
IEEE Communications Magazine • December 20211 0163-6804/21/$25.00 © 2021 IEEE

AbstrAct

Software-defined networking creates new
opportunities for automated network securi-
ty management by providing a global network
view and a standard interface for configuring net-
work policies. Previously, we proposed a general
framework, called ATMoS, for autonomous threat
mitigation using reinforcement learning (RL) in
software-defined networks. Using a suitable set
of host simulations and based on observations
from an arbitrary network monitoring infrastruc-
ture, ATMoS can autonomously mitigate threats
by moving hosts between a set of virtual networks
that embody different network policies. In this
article, we propose ATMoS+, which extends the
RL agent in ATMoS with a novel Deep Q-Net-
work architecture. The deep RL agent in ATMoS+
leverages permutation-invariant and permuta-
tion-equivariant set functions to relax previous
assumptions on the number of network hosts and
their ordering. We showcase that the proposed
deep RL agent is scalable and generalizes to an
arbitrary-sized network without additional retrain-
ing, scales with the number of hosts, and accom-
modates several different types of threat alerts.

IntroductIon
Despite the constantly growing cyber-threat land-
scape and data breaches for enterprises of all
sizes, manual security management remains a de
facto standard. On the other hand, recent threat
vectors have become more complex and stealth-
ier than ever. They can rapidly evolve to conceal
their activities, change behavior over time, and
adapt to network dynamics. This adds to the
complexity of threat monitoring and response for
attacks from advanced actors, such as advanced
persistent threats (APTs). Hence, there is a dire
need for automation in threat detection and mit-
igation.

Threat mitigation can be defined as isolating
malicious from benign network hosts, and pre-
venting malicious actors from carrying out their
operations while ensuring that the benign hosts
remain unaffected. This can be easily accom-
plished in software-defined networking (SDN),
which centralizes network control plane functions
into dedicated controllers. SDN controllers can
add, modify, and delete flow rules in network

switches, effectively controlling the entire net-
work. Deploying virtual networks (VNs) within
SDNs is also becoming more common, such as
in data centers and enterprise networks. Combin-
ing SDN with VNs makes mitigating threats more
straightforward. By pre-defining different network
policies for each VN, an external application
can simply send commands to the controller to
switch the VN of a host to isolate malicious hosts,
achieving threat mitigation in an elegant manner.
In contrast, it is very difficult to centrally manage
a traditional network. Therefore, SDN and VNs
are key enabling technologies to automate threat
mitigation.

The final piece is an algorithm to place hosts in
the correct VN. This can be accomplished using
reinforcement learning (RL), a machine learning
(ML) [1, 2] technique that deals with the prob-
lem of sequential decision making based on the
notion of learning a good behavior by interacting
with an environment. While numerous research
efforts have focused on ML-based threat detec-
tion [3], automated threat mitigation remains
relatively uncharted. Previously, we proposed a
novel threat mitigation framework, called ATMoS
[4], which is based on deep RL in an SDN, and
demonstrated its plausibility in a proof-of-concept
implementation.

In this article, we extend ATMoS by focusing
on the framework’s most crucial aspects: scalabil-
ity and practicality. Notably, we relax assumptions
on the number of hosts and their ordering in the
training and target networks. This allows a trained
deep RL agent to be deployed in networks with
different or changing numbers of hosts, which
is frequently the case in real-world production
environments. To accomplish this, we propose
ATMoS+, which addresses these aspects by cre-
ating a new architecture incorporating permuta-
tion-invariant set function, also known as deep sets
[5], and permutation-equivariant set function [6].

Our main contribution is the deep RL agent in
ATMoS+, which:
• Is robust to change in input ordering, allow-

ing accommodation for real-world environ-
ments with changing host identifiers

• Is scalable as the number of neural network
trainable parameters are not dependent on
the number of network hosts

• Generalizes to arbitrary-sized networks,

Hauton Tsang, Iman Akbari, Mohammad A. Salahuddin, Noura Limam, and Raouf Boutaba

The authors are with the University of Waterloo.
Digital Object Identifier:
10.1109/MCOM.009.2100389

ATMoS+: Generalizable Threat Mitigation in
SDN Using Permutation Equivariant and
Invariant Deep Reinforcement Learning

ACCEPTED FROM OPEN CALL

In this article, we propose
ATMoS+, which extends the RL
agent in ATMoS with a novel deep
Q-network architecture. The deep
RL agent in ATMoS+ leverages
permutation-invariant and permu-
tation-equivariant set functions
to relax previous assumptions on
the number of network hosts and
their ordering.

IEEE Communications Magazine • December 2021 2

allowing for deployment in real-world envi-
ronments with dynamic numbers of hosts

• Performs well in larger networks with several
different types of threat alerts

The source code of ATMoS+ is available online
[7].

bAckground And relAted Work
Supervised and unsupervised ML have been lever-
aged for threat hunting, detection, and mitigation
(e.g., [8, 9]). However, the use of RL for cyberse-
curity is relatively new, especially when it comes
to active mitigation. The primary advantage of
RL is sequential decision making, making it more
powerful than supervised learning. However,
defining threat mitigation as an RL problem is far
from trivial, and there are many considerations on
what should constitute various RL components. In
this section, we provide a brief context on RL and
its application to threat mitigation.

reInforcement leArnIng
RL comprises an agent, a set of actions, an
environment, and a reward function. The agent
observes the environment to read its state. Based
on its observations and internal state, the agent
chooses an action out of a set of all possible
actions. Once the action is carried out in the envi-
ronment, it alters the environment’s state and the
agent receives a reward, which is used to adjust
its internal state for future actions. The goal is to
produce the highest expected cumulative reward,
which allows the RL agent to master a sequential
decision making problem. At each point in time,
the RL agent does not simply realize the highest
immediate reward, but rather foresees possibili-
ties created in future steps and makes decisions
accordingly.

One of the most basic RL algorithms is
Q-learning. In Q-learning, the goal is to estimate
the expected cumulative reward, or Q-value, for
taking each possible action a in a given state s.
To estimate these Q-values, the agent executes
actions to explore various states, and based on
the received reward, updates its Q-value estima-
tion for the relevant state-action pairs. This pro-
cess is typically governed by a discount factor
(g), which sets the trade-off in prioritizing future
rewards over immediate rewards, and the explora-
tion rate (e), which controls how often the agent
takes random actions to explore new possibilities,
and this decreases as training progresses. Once
training is complete, the RL agent only needs to
pick the action with the highest Q-value for each
state to achieve the highest expected reward.
However, Q-learning requires memory space for
storing Q-values of every state-action pair, making
it infeasible for complex problems. To solve this, a
neural network function can be used to estimate
the Q-values instead. These solutions are known
as deep RL algorithms.

Deep Q-Network (DQN) is one such algo-
rithm, which approximates the Q-value estima-
tion table using a neural network. It takes the
current state as input and outputs Q-values for
each action. The action with the highest Q-val-
ue is taken at each state, and once the reward is
obtained, the neural network weights are updated
accordingly. Over the years, many variations of
the basic DQN algorithm have been introduced,

such as Double DQN and Dueling DQN [10].
Other examples of deep RL algorithms include
Deep Deterministic Policy Gradient (DDPG),
Proximal Policy Optimization (PPO), and Asyn-
chronous Advantage Actor-Critic (A3C) [10],
which are extensively used in RL literature.

rl for threAt mItIgAtIon In sdn
The application of RL to threat mitigation is an
active field of research. SDN facilitates threat mit-
igation by providing a centralized network view
and allowing dynamic update of network policies.

Liu et al. [11] proposed a framework for
detecting and mitigating distributed denial of ser-
vice (DDoS) attacks using the DDPG algorithm.
Their deep RL agent uses statistical information
gathered from each SDN switch to generate a
vector of bandwidth limits for each host. Normal-
ly, in an RL algorithm, the number of actions is
fixed. However, in this case, there are an infinite
number of possible bandwidth limits, and the use
of DDPG allows the agent to choose one of these
infinite possible actions. Nevertheless, this frame-
work is DDoS-specific, and it is difficult to general-
ize to other types of attacks.

Zolotukhin et al. [12] have proposed a general
framework for attack mitigation that incorporates
anomaly detection as well as signature-based
intrusion detection system (IDS) alerts. They eval-
uated the use of both the DQN and PPO algo-
rithms. The input to their deep RL agent is a list
of statistics for each traffic flow, such as number
of unique ports, number of alerts detected, and
number of requests in the flow. The agent can
then take actions based on these traffic flows.
However, the specific actions supported by the
agent are not elaborated.

Han et al. [13] investigated improving the
robustness of using RL for threat mitigation by
incorporating adversarial training. They showed
that RL-based approaches can be susceptible to
vulnerabilities. For example, an attacker may com-
promise the network observer to send a false net-
work state to the agent, but the agent can learn
to mitigate these effects using adversarial training
techniques.

One of the main issues with these works is that
the sequential aspect of the mitigation problem,
which is the primary motivation for using RL, is
often missing. Defending against stealthy and
complex threat vectors (e.g., APTs) entails observ-
ing a host’s behavior over a relatively long time
period and studying how different decisions affect
a host’s behavior.

AutomAted threAt mItIgAtIon In sdn: Atmos
In this article, we extend the ATMoS framework,
which assumes that a number of hosts in an SDN
environment have been compromised. The goal
is to identify these hosts and impose appropri-
ate policies, via the SDN controller, to block their
operations. However, there are benign hosts
within the network as well, and their operations
should not be affected by the imposed policies.
For a realistic environment, it is also assumed
that the security monitoring systems in place may
result in false positive alerts.

The ATMoS framework leverages multiple
VNs with different network policies, which are
deployed on top of the existing network prior

 The primary advantage of
RL is sequential decision
making, causing it to be

more powerful than super-
vised learning. However,

defining threat mitigation
as an RL problem is far from
trivial, and there are many

considerations on what
should constitute various RL

components.

IEEE Communications Magazine • December 20213

to running the agent. These VNs are designed by
domain experts to embody different security levels or
potential policies toward network hosts. For instance,
a network can have two VNs, where one VN pas-
sively monitors traffic while the other blocks traffic
upon alerts from the security monitoring systems.
While different VN designs can be explored in the
future, the core idea is to steer the RL agent’s actions
to place a network host in a particular VN in order to
control the size of the action space.

ATMoS leverages deep RL to decide on which
VN each network host should be placed. The
deep RL agent receives the alerts from an arbi-
trary security monitoring system as input, and
accordingly decides whether it should change a
host’s VN. Using a suitable reward function, the
agent learns to place the malicious and benign
hosts in their appropriate VNs.

The architecture of ATMoS is depicted in Fig.
1. The security monitoring system is depicted as
the network observer, which monitors the net-
work traffic and produces alerts in real time. The
network observer transmits the alert data from
the environment to the deep RL agent in a stan-
dard format. The network observer is assumed to
accurately construct alerts matching user-defined
rules. However, the rules themselves may be over-
ly sensitive, as is often the case in real-world envi-
ronments.

The agent is implemented using a DQN, with
a neural network model consisting of two dense
fully connected layers with rectified linear unit
(ReLU) activation functions. It receives the alerts
and the current VN placement of all the hosts,
and decides whether to pick a host and move
it to a different VN in a predefined order or do
nothing.

Many different performance feedback metrics
can be used to train ATMoS in production, includ-
ing response time and host uptime metrics. Alter-
natively, simulated malicious and benign hosts can
be directly labeled so that the reward depends on
the placement of hosts in VNs. Thus, by defining
the appropriate reward function and VNs, ATMoS
can be applied not just to mitigate DoS attacks,
but other threat vectors, even APTs. After the RL
agent is trained based on simulations, it can be
deployed in the target network, where the hosts
are real users, and it is unknown whether they are
malicious or benign.

Atmos+
motIvAtIon

The deep RL agent in ATMoS is based on a static
neural network, that is, the number of hosts and
their ordering must remain constant in training
and deployment. This limits the transferability of
the agent to arbitrary networks. Ideally, we should
be able to train the agent in one network, such as
a staging environment, and deploy it anywhere.
Therefore, to facilitate cross-network use cases,
we propose ATMoS+, an extension to ATMoS,
with a novel deep RL agent architecture that sup-
ports training and deployment on arbitrary-sized
networks.

The DQN model in ATMoS is not readily gen-
eralizable when the number of network hosts
changes. Since the model learns host-specific
weights that capture the characteristics of particu-
lar hosts, the model must be retrained to learn the
appropriate weights for new hosts. Furthermore,
the input and output shapes of the DQN model
also depend on the number of hosts. Therefore,
modifying the number of hosts requires changes
to the shape of the input and output layers before
the model undergoes retraining. Since additional
training is required, changing VNs of randomly
selected hosts occurs when the agent is exploring
new policies. In a production environment, serv-
ers can be added or removed frequently, so the
agent will need to be retrained frequently as well.
This causes VNs to be repeatedly toggled for ran-
dom hosts, which is impractical. Additionally, both
the training time and the neural network complex-
ity grow super-linearly with the number of hosts.

Moreover, the DQN model in ATMoS can
become sensitive to the host ordering; that is, it
is susceptible to binding to host IDs. The model
comprises dense neural network layers that take
a vector of alert observations from all hosts as
the input in a fixed order. Hence, neurons corre-
sponding to different hosts in the neural network
can have a different set of weights, so the model
can, for example, learn that the second host is
always malicious. However, if the network host
order changes, the neurons will no longer corre-
spond to the correct hosts, confusing the deep
RL agent. To alleviate this, the host order can be
randomized every training episode. However, this
comes at the cost of a much larger number of

The deep RL agent in ATMoS
is based on a static neural

network, that is, the number
of hosts and their ordering

must remain constant in
training and deployment. This

limits the transferability of
the agent to arbitrary net-

works. Ideally, we should be
able to train the agent in one
network, such as a staging
environment, and deploy it

anywhere. FIGURE 1. ATMoS architecture.

Deep Reinforcement Learning Model

Deep RL Agent

Reward Func�on

Environment

Virtual
Network

Host

Virtual
Network

Host

Host

Ac�on

Reward

Network
Observer

Performance
Feedback

Insights

So�ware-defined
Network

Controller

IEEE Communications Magazine • December 2021 4

training episodes, substantially increasing training
time.

These issues call for enhancing the neural
network architecture such that it allows for a
dynamic number of network hosts. The neural
network should also be robust to the order in
which a host’s data appears in the input feature
vector. In ATMoS+, we address these issues by
using set functions that treat inputs as unordered
sets. This prevents the DQN model from implicitly
depending on host ordering. Furthermore, due
to the structure of set functions, they can easily
adapt to a different (i.e., higher or lower) number
of hosts. ATMoS+ leverages the same architecture
as ATMoS, as depicted in Fig. 1, but includes the
new deep RL agent to improve generalization.

set functIons
There are two major types of set functions: per-
mutation-equivariant and permutation-invariant.
In permutation-equivariant set functions, the input
ordering is directly correlated with the output.
Although there is no particular ordering in the
function’s input, the output for the corresponding
input is always in the same relative position. For
example, the output corresponding to the second
input will always be the second output. If the first
and second inputs are swapped, the first and sec-
ond outputs swap as well, as shown in Fig. 2.

In permutation-invariant set function, the
ordering of the input has no effect on the output.
In this case, unlike permutation-equivariant func-
tion, the outputs of a permutation-invariant func-
tion are tied to the general state of all the inputs,
not to a specific input. This is also illustrated in Fig.
2, where the output does not change when the
inputs are swapped.

Both permutation-equivariant and permuta-
tion-invariant set functions can be approximated
using respective neural network architectures [5,
6]. Both of these neural networks rely on func-
tions that we denote as P and R. The P function
creates a high-dimensional summary vector from
the data of a particular input. These summary
vectors are then pooled together using a pool-
ing function, such as the element-wise maximum,
average, or summation. The same P function is
used on all inputs, so once the pooling operation
is complete, it is impossible to infer the original
order of the hosts. Finally, an R function takes this
pooled vector as an input to produce the desired
output. Both the P and R functions can be approx-
imated using neural networks without any specif-
ic architectural constraints. We use the P and R
functions to model permutation-equivariant and
permutation-invariant set functions as follows.

Permutation-Invariant Modeling: To model a
permutation-invariant set function with a neural
network, the P function is applied to all the inputs,
and the resulting vectors are pooled together.
Finally, the R function is applied to the pooled
result to obtain a permutation-invariant output.

Permutation-Equivariant Modeling: To model
a permutation-equivariant set function with a neu-
ral network, each input must be considered indi-
vidually. For a particular input, the P function is
applied to all the other inputs and pooled togeth-
er. Then both the data from the current input and
the pooled vector are fed to the R function. The
output of the R function is the output for the cor-

responding input. The outputs of the R function
for all the inputs is the output of the model.

By integrating these neural network archi-
tectures into the deep RL agent in ATMoS+, we
obtain a DQN model that treats hosts as a set and
is not influenced by any host order in particular.
Furthermore, the neural network architectures can
easily be extended to networks of any size, since
all hosts share the neural network parameters.

set functIons In Atmos+
The DQN model in ATMoS+, however, is neither a
permutation-equivariant nor permutation-invariant
set function. It is nearly a permutation-equivariant
set function, as each input has a corresponding
output. If we swap the ordering of the hosts, we
would like to output corresponding Q-values asso-
ciated with each input host. However, the number
of inputs does not exactly correspond to the num-
ber of outputs, because there is one extra output
that does not belong to any host, which is the “do
nothing” action. The Q-value for “do nothing” is
dependent on the state of all the hosts, as nothing
needs to be done if and only if all the hosts are
in the correct VNs. Therefore, the Q-value of the
“do nothing” action corresponds to a permuta-
tion-invariant set function. Thus, to implement the
DQN model, both permutation-equivariant and
permutation-invariant set functions are necessary.

The neural network architecture of the DQN
model is shown in Fig. 3. The input has two parts:
vector of alert observations for each host, and
current VNs of the hosts. The functions P1 and
P2 correspond to the P functions used in the
permutation-equivariant and permutation-invari-
ant neural networks, respectively. They are both
approximated using a neural network consisting
of two dense layers with 12 and 16 neurons using
ReLU activation functions. These P functions take
a vector of alerts from one host and the current
VN of that host as the input. We use element-wise
maximum as the pooling function.

Similarly, the functions R1 and R2 correspond
to the R functions used in the permutation-equiv-

FIGURE 2. Input, output ordering property of permutation-equivariant and permutation-invariant set functions.

Permuta�on-Equivariant
Func�on

Permuta�on-Equivariant
Func�on

Input

Output

Permuta�on-Invariant
Func�on

Permuta�on-Invariant
Func�on

Input

Output

IEEE Communications Magazine • December 20215

ariant and permutation-invariant neural networks,
respectively. R1 consists of a dense layer with
eight neurons (ReLu activation) followed by a
dense layer with a single neuron with linear acti-
vation. The network input consists of the corre-
sponding pooled vector concatenated with the
VN and alert information of the host. R2 consists
of a single dense layer with one neuron using a
linear activation function. Its input is the pooled
vector from the permutation-invariant functions.
The number of neurons and activation functions
in the neural networks are chosen based on trial
and error.

AddItIonAl hosts After trAInIng
Note that the P function for all the P1 nodes
in Fig. 3 are the same. These P functions are a
shared layer between all three inputs. This is also
the case for P2, R1, and R2. In other words, all the
P1 nodes have exactly the same weights, all the

P2 nodes have exactly the same weights, and so
on. This makes it trivial to alter the neural network
to accommodate a larger or smaller number of
hosts.

To add a host to the neural network, we sim-
ply extend both the permutation-invariant and
permutation-equivariant functions. To extend the
latter, we set the alert observations and VN status
of the new host as the input to P1 and obtain a
summary vector. This summary vector can then
be added as an input to the pooling function of
all the other inputs. Next, we take the summary
vectors of all the other hosts and set them as the
input to the pooling function of the new host to
obtain a pooled vector. Finally, we set the pooled
vector, the alert observations, and VN status of
the host as the input to R1. The output of R1 is the
output corresponding to the new host.

To extend the permutation-invariant function,
we map the data from the new host to P2, which
is then added as an input to the pooling function.
To remove a node, these steps can be carried
out in reverse. Therefore, in addition to the DQN
model being independent of the host input posi-
tion, it can also be deployed in a network with
a different number of hosts than the training net-
work.

evAluAtIon
To evaluate ATMoS+, we set up an SDN with
an OpenDaylight controller on Containernet, a
network emulator that uses Docker containers
as hosts. OpenDaylight’s Virtual Tenant Network
plugin is used to implement the VNs. We use
Open vSwitch as the switches in the SDN data
plane. Finally, the benign and malicious hosts are
implemented using a set of scripts running within
the Docker containers. The deep RL agent itself is
implemented using Tensorflow Keras.

trAInIng convergence: set functIons vs. non-set functIons
We trained ATMoS+ on a network of 10 hosts,
that is, six benign and four malicious hosts. We
leverage two VNs in our evaluation:
• Low-security VN with passive monitoring,

denoted as security level 1
• High-security VN with active interception,

denoted as security level 2
The reward function is chosen as the sum of the
VN security levels of all the malicious hosts sub-
tracted by the sum of the VN security levels of all
the benign hosts. The input to the RL agent is a
one-hot encoded vector of four types of alerts for
each host:
• A SYN flood detector
• A false positive alert that can be triggered by

excessive pinging
• An error-based SQL injection detector
• An alert triggered by a flood of HTTP traffic

The agent’s exploration rate (e) and discount
factor (g) parameters are set to 0.1 and 0.5,
respectively. The alerts from the host are obtained
as a one-hot encoded vector of the last 20 alerts.
The training runs for 100 steps per episode for 65
episodes. After the end of each episode, the hosts
are reset; that is, they are moved to the low-secu-
rity VN.

The training convergence of the deep RL
agent with the DQN model and four alerts is
depicted in Fig. 4. This training convergence is

FIGURE 3. DQN’s neural network architecture: P1, P2, and R1, R2 correspond to two different P and R functions for the
permutation-invariant and permutation-equivariant functions.

Host 1

Host 3

Host 2

Permuta�on-Invariant Neural Network

Permuta�on-Equivariant Neural Network

Do
Nothing

P2

P2

P2

R2Max

P1

P1

R1

Max

Toggle
Host 1

P1

P1

R1

Max

Toggle
Host 2

P1

P1

R1

Max

Toggle
Host 3

Ac�on

FIGURE 4.Training with permuted CNN vs. non-permuted CNN vs. ATMoS+.

IEEE Communications Magazine • December 2021 6

compared against the best-performing non-set
function model, that is, a convolutional neural net-
work (CNN) with a kernel size of 3. The CNN
model converges slightly faster than the DQN
model. We attribute this to the CNN learning
the malicious hosts based on the position of
each host in the input. However, if the positions
of hosts are rearranged after every episode, the
CNN model fails to learn the optimal placement
of hosts. This demonstrates that the set function
model in ATMoS+ is robust to permutations in
host ordering.

AddItIonAl Alert types
We also evaluated the scalability of training the
DQN model in ATMoS+ with a varying number
of alerts up to a maximum of 12. Seven alerts
are network-level alerts, and include detection of
SYN attacks, abnormal HTTP traffic, and exces-
sive pinging. The remaining five alerts are appli-
cation-level alerts, which detect SQL injection,
directory traversal, and buffer overflow exploits.
We deliberately increased the sensitivity of some
alerts to generate false positives. We also imple-
mented three additional Docker containers: a
docker container running DVWA, a deliberately
insecure web application, a malicious container
executing SQL injection, and a malicious contain-
er executing directory traversal and buffer over-
flow. The result in Fig. 5 shows that the deep RL
agent in ATMoS+ still converges with the addi-
tion of new alerts. However, the convergence
time is longer for 8 and 12 alerts in comparison
to 4 alerts. We attribute this to the increase in the
DQN model parameters, which increases with the
number of alerts. We have also evaluated differ-
ent combinations of four alerts, and found that
ATMoS+ performs consistently across all combi-
nations.

deployIng trAIned Agents In ArbItrAry-sIzed netWorks
The ATMoS+ agent was tested in networks with
arbitrary sizes. The procedure to reconstruct
the DQN model for different network sizes was
described previously. We trained the deep RL
agent on a small network with 10 hosts and eval-
uated its performance by reconstructing the DQN
model for larger networks with sizes ranging from
20 to 100 hosts, with 5 percent of the hosts being
malicious. Indeed, the agent can theoretically be
deployed in much larger networks.

 For each network, we execute the deep RL
agent for 100 steps. The agent starts off in a base-
line state, where all the hosts are placed in the
low-security VN. Then we run the RL agent purely
on the greedy policy, that is, choosing the action
that maximizes the reward on every step. Figure
6 shows how ATMoS+ places the hosts in the
optimal VN configuration immediately. Since the
reward function we use changes domain depend-
ing on network size, for simplicity we transformed
the reward function to show the number of mis-
placed hosts instead. This demonstrates that the
deep RL agent with the DQN model in ATMoS+,
which is based on set functions, generalizes to
arbitrary-sized networks without retraining.

conclusIon
In this article, we propose ATMoS+, an extension
to ATMoS, which leverages a novel DQN with

permutation-invariant and permutation-equivariant
set functions to facilitate threat mitigation across
arbitrary-sized SDNs. We showcase that the deep
RL agent in ATMoS+ is scalable, accommodates a
larger number of alerts, and generalizes to an arbi-
trary-sized network without additional retraining.
This opens the door to future applications, where
a pre-trained deep RL agent could be deployed
to mitigate threats from many different networks.

An important future direction is to enable the
DQN model to learn long-term dependencies for
each host. For example, if a malicious host ceas-
es malicious activity for a long time, the DQN
model is unable to retain this knowledge, as it
relies solely on alerts detected from the host’s
activity to determine malice. Furthermore, the
agent in ATMoS+ uses a one-hot encoded vec-
tor of the last 20 alerts to make decisions, which
may result in alerts being missed if more than 20
alerts occurred within the last time step. Although
this number can be increased to adapt to alert
frequencies in different environments, a general-
izable alert representation could be explored that
incorporates information from all alerts, regard-
less of how frequently alerts occur. ATMoS+ must
also be extended to mitigate zero-day attacks.
This could potentially be accomplished by inte-
grating the output of an anomaly detector as an
alert type.

FIGURE 5. Training ATMoS+ with a varying number of alerts.

FIGURE 6. Threat mitigation for varying network sizes.

IEEE Communications Magazine • December 20217

AcknoWledgments

This work is supported in part by the Royal Bank
of Canada, and in part by NSERC CRD Grant
530335.

references
[1] R. Boutaba et al., “A Comprehensive Survey on Machine

Learning for Networking: Evolution, Applications and
Research Opportunities,” J. Internet Services and Applica-
tions, vol. 9, no. 1, 2018, pp. 1–99.

[2] S. Ayoubi et al., “Machine Learning for Cognitive Network
Management,” IEEE Commun. Mag., vol. 56, no. 1, Jan.
2018, pp. 158–65.

[3] P. Mishra et al., “A Detailed Investigation and Analysis of
Using Machine Learning Techniques for Intrusion Detec-
tion,” IEEE Commun. Surveys & Tutorials, vol. 21, no. 1,
2018, pp. 686–728.

[4] I. Akbari et al., “ATMoS: Autonomous Threat Mitigation in
SDN Using Reinforcement Learning,” Proc. IEEE/IFIP Net-
work Operations and Management Symp., 2020.

[5] M. Zaheer et al., “Deep Sets,” Advances in Neural Informa-
tion Processing Systems, vol. 30, Curran Associates, Inc.,
2017.

[6] A. Sannai et al., “Universal Approximations of Permutation
Invariant/Equivariant Functions by Deep Neural Networks,”
arXiv preprint arXiv:1903.01939, 2019.

[7] “ATMoS+ Source Code”; https://github.com/ATMoS-Water-
loo/ATMoS/ tree/atmosplus, accessed Oct. 14, 2021.

[8] N. N. Tuan et al., “A Robust TCP-Syn Flood Mitigation
Scheme Using Machine Learning Based on SDN,” Proc. Int’l.
Conf. Info. and Commun. Technology Convergence, 2019,
pp. 363–68.

[9] S. S. Bhunia and M. Gurusamy, “Dynamic Attack Detection
and Mitigation in IoT Using SDN,” Proc. Int’l. Telecommun.
Networks and Applications Conf., 2017.

[10] V. François-Lavet et al., “An Introduction to Deep Rein-
forcement Learning,” Foundations and Trends in Machine
Learning, vol. 11, no. 3–4, 2018, pp. 219–354.

[11] Y. Liu et al., “Deep Reinforcement Learning Based Smart
Mitigation of DDoS Flooding in Software-Defined Net-
works,” Proc. IEEE Int’l. Wksp. Computer Aided Modeling and
Design of Commun. Links and Networks, 2018.

[12] M. Zolotukhin et al., “Reinforcement Learning for Attack
Mitigation in Sdn-Enabled Networks,” Proc. IEEE Conf. Net-
work Softwarization, 2020, pp. 282–86.

[13] Y. Han et al., “Reinforcement Learning for Autonomous
Defence in Software-Defined Networking,” Decision and
Game Theory for Security, Springer, 2018, pp. 145–65.

bIogrAphIes
Hauton tsang is a graduate student at the University of Water-
loo. He received his B.Sc. degree in computer science from
Hong Kong University of Science and Technology. His research
interests are focused on applying machine learning in the field
of cybersecurity.

Iman akbarI received his B.Sc. from Sharif University in software
engineering. He is currently a graduate student at the University
of Waterloo. His research mostly revolves around the intersec-
tion of AI, cybersecurity, and network management with a focus
on automation and scalability.

moHammad a. salaHuddIn is a research assistant professor of
computer science at the University of Waterloo. He received his
Ph.D. degree in computer science from Western Michigan Uni-
versity in 2014. His current research interests include the Inter-
net of Things, content delivery networks, network softwarization,
network security, and cognitive network management. He
serves as a TPC member for IEEE conferences, and is a reviewer
for various journals and magazines.

noura lImam received her M.Sc. and Ph.D. degrees in com-
puter science from the University Pierre & Marie Curie, Paris
VI, in 2002 and 2007, respectively. She is currently a research
assistant professor of computer science at the University of
Waterloo. She is on the Technical Program Committees and
Organization Committees of several IEEE conferences. Her con-
tributions are in the area of network and service management.
Her current research interests are in network softwarization and
cognitive network management.

raouf boutaba [F] received his M.Sc. and Ph.D. degrees in
computer science from Sorbonne University in 1990 and 1994,
respectively. He is currently a University Chair Professor and the

director of the David R. Cheriton School of Computer Science
at the University of Waterloo. He also holds an INRIA Interna-
tional Chair in France. He is the founding Editor-in-Chief of IEEE
Transactions on Network and Service Management (2007–2010)
and the current Editor-in-Chief of the IEEE Journal on Selected
Areas in Communications. He is a Fellow of the Engineering
Institute of Canada, the Canadian Academy of Engineering, and
the Royal Society of Canada.

