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Abstract An important research gap in landscape

genetics is the impact of different field sampling designs on

the ability to detect the effects of landscape pattern on gene

flow. We evaluated how five different sampling regimes

(random, linear, systematic, cluster, and single study site)

affected the probability of correctly identifying the gener-

ating landscape process of population structure. Sampling

regimes were chosen to represent a suite of designs com-

mon in field studies. We used genetic data generated from a

spatially-explicit, individual-based program and simulated

gene flow in a continuous population across a landscape

with gradual spatial changes in resistance to movement.

Additionally, we evaluated the sampling regimes using

realistic and obtainable number of loci (10 and 20), number

of alleles per locus (5 and 10), number of individuals

sampled (10–300), and generational time after the land-

scape was introduced (20 and 400). For a simulated con-

tinuously distributed species, we found that random, linear,

and systematic sampling regimes performed well with high

sample sizes ([200), levels of polymorphism (10 alleles

per locus), and number of molecular markers (20). The

cluster and single study site sampling regimes were not

able to correctly identify the generating process under any

conditions and thus, are not advisable strategies for sce-

narios similar to our simulations. Our research emphasizes

the importance of sampling data at ecologically appropriate

spatial and temporal scales and suggests careful consider-

ation for sampling near landscape components that are

likely to most influence the genetic structure of the species.

In addition, simulating sampling designs a priori could help

guide filed data collection efforts

Keywords Partial Mantel test � CDPOP � Causal

modeling � Simulation modeling � Isolation-by-distance �
Isolation-by-landscape resistance � Isolation-by-barrier �
Cluster sampling � Linear sampling � Systematic sampling �
Random sampling

Introduction

The field of landscape genetics aims to integrate population

genetics, landscape ecology, and spatial statistics (Manel

et al. 2003; Storfer et al. 2007) with the goal of quantifying

the impact of landscape composition, configuration, and

matrix quality on the spatial distribution of genetic varia-

tion (Holderegger and Wagner 2008; Balkenhol et al.

2009). Previous approaches to landscape genetics focused

on describing and mapping populations (e.g., Pritchard

et al. 2000; Dupanloup et al. 2002; Francois et al. 2006)

and on identifying factors that influence rates and patterns

of gene flow within and among populations (e.g., Coulon

et al. 2004; Cushman et al. 2006; McRae and Beier 2007;

Schwartz et al. 2009). More recent work has greatly

expanded the field to include research investigating func-

tional connectivity and landscape resistance to gene flow

(Thomassen et al. 2010; Galindo et al. 2010; Selkoe et al.

2010), linking genetic pattern to ecological processes
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(Bruggeman et al. 2010), comparing historical and con-

temporary landscape processes (Dyer et al. 2010; Knowles

and Alvarado-Serrano 2010), and examining how envi-

ronmental variation impacts adaptive genetic variation

(Freedman et al. 2010; Manel et al. 2010; Eckert et al.

2010).

Identifying how landscapes facilitate or deter gene flow

(functional connectivity) is a high priority for managers

and conservation biologists charged with the management

of viable populations in an ever changing world that is

driven by anthropogenic forces (Agee and Johnson 1987;

Trombulak and Baldwin 2010, Sork and Waits 2010).

Some even advocate a paradigm shift that includes man-

aging for change and embracing resilience-based ecosys-

tem stewardship (e.g., managing for ecosystems that have

the ability to change and adapt while remaining within

critical thresholds, Chapin et al. 2009). Efforts to explicitly

quantify the impact of landscape features on connectivity

have provided a range of statistical approaches toward this

goal (Murphy et al. 2008; Spear et al. 2010; Cushman and

Landguth 2010; Shirk et al. 2010). In such analyses of

functional connectivity and landscape resistance to gene

flow, one area that remains largely unexplored is the sen-

sitivity of landscape genetic analyses to variation in the

sampling design used to obtain the genetic data (Balkenhol

et al. 2009; Segelbacher et al. 2010; Epperson et al. 2010;

Balkenhol and Landguth 2011). While the effects of the

spatial sampling design on landscape genetic inference has

received some attention (Murphy et al. 2008; Schwartz and

McKelvey 2009), much less is known about the effects of

the study design in terms of the number of sampled indi-

viduals, number of loci analyzed per individual, and

number of alleles per locus on the ability to correctly and

reliably identify the generating process (but see Landguth

et al. 2011). Several recent papers identified this topic as

among the most pressing methodological issues to address

in landscape genetics (Balkenhol et al. 2009; Segelbacher

et al. 2010; Epperson et al. 2010; Balkenhol and Landguth

2011).

Landguth et al. (2011) investigated the effect of study

design on landscape genetics inference using a spatially-

explicit, individual-based program to simulate genetic dif-

ferentiation in a spatially continuous population inhabiting a

landscape with gradual changes in resistance to movement.

They simulated a wide range of combinations varying the

number of loci, alleles per locus, and individuals sampled

from the population. The authors assessed how those three

aspects of study design influenced the statistical power to

successfully identify the generating process among com-

peting hypotheses of isolation-by-distance (IBD), isolation-

by-barrier (IBB), and isolation-by-landscape resistance

(IBR) using a causal modeling approach with partial Mantel

tests (Mantel 1967). Further, they modeled the statistical

power to identify the generating process as a response sur-

face for equilibrium and non-equilibrium conditions after

introduction of IBR. However, their study used a spatial

random sample drawn from a continuously distributed

underlying population to test their ability to correctly iden-

tify the generating process. In reality, a truly random sam-

pling design may be very difficult to achieve in the field.

Building on the work of Landguth et al. (2011), we used the

same spatially continuous population inhabiting a landscape

with gradual changes in resistance to movement, yet in

addition to a random sample design, we also investigated

alternative sampling designs that emulated more realistic

conditions that might be considered for implementation in a

field study of a continuously distributed organism. The

sampling designs we consider here include random, linear

(sampling that would be associated with a linear transect,

such as a river, road, or trail), systematic (sampling that

involves attempting to cover the landscape in a systematic

grid), cluster (sampling several groups of individuals where

groups include individuals that are close together), and

single study site (sampling one group of individuals that are

all close to one another as might be reflective of a single

study site) sampling designs. Our objectives were to evalu-

ate and compare the performance of the five different sam-

pling designs in terms of their capacity to correctly identify

the generating landscape process. In addition, we examined

how these designs were influenced by variation in sample

sizes, number of alleles per locus, number of loci, and

generational time after IBR (i.e., the generating landscape

process) was introduced.

Models and methods

Study area, population, and genetic data

Our goal was to assess the sensitivity of landscape genetic

inference to sampling design, rather than assessing sensi-

tivity to characteristics of the landscape (e.g., barriers),

while comparing the sampling design sensitivity to the

results obtained by Landguth et al. (2011). Therefore, we

used the same landscape resistance model, population, and

genetic data generated for all simulations by Landguth

et al. (2011). The landscape resistance surface was adopted

from an empirically tested model of landscape resistance to

American black bear (Ursus americanus) movement in

Northern Idaho, USA, from Cushman et al. (2006) to

ensure that the simulated scenario mimicked a realistic

system (Fig 1a; extent of approximately 3,000-km2 with

resistance values ranging from 1 to 62 in 90-m grid cells).

The landscape pattern is represented through a resistance

surface with grid cell values representing costs of move-

ment through the landscape. The resistance surface is a
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combination of forest cover, elevation, and roads. On this

surface, 1,000 individual locations in the Universal

Transverse Mercator (UTM) coordinate system were ini-

tialized by populating grid cell values in a hexagonal pat-

tern at 1.6-km spacing unless the cell value was greater

than 6 (Fig. 1a). This was done to place individuals in

habitat that was relatively suitable for the species given this

landscape resistance hypothesis.

Genetic exchange across 500 non-overlapping genera-

tions among the 1,000 individuals as a function of individ-

ual-based movement through mating and dispersal on the

given landscape was simulated with a spatially-explicit,

landscape genetic program (CDPOP v0.85, Landguth and

Cushman 2010). In CDPOP, mating and dispersal are

modeled as probabilistic functions of cumulative cost

between individual locations across these resistance sur-

faces (i.e., least-cost path or step-wise summed resistance

values between locations). These movement (mating and

dispersal) cost functions are scaled to a user-specified

maximum dispersal distance. Movement (mating and dis-

persal) was simulated between these individuals as a func-

tion of the inverse-square of cost scaled to a maximum

movement distance of 39,200 cost-units, which is *22 % of

the total cost distance on the landscape suggesting a mod-

erate-range dispersing organism and corresponding to the

range of positive spatial autocorrelation of genetic

Fig. 1 Sample designs on an

isolation-by-landscape

resistance surface. a The total

population of 1,000 individuals,

b Random sampling design—

samples were randomly chosen

(an example with sample size

100 is shown). c Linear

sampling design—327 possible

individuals to sample from

chosen 250 m from all road

features in the study area. An

example with sample size 100 is

shown. d Systematic sampling

design—A systematic grid was

placed on the study area and

samples nearest the center of

each cell were taken. 3 9 3,

10 9 10, 14 9 14, and 18 9 18

grids were placed resulting in

sample sizes of 9, 99, 195, and

305 (some grid pixels did not

have an individual within) (the

10 9 10; a sample size of 99 is

shown). e Cluster sampling

design—the study site was

divided into four quadrats and

four random individuals were

selected. Samples consisted of

those four chosen individuals

and their nearest neighbors. A

sample size of 100 is shown.

f Single study site sampling

design -10, 100, 200, and 300

clustered samples were taken

from a randomly chosen

individual (an example of 100

samples is shown). (Color figure

online)
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relatedness among individuals as a function of cost distance

in the Cushman et al. (2006) data set. This maximum cost

distance value constrains all mate choices and dispersal

distances to be less than or equal to 39,200 cost-units apart

with probability of mating or dispersal distance within that

limit specified by an inverse-square probability function

(Landguth and Cushman 2010).

The genotypes were initialized for the 1,000 individuals

by randomly assigning allelic states across the initial

population with a random sex assignment that contained 25

loci (which were subsequently sub-sampled down to two

levels; 10 and 20) with the k-allele mutation rate set to 0.

Fifty replicate simulations were conducted for two levels of

alleles per locus (5 and 10 maximum alleles at the begin-

ning of each simulation run, thus simulating a panmictic

initial population with maximum allelic diversity). CDPOP

simulates spatially-referenced genotypes for all individuals

at each generation with independent assortment and no

linkage disequilibrium in Mendelian inheritance. Mating

parameters were set in CDPOP to represent a population

that was heterosexual with a polygamous structure

(females mated without replacement and males mated with

replacement). Offspring parameters were set such that each

female had a number of offspring with random sex

assignment following a Poisson process with mean of 4.

This guaranteed a positive lambda value that ensures that

all spatial locations were filled through dispersal movement

at each generational time step and avoids empty locations

that require immigrants from an outside population. This

maintained a constant population of 1,000 at every gener-

ation and the remaining offspring were discarded once all

the 1,000 locations were occupied by a dispersing indi-

vidual. This is equivalent to forcing emigrants out of the

study area once all available home ranges are occupied

(Landguth and Cushman 2010).

Once simulations were completed, individuals were

sampled following five study designs: (1) random, (2)

linear, (3) systematic, (4) cluster, and (5) study site. We

also varied the number of alleles per locus (5 or 10) and the

number of loci used (10 or 20) to emulate more realistic

scenarios that are common to current landscape genetic

studies. Simulations were sampled at two time periods

representing non-equilibrium (generation 20) and equilib-

rium (generation 400) conditions.

Random sampling design

For the random sampling design, we randomly sequentially

sub-sampled from the entire population 10, 100, 200, and

300 individuals (Fig. 1b). We took a unique sample across

each of the 50 replicate simulations, initial number of

alleles per locus (5 and 10), and number of loci (10 and 20)

at generations 20 and 400 resulting in 1,600 data sets.

Linear sampling design

The linear sampling design was used to emulate sampling

along a linear feature such as a river, trail, or road, or line

transect sampling as has been implemented in studies of

plants and small mammals (Gamache et al. 2003; Gauffre

et al. 2008). We used the original road feature (TIGER 2007;

http://www.census.gov/geo/www/tiger/) in the Cushman

et al. (2006) resistance surface as linear features from

which to sample. We buffered all the roads in the study

area at a distance of 250-m. 327 out of the 1,000 individ-

uals fell within this buffered distance (Fig. 1c). We then

sampled sequentially random individuals (10, 100, 200,

and 300) with a unique draw across each of the 50 simu-

lations, initial number of alleles per locus (5 and 10), and

number of loci (10 and 20) at generations 20 and 400

resulting in 1,600 data sets.

Systematic sampling design

The systematic sampling design aims to obtain samples

spread evenly (at regular intervals) throughout the study

area. Such sampling designs are implemented often in non-

invasive genetic sampling studies (Kendall et al. 2008;

Barba et al. 2010). A uniform grid design was used for the

systematic sampling approach (Fig. 1d). Four uniform

grids were placed on the study area and the individuals that

were closest to the center of each grid cell were sampled. If

an individual did not fall within a grid cell, then that grid

was skipped. Grids that were sized 3 9 3, 10 9 10,

14 9 14, and 18 9 18 were placed resulting in sample

sizes of 9, 99, 217, and 305, respectively. These sample

sizes were used to resample the simulated population for

each of the 50 simulations, initial number of alleles per

locus (5 and 10), and number of loci (10 and 20) at gen-

erations 20 and 400 resulting in 1,600 data sets.

Cluster sampling design

The cluster sampling design was used to emulate the sit-

uation where samples are collected in concentrated areas

due to logistics (limited access), scale (i.e., including

multiple study sites), or opportunistically (e.g., obtaining

samples from hunters) (Martinez et al. 2002; Oyler-

McCance et al. 2005; Cegelski et al. 2006; Pernetta et al.

2011). The study area was divided into four areas shown in

Fig. 1e and four random individuals were chosen for each

of the 50 replicates and sample sizes of 8, 100, 200, and

300 (clusters of 2, 25, 50, and 75, respectively) were

selected based on the nearest neighbor to the four indi-

viduals. Fifty different random four individuals and

respective sample size cluster were used to resample the

simulated population for each of the 50 replicates, initial
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number of alleles per locus (5 and 10), and number of loci

(10 and 20) at generations 20 and 400 resulting in 1,600

data sets.

Study site sampling design

The study site sampling design was used to emulate the

situation where a single study site is chosen for sampling

(Fig. 1f). Field research is often conducted at a single study

site. Our intention with this sampling design was to address

potential concerns and model performance when extrapo-

lating results from a single study site to novel areas, outside

of where models were developed (Miller et al. 2004). Fifty

random individuals were chosen for each of the 50 repli-

cates and sample sizes of 10, 100, 200, and 300 were

selected based on nearest neighbor. The 50 initial random

individuals and respective sample sizes were used to

resample the simulated population for each of the 50 rep-

licates, initial number of alleles per locus (5 and 10), and

number of loci (10 and 20) at generations 20 and 400

resulting in 1,600 data sets.

Statistical analysis of simulation results

Each simulation was evaluated at two time steps (20 and

400 generations). Equilibrium partial Mantel r was the

value of r once spatial genetic equilibrium reached an

approximate asymptote. Preliminary analysis showed that

results for partial Mantel tests were most variable after 20

generations, whereas after 400 generations, spatial genetic

equilibrium was achieved in all simulations and the asso-

ciation between landscape pattern and genetic structure had

stabilized.

Inter-individual genetic distance was calculated as the

proportion of shared alleles (Bowcock et al. 1994), and

landscape-cost distance model (IBR distance) was calcu-

lated for each pair of sampling locations as the cumulative

cost associated with traversing the least cost path from one

sampling location to the other using COSTDISTANCE in

ArcGIS v9.0 (ESRI 1999–2008). Euclidean distance (IBD

distance) was calculated from the Universal Transverse

Mercator coordinates between all pairs of individuals. The

barrier-cost distance (IBB distance) was represented as a

model matrix similar to Legendre and Legendre (1998),

with pair-wise distance equal to 1 for two individuals from

opposite sides of a complete barrier separating half of the

1,000 individuals, and pair-wise distance equal to 0 for two

individuals from the same side of the barrier (panmixia).

For each scenario, we performed a partial Mantel test to

correlate genetic distance to IBR distance accounting

for IBD distance using the library ecodist v1.1.3 (Goslee

and Urban 2007) in the statistical software package R

(R Development Core Team 2009). Due to the highly

correlated hypotheses of IBR, IBD, and IBB (Mantel

r = 0.938 for IBD to IBR, Mantel r = 0.984 for IBD to

IBB, and Mantel r = 0.972 for IBB to IBR), we used

causal modeling, which involves a series of diagnostic

Mantel and partial Mantel tests (Legendre and Legendre

1998). These tests included a simple Mantel test to corre-

late genetic distance to IBR distance and partial Mantel

tests to correlate genetic distance to IBR distance

accounting for IBD distance, IBR distance accounting for

IBB distance, IBB distance accounting for IBR distance,

and IBD distance accounting for IBR distance. For all tests,

we calculated Mantel’s r and P value based on 1,999

permutations, corresponding to a 0.005 precision for the

cutoff value, a = 0.05.

Successful identification of the generating process

(i.e., IBR) required a combination of three significant

correlations with genetic distance (Mantel test of IBR

distance, partial Mantel test of IBR distance accounting for

IBD distance, and partial Mantel test of IBR distance

accounting for IBB distance) and two non-significant cor-

relations with genetic distance (partial Mantel test of IBD

distance accounting for IBR distance and partial Mantel

test of IBB distance accounting for IBR distance).

Based on the 50 replicate simulations for each parameter

combination, we examined the probability of successfully

identifying the correct landscape resistance scenario for

each sampling design. We included three covariates with

values common in field-based landscape genetic analyses:

sample size, number of loci, and number of alleles per

locus. All analyses were conducted separately for two time

steps at 20 and 400 generations. The modeled response

variable was the probability of correctly identifying the

generating process (IBR) as described above, and this

probability was skewed towards success (i.e., probabil-

ity = 1). We were interested in the differences among

sampling designs (random, linear, systematic, clustered)

and their probability of successfully identifying the

underlying process. The effects of sampling design on the

probability of success were tested using a general linear

model ANCOVA in which the response variable was the

probability of success. Probability of success was influ-

enced by the three covariates: number of alleles, loci, and

sample size (Landguth et al. 2011). Therefore, these vari-

ables were entered as covariates in the modeling process in

order to remove the predictable variance associated with

the covariates from the error term in model estimation.

Results

Overall, the random, linear, and systematic sampling

designs produced relatively predictable results. As we
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increased the number of alleles, loci, sample size, and

generation time, the probability of successfully identifying

the underlying generating process also increased (Fig. 2).

The positive relationship between our covariates and the

probability of success was present for both the non-equi-

librium (generation 20) and equilibrium (generation 400)

samples. However, the pattern of increasing probability of

success with increasing values in the covariates was not

present in the cluster and the study site sampling designs

(Fig. 2). The 95th percentile for the probability of success

distribution in the cluster and study site sampling designs

did not cross 0.95 under any combination of alleles, loci,

nor sample size at either generation. These results

demonstrated an overall much lower probability of success

compared to the random, linear, and systematic sampling

designs. Furthermore, the random, linear, and systematic

sampling designs had a higher probability of success in the

equilibrium population samples (generation 400), than the

non-equilibrium (generation 20). The relationship was

reversed for the study site sampling design in which the

probability of success was lower in the equilibrium popu-

lation samples. The pattern for the cluster sampling design

was different at different samples sizes. In lower sample

sizes, the cluster design had a higher probability of success

at generation 400 but with higher sample sizes the proba-

bility of success was greater at generation 20.

Fig. 2 Probability of

successfully identifying the

generating process for all

combinations of the number of

alleles, number of loci used,

sample size, generational time,

and sampling design. a shows

the relationships at

disequilibrium (generation 20),

and b shows the relationships at

equilibrium (generation 400).

The sampling designs are

represented by different colors
(random is light blue, linear is

green, systematic is red, cluster

is dark blue, and study site is

purple). The different sample

sizes are represented with

different line styles. At

generation 400 when the sample

size was *300, the random,

linear, and systematic sampling

designs all had a probability of 1

with all combinations of alleles

per locus and number of loci

used. (Color figure online)
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The ANCOVA analysis supported the conclusions based

on the distributions presented by Fig. 3 There were signifi-

cant differences between the slopes of the regression fit to

each sampling scheme, suggesting the difference among

groups—adjusted for the covariates—are unlikely to have

occurred by chance. This was true for analysis at generation

20 (F13, 79 = 90.13, P \ 0.001, r2 = 0.95) and generation

400 (F13, 79 = 71.65, P \ 0.001, r2 = 0.95). The predicted

values from the ANCOVA suggested the study site and

cluster sampling methods performed poorly and the other

sampling designs were essentially equal at generations 20

and 400 (Fig. 3a–b). Post hoc pairwise Fisher–Hayter

comparisons found significant (P \ 0.05) differences

between the study site sampling design and all others at

generation 20, with the exception of the cluster sampling

design (i.e., no significant difference between cluster and

study site). The cluster sampling design was also signifi-

cantly different from all methods except the study site

design. Pairwise comparisons among the random, linear, and

systematic designs did not differ statistically (P [ 0.05).

The random design had a mean probability of success of 0.67

(median = 0.79). The linear design had a mean of 0.68 and

median = 0.83. The systematic design had a mean (0.67)

and median (0.83). Thus, the random, linear, and systematic

designs were equal in their capacity to correctly identify the

underlying processes at generation 20 and the study site and

cluster designs were less accurate, and not different from

each other in post hoc statistical comparisons. The results of

the post hoc pairwise Fisher–Hayter tests were similar at

generation 400; however, the cluster sampling design per-

formed better at generation 400 compared to the study site

design. All post hoc pairwise Fisher–Hayter comparisons at

generation 400 were significantly different from the study

site design (P \ 0.05), including the cluster design. The

cluster design performed better than the study site design;

however, the cluster design was significantly different from

the other 3 designs. There was no statistically significant

difference between combinations of linear, systematic, and

random (P [ 0.05). Again, the random and linear sampling

designs had the highest mean and median probability of

success (random �x = 0.88, median = 0.98; linear �x = 0.90,

median = 0.97; systematic �x = 0.84, median = 0.95; study

site �x = 0.32, median = 0.34; clustered mean = 0.59,

median = 0.60).

Discussion

Our study examined the impact of five different sampling

regimes. The random design was a true spatial random

sample drawn from a continuously distributed underlying

population, and represented an idealistic sampling

approach that was predicted to perform very well in terms

of identifying the underlying processes. Generally, the

random, linear, and systematic sampling regimes behaved

as expected in terms of our covariates (Figs. 2, 3) for this

resistance landscape and simulated population. Those three

sampling regimes demonstrated higher probabilities of

correctly detecting the generating process with increasing

levels of polymorphisms, numbers of loci, sample sizes,

and equilibrium simulation conditions (generation 400).

These patterns are consistent with those presented in other

simulations studies (Murphy et al. 2008; Landguth et al.

2011). Fortunately, two of the more realistic sampling

regimes (linear and systematic) performed nearly as well as

the more idealistic random sampling design described in

Landguth et al. (2011). However, the cluster and single

study site sampling regimes did not perform well and were

unable to identify the correct generating process with a

probability of success [95 % (Figs. 2, 3). Contrary to the

Fig. 3 Model predicted values across sample size for each of the

three sampling designs for a generation 20 and b generation 400. The

predicted values were generated using a general linear model ANCOVA

with probability of success as the response variable, sampling design

as the grouping variable, and alleles, loci, and sample size entered as

covariates. The horizontal dashed line indicates a value of 0.95 in the

response variable
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results from the other sampling regimes, at higher sample

sizes the cluster and study site sampling regimes performed

worse at equilibrium conditions (generation 400) than at

non-equilibrium conditions (generation 20).

The cluster sampling regime is one of the more common

sampling approaches in genetics and therefore, the overall

poor performance of this approach is of particular interest.

The cluster sampling regime (by definition) groups indi-

viduals that are close together and likely to be closely rela-

ted. Thus, sampling clustered portions of the individuals

(specifically those close together and highly related) cap-

tures only a small subset of the resistance surface and

thereby restricts the opportunity to detect responses to

widely different landscape features from across the study

area. Our clustering design in this example divided the study

area into four quadrants, with one division (north/south)

roughly following the valley and major roadway. This

division was deliberate, as many authors have emphasized

the need to incorporate a priori hypotheses into study

designs (Balkenhol et al. 2009; Anderson et al. 2010). Even

worse, is the single study site design, in which a group of

samples are all collected from one area and used to make

inference to a much larger landscape. There are many par-

allels between habitat selection studies that assess habitat

connectivity and landscape genetic studies that assess

functional connectivity. Multiple habitat selection studies

have shown that the application of habitat selection models

to novel areas outside of the study sites used to develop the

models should be done with extreme caution (Miller et al.

2004; Coe et al. 2011). Good model performance in novel

areas requires similar composition of resources to the single

study site, or sufficient generality in model form. The spatial

interpolation and extrapolation of habitat selection models is

most accurate when the variation and availability of habitat

types is approximately the same in the novel areas (Mladenoff

et al. 1999; Aarts et al. 2008). Our results suggest that similar

cautions are prudent when extrapolating landscape genetics

studies outside of the study sites in which they were devel-

oped. Similar to the cluster design, the single study site design

only captured a small amount of the variation in the under-

lying resistance surface, and therefore, had limited capacity to

detect the underlying landscape components influencing the

functional connectivity.

Several authors have emphasized the need to carefully

consider the spatial scale at which life processes take place

(i.e., home range or dispersal) and advocate that sampling

regimes and analysis metrics should be dictated explicitly

by the ecological characteristics of the species being

studied (Balkenhol et al. 2009; Schwartz and McKelvey

2009; Anderson et al. 2010; Cushman and Landguth 2010;

Jaquiéry et al. 2011). This simulation study used a resis-

tance surface developed for black bears in North America,

and individuals were simulated using black bear life history

characteristics (i.e., continuously distributed throughout

suitable habitat, mating and dispersal emulating black bear

biology with moderate species-specific dispersal strategies

relative to their distribution). Thus, sampling only one

(single study site) or a few (cluster) regions of the study

area and then making inferences about genetic responses to

landscape processes across the entire study area and

varying levels of landscape resistance is clearly inadvisable

in this example. This underscores the importance of care-

fully considering the life history of the organism and

designing sampling regimes appropriately to avoid flawed

inferences. Cluster sampling is likely more appropriate for

organisms that are patchily distributed such as amphibians,

alpine species, and some plants (Jacquemyn et al. 2006;

Fedy et al. 2008; Murphy et al. 2010), than for species

whose distribution is more continuous.

The random sampling design represented an idealistic

sampling approach, that would be difficult, if not impos-

sible, to replicate in a field study. The systematic sampling

regime performed nearly as well as the random, particu-

larly at higher sample sizes. However, the linear sampling

approach, which has been used in many field studies,

performed equally as well in our study as the random

design. The excellent performance of the linear sampling

design in our study is likely a function of the road network

being distributed over the entire study area, and thus

resulting in a sample that well represents the underlying

resistance surface. Our resistance surface was developed by

Cushman et al. (2006) and has minimum resistance at

medium elevation (classification of low elevation of 7,

medium elevation of 1, and high elevation of 10), in for-

ested areas (classification of 1 for forested areas and 10 in

non-forested areas), and away from roads (particularly

paved highways, in the classification of roads giving 0

resistance to non-roads, 5 to minor roads, and 50 for

interstates). That is, the resistance surface results in a

moderate cost to individuals that cross minor roads and a

high cost to cross major highways (i.e., a 50 classification

compared to the other data layers, which had a high clas-

sification of 10). By sampling on both sides of minor and

major roads using the linear sampling regime, we were

likely to capture the extreme genetic distances across this

particular boundary (similar to sampling on both sides of a

complete barrier (Landguth et al. 2010)). Thus, it was

likely the focus on sampling on both sides of a barrier that

increased our probability of correctly identifying the

underlying resistance surface (nearly the highest classifi-

cation in the Cushman et al. (2006) surface). Additionally,

in this simulation scenario the coverage of roads was quite

extensive (Fig. 1c). If this simulation study were carried

out in a landscape with fewer roads the linear sampling

design may not have performed as well as the random and

could potentially be outperformed by the systematic
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sampling design. This again underscores the importance of

carefully considering both the spatial and temporal patterns

of not only the species in question but also the ecological

and anthropogenic forces that act upon that species when

designing a landscape genetic study (Anderson et al. 2010;

Segelbacher et al. 2010; Cushman and Landguth 2010).

Landscape genetics is a relatively new field of study and

it is still unclear how sampling strategies affect our infer-

ences and conclusions (Balkenhol et al. 2009; Segelbacher

et al. 2010; Epperson et al. 2010; Balkenhol and Landguth

2011). This study establishes the foundation for future

research on the influence of sampling strategies on our

conclusions in field-based landscape genetics studies. For

example, this study investigated only one model of land-

scape resistance. While this is a logical first step in

exploring the behavior of different sampling regimes, it

would be valuable to extend this analysis to a wide range of

alternative landscapes that vary in regards to landscape

composition, complexity, and strength (i.e., as our linear

sampling results suggest the importance of sampling across

different gradients in resistance). Several authors have

emphasized the importance of replicating analyses across

multiple study areas to provide a more generalized view of

the relative influence of landscape structure on gene flow

(Segelbacher et al. 2010; Short Bull et al. 2010) and this is

true for simulation studies as well. Additionally, this study

used Mantel and partial Mantel testing, a method whose

use is not above criticism. Raufaste and Rousset (2001)

suggested that partial Mantel tests were ‘‘inadequate’’

because the permutation process was erroneous and the

associated P value did not represent type I error. Legendre

and Fortin (2010) have shown that the power to detect a

spatial relationship when one is present in the data can be

lower using Mantel tests than alternative methods that are

not based on pair-wise distances. However, Legendre and

Fortin (2010) recognized that Mantel tests are appropriate

when testing hypotheses that can only be formulated using

pair-wise distances. Guillot and Rousset (2012) disagree

with Legendre and Fortin (2010), however, arguing that

their simulations did not include data with autocorrelation,

therefore not speaking to the criticisms of partial Mantel

tests. It is not our intension here to assess the performance

of the partial Mantel test in relation to other analytical

techniques, but rather to investigate the effects of sampling

design when using Mantel tests as they are commonly used

in landscape genetics (Storfer et al. 2010). Future research

focused on exploring the power of Mantel tests compared

to other distance-based methods, such as distance based

redundancy analyses should help resolve this issue. Finally,

this simulation emulates a relatively mobile animal popu-

lation (black bear) that is continuously distributed across

the landscape. The results of this study may not apply to

species with non-continuous distributions, those with low

levels of mobility or dispersal, or those with less general-

izable life characteristics (e.g., species with highly skewed

mating systems, species where the behavior of one gender

is radically different from the other).

Conclusions

We demonstrated that sampling design is an important

factor that can influence our ability to correctly infer the

impact of landscape pattern on gene flow. While previous

research (Landguth et al. 2011) described the relationship

among some elements of sample design (sample size, level

of polymorphism of markers, and number of markers)

questions about the applicability of that research to

empirical study designs where a random sampling design

may be difficult to achieve, remained. This study showed

that some more realistic, and logistically achievable,

sampling regimes (linear and systematic) performed nearly

as well as the random sampling design implemented in

Landguth et al. (2011) and at realistic numbers of indi-

viduals sampled. For a simulated continuously distributed

species, we found that random, linear, and systematic

sampling regimes performed well with high sample sizes

([200) and higher levels of polymorphism (10 alleles per

locus) and number of molecular markers (20). While this

number of loci and level of polymorphism have been dif-

ficult to achieve in the past, next generation sequencing

methods can now resolve those issues (Castoe et al. 2012).

The cluster and single study site sampling regimes were not

able to correctly identify the generating process using the

Mantel approach and thus, are not advisable strategies for

scenarios similar to our simulations. Our research empha-

sizes the importance of sampling data at ecologically

appropriate spatial and temporal scales, with careful con-

sideration of high resistance landscape components that are

likely to influence the species genetic structure. Addition-

ally, simulating sampling designs a priori could help guide

field data collection efforts.
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