
IEEE Communications Magazine • December 20211 0163-6804/21/$25.00 © 2021 IEEE

AbstrAct

Software-defined networking creates new 
opportunities for automated network securi-
ty management by providing a global network 
view and a standard interface for configuring net-
work policies. Previously, we proposed a general 
framework, called ATMoS, for autonomous threat 
mitigation using reinforcement learning (RL) in 
software-defined networks. Using a suitable set 
of host simulations and based on observations 
from an arbitrary network monitoring infrastruc-
ture, ATMoS can autonomously mitigate threats 
by moving hosts between a set of virtual networks 
that embody different network policies. In this 
article, we propose ATMoS+, which extends the 
RL agent in ATMoS with a novel Deep Q-Net-
work architecture. The deep RL agent in ATMoS+ 
leverages permutation-invariant and permuta-
tion-equivariant set functions to relax previous 
assumptions on the number of network hosts and 
their ordering. We showcase that the proposed 
deep RL agent is scalable and generalizes to an 
arbitrary-sized network without additional retrain-
ing, scales with the number of hosts, and accom-
modates several different types of threat alerts.

IntroductIon
Despite the constantly growing cyber-threat land-
scape and data breaches for enterprises of all 
sizes, manual security management remains a de 
facto standard. On the other hand, recent threat 
vectors have become more complex and stealth-
ier than ever. They can rapidly evolve to conceal 
their activities, change behavior over time, and 
adapt to network dynamics. This adds to the 
complexity of threat monitoring and response for 
attacks from advanced actors, such as advanced 
persistent threats (APTs). Hence, there is a dire 
need for automation in threat detection and mit-
igation.

Threat mitigation can be defined as isolating 
malicious from benign network hosts, and pre-
venting malicious actors from carrying out their 
operations while ensuring that the benign hosts 
remain unaffected. This can be easily accom-
plished in software-defined networking (SDN), 
which centralizes network control plane functions 
into dedicated controllers. SDN controllers can 
add, modify, and delete flow rules in network 

switches, effectively controlling the entire net-
work. Deploying virtual networks (VNs) within 
SDNs is also becoming more common, such as 
in data centers and enterprise networks. Combin-
ing SDN with VNs makes mitigating threats more 
straightforward. By pre-defining different network 
policies for each VN, an external application 
can simply send commands to the controller to 
switch the VN of a host to isolate malicious hosts, 
achieving threat mitigation in an elegant manner. 
In contrast, it is very difficult to centrally manage 
a traditional network. Therefore, SDN and VNs 
are key enabling technologies to automate threat 
mitigation.

The final piece is an algorithm to place hosts in 
the correct VN. This can be accomplished using 
reinforcement learning (RL), a machine learning 
(ML) [1, 2] technique that deals with the prob-
lem of sequential decision making based on the 
notion of learning a good behavior by interacting 
with an environment. While numerous research 
efforts have focused on ML-based threat detec-
tion [3], automated threat mitigation remains 
relatively uncharted. Previously, we proposed a 
novel threat mitigation framework, called ATMoS 
[4], which is based on deep RL in an SDN, and 
demonstrated its plausibility in a proof-of-concept 
implementation.

In this article, we extend ATMoS by focusing 
on the framework’s most crucial aspects: scalabil-
ity and practicality. Notably, we relax assumptions 
on the number of hosts and their ordering in the 
training and target networks. This allows a trained 
deep RL agent to be deployed in networks with 
different or changing numbers of hosts, which 
is frequently the case in real-world production 
environments. To accomplish this, we propose 
ATMoS+, which addresses these aspects by cre-
ating a new architecture incorporating permuta-
tion-invariant set function, also known as deep sets 
[5], and permutation-equivariant set function [6].

Our main contribution is the deep RL agent in 
ATMoS+, which: 
• Is robust to change in input ordering, allow-

ing accommodation for real-world environ-
ments with changing host identifiers

• Is scalable as the number of neural network 
trainable parameters are not dependent on 
the number of network hosts

• Generalizes to arbitrary-sized networks, 
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In this article, we propose 
ATMoS+, which extends the RL 
agent in ATMoS with a novel deep 
Q-network architecture. The deep 
RL agent in ATMoS+ leverages 
permutation-invariant and permu-
tation-equivariant set functions 
to relax previous assumptions on 
the number of network hosts and 
their ordering.
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allowing for deployment in real-world envi-
ronments with dynamic numbers of hosts

• Performs well in larger networks with several 
different types of threat alerts

The source code of ATMoS+ is available online 
[7].

bAckground And relAted Work
Supervised and unsupervised ML have been lever-
aged for threat hunting, detection, and mitigation 
(e.g., [8, 9]). However, the use of RL for cyberse-
curity is relatively new, especially when it comes 
to active mitigation. The primary advantage of 
RL is sequential decision making, making it more 
powerful than supervised learning. However, 
defining threat mitigation as an RL problem is far 
from trivial, and there are many considerations on 
what should constitute various RL components. In 
this section, we provide a brief context on RL and 
its application to threat mitigation.

reInforcement leArnIng
RL comprises an agent, a set of actions, an 
environment, and a reward function. The agent 
observes the environment to read its state. Based 
on its observations and internal state, the agent 
chooses an action out of a set of all possible 
actions. Once the action is carried out in the envi-
ronment, it alters the environment’s state and the 
agent receives a reward, which is used to adjust 
its internal state for future actions. The goal is to 
produce the highest expected cumulative reward, 
which allows the RL agent to master a sequential 
decision making problem. At each point in time, 
the RL agent does not simply realize the highest 
immediate reward, but rather foresees possibili-
ties created in future steps and makes decisions 
accordingly.

One of the most basic RL algorithms is 
Q-learning. In Q-learning, the goal is to estimate 
the expected cumulative reward, or Q-value, for 
taking each possible action a in a given state s. 
To estimate these Q-values, the agent executes 
actions to explore various states, and based on 
the received reward, updates its Q-value estima-
tion for the relevant state-action pairs. This pro-
cess is typically governed by a discount factor 
(g), which sets the trade-off in prioritizing future 
rewards over immediate rewards, and the explora-
tion rate (e), which controls how often the agent 
takes random actions to explore new possibilities, 
and this decreases as training progresses. Once 
training is complete, the RL agent only needs to 
pick the action with the highest Q-value for each 
state to achieve the highest expected reward. 
However, Q-learning requires memory space for 
storing Q-values of every state-action pair, making 
it infeasible for complex problems. To solve this, a 
neural network function can be used to estimate 
the Q-values instead. These solutions are known 
as deep RL algorithms.

Deep Q-Network (DQN) is one such algo-
rithm, which approximates the Q-value estima-
tion table using a neural network. It takes the 
current state as input and outputs Q-values for 
each action. The action with the highest Q-val-
ue is taken at each state, and once the reward is 
obtained, the neural network weights are updated 
accordingly. Over the years, many variations of 
the basic DQN algorithm have been introduced, 

such as Double DQN and Dueling DQN [10]. 
Other examples of deep RL algorithms include 
Deep Deterministic Policy Gradient (DDPG), 
Proximal Policy Optimization (PPO), and Asyn-
chronous Advantage Actor-Critic (A3C) [10], 
which are extensively used in RL literature.

rl for threAt mItIgAtIon In sdn
The application of RL to threat mitigation is an 
active field of research. SDN facilitates threat mit-
igation by providing a centralized network view 
and allowing dynamic update of network policies.

Liu et al. [11] proposed a framework for 
detecting and mitigating distributed denial of ser-
vice (DDoS) attacks using the DDPG algorithm. 
Their deep RL agent uses statistical information 
gathered from each SDN switch to generate a 
vector of bandwidth limits for each host. Normal-
ly, in an RL algorithm, the number of actions is 
fixed. However, in this case, there are an infinite 
number of possible bandwidth limits, and the use 
of DDPG allows the agent to choose one of these 
infinite possible actions. Nevertheless, this frame-
work is DDoS-specific, and it is difficult to general-
ize to other types of attacks.

Zolotukhin et al. [12] have proposed a general 
framework for attack mitigation that incorporates 
anomaly detection as well as signature-based 
intrusion detection system (IDS) alerts. They eval-
uated the use of both the DQN and PPO algo-
rithms. The input to their deep RL agent is a list 
of statistics for each traffic flow, such as number 
of unique ports, number of alerts detected, and 
number of requests in the flow. The agent can 
then take actions based on these traffic flows. 
However, the specific actions supported by the 
agent are not elaborated.

Han et al. [13] investigated improving the 
robustness of using RL for threat mitigation by 
incorporating adversarial training. They showed 
that RL-based approaches can be susceptible to 
vulnerabilities. For example, an attacker may com-
promise the network observer to send a false net-
work state to the agent, but the agent can learn 
to mitigate these effects using adversarial training 
techniques.

One of the main issues with these works is that 
the sequential aspect of the mitigation problem, 
which is the primary motivation for using RL, is 
often missing. Defending against stealthy and 
complex threat vectors (e.g., APTs) entails observ-
ing a host’s behavior over a relatively long time 
period and studying how different decisions affect 
a host’s behavior.

AutomAted threAt mItIgAtIon In sdn: Atmos
In this article, we extend the ATMoS framework, 
which assumes that a number of hosts in an SDN 
environment have been compromised. The goal 
is to identify these hosts and impose appropri-
ate policies, via the SDN controller, to block their 
operations. However, there are benign hosts 
within the network as well, and their operations 
should not be affected by the imposed policies. 
For a realistic environment, it is also assumed 
that the security monitoring systems in place may 
result in false positive alerts.

The ATMoS framework leverages multiple 
VNs with different network policies, which are 
deployed on top of the existing network prior 
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to running the agent. These VNs are designed by 
domain experts to embody different security levels or 
potential policies toward network hosts. For instance, 
a network can have two VNs, where one VN pas-
sively monitors traffic while the other blocks traffic 
upon alerts from the security monitoring systems. 
While different VN designs can be explored in the 
future, the core idea is to steer the RL agent’s actions 
to place a network host in a particular VN in order to 
control the size of the action space.

ATMoS leverages deep RL to decide on which 
VN each network host should be placed. The 
deep RL agent receives the alerts from an arbi-
trary security monitoring system as input, and 
accordingly decides whether it should change a 
host’s VN. Using a suitable reward function, the 
agent learns to place the malicious and benign 
hosts in their appropriate VNs.

The architecture of ATMoS is depicted in Fig. 
1. The security monitoring system is depicted as 
the network observer, which monitors the net-
work traffic and produces alerts in real time. The 
network observer transmits the alert data from 
the environment to the deep RL agent in a stan-
dard format. The network observer is assumed to 
accurately construct alerts matching user-defined 
rules. However, the rules themselves may be over-
ly sensitive, as is often the case in real-world envi-
ronments.

The agent is implemented using a DQN, with 
a neural network model consisting of two dense 
fully connected layers with rectified linear unit 
(ReLU) activation functions. It receives the alerts 
and the current VN placement of all the hosts, 
and decides whether to pick a host and move 
it to a different VN in a predefined order or do 
nothing.

Many different performance feedback metrics 
can be used to train ATMoS in production, includ-
ing response time and host uptime metrics. Alter-
natively, simulated malicious and benign hosts can 
be directly labeled so that the reward depends on 
the placement of hosts in VNs. Thus, by defining 
the appropriate reward function and VNs, ATMoS 
can be applied not just to mitigate DoS attacks, 
but other threat vectors, even APTs. After the RL 
agent is trained based on simulations, it can be 
deployed in the target network, where the hosts 
are real users, and it is unknown whether they are 
malicious or benign.

Atmos+
motIvAtIon

The deep RL agent in ATMoS is based on a static 
neural network, that is, the number of hosts and 
their ordering must remain constant in training 
and deployment. This limits the transferability of 
the agent to arbitrary networks. Ideally, we should 
be able to train the agent in one network, such as 
a staging environment, and deploy it anywhere. 
Therefore, to facilitate cross-network use cases, 
we propose ATMoS+, an extension to ATMoS, 
with a novel deep RL agent architecture that sup-
ports training and deployment on arbitrary-sized 
networks.

The DQN model in ATMoS is not readily gen-
eralizable when the number of network hosts 
changes. Since the model learns host-specific 
weights that capture the characteristics of particu-
lar hosts, the model must be retrained to learn the 
appropriate weights for new hosts. Furthermore, 
the input and output shapes of the DQN model 
also depend on the number of hosts. Therefore, 
modifying the number of hosts requires changes 
to the shape of the input and output layers before 
the model undergoes retraining. Since additional 
training is required, changing VNs of randomly 
selected hosts occurs when the agent is exploring 
new policies. In a production environment, serv-
ers can be added or removed frequently, so the 
agent will need to be retrained frequently as well. 
This causes VNs to be repeatedly toggled for ran-
dom hosts, which is impractical. Additionally, both 
the training time and the neural network complex-
ity grow super-linearly with the number of hosts.

Moreover, the DQN model in ATMoS can 
become sensitive to the host ordering; that is, it 
is susceptible to binding to host IDs. The model 
comprises dense neural network layers that take 
a vector of alert observations from all hosts as 
the input in a fixed order. Hence, neurons corre-
sponding to different hosts in the neural network 
can have a different set of weights, so the model 
can, for example, learn that the second host is 
always malicious. However, if the network host 
order changes, the neurons will no longer corre-
spond to the correct hosts, confusing the deep 
RL agent. To alleviate this, the host order can be 
randomized every training episode. However, this 
comes at the cost of a much larger number of 

The deep RL agent in ATMoS 
is based on a static neural 

network, that is, the number 
of hosts and their ordering 

must remain constant in 
training and deployment. This 

limits the transferability of 
the agent to arbitrary net-

works. Ideally, we should be 
able to train the agent in one 
network, such as a staging 
environment, and deploy it 

anywhere. FIGURE 1. ATMoS architecture.
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training episodes, substantially increasing training 
time.

These issues call for enhancing the neural 
network architecture such that it allows for a 
dynamic number of network hosts. The neural 
network should also be robust to the order in 
which a host’s data appears in the input feature 
vector. In ATMoS+, we address these issues by 
using set functions that treat inputs as unordered 
sets. This prevents the DQN model from implicitly 
depending on host ordering. Furthermore, due 
to the structure of set functions, they can easily 
adapt to a different (i.e., higher or lower) number 
of hosts. ATMoS+ leverages the same architecture 
as ATMoS, as depicted in Fig. 1, but includes the 
new deep RL agent to improve generalization.

set functIons
There are two major types of set functions: per-
mutation-equivariant and permutation-invariant. 
In permutation-equivariant set functions, the input 
ordering is directly correlated with the output. 
Although there is no particular ordering in the 
function’s input, the output for the corresponding 
input is always in the same relative position. For 
example, the output corresponding to the second 
input will always be the second output. If the first 
and second inputs are swapped, the first and sec-
ond outputs swap as well, as shown in Fig. 2.

In permutation-invariant set function, the 
ordering of the input has no effect on the output. 
In this case, unlike permutation-equivariant func-
tion, the outputs of a permutation-invariant func-
tion are tied to the general state of all the inputs, 
not to a specific input. This is also illustrated in Fig. 
2, where the output does not change when the 
inputs are swapped.

Both permutation-equivariant and permuta-
tion-invariant set functions can be approximated 
using respective neural network architectures [5, 
6]. Both of these neural networks rely on func-
tions that we denote as P and R. The P function 
creates a high-dimensional summary vector from 
the data of a particular input. These summary 
vectors are then pooled together using a pool-
ing function, such as the element-wise maximum, 
average, or summation. The same P function is 
used on all inputs, so once the pooling operation 
is complete, it is impossible to infer the original 
order of the hosts. Finally, an R function takes this 
pooled vector as an input to produce the desired 
output. Both the P and R functions can be approx-
imated using neural networks without any specif-
ic architectural constraints. We use the P and R 
functions to model permutation-equivariant and 
permutation-invariant set functions as follows.

Permutation-Invariant Modeling: To model a 
permutation-invariant set function with a neural 
network, the P function is applied to all the inputs, 
and the resulting vectors are pooled together. 
Finally, the R function is applied to the pooled 
result to obtain a permutation-invariant output.

Permutation-Equivariant Modeling: To model 
a permutation-equivariant set function with a neu-
ral network, each input must be considered indi-
vidually. For a particular input, the P function is 
applied to all the other inputs and pooled togeth-
er. Then both the data from the current input and 
the pooled vector are fed to the R function. The  
output of the R function is the output for the cor-

responding input. The outputs of the R function 
for all the inputs is the output of the model.

By integrating these neural network archi-
tectures into the deep RL agent in ATMoS+, we 
obtain a DQN model that treats hosts as a set and 
is not influenced by any host order in particular. 
Furthermore, the neural network architectures can 
easily be extended to networks of any size, since 
all hosts share the neural network parameters.

set functIons In Atmos+
The DQN model in ATMoS+, however, is neither a 
permutation-equivariant nor permutation-invariant 
set function. It is nearly a permutation-equivariant 
set function, as each input has a corresponding 
output. If we swap the ordering of the hosts, we 
would like to output corresponding Q-values asso-
ciated with each input host. However, the number 
of inputs does not exactly correspond to the num-
ber of outputs, because there is one extra output 
that does not belong to any host, which is the “do 
nothing” action. The Q-value for “do nothing” is 
dependent on the state of all the hosts, as nothing 
needs to be done if and only if all the hosts are 
in the correct VNs. Therefore, the Q-value of the 
“do nothing” action corresponds to a permuta-
tion-invariant set function. Thus, to implement the 
DQN model, both permutation-equivariant and 
permutation-invariant set functions are necessary.

The neural network architecture of the DQN 
model is shown in Fig. 3. The input has two parts: 
vector of alert observations for each host, and 
current VNs of the hosts. The functions P1 and 
P2 correspond to the P functions used in the 
permutation-equivariant and permutation-invari-
ant neural networks, respectively. They are both 
approximated using a neural network consisting 
of two dense layers with 12 and 16 neurons using 
ReLU activation functions. These P functions take 
a vector of alerts from one host and the current 
VN of that host as the input. We use element-wise 
maximum as the pooling function.

Similarly, the functions R1 and R2 correspond 
to the R functions used in the permutation-equiv-

FIGURE 2. Input, output ordering property of permutation-equivariant and permutation-invariant set functions.
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ariant and permutation-invariant neural networks, 
respectively. R1 consists of a dense layer with 
eight neurons (ReLu activation) followed by a 
dense layer with a single neuron with linear acti-
vation. The network input consists of the corre-
sponding pooled vector concatenated with the 
VN and alert information of the host. R2 consists 
of a single dense layer with one neuron using a 
linear activation function. Its input is the pooled 
vector from the permutation-invariant functions. 
The number of neurons and activation functions 
in the neural networks are chosen based on trial 
and error.

AddItIonAl hosts After trAInIng
Note that the P function for all the P1 nodes 
in Fig. 3 are the same. These P functions are a 
shared layer between all three inputs. This is also 
the case for P2, R1, and R2. In other words, all the 
P1 nodes have exactly the same weights, all the 

P2 nodes have exactly the same weights, and so 
on. This makes it trivial to alter the neural network 
to accommodate a larger or smaller number of 
hosts.

To add a host to the neural network, we sim-
ply extend both the permutation-invariant and 
permutation-equivariant functions. To extend the 
latter, we set the alert observations and VN status 
of the new host as the input to P1 and obtain a 
summary vector. This summary vector can then 
be added as an input to the pooling function of 
all the other inputs. Next, we take the summary 
vectors of all the other hosts and set them as the 
input to the pooling function of the new host to 
obtain a pooled vector. Finally, we set the pooled 
vector, the alert observations, and VN status of 
the host as the input to R1. The output of R1 is the 
output corresponding to the new host.

To extend the permutation-invariant function, 
we map the data from the new host to P2, which 
is then added as an input to the pooling function. 
To remove a node, these steps can be carried 
out in reverse. Therefore, in addition to the DQN 
model being independent of the host input posi-
tion, it can also be deployed in a network with 
a different number of hosts than the training net-
work.

evAluAtIon
To evaluate ATMoS+, we set up an SDN with 
an OpenDaylight controller on Containernet, a 
network emulator that uses Docker containers 
as hosts. OpenDaylight’s Virtual Tenant Network 
plugin is used to implement the VNs. We use 
Open vSwitch as the switches in the SDN data 
plane. Finally, the benign and malicious hosts are 
implemented using a set of scripts running within 
the Docker containers. The deep RL agent itself is 
implemented using Tensorflow Keras.

trAInIng convergence: set functIons vs. non-set functIons
We trained ATMoS+ on a network of 10 hosts, 
that is, six benign and four malicious hosts. We 
leverage two VNs in our evaluation: 
• Low-security VN with passive monitoring, 

denoted as security level 1
• High-security VN with active interception, 

denoted as security level 2
The reward function is chosen as the sum of the 
VN security levels of all the malicious hosts sub-
tracted by the sum of the VN security levels of all 
the benign hosts. The input to the RL agent is a 
one-hot encoded vector of four types of alerts for 
each host: 
• A SYN flood detector
• A false positive alert that can be triggered by 

excessive pinging
• An error-based SQL injection detector
• An alert triggered by a flood of HTTP traffic

The agent’s exploration rate (e) and discount 
factor (g) parameters are set to 0.1 and 0.5, 
respectively. The alerts from the host are obtained 
as a one-hot encoded vector of the last 20 alerts. 
The training runs for 100 steps per episode for 65 
episodes. After the end of each episode, the hosts 
are reset; that is, they are moved to the low-secu-
rity VN.

The training convergence of the deep RL 
agent with the DQN model and four alerts is 
depicted in Fig. 4. This training convergence is 

FIGURE 3.  DQN’s neural network architecture: P1, P2, and R1, R2 correspond to two different P and R functions for the 
permutation-invariant and permutation-equivariant functions.
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compared against the best-performing non-set 
function model, that is, a convolutional neural net-
work (CNN) with a kernel size of 3. The CNN 
model converges slightly faster than the DQN 
model. We attribute this to the CNN learning 
the malicious hosts based on the position of 
each host in the input. However, if the positions 
of hosts are rearranged after every episode, the 
CNN model fails to learn the optimal placement 
of hosts. This demonstrates that the set function 
model in ATMoS+ is robust to permutations in 
host ordering.

AddItIonAl Alert types
We also evaluated the scalability of training the 
DQN model in ATMoS+ with a varying number 
of alerts up to a maximum of 12. Seven alerts 
are network-level alerts, and include detection of 
SYN attacks, abnormal HTTP traffic, and exces-
sive pinging. The remaining five alerts are appli-
cation-level alerts, which detect SQL injection, 
directory traversal, and buffer overflow exploits. 
We deliberately increased the sensitivity of some 
alerts to generate false positives. We also imple-
mented three additional Docker containers: a 
docker container running DVWA, a deliberately 
insecure web application, a malicious container 
executing SQL injection, and a malicious contain-
er executing directory traversal and buffer over-
flow. The result in Fig. 5 shows that the deep RL 
agent in ATMoS+ still converges with the addi-
tion of new alerts. However, the convergence 
time is longer for 8 and 12 alerts in comparison 
to 4 alerts. We attribute this to the increase in the 
DQN model parameters, which increases with the 
number of alerts. We have also evaluated differ-
ent combinations of four alerts, and found that 
ATMoS+ performs consistently across all combi-
nations.

deployIng trAIned Agents In ArbItrAry-sIzed netWorks
The ATMoS+ agent was tested in networks with 
arbitrary sizes. The procedure to reconstruct 
the DQN model for different network sizes was 
described previously. We trained the deep RL 
agent on a small network with 10 hosts and eval-
uated its performance by reconstructing the DQN 
model for larger networks with sizes ranging from 
20 to 100 hosts, with 5 percent of the hosts being 
malicious. Indeed, the agent can theoretically be 
deployed in much larger networks.

 For each network, we execute the deep RL 
agent for 100 steps. The agent starts off in a base-
line state, where all the hosts are placed in the 
low-security VN. Then we run the RL agent purely 
on the greedy policy, that is, choosing the action 
that maximizes the reward on every step. Figure 
6 shows how ATMoS+ places the hosts in the 
optimal VN configuration immediately. Since the 
reward function we use changes domain depend-
ing on network size, for simplicity we transformed 
the reward function to show the number of mis-
placed hosts instead. This demonstrates that the 
deep RL agent with the DQN model in ATMoS+, 
which is based on set functions, generalizes to 
arbitrary-sized networks without retraining.

conclusIon
In this article, we propose ATMoS+, an extension 
to ATMoS, which leverages a novel DQN with 

permutation-invariant and permutation-equivariant 
set functions to facilitate threat mitigation across 
arbitrary-sized SDNs. We showcase that the deep 
RL agent in ATMoS+ is scalable, accommodates a 
larger number of alerts, and generalizes to an arbi-
trary-sized network without additional retraining. 
This opens the door to future applications, where 
a pre-trained deep RL agent could be deployed 
to mitigate threats from many different networks.

An important future direction is to enable the 
DQN model to learn long-term dependencies for 
each host. For example, if a malicious host ceas-
es malicious activity for a long time, the DQN 
model is unable to retain this knowledge, as it 
relies solely on alerts detected from the host’s 
activity to determine malice. Furthermore, the 
agent in ATMoS+ uses a one-hot encoded vec-
tor of the last 20 alerts to make decisions, which 
may result in alerts being missed if more than 20 
alerts occurred within the last time step. Although 
this number can be increased to adapt to alert 
frequencies in different environments, a general-
izable alert representation could be explored that 
incorporates information from all alerts, regard-
less of how frequently alerts occur. ATMoS+ must 
also be extended to mitigate zero-day attacks. 
This could potentially be accomplished by inte-
grating the output of an anomaly detector as an 
alert type.

FIGURE 5. Training ATMoS+ with a varying number of alerts.

FIGURE 6. Threat mitigation for varying network sizes.
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