical prediction 0.21Fr−1

z from (3.13), which assumes
ψ =0. Other lines show corresponding prediction for ψ = 0.2 (dashed) and 0.3 (dotted).

ψ and Fr z, we can compute numerically the smallest η/R at which overturning at the
inflection levels occurs. In figure 12(a) we plot these critical values for a selection of
non-zero ψ . The curves collapse to (3.13) for Fr z < 0.6, justifying our neglect of ψ at
small and moderate Fr z. At larger Fr z, inclusion of the twist accounts for the more
rapid falling off of η/R with Fr z.

The reasoning that led to (3.11) appears to capture the basic dynamics of the
simulations: the zigzag instability grows until the slaved density perturbations
generated by the bending and twisting vortices overturn. Turbulence then results
and rapidly dissipates the vortices. For Fr z < 0.6, the twist has no significant effect
on the breaking amplitude, and (3.13) gives a good prediction for the bend η at
which overturning occurs. For short perturbations with Fr z approaching unity, the
agreement between (3.13) and the simulations is diminished. It is improved, however,
when the bend ψ is considered. Viscous effects, which were neglected in the derivation
of (3.11), will certainly affect the transition to turbulence, and are discussed in § 3.3.
However, given that the simulations in figure 12(a) have a finite, implicit Reynolds
number, it appears that (3.11) applies at large finite Re. As Fr z surpasses unity, we
expect the condition (3.11) to fail, since it assumes, as does the zigzag instability itself,
small Fr z. The prediction also fails, however, for tall perturbations with Fr z = 0.157.
We will examine these two exceptional cases next.

3.2.2. Tall perturbations: Frz = 0.157

Tall perturbations with Fr z =0.157 are well within the linear zigzag instability
regime, but saturate differently than shorter zigzag modes. The growth rate at this
Fr z is slow, less than half that of the fastest growing wavelengths. As the primary
disturbance slowly grows, higher harmonics are able to attain significant amplitude.
These shorter perturbations are initialized at low amplitude (see equation (2.10)) but
have higher growth rates than the primary mode. By tU/R =23, the fifth harmonic
has grown to nearly dominate the disturbance, as can be seen in the PV field as
well as the kz energy spectrum (figure 13). Turbulence sets in at a displacement η

comparable to (3.13) for Fr z = 5 × 0.157, and is localized around z = λz/4 and 3λz/4.
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Figure 13. (a) Vertical (y,z) slices of PV for Frh = 0.1 and Fr z = 0.157 when tU/R = 23. The
plot is drawn through the centre of the dipole. Contour intervals are Π0/6, negative contours
are dashed, and no zero contours are shown. (b) The corresponding vertical wavenumber
kinetic energy spectrum.

The initial transition to turbulence appears to be somewhat more complicated than
the simple overturning of the fifth harmonic.

3.2.3. Short perturbations: Frz > 1

Short perturbations with Fr z > 1 undergo a short-wave instability that is distinct
from the zigzag instability, and so it is not surprising that their nonlinear dynamics
are different as well. One of the most striking aspects of their behaviour can be seen
in the time series of energy (figure 3). In the case of the zigzag instability (Fr z < 1),
the fluctuation kinetic energy E′

K grows exponentially until it is nearly as large as the
original vertically averaged energy EK . For Fr z > 1, however, the instability saturates
at a much lower amplitude. For Fr z > 2, E′

K peaks at an order of magnitude less
than EK . The vertically averaged energy slowly decreases after the saturation of
the instability. The vortex pair remains predominantly two-dimensional for many
turnover times. Similar behaviour has been observed in unstratified flows with small
aspect ratio (Ngan, Straub & Bartello 2005).

Figure 14 shows the vertical vorticity at z =0 and z = λz/4 for Fr z = 2.51. Unlike
at smaller Fr z, there is no apparent translation or twisting of the vortex pair. At
tU/R = 9, a small-scale vorticity disturbance appears at the leading edge of the dipole.
The isopycnals with equilibrium height at the inflection levels have overturned in this
region (figure 15). The turbulence generated by this overturning appears to advect
around the vortex cores without destroying them. Indeed, even at tU/R = 17, coherent
cores are clearly visible in the vertical vorticity field (figure 14, right panels). Thus
short perturbations, despite their significant growth rate, may have a less destructive
effect on the vortex pair than taller perturbations. This may be expected given that
short perturbations result in regions of overturning that are highly localized in space;
taller perturbations, on the other hand, lead to overturning on the same scale as the
dipole itself.

3.3. Effects of reduced Reynolds number

Viscosity can modify the evolution of the vortex pair fundamentally. In the linear
regime, it reduces growth rates from their inviscid values (see Billant & Chomaz
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Figure 14. Horizontal (x,y) slices of vertical vorticity ωz at the inflection level z = λz/4 (top
row) and maximum displacement level z = 0 (bottom row) for Frh = 0.1 and Fr z =2.51 at
tU/R = (from left to right) 5, 7, 9, 11, 13, 15, 17. Other details are as in figure 6.
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Figure 15. The isopycnal with equilibrium height at the inflection level z = λz/4 for Frh = 0.1
and Fr z = 2.51 at tU/R = 8 (a) and 9 (b). The vertical coordinate has been stretched by a
factor of two, exaggerating the isopycnal displacement for clarity. Other details are as in
figure 9.

2000 c). In the nonlinear regime, we have found that it can prevent isopycnals
from overturning and breaking up into turbulence, and can lead to distinct laminar
nonlinear dynamics. Here we investigate the viscous nonlinear evolution of the nearly
fastest growing wavelength with Fr z = 0.628 at different Frh, Re, and Sc (see table 2).
The fastest growing modes at different Frh have nearly identical inviscid growth rates
but various vertical wavelengths, and thus will not necessarily respond in the same
way to a given Re. Two Schmidt numbers are considered: Sc = 685, representative of
salt in water for comparison with laboratory experiments; and Sc = 1. The viscous
simulations with Sc = 685 are quasi-DNS: the Kolmogorov scale ld ≡ (ν3/ε)1/4 is
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Figure 16. Simulations with non-zero ν plotted on the Frh–Re plane, for Sc = 685 (a) and
Sc = 1 (b). In all cases Fr z = 0.628. Here × denotes a simulation in which isopycnals overturn;
otherwise, + is used. The dotted line in (a) is 70/Frh and in (b) is 80/Frh. The + at Frh = 0.19
in (a) corresponds closely with the laboratory experiment in figure 10 of Billant & Chomaz
(2000a).

O(x) (cf. Moin & Mahesh 1998), but the Batchelor scale ldSc−1/2 is much smaller.
Here ε is the maximum kinetic energy dissipation rate, computed from time series
of average kinetic energy. The simulations with Sc = 1 are DNS for Re < 1600 and
borderline LES at larger Re (see Margolin et al. 2006b, for a discussion of the
transition from DNS to implicit LES). The Kolmogorov scales for these simulations
are given in table 2.

In the explicitly inviscid simulations of § 3.2.1, isopycnals ultimately overturn. With
viscosity, our simulations show that there is a critical Reynolds number Rec below
which overturning is inhibited and the flow remains laminar. Unless Re is sufficiently
larger than Rec, overturning occurs at larger values of η/R than those in figure 12(a).
From dimensional-analysis arguments, Rec can be expressed as a function of Fr z and
Frh. With Fr z fixed at 0.628, Rec appears to be inversely proportional to Frh. This
can be seen in figure 16, in which we plot the viscous simulations in the Frh–Re plane,
and distinguish those with overturning from those without. The boundary between
these regimes scales approximately as 70/Frh for Sc =685 and 80/Frh for Sc = 1. The
dependence on Sc is therefore rather weak. These findings are robust as simulations
with doubled numerical resolution yield identical results; see Appendix A.2. Since
λz/R = 10 Frh in these simulations, overturning at a given Re requires sufficiently tall
perturbations. Different criteria may hold at other Fr z due to their reduced growth
rates. The laboratory experiment illustrated in figure 10 of Billant & Chomaz (2000a)
has Fr z ≈ 0.628, Frh ≈ 0.19, and Re = 365, and thus lies in the laminar regime, though
it is fairly close to the transition at Rec.

The nature of the laminar regime depends crucially on the vertical scale, even at
fixed Re and Fr z. Consider perturbations with Fr z =0.628 at Frh =0.1 (λz/R = 1)
and 0.19 (λz/R = 1.9), each at Re = 365 and Sc = 685, representative of laboratory
experiments (runs 21 and 23 in table 2). With the shorter perturbation, the vortex
pair retains the zigzag structure of a columnar vortex with a sinusoidal displacement
well into the dissipative regime; i.e. η remains less than R (figure 17a). With the taller
perturbation, by contrast, the zigzag amplitude η grows to exceed R, causing the
vortex dipoles centred around z = 0 and λz/2 to detach from one another and form
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(b)
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Figure 17. Three-dimensional visualization of PV magnitude for Fr z = 0.628 and Frh = 0.1
(a), and Frh = 0.19 (b); with Re = 365 and Sc = 385. Both plots are at tU/R = 40, more than
10 turnover times after the maximum fluctuation kinetic energy is reached. The view is from
above and ahead of the vortex pair. Shading varies from white at |Π | = 0.1Πmax to black at
|Π | = Πmax . For clarity, values with |Π | < 0.1Πmax are not plotted.

pancake vortices (figure 17b) as observed in the laboratory (Billant & Chomaz 2000a).
Interestingly, because of the O(1) aspect ratio of the fastest growing wavelength at
Frh = 0.19, the pancake vortices are more spherical than flat. Vertical decoupling
occurs for narrow ranges of Re and λz/R, small enough to suppress the transition
to turbulence, but not so small as to inhibit the growth of η to sufficiently large
amplitude.

4. Conclusions
We have performed a series of numerical simulations of a counter-rotating vortex

pair in a stably stratified fluid, and extended the linear analysis and laboratory
experiments of Billant & Chomaz (2000a , b, c) to the fully nonlinear, large-Re regime.
The Lamb–Chaplygin vortex dipole, oriented parallel to a stable background vertical
density gradient, was perturbed with a small-amplitude horizontal displacement
that varies sinusoidally in the vertical. We have restricted our attention to strong
stratifications with small Frh < 0.2, and a wide range of Fr z, from tall perturbations
with Fr z ≈ 0.1 to short with Fr z ≈ 5. While the evolution of small perturbations in our
simulations agrees well with the linear predictions of Billant & Chomaz (2000 b, c), the
finite-amplitude dynamics at large Re are profoundly different from the moderate-Re
laboratory experiments of Billant & Chomaz (2000a).

Perturbations grow exponentially at early times. Tall disturbances with Fr z < 1
behave as expected for the zigzag instability; their growth rates and structures agree
well with the linear simulations of Billant & Chomaz (2000 c). In particular, the
growth is most rapid at a vertical scale with 0.6 <Fr z < 0.7, independently of Frh. At
short vertical scales with Fr z > 1, a distinct instability exists: at Fr z = 2.5 its growth
rate is only 20% less than that of the fastest growing wavelength, so it can achieve
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significant amplitude as the zigzag instability develops. Whether this growth rate
has a non-zero limit as Fr z → ∞ is unclear from these results and requires further
study. It is possible that this short-wave instability is the vortex pair analogue of
the short-wave instability found by Miyazaki & Fukumoto (1992) in an unbounded
strained vortex.

Eventually the linear instability gives way to nonlinear evolution, and at large
Reynolds number this transition is characterized by the onset of turbulence. The
major result of this work is that, in the neighbourhood of the fastest growing
zigzag wavelength (0.2 < Fr z < 0.8), this transition follows a common mechanism,
which can be accounted for by the lowest-order dynamics of strongly stratified
vortex motion. Density perturbations resembling those predicted by the linear theory
(Billant & Chomaz 2000 b) grow and are tilted by the finite-amplitude horizontal
displacement of the vortices. The tilting of horizontal density gradients towards the
vertical creates regions of reduced stratification at the inflection levels. Isopycnals
ultimately overturn, resulting in gravitational instability and the breakdown into
turbulence that destroy the vortex pair. An extension of the linear zigzag theory to
finite amplitude indicates that overturning occurs when the horizontal displacement
amplitude η satisfies η/R ≈ 0.21/Fr z for Fr z < 0.8. As Fr z → 1, the twisting of the
dipole leads to smaller critical values of η/R. Our simulations agree well with these
predictions.

Viscosity inhibits the steepening of isopycnals and can suppress the transition
to turbulence. For the nearly fastest growing wavelength with Fr z = 0.628, the
development of overturning requires ReFrh > 80. The stabilizing effect of viscosity
accounts for the discrepancy between our large-Re simulations and the laboratory
experiments of Billant & Chomaz (2000a), which remained laminar. In the laminar
regime, decoupling of the vortices at different levels – with coherent pancake vortices
that persist for long times – occurs only if the vertical scale is sufficiently large, but
not large enough to allow overturning. The fact that these structures are maintained
by viscosity suggests they have limited relevance for the large-Re regime. Indeed, our
study highlights the difficulty of extrapolating results from laboratory to geophysical
Reynolds numbers, which differ by many orders of magnitude. The saturation
mechanism of the zigzag instability is fundamentally distinct in these two regimes.

The short-wave instability evolves very differently from the zigzag instability, despite
its comparable growth rate. It saturates at a much lower amplitude, with fluctuation
kinetic energy around an order of magnitude less than that of the background
columnar vortices. Turbulence results from the development of localized overturning
at the leading edge of the vortex pair. However, unlike for the zigzag instability,
the turbulence does not rapidly destroy the vortices, which are instead dissipated
slowly and remain predominantly columnar for many turnover times. These short
perturbations have small λz/R (and large Fr z), and their evolution is reminiscent of
the instability of thin two-dimensional flows to three-dimensional perturbations in
unstratified fluids (Ngan et al. 2005).

In this work, we have analysed the saturation of the zigzag instability of a counter-
rotating columnar vortex pair perturbed at a distinct vertical scale, which may be a
fundamental mechanism for the generation of turbulence in stratified fluids. A direct
extension of this study would be to consider the nonlinear evolution of broadband
random perturbations. Does the fastest growing zigzag wavelength dominate and
develop as described in §3.2.1, or are interactions between different vertical scales
important? A key issue is the potential interplay between the short-wave and zigzag
instabilities. The low saturation amplitude of the short-wave instability suggests that
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Run Frh Fr z λz/R z/x λz/z

1b 0.1 0.157 4 5 20
2b 0.1 0.314 2 0.5 100
5b 0.1 0.628 1 0.5 50
9b 0.1 1.26 0.5 0.3125 40

11b 0.1 2.51 0.25 0.15625 40
14b 0.05 0.314 1 0.5 50

Table 3. Parameters used in the simulations testing sensitivity to vertical resolution.
Run numbers correspond to the primary simulations in table 1.

its effect might be negligible. However, the turbulence it generates may modify the
growth rate and nonlinear evolution of the zigzag instability to an unknown degree.
Indeed, preliminary results suggest that the saturating short-wave instability can damp
the growth of the zigzag modes, but more investigation is required.

Equally intriguing is the question of how the zigzag instability and its tendency
to break down into turbulence might apply to more general vortex structures. It is
plausible that vortices with a finite vertical scale H � O(U/N ) might be subject
to the same basic instability mechanism at large Rossby number Ro = ωz/f , where
f is the Coriolis parameter characterizing the Earth’s rotation. Our results suggest
that such vortices would not only develop vertical scales of O(U/N ), but would
be subsequently dissipated by turbulence. Additionally, a recent study by Deloncle,
Billant & Chomaz (2008), of which the authors became aware after the completion
of this work, suggests that the horizontal structure of the vortex pair influences the
nature of the transition to turbulence. They found that a pair of counter-rotating
Gaussian vortices, which have greater separation than those in the Lamb-Chaplygin
dipole, undergoes a Kelvin–Helmholtz instability for Re Fr2

h > 340. This criterion is
distinct from our overturning condition Re Frh > 80. Clearly, the generalization of
the zigzag instability and its nonlinear dynamics to a wider class of vortices warrants
further study.
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Appendix A. Sensitivity tests to model set-up and numerics
A.1. Vertical resolution

Given the wide range of λz considered, we have employed different vertical grid
spacings in some of our simulations. We have therefore examined the sensitivity of
our results to λz/z (see table 3). Decreasing the resolution of the tallest perturbation
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Figure 18. As in figure 12(a) with additional points representing sensitivity tests in Appendix
A.1 (a) and A.2 (b). In (a), vertical resolution sensitivity tests are included: runs 2b (�), 5b
(©) and 14b () from table 3. In (b), we plot results from the spectral transform model at
medium (�) and high (©) resolution, the TKE model at medium resolution (�), and EULAG
at high-resolution ().

Fr z = 0.157 from λz/z = 100 to λz/z = 20 yields little change to the linear growth
rate, but does modify the nonlinear evolution. Twenty grid points in the vertical
therefore appear sufficient to reproduce the linear dynamics of the zigzag instability.
Likewise, increasing λz/z at other Fr z has a negligible effect on the linear growth
rate.

Changes to the nonlinear regime are consistent with changes to the range of
resolved scales. The transition to turbulence is naturally better resolved at higher
resolution, but the basic mechanism of this transition remains the same. Simulations
with Fr z < 0.8, which have λz/z > 20, have a finer resolution of the turbulent regime
than simulations with Fr z > 0.8. The critical value of η at which overturning appears is
slightly reduced upon a doubling of vertical resolution (see figure 18a). This decrease
is a consequence of the finite difference approximation to the overturning criterion as
well as the increased effective Reynolds number.

A.2. Three-dimensional resolution and computational model

Here we briefly demonstrate that the simulations described in this work are adequately
converged with respect to spatial resolution, and moreover that similar results
are obtained with a different computational model. We focus on the case of the
most rapidly growing zigzag instability wavelength with Frh =0.1 and Fr z = 0.628
(run 5 in table 1). We use a smaller domain size than for our primary simulations
in § 3, with Lx = Ly = 8R and Lz = λz. Three resolutions are considered: the basic
resolution employed in § 3 and summarized in table 1 (intermediate), one twice as
coarse (low), and another twice as fine (high); see table 4.

Simulations are performed at each resolution with the non-oscillatory finite-volume
model EULAG described in § 2.2 and a spectral-transform model (ST). ST uses third-
order Adams–Bashforth time discretization together with fourth-order hyperviscosity
and hyperdiffusion, i.e. the diabatic terms in (2.1) are replaced with −ν8∇8u and
−κ8∇8ρ. Coefficients are set to ν8 ≡ κ8 ≡ 0.5x8, which is just large enough to
eliminate unphysical vorticity disturbances of scale 2x. EULAG is run without
explicit viscosity or diffusion. Note that for a given resolution, the grid spacing in ST
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EULAG ST

x/R z/x n × m × l σR/U x/R z/x n × m × l σR/U

Low 0.08 0.962 1002 × 13 0.633 0.0533 0.937 1502 × 20 0.698
Intermediate 0.04 1 2002 × 25 0.699 0.0267 0.937 3002 × 40 0.711
High 0.02 1 4002 × 50 0.711 0.0133 0.937 6002 × 80 0.711

Table 4. Grid spacings and numbers of grid points employed by EULAG and ST for low,
intermediate, and high resolutions. The growth rate σ , measured over 4 � tU/R � 8 as in
figure 4, is also given.

y
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(a) (b)

(d)
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Figure 19. Vertical (y, z) slices of total density ρ + ρ at tU/R =10 with intermediate (a, b)
and high (c, d) resolution obtained with EULAG (a, c) and ST (b, d). All plots are drawn
through the centre of the dipole and have the same y, z scales. Contour intervals are 0.05ρ.

is 2/3 smaller than that in EULAG. The high wavenumbers associated with this finer
grid spacing are truncated after computing the nonlinear term to eliminate aliasing.
Thus both models have the same number of degrees of freedom at a given resolution.
The vertical grid spacing z is set to x, or slightly less when necessary to ensure that
the number of vertical grid points is an integer (or in the case of the ST, a product of
small primes). The EULAG time step is chosen such that tU/x =0.125. For ST,
t must be set to half the EULAG value to ensure stability.

The growth rates σ of the linear regime are given in table 4. They converge at high
resolution to σU/R = 0.711 for both models. At intermediate resolution the EULAG
value is within 2% of the converged value, and so this resolution accurately reproduces
the mechanism of the zigzag linear instability. In the nonlinear regime there is a greater
dependence on resolution and numerical method. This sensitivity is to be expected,
since the transition to turbulence involves the excitation of a wide range of length
scales. Increasing the resolution extends the range of resolved scales, while the two
numerical models parameterize the effects of unresolved scales differently: EULAG
implicitly through the truncation terms, and ST explicitly through hyperviscosity.
The important question is whether the dynamics described in § 3, particularly the
transition to turbulence via overturning isopycnals at the inflection levels, are robust.

To consider this question, we examine the density field after the appearance of
gravitationally unstable isopycnals. Figure 19 shows the total density at tU/R = 10 at
intermediate and high resolution for both models. Unstable isopycnals have appeared
but not yet collapsed, and there is good agreement between the different models
and different resolutions. At tU/R =11, EULAG and ST agree qualitatively at high
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Figure 20. As in figure 19 but at tU/R = 11.
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Figure 21. As in figure 19 but at tU/R = 12.

resolution. At intermediate resolution there are discrepancies with both models.
EULAG successfully reproduces the development of small-scale disturbances on the
overturned isopycnals associated with gravitational instability; density perturbations
at the maximum displacement levels, however, are slightly suppressed relative to the
high-resolution simulations (figure 20a). ST fails to capture the growing secondary
instabilities in the regions of overturning (figure 20b). By tU/R = 12, the gravitational
instability has fully transitioned to turbulence at intermediate and high resolution with
both models. The formulation employed in § 3 (EULAG at intermediate resolution)
reproduces this transition to turbulence in a way that closely resembles the high-
resolution dynamics. While higher resolution gives a better reproduction of the
turbulence generated after the collapse of the isopycnals, the conclusions of our study
are unchanged. This agreement underlines the value of the ILES approach exploited
by this study.

In figure 18(b), we plot the critical η at which overturning occurs from the medium-
and high-resolution ST simulations, superimposed on the values from figure 12(a).
We also include the result from the high-resolution EULAG simulation discussed
above, along with others at different Fr z with Frh = 0.1. ST and EULAG give similar
critical η at a given resolution, with the ST value slightly larger. The high-resolution
EULAG results are consistently smaller than their medium-resolution counterparts
discussed in § 3.2.1. This reduction in the value of η at the onset of overturning is
consistent with the finite difference approximation to the overturning criterion as well
as the increased effective Reynolds number at higher resolution (see § 3.3). In the
neighbourhood of the fastest growing mode (0.4 < Fr z < 1), the decrease in η is small,
and the scaling and agreement with (3.11) is preserved.
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Figure 22. Time series of fluctuation kinetic energy E′
K using random velocity perturbations

at a single vertical wavelength, for Frh =0.1 and Fr z = 0.628 (a), 2.51 (b), and 5.02 (c). Energies
are normalized by EK (t = 0).

For an additional point of comparison, we have performed simulations at Frh = 0.1
with an oscillatory finite difference scheme, employing second-order Adams–Bashforth
time stepping and centred spatial discretization. These simulations are explicit LES,
with the subgrid model implemented with a turbulent kinetic energy (TKE) approach
(Schumann 1991). The resulting flow is significantly more dissipative than the ILES
results described above. Nevertheless, the basic evolution is qualitatively unchanged:
the zigzag instability grows until isopycnals overturn, then decays. The critical η

values associated with overturning are shown in figure 18(b). They are larger than
the corresponding EULAG values, consistent with these having a lower effective
Reynolds number.

We have also performed high-resolution sensitivity tests in the viscous regime.
Following the same approach as described above for high-resolution EULAG in table
4, we have repeated simulations with Frh =0.1 and Fr z = 0.628 for four different
(Re, Sc) combinations (runs 24, 25, 32, and 33). The existence of overturning is a
binary result – either there is overturning or there is not – for which our high-
resolution simulations agree exactly with the standard resolution runs in figure 16.
For Sc =1, overturning occurs for Re =800 but not 700; for Sc = 685, overturning
occurs for Re =700 but not 600.

A.3. Initial perturbation

The time series in figure 3 exhibit small deviations from exponential growth for
Fr z > 2. To verify the robustness of the results described in § 3 to the form of
the initial perturbation, we have performed additional simulations with random
perturbations. To the initial Lamb-Chaplygin velocity field, we add a non-divergent
random perturbation at a single vertical wavelength. The velocity perturbations at
each grid point are uniformly distributed between ±10−6 U . We have performed three
such simulations, with Frh = 0.1 and Fr z = 0.628, 2.51 and 5.02.

Time series of fluctuation kinetic energy are shown in figure 22. For Fr z = 0.628 and
2.51, the growth is exponential, with growth rates (computed over t =5–15) close to
those shown in figure 4: within 0.3% for Fr z = 0.628 and 6% for Fr z = 2.51. Notably,
the small deviations from exponential growth for Fr z = 2.51 seen in figure 3(e) are
suppressed. On the other hand, the time series for Fr z = 5.02 display oscillations
similar to those seen in figure 3(f). This behaviour is thus not a transient response to
the form of the perturbation (2.9), but is consistent with the excitation of an unstable
oscillatory mode.
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Appendix B. Finite-amplitude perturbations
The analysis in § 3.2.1 follows Billant & Chomaz (2000 b) and is based on the

vortex-scaled Boussinesq equations (Drazin 1961; Riley et al. 1981; Lilly 1983):

∂uh

∂t
+ uh · ∇huh + Fr2

z w
∂uh

∂z
= −∇hφ, (B 1a)

Fr2
h

(
∂w

∂t
+ uh · ∇hw + Fr2

z w
∂w

∂z

)
= −∂φ

∂z
− ρ, (B 1b)

∇h · u + Fr2
z

∂w

∂z
= 0, (B 1c)

∂ρ

∂t
+ uh · ∇hρ + Fr2

z w
∂ρ

∂z
− w = 0 . (B 1d)

All variables in this Appendix have been non-dimensionalized with horizontal length
scale R, vertical length scale 1/kz, horizontal velocity scale U , pressure scale U 2, and
density scale ρ0U

2kz/g. The ∗ notation employed in (2.10) has been omitted for clarity.
At lowest order in Frh and Fr z, ρ is slaved to uh through

∇2
hφ = −∇h · (uh · ∇huh) , (B 2)

ρ = −∂φ

∂z
. (B 3)

The dimensionless Lamb–Chaplygin stream function, rotated by an angle θ0 and
expressed in the rotated frame moving with unit velocity in the direction of the
unrotated x-axis, is S = S0 + S1, where

S0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2

μ1J0(μ1)
J1 (μ1r) sin θ, r � 1,
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)
sin θ, r > 1,

(B 4)

S1 = −r cos(θ − θ0) sin θ0 − r sin(θ − θ0) (cos θ0 − 1), (B 5)

x − x0 = r cos(θ − θ0), y − y0 = r sin(θ − θ0), (B 6)

and
dx0

dt
= −(cos θ0 − 1),

dy0

dt
= sin θ0. (B 7)

Our aim is to determine ρ when x0 is constant and

y0 = η cos z, θ0 = ψ cos z, (B 8)

i.e. the slaved density imposed by a single bending mode and twisting mode. The bent
and twisted vortex pair (B 4) with (B 8) is an exact solution to (B 1) at lowest order
in Frh and Fr z.

Equation (B 2) with uh = ∇ × (S ê3) can be written as
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where
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A particular solution to (B 9) is
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for r � 1, and
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(
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1
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+
2

r2
cos2 θ, (B 11b)

for r > 1. To within an additive constant, (B11) is the unique bounded solution to
(B 9) on the plane.

The dependence of φ on z is through (B 8), so both r and θ are functions of z, with

∂r

∂z
= η sin z sin(θ − θ0), (B 12)

∂θ

∂z
= η sin z

cos(θ − θ0)

r
+ ψ sin z. (B 13)

It follows that

ρ = −∂φ

∂z
= η sin z A(r, θ, θ0) + ψ sin z B(r, θ), (B 14)

where

A(r, θ, θ0) = −
(

sin(θ − θ0)
∂φ

∂r
+

cos(θ − θ0)

r

∂φ

∂θ

)
, (B 15)

B(r, θ) = −∂φ

∂θ
. (B 16)

Note that A has an explicit dependence on the rotation angle θ0, in addition to the
implicit dependence through r and θ . The functions A and B are given by

A(r, θ, θ0) =
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where

A1(r, θ, θ0) = J 2
1 (μ1r) cos(θ − θ0) sin 2θ − J 2

2 (μ1r) sin(θ − θ0)
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and
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where

B1(r, θ) = J 2
0 (μ1r) − 2

μ1r
J0(μ1r)J1(μ1r) + J 2

1 (μ1r).
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The vertical density gradient is therefore
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∂z
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which has the form

∂ρ

∂z
= cos z (η A(r, θ, θ0) + ψ B(r, θ))

+ sin2 z(η2 C(r, θ, θ0) + ηψ D(r, θ, θ0) + ψ2 E(r, θ)). (B 20)

The functions C(r, θ, θ0), D(r, θ, θ0), and E(r, θ) are given by
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where
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12 − μ2

1r
2
)
cos(2θ − 2θ0) + 2μ2

1r
2 cos 2θ sin2(θ − θ0)

)
,

C3(r, θ, θ0) =
1

μ2
1r

2
J 2

1 (μ1r)
(

− 8 + 2μ2
1r

2 + 12 cos(2θ − 2θ0)

+ μ2
1r

2(−4 cos(2θ − θ0) cos θ0 + sin 2θ sin(2θ − 2θ0))
)
;

D(r, θ, θ0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

J 2
0 (μ1)

4

r
(D1(r, θ, θ0) + D2(r, θ, θ0) + D3(r, θ, θ0), ) r � 1,

− 4

r3

(
1

r2
cos(θ − θ0) − 3 cos(3θ − θ0)

)
, r > 1,

(B 22)

where

D1(r, θ, θ0) = J 2
0 (μ1r) (− cos(θ − θ0) + 3 cos(3θ − θ0)) ,

D2(r, θ, θ0) =
2

μ1r
J0(μ1r)J1(μ1r) (2 cos(θ − θ0) − 3 cos(3θ − θ0)) ,

D3(r, θ, θ0) = J 2
1 (μ1r)

(
3

2
cos(3θ − θ0) +

1

2
cos(θ + θ0) − 4

μ2
1r

2
cos(θ − θ0)

)
;

and

E(r, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

J 2
0 (μ1)

E1(r, θ) cos 2θ, r � 1,

4

r2
cos 2θ, r > 1,

(B 23)
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Figure 23. Functions A(r, θ, θ0 = 0) (a), B(r, θ ) (b), C(r, θ, θ0 = 0) (c), D(r, θ, θ0 = 0) (d), and
E(r, θ) (e). Contour spacings are 1 for (a), (b), (e), and 4 for (c), (d). Negative contours are
dashed, and no zero contours are shown.

where

E1(r, θ) =

(
J 2

0 (μ1r) − 2

μ1r
J0(μ1r)J1(μ1r) + J 2

1 (μ1r)

)
.

The functions A to E are plotted in figure 23 for θ0 = 0, which is the case at the
inflection levels whatever the value of ψ .
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