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Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels
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The influence of nearby solid surfaces on the motility of bacteria is of fundamental importance as these
interactions govern the ability of the microorganisms to explore their environment and form sessile colonies.
Reducing biofouling in medical implants and controlling the transport of bacterial cells in a microfluidic device
are two applications that could benefit from a detailed understanding of swimming in microchannels. In this study,
we investigate the self-propelled motion of a model bacterium, driven by rotating a single helical flagellum, in
such an environment. In particular, we focus on the corner region of a large channel modeled as two perpendicular
sections of no-slip planes joined with a rounded corner. We numerically solve the equations of Stokes flow using
the boundary element method to obtain the swimming velocities at different positions and orientations relative to
the channel corner. From these velocities, we construct many trajectories to ascertain the general behavior of the
swimmers. Considering only hydrodynamic interactions between the bacterium and the channel walls, we show
that some swimmers can become trapped near the corner while moving, on average, along the axis of the channel.
This result suggests that such bacteria may be found at much higher densities in corners than in other parts of
the channel. Another implication is that these corner accumulating bacteria may travel quickly through channels
since they are guided directly along the corner and do not turn back or swim transversely across the channel.
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I. INTRODUCTION

While bacteria cultured in laboratories are generally plank-
tonic and suspended in a homogeneous solution, naturally
growing bacterial populations are often found colonizing
surfaces and forming complex biofilm communities [1,2].
These are problematic for water filtration membranes, medical
implants, and other devices. Understanding how bacteria
move and interact with surfaces in confined environments is
critical for developing strategies to reduce biofouling and also
to control the transport of motile cells through lab-on-a-chip
microfluidic devices [3], for example. The latter show
potential for efficient, high-throughput biological testing and
could benefit greatly from controlled manipulation of cells.

Steps toward this objective have already been taken, with
many experimental [4–8] and theoretical [9–12] studies ex-
ploring the movement of bacteria in microfluidic environments
and their ability to colonize microstructured surfaces [13,14].
Some demonstrations of applications include harnessing col-
lective effects of swimming bacteria to rotate microfabricated
gears [15,16] and fabricating specially designed channels
to fractionate a population of bacteria by cell length [3].
Microrobots, including some inspired by the motility of
flagellated bacteria, have also been constructed and proposed
for biomedical applications as potential carriers for targeted
drug delivery or to carry out minimally invasive procedures in
a living body [17–19]. These important objectives motivate
research in more fundamental aspects of microorganisms
interacting with confining surfaces.

It has been shown that bacterial cells, of width ∼1 μm
and with 8-μm-long flagella, are able to swim through
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microchannels as narrow as 2 μm wide [4]. Remarkably,
geometric confinement in such restrictive channels does not
significantly slow down the bacteria. In fact, Binz et al. [8]
found that swimming speeds of Serratia marcescens were two
to three times as high in microchannels 3–10 μm wide as
the speeds in more open environments, essentially bounded
by walls only above and below the cells. Theoretical studies
have also indicated that swimming efficiency and speed can
be increased by proximity to surfaces [9,20].

Apart from swimming speed, it is important to characterize
how trajectories of the organism are affected by surfaces and,
hence, where the swimmers tend to be found in relation to
the surface. For example, it was observed more than 50 yrs
ago for bull spermatozoa [21], and comparatively recently
for bacteria [6,22], that the distribution of swimmers in an
enclosed sample is not uniform but peaks sharply at the walls of
the chamber. Near solid walls, bacteria swim in circular orbits
[23,24]. This phenomenon was also observed in numerical
simulations [9] and later explained quantitatively with an
analytical model [25]. Consider a bacterium propelled by
rotating a right-handed helical flagellum that extends behind
the cell body. Viewed from behind, with the wall below the cell,
the flagellum rotates clockwise for forward swimming while
the cell body rotates counterclockwise to balance the viscous
torque. Since parts of the swimmer closer to the no-slip wall
experience higher drag coefficients, the flagellum tends to roll
to the right and the cell body rolls to the left, leading to a
continual left turn as the bacterium swims.

Understanding of the behavior near a single plane wall
guides our intuition but is not enough to completely deduce
the motion of microswimmers in other confined environments.
Various theoretical studies have modeled bacteria,
spermatozoa, paramecia, and “squirmer” microswimmers
between parallel plates [9,12,26], in circular capillary tubes
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FIG. 1. (Color online) Details of the model bacterium and its configuration in the corner of a large channel. (a) Schematic of model
bacterium with labels for orientation vectors and parameters specifying shape. With ā = (A1A

2
2)1/3 the volumetric radius of the cell body, we

use the following parameters for the boundary accumulating swimmer: flagellum length, L = 7.5ā; flagellar wavelength, λ = 1.8ā; the radius
of the helix formed by the flagellum, a = λ/2π ; the flagellar radius, aT = 0.05ā; and the envelope parameter, dictating how rapidly the helical
radius decays on approaching the cell body, kE = 2π/λ. The boundary escaping swimmer has a shorter flagellum, L = 5ā. Figure reproduced
from Shum et al. [12]. (b) A depiction of the swimmer near a channel corner. The velocity of the swimmer, averaged over a revolution of the
flagellum, is determined by its position and orientation relative to the walls. Up to symmetry, this configuration is specified by yB, zB, and eB

1 .

[27–31], and swimming over a backward facing step [32]. In
the current study, we examine the motion of a singly flagellated
bacterial swimmer in the corner of a long microchannel of
rectangular cross section. Recent work in related systems
includes an experimental and computational study on artificial
helical swimmers driven by a rotating magnetic field [33]
and a theoretical study of how an idealized, nonchiral,
two-dimensional (2D) swimmer is trapped near a corner via
the solution of 2D Stokes flow streamfunction equations with
singularities representing the swimmer [34].

To restrict the scope of our work, we focus on the region
close to one corner of the channel and assume that the cross
section is large enough that the other corners and walls may
be neglected. We employ the boundary element method to
numerically determine the dynamics of two bacterial model
swimmers differing only in flagellum length. One is known
from prior studies to accumulate at plane boundaries and the
other escapes from plane boundaries [10,12]. These are the
two qualitative behaviors near a single plane wall, excluding
collisions, that arise from various combinations of parameters
describing the shape of the bacterium.

Using an efficient interpolation technique to simulate many
trajectories over long time scales, we assess the general trends
of motion near the channel corner for the two bacterial
exemplars. We show that the plane boundary accumulating
swimmer exhibits corner accumulating behavior. In this case,
the model bacterium becomes hydrodynamically bound to
the corner, swimming in the direction of the channel axis
while oscillating laterally along one of the walls of the corner.
As expected, no such hydrodynamically bound trajectory is
found for the boundary escaping swimmer, which tends to be
deflected back into the interior of the channel, away from both
walls composing the corner.

The corner accumulation effect we observe is consistent
with experiments showing bacteria swimming along one side
of a microchannel [8]. Interestingly, it has been found that bac-
teria do not accumulate in all corners of a channel equally but
can be made to show a preference to “swim on the right-hand
side” [5]. In our discussion, we suggest a possible explanation
for this based on the results of our hydrodynamic simulations.

II. METHODS

We model the swimming bacterium as a force-free, torque-
free, rigid cell body and helical flagellum as depicted in Fig. 1.
The flagellum rotates with a constant angular velocity relative
to the cell body, propelling the swimmer. The velocity of the
swimmer resulting from this flagellar rotation is determined
by solving the equations of Stokes flow with no-slip boundary
conditions imposed on the surface of the cell body, flagellum,
and channel walls; details are given below. Our strategy for
analyzing this system is to first use the boundary element
method to numerically compute the translational and rota-
tional velocities of the swimmer at different positions and
orientations in the channel and then interpolate between these
tabulated values to efficiently construct swimming trajectories
and identify steady states and other general behavior.

A. Model bacterium

We employ the bacterial model used by Shum et al. [10].
The cell body is a prolate spheroid and the right-handed
helical shape of the flagellum tapers in amplitude near the
cell body so that the base of the filament lies on the axis of the
helix, which coincides with the major axis of the body. This
model is suitable for bacteria that possess a single flagellum,
such as Rhodobacter sphaeroides and Vibrio alginolyticus.
For bacteria that grow multiple flagella, such as Escherichia
coli, the flagella wrap around the cell body and form a
bundle at the rear; this may lead to differences in dynamics
in confined spaces. In theoretical models, it is common to
treat the bundle as a single filament of appropriately adjusted
thickness and this approach can yield good agreement with
experimental data [25]. We set the characteristic length scale
for nondimensionalization to be the volumetric radius of the
cell body, ā = (A1A

2
2)1/3. With average length and width

measurements for R. sphaeroides [35], this length scale is
ā ≈ 0.7 μm.

We define the swimmer position vector xB = (xB,yB,zB)T

to be the point on the cell body closest to the flagellum. The
orientation of the body is described by the set of body directors
eB
j and the tail directors eT

j are obtained by rotating the body
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directors through an angle φT about the axis eB
1 , which points

away from the cell body on its major axis as depicted in Fig. 1.
The instantaneous configuration of the swimmer in relation to
the stationary channel walls is fully described by xB, eB

j , and
φT. The time evolution of these variables is given by

d

dt
xB = U,

d

dt
eB
j = � × eB

j ,
d

dt
φT = ωM, (1)

where U is the translational velocity, � is the rotational velocity
of the body, and ωM is the angular motor speed.

Since the cell body and flagellum move as rigid bodies,
the velocity at a point on the surface of the swimmer can be
expressed as

u(x) =
{

U + � × x̃, x ∈ B,

U + (
� + ωMeB

1

) × x̃, x ∈ T ,
(2)

where x̃ = x − xB is the position of the point relative to the
reference point, B denotes the surface of the cell body, and
T denotes the surface of the flagellum. We impose no-slip
boundary conditions for the fluid flow field on B ∪ T so Eq. (2)
also describes the flow field on the surface of the swimmer.

B. Channel walls

We mesh a finite portion of the intersecting horizontal
and vertical walls representing a corner of a large rectangular
channel. Since force-free Stokes flows decay spatially at least
as quickly as the inverse square of distance, the hydrodynamic
effects of the channel walls on the motion of the swimmer
are dominated by contributions from the closest parts of the
wall. Ramia et al. [9] presented a comparison between using
a meshed plate of finite size and using a modified Green’s
function kernel to satisfy no-slip boundary conditions on an
infinite plane wall. For the problems of a spherical particle
translating and rotating in a half space, it was shown that the
drag forces and torques computed by the two approaches are
consistent. This supports our assertion that infinitely large,
static boundaries may be truncated to the portion close to the
region of interest, i.e., near the swimmer.

The limits of our channel wall mesh are |x|/ā � 25, y/ā �
25, z/ā � 25. In this study, we consider a range of swimmer
positions xB = 0, yB/ā � 14, zB/ā � 14. The meshed portion
of the channel walls therefore extends up to a distance of
roughly 10ā around the bacterium.

To avoid discontinuous stresses at the corner y = z = 0,
we connect the vertical and horizontal sections of the wall
with a curved corner. In the y-z cross section, this connecting
section is a quarter circle with radius of curvature r = ā/2, as
illustrated in Fig. 2. The boundary condition for the flow field
at a point x on the combined channel walls is u(x) = 0.

We break down the analysis of swimmers in the channel
corner by separately considering the dynamics in different
regions of space, as detailed in Fig. 2. Previous modeling
studies [10,11,36] may be applied to understand the behavior
in the regions that are far enough from the corner to be
approximated by free space or a half space. Hence, we focus
only on the space close to both the horizontal and the vertical
walls, further subdividing this region in Sec. III.

FIG. 2. (Color online) Subdivision of the space near the corner
of a large channel. The vertical and horizontal walls at this edge are
shown in thick, solid lines. Dashed lines indicate the division of the
fluid space into regions 1–4 and other regions that we do not explicitly
analyze. The dynamics in the marked half space and free space regions
can be inferred from previous work. The space between the walls
and the enumerated regions is largely inaccessible because the finite
volume occupied by the swimmer intersects or closely approaches
the walls when the junction position xB is in this space. The model
bacteria are displayed to scale in region 4, oriented parallel to the
channel x axis (left) and facing towards the vertical wall (right). The
swimmers on the top, with shorter flagella, are boundary escapers,
and the swimmers on the bottom are boundary accumulators.

C. Instantaneous dynamics

Due to the low Reynolds number associated with bacterial
motion, the fluid flow is governed by the equations of unforced,
incompressible Stokes flow,

− ∇p + μ∇2u = 0, ∇ · u = 0, (3)

where p is the pressure, μ is the dynamic viscosity, and u is
the velocity field.

The single-layer representation of the boundary integral
equation for the velocity field in a domain enclosed by the
boundary ∂V is [37]

uj (X) = −
∫

∂V

qi(x)Gij (x,X)dS(x), (4)

where the vector field q is the difference between the surface
tractions in the internal and external fluid flow problems and
Gij are the ij components of the Stokeslet Green’s function
defined by

Gij (x,X) = 1

8πμ

(
δij

R
+ RiRj

R3

)
, (5)

with R := x − X and R := ‖R‖. As long as the constraint∫
∂V

u · ndS = 0 is satisfied, where n is the unit normal vector
on the domain boundary pointing into the domain, then
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this representation can be used to describe the flow field
exterior to closed surfaces. We consider the fluid domain of
interest to be external to the cell body, flagellum, and a large
object representing the walls of the channel surrounding the
swimmer. The surfaces of these structures are respectively
denoted by B, T , and W . The fluid domain boundary is then
∂V = B ∪ T ∪ W . In the special case that the boundary moves
as a rigid body, or as a collection of rigid bodies as in our
model system, q can be replaced with the external traction
field f in the boundary integral equation [Eq. (4)] [37]. Note
that the wall surface W should, strictly speaking, be closed.
As previously discussed, however, accurate dynamics may be
computed taking into consideration only those parts of the wall
that are close to the swimmer. In practice, we may therefore
consider an open wall surface, such as that depicted in Fig. 1(b),
provided the wall sections are large enough compared with the
swimmer size and the distance from the walls to the swimmer.

As given in the preceding sections, no-slip boundary
conditions are used on ∂V . We prescribe a constant motor
speed ωM while the translational and rotational velocities U
and � are unknowns to be determined. Specifying the net force
and torque on the swimmer allows a unique solution for U and
�; we assume the swimmer is force free and torque free, which
corresponds to the conditions∫

B∪T

fdS = 0,

∫
B∪T

x̃ × fdS = 0. (6)

A collocation boundary element method (BEM) is used to
solve Eq. (4) together with the constraints (6) to obtain the
kinematic quantities U and � describing the motion of the
swimmer, as well as the traction distribution f over fluid
domain boundaries. Following the method described by Shum
et al. [10], we discretize the boundaries with a mesh of
quadratically interpolated triangular elements. The swimmer
mesh typically contains ∼400 nodes on the flagellum and
∼250 nodes on the cell body. The channel walls are adaptively
refined close to the swimmer and consist of 300–900 mesh
nodes.

D. Phase-averaged dynamical system

Since many motor revolutions are needed for a bacterium
to swim forward by one body length, we assess long time
scale dynamics by considering the velocities averaged over a
period of rotation. This reduces the dimensionality of phase
space and neglects fast oscillations that do not contribute to
overall motion. For a given position and body orientation, the
phase-averaged translational velocity is defined by

Ū
(
xB,eB

1

) = 1

2π

∫ 2π

0
U

(
xB,eB

j ,φT
)
dφT

≈ 1

Nφ

Nφ∑
k=1

U
(

xB,eB
j ,φT = 2πk

Nφ

)
, (7)

where the velocity U(xB,eB
j ,φT) is computed as described

above for position xB, orientation basis vectors eB
j , j = 1,2,3,

and motor phase φT. Other phase-averaged quantities, such as
the mean cell body rotation rate, �̄, are defined analogously.
Note that these phase-averaged values are independent of the

transverse body directors eB
2 and eB

3 due to axisymmetry of the
spheroidal cell body. We repeatedly double the value of Nφ

until the resulting change in the computed mean falls below
0.2%; typically, this threshold is met with Nφ = 6 or 12. In
some instances, when the flagellum is very close to the walls,
this tolerance is not satisfied even with Nφ = 48. In these cases
we accept an error of up to 5%.

We consider channels that are uniform and infinite in the
x direction. Hence, the instantaneous motion of the swimmer
is independent of its x coordinate. Without loss of generality,
suppose that eB

1 · ex � 0; i.e., the bacterium is swimming with
a non-negative component in the negative x direction (the
body director eB

1 points backwards). Then, since eB
1 is a unit

vector, the orientation is specified by η := eB
1 · ey and ζ :=

eB
1 · ez. Up to symmetries, the instantaneous configuration of

the swimmer is described by yB, zB, η, and ζ . For simplicity,
we henceforth drop the superscript B labeling the swimmer
position coordinates.

The behavior of the model swimmer in a channel is
described by a 4D system of ordinary differential equations
(ODEs) of the form

ẏ(t) = fy(y(t),z(t),η(t),ζ (t)), (8)

ż(t) = fz(y(t),z(t),η(t),ζ (t)), (9)

η̇(t) = fη(y(t),z(t),η(t),ζ (t)), (10)

ζ̇ (t) = fζ (y(t),z(t),η(t),ζ (t)), (11)

where fy = Ūy , fz = Ūz, fη = (�̄ × eB
1 ) · ey , and fζ = (�̄ ×

eB
1 ) · ez. Motion along the axis of the channel is decoupled

from this system but is readily recovered by integrating,

x(t) = x(0) +
∫ t

0
fx(y(s),z(s),η(s),ζ (s))ds, (12)

where fx = Ūx . The functions fx , fy , fz, fη, and fζ vary
smoothly with the swimmer configuration and are approxi-
mated by linear interpolation from values in look-up tables
computed using the BEM on a grid of (y,z,η,ζ ) phase
space. This technique has previously been used for analyzing
swimmer motion near infinite plane boundaries [10,12] and is
efficient for generating long trajectories, or many trajectories
with different initial conditions, since the computationally in-
tensive BEM is only required for the initial step of constructing
the look-up tables.

III. RESULTS

We restrict our interest to the region within a distance of
around 15ā, corresponding to about 10 μm for a bacterium
comparable in size to R. sphaeroides, from both walls and
compute the phase-averaged velocities on a sample of points in
(y,z,η,ζ ) phase space. Evaluating the dynamics on a regularly
spaced grid in parameter space is inefficient because the system
is much more sensitive to changes in position and orientation
when part of the swimmer is very close to a wall. To capture the
important dynamics without an excessive number of expensive
BEM evaluations, we use locally refined rectangular grids.
This is implemented by dividing the channel corner into
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four regions by proximity to each wall using the following
parameter bounds, illustrated in Fig. 2:

region 1, 0.9 � y/ā � 2, 0.9 � z/ā � 2,

− 0.2 � η � 0.2, − 0.2 � ζ � 0.2;

region 2, 0.9 � y/ā � 2, 2 � z/ā � 14,

− 0.2 � η � 0.2, − 0.6 � ζ � 0.6;

region 3, 2 � y/ā � 14, 0.9 � z/ā � 2,

− 0.6 � η � 0.6, − 0.2 � ζ � 0.2;

region 4, 2 � y/ā � 14, 2 � z/ā � 14,

− 0.6 � η � 0.6, − 0.6 � ζ � 0.6.

The bounds on the cell orientation in each region were chosen
with consideration to the relatively weak hydrodynamic wall
effect on swimmers. A bacterium initially pointing sharply
towards a wall will inevitably collide with the wall and a
bacterium pointing sharply away from the wall will soon swim
out of the region of interest near the wall [10]. Furthermore,
bearing in mind that the quantities y and z refer to the
position of the cell body-flagellum junction and that the
bacterium occupies a finite volume around this point, large
inclination angles could entail intersections between the cell
body or flagellum and the walls. Therefore, it is unnecessary to
consider large angles of orientation towards or away from the
walls. Our strategy for analysis is to first consider trajectories
in each of the four regions separately before combining the
regions to obtain a more complete perspective.

To sample the dynamics in each region, a grid in the
4D parameter space is constructed using between 7 and 15
values of each configurational parameter within the respective
ranges specified above. The BEM computation is performed
to determine the swimmer dynamics at each grid point. By
interpolating between these phase space evaluation points,
we are able to efficiently approximate the ODE system
(8). This method is used to simulate a large number of
trajectories starting from initial conditions generated in the
following manner. For each region, we select each of the region
boundaries in turn: top, bottom, left, and right, as seen in the y-z
plane. This boundary fixes either the starting y or z coordinate.
The other spatial coordinate and the two orientation variables
η and ζ are randomly drawn from uniform distributions. To
avoid starting too close to the boundary limits in these random
variables, we restrict the range of the randomly chosen initial
conditions to the central half of the intervals defined above
for the respective region. For example, a trajectory starting
at the top of region 4 has the initial condition (y0,z0,η0,ζ0)
with z0/ā = 14 and the other variables randomly chosen
from uniform distributions over the ranges 5 � y0/ā � 11 and
−0.3 � η0,ζ0 � 0.3.

Since some orientations will cause the bacterium to imme-
diately swim out of the region of interest, and some initial
conditions may be invalid due to intersections of the swimmer
body with the channel walls, we reject any trajectory that
cannot be computed for a duration of at least one motor
revolution. We do not consider trajectories starting from the
boundaries that are closest to the walls, namely, the left and
bottom boundaries of region 1, the left boundary of region 2,

and the bottom boundary of region 3. Most trajectories starting
from these boundaries are very short due to either the body or
the flagellum colliding with the wall.

For each region and boundary under consideration, we
generate 200 trajectories up to a maximum time of 104 t̄ , where
the time scale t̄ = 2π/ωM is the constant period of revolution
of the motor. Trajectories may terminate before the prescribed
end time if

(1) the trajectory approaches the imposed bounds of the
parameter range for its region, or

(2) interpolation is not possible due to absence of data.
The first situation indicates that either the swimmer has moved
into a different region of the channel or the orientation angle
has become too large, which we assume will eventually lead to
the bacterium exiting the current region in the direction toward
which it has turned.

The second situation occurs because some combinations
of the phase space variables correspond to configurations
that intersect or come close to intersecting the channel walls.
Interpolation is only possible if there are sufficient valid grid
points surrounding the desired point. Given a fine enough grid,
this will be a problem only when the trajectory approaches
too closely to a wall and we therefore treat these events
as collisions. In practice, with the grids that were chosen,
trajectories sometimes terminate at separation distances of
about 0.3ā. This is about half of the semiminor axis of the
cell body and is closer to the wall than typical boundary
accumulating orbits [10]. Nevertheless, trajectories that would
only transiently attain this proximity may incorrectly be
identified as a collision because of this discrete grid effect.

We analyze how and where each trajectory terminates in
order to infer the general or most likely behavior of a swimmer
in each of the separate regions. A trajectory is deemed to have
exited on the left of a given region if

(1) it approached the lower bound of the y range for the
region, the natural definition for leaving a bounded region, or

(2) it collided with the left channel wall before reaching
the lower bound of the y range, which is possible because of
the orientation-dependent, finite y extent of the swimmer, or

(3) it approached the upper bound of the η range. This
condition indicates that the swimmer is turning to strongly
face the left wall (η ≡ eB

1y increasing) and we assume that this
will eventually lead to condition (1) or (2) above.
Corresponding conditions are used to determine instances of
exiting through the top, bottom, and right of the regions. If a
trajectory does not terminate before the prescribed maximum
time, the destination is said to be the interior of the region.

Tabulated results of the destinations (boundary of exit or
the interior of the region) of trajectories originating from each
boundary are given in the Appendix. Note that these statistics
should be interpreted with care and only give a qualitative
description of the dynamics since the exact distribution of
outcomes depends on the chosen parameter bounds, among
other factors. Common behavior is determined by examining
the tables of trajectory destinations. For each trajectory origin
(for example, the top boundary of region 1), we define the
common outcomes to be those that occurred at least 1/3
as many times as the most prevalent destination of the 200
simulated trajectories. In Fig. 3, we illustrate one trajectory
for each common destination of each origin.
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FIG. 3. (Color online) Representative trajectories near a channel corner for (a) boundary accumulating and (b) boundary escaping
swimmers. The channel walls are drawn schematically as dark gray strips connected by a rounded corner. For each of the four regions
of the corner, delimited by thin, black borders, we show examples of common outcomes for random trajectories entering the region. Starting
locations for trajectories are indicated by crosses. Within each region, dashed (green) curves are used for trajectories that start on the left region
boundary, dot-dashed (orange) curves start on the bottom, solid (blue) curves start on the right, and dotted (red) curves start on the top. Arrows
indicate direction of motion along trajectories prior to exiting from the region, while the absence of an arrow from a trajectory entails that the
bacterium becomes trapped within the respective region. For clarity, the four channel corner regions are drawn slightly separated (by light gray
strips) and the axis scales are magnified by a factor of four below the separations at y/ā = 2 and z/ā = 2, respectively.

Wall effects are expected to be weakest in region 4 since this
is furthest from the walls. Trajectories of both boundary ac-
cumulating and boundary escaping swimmers entering region
4 from the top and right are relatively straight while they are
far from the walls, indicating little hydrodynamic deflection of
the swimmers. There are, however, clear differences between
the accumulators and the escapers. Boundary accumulators
are strongly attracted to the two walls. Trajectories starting at
the bottom of region 4 tend to return to this bottom boundary
and trajectories starting on the left are unable to traverse the
region to exit on the right. In contrast, boundary escapers
starting from either the bottom or the left never turn back
toward the originating boundary but commonly exit through
any of the other three boundaries. The tendency to escape from
boundaries is also evident from the rarity of trajectories starting
at the top or right and ending at the bottom or left. Instead,
trajectories are generally deflected away as they approach the
left and bottom boundaries.

In region 1, which is closest to both vertical and horizontal
channel walls, we note strong chiral behavior for both
boundary accumulators and boundary escapers. The only
commonly occurring destination for either swimmer type is
the right boundary. This means that there is a clear tendency
for the swimmers to follow a counterclockwise path around
the corner, viewed in the y-z plane from behind the swimmer
(recall that the orientation is such that the swimmer moves
with a negative component in the x direction). This is not
obvious from our understanding of bacterial swimmers near
plane boundaries. It has been shown that the counterrotating
cell body and flagellum of the swimmer above a no-slip wall
lead to a curved path. Our swimmer, which has a right-handed
helical flagellum, starting parallel to the channel axis near
the bottom, horizontal wall should turn to the left. A swimmer
starting near the left, vertical wall should likewise turn to swim

upwards. Hence, one might expect a continuity of the behavior,
namely, that the swimmer makes a clockwise transition around
the corner from the horizontal wall (region 3) to the vertical
wall (region 2). In fact, none of the simulated trajectories in
region 1 exited at the top (into region 2).

Above a single, horizontal wall, the boundary accumula-
tor would swim in a circle, continually turning left while
remaining near the wall. Neglecting the influence of the
vertical channel wall, we would similarly expect boundary
accumulators in region 3 to turn left and swim towards
region 1. As discussed above, however, swimmers in region
1 have a tendency to migrate into region 3. This leads to
the possibility of either stable or oscillatory motion between
regions 1 and 3. Indeed, the simulated trajectories for the
boundary accumulator in region 3 predominantly remain in the
interior of region 3 until the maximum trajectory duration.
This maximum duration was more than 10 times as long as
the longest trajectory that eventually exited, suggesting that
trajectories remaining in the interior were bound by an attractor
within region 3 rather than simply terminated before escape.

Examining the trajectories that did not exit region 3, we
found that all of these swimmers had become trapped in
a unique, figure-8 shaped periodic orbit in the y-z plane
as illustrated in Fig. 4(a). Oscillations in the y direction
are much larger than the variations in the vertical direction.
Note that while we refer to this as a periodic orbit, it is
only the y-z projection of the 3D path that is periodic,
as the swimmer moves monotonically in the −x direction.
The orientation deviates only slightly from parallel to the
x axis, with vertical (pitch) orientation variable ζ ≈ −0.05
so that the tail is always angled toward the lower wall, and
the horizontal (yaw) orientation variable η oscillating over
the range −0.3 < η < 0.3 [Fig. 4(b)]. The x-y projection of
trajectories given in Fig. 4(c) represents the top-down view
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FIG. 4. (Color online) Trajectories of a boundary accumulating bacterium relaxing to a periodic orbit in region 3 of the channel corner. (a)
y-z projections of the trajectories. Three initial conditions, marked by crosses, are used to compute trajectories of the 4D ODE system (8). All
three trajectories converge to the same figure-8 orbit, plotted with a thick, gray curve. The direction of motion around the orbit is indicated by
sequentially numbered arrows. Also shown (solid, black curve) is the trajectory starting from the uppermost initial condition, computed using
second-order time stepping with velocities obtained directly by the BEM without phase averaging. The vertical scale is expanded by a factor
of five relative to the horizontal scale to magnify the small variations in z. (b) η-ζ projections of the trajectories plotted in the same manner as
in (a). Positive values of η correspond to the bacterium facing the left and positive values of ζ signify that the swimmer points downward. The
numbered points around the periodic orbit correspond to the numbering in (a). (c) The top-down (x-y) view of the trajectories shown in (a) and
(b). The x and y axes are set to the same scale and the leftward moving model bacterium is illustrated to scale at around x/ā = −200.

of typical microscopy experiments. In this view, the bacteria
are seen swimming primarily along the channel axis with
oscillations in distance from the bounding wall.

Having obtained the behavior of the two types of bacterial
swimmers in each conceptual region of the corner, we can
infer the general dynamics for the corner geometry. For
completeness and, in particular, to verify that there are no
additional periodic orbits that span more than one region,
we continue simulations of all of the previously computed
trajectories as they cross from one region to another. As
before, the maximum simulation time is set to 104 t̄ . A
trajectory terminates if the swimmer approaches the walls or
leaves the combined corner region. Using the same criteria as
before, we record the final outcome of each trajectory based
on the region containing the swimmer immediately prior to
termination. The results are listed in Table I. For the boundary
accumulator, nearly half of all trajectories entered a stable
orbit, persisting until the maximum simulation time. The only
such orbit we observed was that shown in Fig. 4. There were
no instances of the boundary escaping swimmer remaining

TABLE I. Percentage distributions of final destinations for
boundary accumulating and boundary escaping swimmers in com-
bined corner region. The total number of trajectories for each
swimmer is 2400. Outcomes correspond to the following: Left,
collides with vertical wall; Bottom, collides with horizontal wall;
Right, escapes into horizontal half space; Top, escapes into vertical
half space; Interior, remains in corner region without wall collisions.

Left Bottom Right Top Interior

Accumulator 9 14 6 25 46
Escaper 7 4 53 36 0

inside the combined corner region until the maximum time,
confirming the anticipated tendency for the swimmer to escape
from corners.

In addition to the analysis of randomly initialized trajecto-
ries, we illustrate several trajectories starting from manually
specified configurations in Fig. 5. These are consistent with the
preceding analysis of individual corner regions. In particular,
we note that the boundary accumulator tends to become
trapped in a corner accumulating orbit while the boundary
escaper is deflected out of the corner region. The chiral bias
is also evident in this figure. For the boundary accumulator,
this is manifest by the asymmetric position of the periodic
orbit, which is along the bottom wall but not the left wall.
For the boundary escaper, there is a general tendency to migrate
in the counterclockwise direction close to the corner and all of
the presented trajectories exit through the right rather than the
top of the corner region.

IV. DISCUSSION

Experiments by DiLuzio et al. [5] showed that motile E.
coli tend to accumulate in the corners of microfluidic channels.
Furthermore, the cells were not evenly distributed among all
of the corners. Near the top surface, swimmers were found in
the corner with the wall on their left. Near the bottom surface,
the bacteria swam along the corner with the wall on their
right. Different materials used for the top and bottom surfaces
caused a preference for swimming at the bottom, resulting in
the observation that the bacteria predominantly “swim on the
right-hand side.” We comment on these findings in light of our
simulation results. Note that we use a model bacterium with
chirality opposite to that of E. coli and should therefore expect
our swimmers to “swim on the left-hand side” instead.
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FIG. 5. (Color online) Trajectories of (a) boundary accumulating
and (b) boundary escaping bacteria simulated with the interpolation
technique in the combined channel corner incorporating regions 1–4.
Five trajectories are shown for each swimmer, starting from the same
set of initial positions, marked by crosses. In all cases, the initial
orientation was fixed with η0 = ζ0 = 0.2 so that the swimmer was
pointing obliquely toward the walls. In (a), one trajectory terminates
at the arrow closest to the corner due to the swimmer colliding with
the lower wall. All other trajectories either escape from the corner
region or converge to the corner accumulating orbit.

Through numerical simulation, we have found that bound-
ary accumulating bacterial swimmers experience a hydrody-
namic attraction to corners. Specifically, a stable periodic orbit
exists near the corner but the position is not symmetric with
respect to the two corner walls. In the bottom left corner,
the periodic orbit oscillates horizontally close to the lower
wall. Details of this corner accumulating orbit, such as the
amplitude of the oscillations away from the corner, are likely
to vary with geometrical parameters of the swimmer as well
as elastic properties of the flagellar filament or hook [10,38].
The location of this attractor, however, corresponds to the
trapping along side walls observed experimentally by DiLuzio
et al. [5].

Rotating the corner geometry counterclockwise by 90◦, we
expect an equivalent periodic attractor in the bottom right
corner of the simulated channel, this time oscillating vertically
closer to the side wall than to the bottom. Accounting for the
opposite chirality, this location corresponds to E. coli swim-
ming in the lower left corner of the channel. Experimentally,
this was not observed. The lack of bacteria in this corner could
be explained if the bacteria were preferentially attracted to the
bottom substrate over the side walls due to differences in the
materials. A second possibility is that the small height of the
channel used in the experiments interfered with the bottom left
attractor, which is at a higher vertical position in the channel
than the bottom right attractor and may therefore be more
affected by the upper surface. Additional simulations in fully
enclosed channels would be necessary to verify this.

Channels of small cross sectional dimensions are known
to be effective at guiding the motion of bacteria. If the cells
are physically unable to turn back, then they are forced to
swim directly along the channel. Moreover, the swimming
speeds in narrow channels can be higher than those in less
confined environments [8]. Hydrodynamic trapping of bacteria
in channel corners means that even if there is sufficient space
for the cell to turn, bacteria tend to maintain alignment with
the channel. It has been shown that even cells that are able to
tumble do not readily escape from surfaces [39]. Hence, we

expect that not only small but also large rectangular channels
are potentially effective at directing the transport of bacteria.
This contrasts with capillary tubes of large circular cross
section, which lack corners and allow bacteria to become
trapped in circular orbits instead of progressing along the
channel [23].

An interesting result from our hydrodynamic simulations is
that both of our boundary accumulating and escaping bacterial
swimmers, which have right-handed helical flagella, tend to
move in the counterclockwise direction around the corner.
Viewed from behind, the cell body rotates counterclockwise
as it is propelled and the flagellum rotates clockwise. Above
a planar no-slip boundary, this motion would cause the
bacterium to turn left and the resulting trajectory would be a
counterclockwise circle when viewed from above [25]. Rolling
up the planar surface into a cylindrical capillary tube of a
certain radius, one might expect the bacterium to trace out a
right-handed helical path, circling around the cross section in
the clockwise direction as it progresses along the axis of the
tube. While our simulations do not consider fully enclosed
channels, the behavior we observe in channel corners suggests
motion in the opposite, namely, left-handed, direction.

However, bacterial motility in confined geometries is more
complex than motility near plane surfaces. For instance,
experiments with bacteria in narrow capillary tubes found that
the motion of nontumbling E. coli cells was consistent with the
intuitive expectation, after correcting for the chirality of the
flagellum filaments. On the other hand, a different species,
Pseudomonas fluorescens, exhibited both left- and right-
handed helical trajectories [31]. Like our model swimmer,
P. fluorescens has right-handed flagella that rotate clockwise
when viewed from behind. Hence, the right-handed helical
paths were expected based on the wall effects described
above. Left-handed trajectories were hypothesized to result
from slip boundary conditions on the capillary walls when the
bacteria swam fast enough to exceed a critical shear stress. Our
numerical study suggests that hydrodynamic interactions with
no-slip boundaries may also lead to left-handed trajectories,
though further simulations would be necessary to identify
the conditions favoring right- or left-handed helical paths in
channels.

V. CONCLUSION

Building on well established models and numerical tech-
niques for simulating the propulsion of singly flagellated bac-
teria in low Reynolds number fluid environments [10,12,40],
we conducted an analysis of swimming trajectories near
the intersection of two mutually perpendicular no-slip walls.
This boundary geometry represents the corner of a large
channel of rectangular cross section, potentially a conduit
for the bacteria in lab-on-a-chip devices, or a crevice that
bacteria might encounter in their natural environment. The
presence of confining surfaces alters the motion of swimming
bacteria and has implications for the migration of these
microorganisms.

Previous work has shown that bacterial swimmers can be
hydrodynamically attracted to no-slip boundaries [9–11] and
that this effect is dependent on parameters describing the shape
of the cell body and flagellum. For the current study, we
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considered two bacterial shapes differing only in the flagellum
length. The swimmer with the longer flagellum, which we
refer to as the boundary accumulator, has a tendency to swim
parallel and close to plane boundaries. The swimmer with the
shorter flagellum is a boundary escaper as it tends to swim
away from plane boundaries.

As anticipated, trajectories of the boundary escaping
swimmer near a channel corner were generally deflected away
from the walls and there was no evidence of hydrodynamic
trapping of boundary escapers in the corner. In contrast, the
plane boundary accumulating swimmer exhibited a stable
periodic orbit close to the channel corner with oscillations
predominantly along one of the walls due to the chirality
of the flagellar rotation. While attraction to a single plane
boundary has previously been explained, it is not obvious
a priori that the swimmer would be trapped in a corner
where two such boundaries meet. Experiments suggest that
bacteria indeed swim preferentially in channel corners, though
short range nonhydrodynamic interactions with the surfaces,
which were excluded from our model, are also likely to be
influential.

These results have a number of implications for practical
situations. For example, the attraction of boundary accumu-
lating swimmers to corners of channels indicates that these
are the most susceptible areas to biofilm initiation. A circular
channel may therefore resist colonization better than square or
rectangular channels since there are no corners for bacteria to
gather at. Flow through channels is also slowest at the corners
due to the no-slip boundary condition. Although we have not
investigated the effects of shear flow on bacterial dynamics, it
can be hypothesized that corner accumulating bacteria would
be less likely to be washed downstream by a background flow
through the channel because the no-slip boundary condition
weakens the flow at corners where the bacteria tend to swim.
On the other hand, it may be possible to design grooved or
branching channels that exploit corner accumulation to divert
bacteria away from critical zones.

Finally, we note that our results and approach are more
generally applicable beyond the focus of bacteria in mi-
crochannels. Other types of swimmers, such as spermatozoa,
have also been found to swim preferentially in channel corners
[41,42]. Surface topography may therefore play a critical
role in the migration of swimming microorganisms in natural
environments, such as digestive and reproductive tracts. Our
understanding of locomotion in such landscapes could help
reduce biofouling or improve designs for controllable nano-
and microrobots.

APPENDIX: TABLES OF TRAJECTORY OUTCOMES
IN CORNER SUBREGIONS

The following tables list the number of occurrences of a
particular destination (labeled along the first row) out of 200
simulated trajectories starting from a given origin (labeled in
the first column) in different regions of the channel corner.
Tables II–V are for the boundary accumulating swimmer and
Tables VI–IX are for the boundary escaping swimmer. Entries
in boldface are the commonly occurring outcomes (refer to
Sec. III for details).

TABLE II. Origin and destination distributions of boundary
accumulator trajectories in region 1 of channel corners, where
boundaries correspond to the following: Left, vertical wall; Bottom,
horizontal wall; Right, region 3; Top, region 2; Interior, remains in
region 1. The left and bottom boundaries are excluded as origins for
trajectories.

Origin \ Destination Left Bottom Right Top Interior

Right 0 0 200 0 0
Top 7 47 146 0 0
Total 7 47 346 0 0

TABLE III. Origin and destination distributions of boundary
accumulator trajectories in region 2 of channel corners, where
boundaries correspond to the following: Left, vertical wall; Bottom,
region 1; Right, region 4; Top, vertical half space; Interior, remains
in region 2. The left boundary is excluded as an origin for
trajectories.

Origin \ Destination Left Bottom Right Top Interior

Bottom 33 167 0 0 0
Right 0 61 1 138 0
Top 10 0 0 190 0
Total 43 228 1 328 0

TABLE IV. Origin and destination distributions of boundary
accumulator trajectories in region 3 of channel corners, where
boundaries correspond to the following: Left, region 1; Bottom,
horizontal wall; Right, horizontal half space; Top, region 4; Interior,
remains in region 3. The bottom boundary is excluded as an origin
for trajectories.

Origin \ Destination Left Bottom Right Top Interior

Left 0 11 13 0 176
Right 143 15 0 0 42
Top 10 0 18 0 172
Total 153 26 31 0 390

TABLE V. Origin and destination distributions of boundary
accumulator trajectories in region 4 of channel corners, where
boundaries correspond to the following: Left, region 2; Bottom,
region 3; Right, horizontal half space; Top, vertical half space;
Interior, remains in region 4.

Origin \ Destination Left Bottom Right Top Interior

Left 56 62 0 82 0
Bottom 16 160 24 0 0
Right 44 84 2 70 0
Top 72 57 60 11 0
Total 180 363 86 163 0
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TABLE VI. Origin and destination distributions of boundary
escaper trajectories in region 1 of channel corners, where boundaries
correspond to the following: Left, vertical wall; Bottom, horizontal
wall; Right, region 3; Top, region 2; Interior, remains in region 1. The
left and bottom boundaries are excluded as origins for trajectories.

Origin \ Destination Left Bottom Right Top Interior

Right 0 5 195 0 0
Top 14 1 185 0 0
Total 14 6 380 0 0

TABLE VII. Origin and destination distributions of boundary
escaper trajectories in region 2 of channel corners, where boundaries
correspond to the following: Left, vertical wall; Bottom, region 1;
Right, region 4; Top, vertical half space; Interior, remains in region
2. The left boundary is excluded as an origin for trajectories.

Origin \ Destination Left Bottom Right Top Interior

Bottom 30 160 10 0 0
Right 0 6 159 35 0
Top 24 0 77 99 0
Total 54 166 246 134 0

TABLE VIII. Origin and destination distributions of boundary
escaper trajectories in region 3 of channel corners, where boundaries
correspond to the following: Left, region 1; Bottom, horizontal wall;
Right, horizontal half space; Top, region 4; Interior, remains in region
3. The bottom boundary is excluded as an origin for trajectories.

Origin \ Destination Left Bottom Right Top Interior

Left 0 40 0 160 0
Right 58 34 0 108 0
Top 9 0 8 183 0
Total 67 74 8 451 0

TABLE IX. Origin and destination distributions of boundary
escaper trajectories in region 4 of channel corners, where boundaries
correspond to the following: Left, region 2; Bottom, region 3; Right,
horizontal half space; Top, vertical half space; Interior, remains in
region 4.

Origin \ Destination Left Bottom Right Top Interior

Left 0 35 67 98 0
Bottom 34 0 76 90 0
Right 18 41 16 125 0
Top 23 30 115 32 0
Total 75 106 274 345 0
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