Introduction to Intersection Theory II base field $\mathbb{k}=\mathbb{\pi}$ char 0
Kenote Rs

1) What does $[y][z] \in A(X)$ mean for $s m$ $X ? \quad[Y \cap Z]$
What about \# $(Y \cap Z)$ via $A(X)$?
2) $A\left(\mid P^{n}\right), A(C)$ curve?
3) degree of pure dim k subsch of $1 P^{n}$? degree of $\left(v_{2}, 2:\left|P^{2} \longrightarrow\right| P^{5}\right.$ Veronese?
$A(X)$ as Chow Ring
Recall: X sm, $Y, Z \subset X$ gen transverse

$$
\Rightarrow[y][Z]:=[Y \cap Z]
$$

Thm-Det: If X is a sm pproj var, then 7 ! str of graded coming ring on char $p>0\left(\begin{array}{l}(Q \text {-cerf } \\ \text { is okay } \\ \text { by de dong }\end{array}\right.$ $A(X)=\oplus A^{k}(X)$, called Chow ring, that extends above. (Too hard! - Fulton) (non-aly closed is tine, but involves Gal action)

Example: For \mathbb{P}^{n}, L line, H hyppl, $H^{k} \cong \mathbb{P}^{n-k}$ codim k plane, then Excision on affine stratification of $\mathbb{P}^{n} \stackrel{\text { set }}{=} \bigsqcup_{k=0}^{n} / A^{n-k}$

$$
\begin{aligned}
\Rightarrow & A\left(\mathbb{P}^{n}\right) \ll \oplus_{k=0} \mathbb{Z}\left[\mathbb{A}^{n-k}\right] \\
& {\left[\mathbb{A}^{n-k}\right] \longleftarrow\left[\mathbb{A}^{n-k}\right] } \\
& {\left[H^{\prime \prime}\right] }
\end{aligned}
$$

then $\frac{[L][H]=\left[p^{+}\right]}{(*)}$ b/c $L^{\prime} \sim L \quad \forall L^{\prime}$ line in $1 p^{n}$ by above map \& (in fact, similar argument

Claim: $[p+] \neq 0$ in $A\left(1 p^{n}\right)$

$$
\pi_{1}: \mathbb{P}^{\prime} \times\left|P^{n} \rightarrow\right|^{\prime} \text { proper }
$$

$$
\left.\Rightarrow \pi_{1}\right|_{\Phi}: \Phi \rightarrow \mathbb{P}^{\prime} \text { proper }
$$

\Rightarrow fin $\operatorname{deg} d$.
Then $\forall t \in \mathbb{P}^{\prime}, \pi$, surf $\operatorname{deg} d$

$$
\Rightarrow \pi_{1}^{-1}(t) \cap \Phi \subset\left\{t \xi \times \mathbb{P}^{n} \text { is a } \operatorname{dim} 0\right.
$$

length d subscheme $\Rightarrow=\phi$ iff $\Phi=\varnothing$

$$
\begin{aligned}
& 0 \leftarrow A^{n}\left(\mathbb{P}^{n}\right) \leftrightarrow \mathbb{Z}[p+] \leftarrow \operatorname{Ra}_{0}\left(I \mathbb{P}^{n}\right) \\
& \cup \\
& 0=d\left[p^{+}\right] \quad \leftrightarrow\left\langle\pi_{1}^{-1}\left(t_{1}\right) \cap \Phi\right\rangle \\
& -d\left[p^{+}\right] \quad-\left\langle\pi_{1}^{-1}\left(t_{2}\right) \cap \Phi\right\rangle \\
& \Rightarrow A^{n}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}[p+]
\end{aligned}
$$

Thus, $[L] \neq 0,[H] \neq 0$ in $A\left(\mathbb{P}^{n}\right)$ by (*). \Rightarrow extend so that $A\left(\mid P^{n}\right) \cong \mathbb{Z}[H] /[H]^{n+1}$.

Def: $\operatorname{deg} X \in \mathbb{N}$, where $X \subset \mathbb{P}^{n}$ pure $\operatorname{dim} k$ subsch, satisfies $[X]=(\operatorname{deg} X) \cdot[H]^{n-k}$. ${ }^{\|}$(Baby)
Bezout's Thy for \mathbb{P}^{2} : If $C, D \subset \mathbb{P}^{2}$ curves that \cap transversely, then $\#(C \cap D):=\operatorname{deg}(C \cap D)=\operatorname{deg}(C) \cdot \operatorname{deg}(D)$. [there]s higher dim analog]

Note: In gen'l, affine stratification $X \stackrel{\text { set }}{=}\left\lfloor Y_{i}\right.$ $\Rightarrow A(X) \stackrel{\text { Pr }}{\cong} \oplus \mathbb{Z}\left[\bar{Y}_{\dot{r}}\right]$ by Totaro ' 14 .

Rok: Given $Y, Z \subset X$, we can theoretically find cycle $Z^{\prime} \sim Z$ st. $Y \cap Z^{\prime}$ is pure of expected codim (dimilly transverse). If Y\& Z^{\prime} are Cohen - Macaulay (technical! but lei $\Rightarrow C M$, so this cold is very mild) at gen pts of $Y \cap Z^{\prime}$, then $\left(\begin{array}{l}\text { aft loo, colin } \\ k \text { sch cut out }\end{array}\right.$ $[Y][Z]=\sum m_{i}\left[w_{i}\right]$, where $\begin{aligned} & k \\ & \text { by emus }\end{aligned}$ $\left(y \cap Z^{\prime}\right)_{\text {red }}=\bigcup_{i} w_{i} \& m_{i}=\operatorname{mult}_{W_{i}}\left(Y \cap Z^{\prime}\right)$
$\begin{aligned} & \text { diminlly } \\ & \text { transverse }\end{aligned}$

$$
\begin{aligned}
& \Rightarrow[\gamma][z]= 2[p] \\
&+[q]+[r] \\
& \text { sense } \Rightarrow \text { Bezout's Thu } \\
& \text { works w/ multiplicity } \\
& A_{0}(X)
\end{aligned}
$$

Functoriality
To define $\#(Y \cap Z)=\operatorname{deg}([Y] \cdot[Z]) \forall X$ sm qproj
Def: $f: Y \rightarrow X$ proper bown any chs, then $f_{*}: A(Y) \rightarrow A(X)$ is defined by: $\forall A \subset Y$ subvar,

$$
\begin{aligned}
& f_{*}[A]
\end{aligned}= \begin{cases}0 \text { if } \operatorname{dim} f(A)<\operatorname{dim} A \\
n[f(A)] & \text { if } \operatorname{dim} f(A)=\operatorname{dim} A \text { \& }\end{cases}
$$

graded, ie.,

$$
\left.\operatorname{deg} f\right|_{A}=n
$$

$$
f_{*}: A_{k}(Y) \rightarrow A_{k}(X)
$$

Def: If X proper, then $\operatorname{deg}^{\text {"'}^{*}}: A(X) \rightarrow \mathbb{Z}$

$$
\left(\pi: X \rightarrow S_{\text {pec }} \mathbb{K}_{k}\right) \Rightarrow \#(Y \cap Z):=\operatorname{deg}([y][z])
$$

For pullback,
Thm-Def: $f: Y \rightarrow X$ nor btw sm qporoj vars, then $f_{\psi}^{*}: \oplus A^{k}(X) \longrightarrow \oplus A^{k}(Y)$
graded ring how $\underset{\sim}{U}] \longmapsto\left[\begin{array}{|c}U \\ {\left[f^{-1}(A)\right.}\end{array}\right]$
where $A \subset X$ is $C M$ or gen transverse to f (sch $f^{-1}(A)$ gen red \& codim$\left.Y^{f^{-1}}(A)=\operatorname{codim} X A\right)$

Alternatively, $f^{*}([A]):=\pi_{1 *}\left(\left[\Gamma_{f}\right] \cdot \pi_{2}^{*}[A]\right)$,
where $\quad \pi_{2}^{*}: A^{\prime}(X) \longrightarrow A^{0}(Y \times X)$
$巳[A] \longmapsto[Y \times A]$

no CM/(gen trans to f) cold (b/c π_{2} flat)

$$
Y \times X \supset \Gamma_{f}:=\{(y, f(y)): y \in Y\}
$$ graph of f

$\left.\pi_{1}\right|_{\Gamma_{f}}: \Gamma_{f} \longrightarrow Y$ iso.
Then, gen trans cond $\Rightarrow \Gamma_{f} \cap(Y \times A)$ is gen transverse
$-A \subset X C M \Rightarrow \Gamma_{f} \& Y \times A$ are $C M$
(Rank: I don't understand) along $\Gamma_{f} \cap(Y \times A)$ this detail so dona worry!

Next Time: Push -Pull Formula then application into examples by Kaleb.

