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Hydrodynamic analysis of flagellated bacteria swimming near one and
between two no-slip plane boundaries
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The motility of swimming bacteria near solid surfaces has implications in a wide range of scenarios, including
water treatment facilities, microfluidics, and biomedical implants. Using the boundary element method to numer-
ically solve the equations of low Reynolds number fluid flow, we investigate the dynamics of a model swimmer
propelled by rotating a single helical flagellum. Building on previous simulation results for swimmers near a
single plane boundary, we introduce a second, parallel boundary and show that the bacterial trajectories change
as the two plates are brought closer together. Analysis of this dynamical system shows that the configuration in
the center of the channel and parallel to the walls is an unstable equilibrium state for large plate separations, but it
becomes the only stable position for swimmers when the plate separation is reduced to three to four times the cell
width. Our model also predicts that transient trajectories, i.e., those not at steady states, can exhibit curvature in
the opposite sense to that expected from the well-known explanation for circular bacterial paths near a single wall.
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I. INTRODUCTION

Given the prevalence of bacteria in almost every environ-
ment on Earth, it is no wonder that this diverse group of
micro-organisms is involved in many of our technological
achievements as well as challenges. For example, bacteria have
been exploited in efforts to develop bioremediation strategies
[1]. Biofilms formed by colonies of bacteria and other micro-
organisms can be both beneficial, e.g., in bioreactors, and
detrimental, e.g., biofouling of ship hulls, medical implants,
and water filtration membranes [2,3]. These processes involve
the interaction of micro-organisms with fluid-solid interfaces,
and it has been observed that motility is an important factor
in the initial stages of bacterial biofilm formation [4]. Hence,
there is a need to develop our understanding of the effects of
surfaces on the locomotion of micro-organisms.

Theoretical studies on swimming near no-slip plane bound-
aries date back as early as 1974 with Katz [5], where the
“swimmer” was an infinite waving sheet. A more realistic,
finite, model swimmer often considered consists of an inert
body and a long, slender tail that propagates waves to propel
the swimmer. Such models have been used for the simulation
of swimming spermatozoa [6,7] and bacteria [8–10] near sur-
faces. From these studies, it has been found that both spermlike
and bacterialike swimmers can be hydrodynamically attracted
to no-slip boundaries, and, depending on the precise shape
and beat pattern of the swimmer, the swimmer may tend
to maintain a constant distance while swimming parallel to
the wall. In particular, it was observed that swimmers with
elongated bodies and short tails tend to escape from walls,
whereas those with shorter, more spherical bodies and long
tails are more likely to remain at walls. Similar dynamics have
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also been shown for “squirmers,” idealized swimmers with
prescribed patterns of fluid slip velocity over their bodies [11].

The hydrodynamic effects of boundaries can be qualita-
tively understood by examining the stress distribution that the
swimmer generates in the fluid and the image system required
to satisfy the no-slip boundary condition on the wall. The flow
field around a swimming bacterium is well approximated by
a force dipole; their tails push fluid backward and their bodies
drag fluid forward as they swim [12]. The image system tends
to pull the swimmer toward the wall and align the swimmer
with the wall. Higher-order terms in the flow field, which
depend on the swimmer’s shape and method of propulsion, also
contribute to the rotational and translational velocities of the
swimmer and become more significant at closer distances to
the wall. The overall behavior of the swimmer in the presence
of boundaries is therefore approximated by the combination
of these terms, as described by Spagnolie and Lauga [13].

Experimental evidence indicates that spermatozoa [14] and
bacteria [15] tend to accumulate at surfaces, as predicted by
hydrodynamic models. It should be noted that accumulation of
swimmers at surfaces also occurs in nonhydrodynamic models
relying on collisions to align swimmers with the wall [16].
However, it is likely that the hydrodynamic attraction due
to the dipolar flow field prolongs the residence time once a
swimmer is near the wall [12,17].

Hydrodynamic interactions are also necessary to explain
another commonly observed feature of bacteria swimming
near surfaces: there is a tendency for circular trajectories of a
fixed handedness [17]. This is caused by the counter-rotation of
the bacterial cell body and flagellum where the presence of the
no-slip boundary causes a top-bottom asymmetry in resistance
to motion [18]. Path curvature is sensitive to the size and shape
of the swimmer; a property that has been exploited as a basis
for population sorting in microfluidic channels [19].

Microfluidic devices, as well as many natural environments,
pose multiple boundaries to bacteria simultaneously, so it is
necessary to expand beyond analysis of a swimmer near a
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single, planar boundary. Zöttl and Stark [20,21] investigated
model microswimmers in circular tubes and between par-
allel plates with an imposed Poiseuille flow, giving rise to
“tumbling” and “swinging” motion of the swimmers. These
studies focused on the effect of the nonuniform background
flow on a self-propelled particle of small size compared with
the length scale of the domain confinement. Other authors
have investigated cases in which the radius of the circular tube
is comparable to the swimmer size [22,23] and found that
trajectories in this highly confined environment depend on
the type of swimmer considered. Zhu et al. [22] investigated
squirmers and found that pushers, those with dipolar far fields
of the same sign as bacteria, tended to crash into the wall,
whereas pullers maintained a stable position either in the center
of the tube or near the wall. Acemoglu and Yesilyurt [23]
used a bacterial model swimmer and reported that the power
efficiency of swimming in tubes peaked for tube diameters
about 50% larger than the width of the swimmer body with
typical efficiencies double those of the same swimmer in
unconfined fluid. Despite such severe geometric confinement,
Binz et al. [24] have shown experimentally that bacteria can
indeed swim through channels marginally larger than their
bodies, and swimming speeds in channels were found to be up
to three times as high as in more open environments.

In the current work, we analyze the dynamics of a
monotrichous (singly flagellated) bacterium, such as the
extensively studied Rhodobacter sphaeroides [25,26], be-
tween two parallel no-slip plates. The boundary element
method (BEM) is used to numerically solve the equations of
Stokes flow to determine the motion of the model swimmer.
Guided by previous results for a single plane boundary [10],
we compare three swimmers differing only in the lengths
of their flagella, spanning the transition from boundary-
accumulating to boundary-escaping behaviors. After verifying
that the dynamics between parallel plates of large separation
are consistent with single wall interactions, we examine the
changes to the bacterial trajectories that occur as the plate
separation is reduced. We then discuss the implications that
the observed hydrodynamic interactions have for bacteria in
channels and other confined spaces.

II. METHODS

In this study, we employ the boundary element method to
numerically solve the equations of Stokes flow for a model
bacterium swimming near a single plane boundary or between
two parallel plane boundaries, separated by a distance H . This
process yields the instantaneous rotational and translational
velocities of the bacterium for a given configuration. By
considering physical symmetries of the model, we reduce
the motion of the swimmer to a dynamical system in two
variables: the height of the swimmer from the lower wall, h,
and the inclination angle of the swimmer axis relative to the
horizontal plane, θ . We then examine these reduced systems
for fixed points and limit cycles.

A. Bacterial model

The model for the bacterium is identical to that used
by Shum et al. [10]. As illustrated in Fig. 1, the swimmer

FIG. 1. Illustration of model bacterium shape (top) and configu-
ration between parallel plates (bottom). As depicted, A1 and A2 are
the lengths of the semimajor and -minor axes of the spheroidal cell
body. The body directors eB

j and tail directors eT
j are related by a

rotation through the angle φT about the eB
1 axis. The flagellum has a

cross-sectional radius aT and grows into a helix of amplitude a and
wavelength λ. The total length of the flagellum is L, measured along
the curved centreline. The position of the bacterium relative to a fixed
reference frame is described by the vector xB. For swimming in the
presence of plane boundaries, we track the distance from the wall
below, h, and the angle of inclination, θ . Between parallel plates, the
plate separation is H .

consists of two neutrally buoyant rigid structures: a spheroid
representing the cell body and a thin filament of helical shape
with an amplitude envelope as suggested by Higdon [27] so
that the flagellum emerges from the cell body at a point on
the axis of the helix. We fix the parameter kE = 2π/λ so that
the helical amplitude grows to its full value over a distance
2/kE ∼ λ/3. Lengths in our model are nondimensionalized
by the volumetric radius of the spheroidal cell body, ā =
(A1A

2
2)1/3. For the well-studied monotrichous bacterium, R.

sphaeroides, one finds ā ≈ 0.5 μm [25]. This bacterium has
a flagellar length in the range 1–6 μm [26]. Nonetheless,
below we restrict our study to flagellar lengths of 5ā–7.5ā,
corresponding to 3.5–5.25 μm.

We also note that these flagellar lengths are roughly
consistent with, but slightly lower than, those of the most
commonly studied bacterium, Escherichia coli, which has
flagella of length 7–10 μm [28,29]. However, E. coli is
peritrichous (multiflagellated) and hence its flagella wrap
around the cell body before forming a flagellar bundle that
emerges from the pole of the cell body. This means that the
length of the flagellar bundle projecting from the cell pole is
significantly shorter than the length of the individual flagella.

We allow a small gap of size ā/10 (of the order of a
flagellum radius) between the body and the flagellum to
avoid constructing an ill-posed problem with singular velocity
gradients due to the relative motion of the two structures [8].

The reference point of the bacterium is taken to be the
pole of the cell nearer the flagellum, and it will be referred
to as the swimmer position, denoted xB. The instantaneous
configuration of the swimmer is fully described by the
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swimmer position, the body directors eB
j , and the tail phase φT,

which describes the rotation about the axis eB
1 from the body

directors to the tail directors. The motion of the bacterium
can therefore be described by a translational velocity U, a
rotational velocity �, and a motor speed ωM, according to the
relations

d

dt
xB = U,

d

dt
eB
j = � × eB

j ,
d

dt
φT = ωM. (1)

The two structures themselves remain rigid during motion.
Writing the relative position of a point as x̃ = x − xB, the
velocity at a point on the surface of the swimmer can be
expressed as

u(x) =
{

U + � × x̃, x ∈ B,

U + (
� + ωMeB

1

) × x̃, x ∈ T ,
(2)

where B denotes the surface of the cell body and T denotes
the surface of the flagellum.

B. Solving instantaneous dynamics

The fluid around the swimmer is governed by the equations
of unforced, incompressible Stokes flow,

−∇p + μ∇2u = ∇ · σ = 0, ∇ · u = 0, (3)

where p is the pressure, μ is the dynamic viscosity, u is the
velocity field, and σ is the Cauchy stress tensor field.

The solution to these equations can be expressed as
a boundary integral equation; in the single-layer potential
formulation [30],

uj (X) = −
∫

∂V

fi(x)Gij (x,X)dS(x), (4)

where f is the traction vector field acting over the boundary
enclosing the fluid domain, ∂V , and Gij are the ij components
of the Stokeslet Green’s function defined by

Gij (x,X) = 1

8πμ

(
δij

R
+ RiRj

R3

)
, (5)

where R := x − X and R := ‖R‖. The boundary of the fluid
consists of four parts, ∂V = B ∪ T ∪ W ∪ ∂V∞, where B and
T are the surfaces of the cell body flagellum, respectively, W is
the collection of confining plane boundaries, and ∂V∞ denotes
the surface at infinity. Since the velocities and traction are
assumed to vanish at infinity, we can neglect the ∂V∞ portion
of the boundary.

The no-slip boundary conditions require the surface veloc-
ity distributions on the swimmer given by Eq. (2), supple-
mented with the condition on the plane walls: u(x) = 0,x ∈
W . The translational and rotational velocities U and � are
unknowns to be determined through additional constraints,
while ωM is a prescribed, constant motor speed.

Note that the absence of inertia in the Stokes flow equations
and a brief consideration of dimensions entail that this motor
speed simply sets the time scale of the dynamics. In particular,
over any given time interval, the net displacement of the
swimmer is determined by the angular displacement 	φT of
the flagellum during this interval, and hence the shape of the
trajectory traced out by the swimmer is independent of any
fluctuations in the motor speed. Prescribing a constant motor

torque (or any other specification of how the motor operates)
rather than a constant motor speed would yield the same
trajectory except for a possible change in the time variable.
As we do not address issues of swimming speed, we do not
need to incorporate how the viscosity, temperature, drag, and
biophysical limitations impact the bacterial motor rotation,
constituting a significant, though fully justified, simplification
of the bacterial model.

We further assume that the swimmer is neutrally buoyant
and therefore experiences no net force or torque, requiring the
conditions ∫

B∪T

fdS = 0,

∫
B∪T

x̃ × fdS = 0. (6)

We discretize the boundaries with a mesh of quadratically
interpolated triangular elements as previously described [10].
A typical simulation uses a mesh with ∼400 nodes on the
flagellum and ∼250 nodes on the cell body. For each wall,
we mesh a finite section of the plane near the swimmer,
|xj − xB

j | < 50ā, for components parallel to the wall, j = 1,2.
Approximately 400 nodes are distributed over each wall mesh,
with a higher density close to the swimmer. Using the boundary
element method, we approximate boundary integrals with
quadrature over the mesh and solve Eq. (4) together with
the constraints (6) to obtain the traction distribution f over
the bacterial body, flagellum, and plane boundaries, as well
as the kinematic quantities U and � describing the motion of
the bacterium.

C. Phase-averaged dynamical system

We reduce the dimensionality of the bacterial dynamics
by taking advantage of the symmetry properties of the
swimmer and of the fluid domain. We first average the
dynamics over one revolution of the motor with the cell body
held fixed [31]. Results of previous studies of the bacterial
swimmer [31] indicate that more than 10 motor revolutions
are needed to propel the organism forward a distance of one
helical wavelength. Therefore, it is reasonable to consider the
swimmer position fixed on the time scale of a motor revolution.
Some precession of the cell orientation will also occur, but this
is small [32]. By axisymmetry of the spheroidal cell body, the
dynamics are independent of the transverse directors, eB

2 and
eB

3 . The mean velocity is therefore written as

Ū
(
xB,eB

1

) = 1

2π

∫ 2π

0
U

(
xB,eB

j ,φT
)
dφT

≈ 1

Nφ

Nφ∑
k=1

U
(

xB,eB
j ,φT = 2πk

Nφ

)
, (7)

where U(xB,eB
j ,φT) denotes the velocity computed for the

swimmer using the BEM with position xB, orientation vectors
eB
j , j = 1,2,3, and motor phase φT. The mean cell body

rotation rate, �̄, is defined analogously. The specification of
directors eB

2 and eB
3 is arbitrary, as any dependence on these

is solely due to discretization and numerical errors. For the
results presented herein, we adaptively use Nφ = 8, 16, or 32,
depending on the rate of convergence of the computed mean.
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Consider the bacterium near an infinite plane boundary or
between two parallel planes with normal in the z direction.
By symmetry, the dynamics of the swimmer must be invariant
to translations parallel to the wall. In addition, rotating the
bacterium about the direction perpendicular to the wall is
equivalent to a rotation of the coordinate frame. If we place the
swimmer as shown in Fig. 1 so that the bacterial axis eB

1 lies
in the x-z plane, then the mean velocities are determined by
the height h ≡ xB

3 and inclination angle θ = − arcsin(ẑ · eB
1 ),

where ẑ is the unit normal to the plane surfaces, pointing away
from the lower plane. The rates of change of these variables
are given by

θ̇(θ,h) = 
̄2(θ,h),
(8)

ḣ(θ,h) = Ū3(θ,h).

We follow the scheme employed by Shum et al. [10] to
efficiently compute trajectories of swimmers from many initial
conditions using averaged dynamics. We first generate a
look-up table of mean translational and rotational velocities
on a grid of (θ,h) values. The functions 
̄2(θ,h) and Ū3(θ,h)
in Eq. (8) are approximated using linear interpolation with the
preevaluated data points and used to solve the two-dimensional
ODE system for θ (t) and h(t).

III. RESULTS

A. One plane boundary

We classify swimmer behavior as either boundary-
accumulating or boundary-escaping. Boundary accumulators
are swimmers that tend to remain close to walls due to a
hydrodynamic influence. They exhibit a stable swimming
configuration relative to the wall and move parallel to the wall
with some steady inclination angle. To avoid the issue of direct
cell-surface interactions, which depend on many factors (see,
e.g., Klein et al. [33]), we do not consider boundary accumu-
lators that have a tendency to collide with walls. In our phase
plane analyses, we do not include dynamics for configurations
in which any part of the swimmer is less than dmin = 0.05ā

from the wall; we treat these as “collisions” with the wall.
Boundary escapers are hydrodynamically repelled by walls;

given any starting position and orientation, the swimmer will
have a finite residence time at the wall before moving away.
Evidence suggests that hydrodynamic interactions with walls
have little effect on bacterial motion beyond a distance of about
one cell length [12]. For the purposes of this study, we consider
a swimmer to have escaped from the wall when the cell
body–flagellum junction reaches a height h/ā = 10, roughly
one swimmer length including the flagellum. Increasing the
threshold used in this definition would not qualitatively affect
our conclusions.
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FIG. 2. (Color online) Phase plane diagrams for bacteria swimming (a) near a single no-slip plane boundary and (b) between parallel plates
with plate separation H/ā = 15. Flagellar lengths are (left column) L/ā = 7.5, (center column) L/ā = 6.5, and (right column) L/ā = 5.
Stable fixed points are indicated by filled circles, unstable fixed points at (θ = 0,h/ā = 0) are indicated by open circles, and saddle nodes are
indicated by crosses (×). Trajectories entering and leaving saddle nodes are shown with thicker curves.
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It is known from previous simulation studies that the
trajectories of individual flagellated bacteria near no-slip
surfaces are strongly influenced by the shape and size of the
cell body and helical flagellum [9,10,34]. Some combinations
of parameters give rise to boundary accumulators, while
others produce boundary escapers. We choose to focus on
one parameter to vary in this study: the flagellar length, L. A
transition was shown to occur from boundary escape for small
L to boundary accumulation for large L [10].

In Fig. 2(a), we illustrate this bifurcation in (θ,h) phase-
space behavior as the flagellum length is reduced from L =
7.5ā to 5ā. Other geometrical parameters are fixed at the values
λ = 1.8ā, A1/A2 = 3, a = λ/2π , aT/ā = 0.05. Starting with
the longest flagellum length, L/ā = 7.5, we find a stable state
near the wall with a large basin of attraction. Bacteria that are
initially inclined sharply away from the wall will escape, and
those sharply inclined toward the wall collide with the wall.
Apart from these extreme initial conditions, the swimmer will
reach the stable state. From the phase plane diagram, we expect
that instantaneous perturbations from the steady state as large
as 4ā vertically would decay.

Decreasing the flagellum length reveals a new regime in
which approaching swimmers are attracted and remain close
to the boundary only if the angle of incidence is sharp enough.
Shallow approaches are deflected away and the cell escapes
from boundary effects. In this case, a vertical perturbation of
1.5ā from the steady state is sufficient to cause the swimmer
to escape from the surface. If the flagellum length is decreased
further, the stable state is lost and all approaching trajectories
are deflected back into the bulk fluid.

B. Parallel plane boundaries

We would expect the behavior of a bacterium swimming
near a single no-slip plane boundary to be similar to the
case between parallel plates if the gap is sufficiently large.
For comparison, we present the phase plane diagrams for a
plate separation H/ā = 15 in Fig. 2(b) below the diagrams for
the same swimmers near a single wall [Fig. 2(a)]. Near each
plate, we observe the same transition from accumulating to
escaping as the flagellum length decreases. If the flagellum is
long enough, regardless of initial conditions, the swimmer is
attracted to the stable point at one of the planes. By symmetry,
the configuration parallel to and exactly halfway between the
plates is also a fixed point (θ = 0,h = 0). This was found to
be an unstable spiral point. With short flagella, a bacterium
approaching a wall is deflected away. However, between
parallel planes, this swimmer will approach the opposite wall.
It is repeatedly deflected and continually bounces from one
wall to the other. This is manifest in a limit cycle in the
phase plane. Under these conditions, the central fixed point,
(θ = 0,h = 0), was again found to be unstable and the limit
cycle was stable. Hence, all trajectories approach the limit
cycle and swimmers are all expected to exhibit this behavior. In
the intermediary case, for which both attractive and repulsive
regions were found near a single wall, trajectories approach
either a limit cycle or a stable point near one of the walls.

As the plate separation is decreased, both walls become
simultaneously influential to the swimming dynamics, and we
can no longer consider the bacterium to be simply interacting
with one wall at a time. With a plate separation H/ā = 10
[Figs. 3(a) and 3(b)], the phase plane diagrams are qualitatively
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FIG. 3. (Color online) Phase plane diagrams for bacteria between parallel plates. Flagellar lengths are (left column) L/ā = 7.5 and (right
column) L/ā = 5. Plate separations are (top row) H/ā = 10 and (bottom row) H/ā = 5. The boundary accumulator (L/ā = 7.5) is attracted
to a stable state at the walls when the plate separation is large but is attracted to the center of the channel when the separation is small. The
boundary escaper (L/ā = 5) oscillates between walls when the plate separation is large but converges to the center when the separation is
small.
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FIG. 4. (Color online) Instantaneous curvature (κ) maps for x-y projection of the bacterial path between parallel plates. (a) Boundary
accumulator in a channel of height H/ā = 10. (b) Boundary escaper in a channel of height H/ā = 10. (c) Boundary accumulator in a channel
of height H/ā = 5. (d) Boundary escaper in a channel of height H/ā = 5. Contour curves roughly separate low from high magnitudes of
curvature, with threshold |κā| = 0.002. Dashed curves are used for negative curvature (clockwise circles viewed from above) and solid curves
are used for positive curvature (counterclockwise). Unshaded regions near h = 0 and h = H are unreachable due to intersection or close
proximity (dmin = 0.05ā) of the wall and swimmer.

the same as with the larger separation H/ā = 15. Further
decreasing the plate separation to H/ā = 5, however, we find
that a bifurcation occurs, leading to qualitatively different
trajectories. In the case of boundary accumulators, the stable
fixed points at the walls disappear [Fig. 3(c)], and for boundary
escapers, the limit cycle disappears [Fig. 3(d)]. For both types
of swimmers, the central fixed point becomes stable at small
plate separations. Hence, both boundary accumulators and
escapers tend to swim in the center of thin channels.

C. Path curvature

Having described the tendencies of swimmers to move away
from and toward walls, we now examine the motion in the plane
parallel to the walls. Using the phase-averaged translational
and rotational velocities, we compute the curvature of the x-y
projection of the swimmer’s path as

κ = 
̄3 + 
̄1 tan(θ )√
Ū 2

1 + Ū 2
2

. (9)

This kinematic formula is consistent with the expression for
the radius of curvature used by Shum et al. [10], where
it was assumed that the steady state was reached so that
translational motion was purely in the x-y plane. Since angular
and translational velocities depend on h/ā and θ , so does the
path curvature. The observed curvature for a given bacterium

will therefore vary with time unless the swimmer is in a
stable configuration. The dependence of the instantaneous path
curvature on position and inclination is shown in Fig. 4, where
regions of appreciable curvature are indicated by contours
at |κā| = 0.002. For comparison, E. coli cells have been
observed to swim in circles of radius R ∼ 25 μm at walls
[35], corresponding to κā ∼ 0.02.

For large plate separations, there is a thin region near each
wall where the curvature is high, but for most of the space
between the two plates, the curvature magnitude is less than
0.002/ā. Little difference can be seen between the boundary
accumulator and the boundary escaper. Note that the sign of
the curvature changes roughly midway between the plates.
That is, the direction of curvature only depends on which
wall the swimmer is closer to. This is not the case, however,
when the plate separation is small [H/ā = 5, Figs. 4(c) and
4(d)]. When the swimmer is at distances of around 0.2ā from
collision with a wall, the sign of the path curvature is still
consistent with the larger plate separation case. For swimmers
farther from the wall, we find that over a wide range of h/ā

and θ , the sign of the curvature is reversed and the swimmer
turns in the sense expected from interaction with the opposite
wall. The magnitude of curvature in these “anomalous” zones
reaches a maximum of approximately 0.005/ā. As with the
larger plate separation, there was no qualitative difference
between the boundary accumulator and the boundary escaper
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FIG. 5. (Color online) Trajectories of model bacteria using simulations of full dynamics. Oscillations on the time scale of a motor revolution
are too small to be visible in these plots. (a) Time series of height from the wall for boundary-accumulating swimmers starting close to respective
steady states predicted by phase-averaged dynamics in channels of height H/ā = 5 (short-dashed line), H/ā = 10 (medium-dashed line), and
H/ā = 15 (long-dashed line). The time scale, T M = 2π/ωM, is the motor period. (b) Time series of height from the wall for boundary escapers
in channels of height H/ā = 5 (short-dashed line) and H/ā = 15 (long-dashed line). (c),(d) Top-down views of trajectories from (a) and (b),
respectively, with arrows indicating the direction of motion. Note that although all boundary accumulators were closer to the lower wall than
to the upper wall, the path in the channel of height H/ā = 5 curved in the opposite direction from those in larger channels.

in terms of the instantaneous path curvature, though the
anomalous curvature was more significant with the boundary-
accumulating swimmer shape.

D. Trajectory simulations with full dynamics

To verify the results of the flagellum phase-averaged
dynamical model in the preceding sections, we perform time-
stepping simulations of the full system, resolving the variations
in velocities over each revolution of the flagellum. Examples of
trajectories for boundary accumulators and escapers are shown
in Fig. 5. For the larger plate separations, H/ā = 15 and 10,
the boundary behavior agrees with the phase-averaged predic-
tions; the boundary accumulator remains close to the wall and
the boundary escaper oscillates between walls [Figs. 5(a) and
5(b)]. In the case of the smallest plate gap size, H/ā = 5, the
swimmers were predicted to converge to the center of the gap.
In the full simulation, the boundary-accumulating bacterium
maintained a slight distance from the center of the narrowest
channel, while the boundary-escaping swimmer maintained
oscillations, though with reduced amplitude, about the center
of the channel. These small discrepancies appear to be due
to approximations in phase-averaging. The top-down view
of the trajectories reveals the effects of plate separation on
path curvature [Figs. 5(c) and 5(d)]. Reducing the separation
from H/ā = 15 to 10 leads to a lesser counterclockwise
curvature in the path of the boundary accumulator despite the
stable distance from the wall being approximately the same.
With the narrowest plate separation, we observe a path that
curves in the clockwise direction. This is in agreement with

our phase-averaged model predictions for a swimmer slightly
displaced from the center when the plate separation is small.

For boundary-escaping swimmers between plates of both
wide and narrow separation, the observed path curvatures are
much smaller in magnitude than for boundary accumulators,
and they alternate in sign, leading to long-ranged directed
transport rather than circular orbits. With large plate sepa-
rations, alternating slight left and right turns can be seen,
corresponding to the escaper “bouncing” off the bottom and
top wall, respectively [Figs. 5(b) and 5(d)].

IV. DISCUSSION

As has previously been demonstrated, the motion of a
bacterium-like microswimmer near boundaries was found
to be dependent on the details of the swimmer shape.
In this study, we varied the flagellum length, with the
longest increased by 50% compared to the shortest. This
difference was sufficient to change the behavior from
boundary-accumulating to boundary-escaping. Hence, we
can expect that in a population of bacteria with variable sizes
and ages, there could be some individuals that tend to swim
near boundaries and others that tend to avoid boundaries.
Furthermore, stochastic fluctuations in the motor actuation,
along with Brownian rotation of the bacterium, could cause
boundary accumulators to escape from surfaces.

Between parallel plates, our model predicts three classes
of long-term behavior: (i) circular orbiting close to one wall,
(ii) straight trajectories parallel to and midway between walls,
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and (iii) “bouncing” repeatedly from wall to wall. The class
that is observed depends on both the swimmer shape and the
wall separation. For this purpose, we distinguish swimmer
shapes only by whether the swimmer tends to swim close
to a single no-slip plane boundary (boundary accumulating)
or escapes (boundary escaping). Circular orbits are predicted
to occur for boundary-accumulating bacteria when the gap
between the walls is large compared with the swimmer size.
This mode is commonly observed experimentally with most
motile bacteria swimming at a solid surface.

When the gap is sufficiently small, of the order of one
body length, the trajectory becomes a straight line parallel
to and midway between the walls. This switch in behavior
has important consequences in both natural and artificial
situations. For example, swimming in a straight line in a
confined space would allow the organism to explore space
and escape into a more open environment. We can also infer
that bacteria may have a tendency to become trapped and
accumulate on the walls of large chambers while passing
directly through channels of shallow depth. Thus, channel
depth is an important consideration for the control of bacterial
migration through microfluidic systems.

We remark that the stable state midway between close
plates is further from the walls than the stable state close to
widely separated plates. This, combined with the entrapment
of bacteria in circular orbits at a single wall, suggests the
somewhat counterintuitive possibility that bacteria without a
predisposition to surface collision are less likely to adhere
to a surface when they are strongly confined between two
closely separated plates than when the plates are farther apart.
If this prediction is correct, it could be possible to reduce
bacterial colonization of tubes and channels, in constructs
such as prospective microdevices, by dividing the structure
into multiple parallel thin channels or narrow tubes. However,
narrow passageways are likely to be more susceptible to
blockage and require greater pressure gradients to maintain
a given flux. Details of bacterial attachment processes are
important, necessitating experiments and simulations for
further exploration of this issue.

A recent study by Swiecicki et al. [36] gives experimental
evidence for the behavior of peritrichous (multiflagellated)
bacteria, E. coli, between parallel plates of varying separations.
Regular planktonic cells (length ∼2 μm) were found to swim
in circles in channels of height greater than 3 μm, corre-
sponding to the boundary-accumulating state. Decreasing the
separation between the top and bottom walls to 2.5 μm or less,
the bacteria were found to swim in figure-8 patterns, which the
authors explained as crossing an energy barrier from a bound
state at one wall to a bound state at the other wall, which would
give rise to circular orbits in opposite directions. The frequency
of crossing between clockwise and counterclockwise orbits
increased as the channel height was reduced. In narrow chan-
nels (height < 2.5 μm), straight trajectories were observed,
though only in artificially elongated cells of length ∼6 μm. It
was hypothesized that for these swimmers, the hydrodynamic
interaction potentials from the two walls merged to form a
single energetic minimum midway between the walls, causing
cells to swim in the middle with little path curvature. Our
hydrodynamic analysis confirms that this can, indeed, occur for
boundary accumulators between closely separated plates. The

fact that linear trajectories were only observed for elongated
cells could be due to the weaker boundary accumulation of high
aspect ratio swimmers [10] allowing the central configuration
to be stable at larger plate separations. Furthermore, elongated
cells, which maintain the same width, have larger volume
and therefore are subject to more extensive hydrodynamic
interactions and thus confinement compared to shorter cells
in the same channel.

It should be noted that such comparisons are subject to
the caveat that our model assumes a single flagellum at the
pole of the cell whereas E. coli have many flagella that wrap
around and form a bundle behind the cell. This could result
in a difference in dynamics. It has been shown that boundary-
accumulating behavior in monotrichous swimmers is sensitive
to the bending stiffness of the hook connecting the bacterial
motor to the flagellum [37]. With multiple flagella forming a
bundle in peritrichous bacteria, elastic effects are fundamental
and will also, most likely, play a role in determining the
swimming behavior near boundaries, although the extent of
this role is unexplored.

A somewhat surprising prediction from our model is the
emergence, in channels of small plate separation, of regions
roughly 1/4 of the channel height from each wall in which the
bacteria curve in the direction associated with swimming near
the opposite wall. The magnitude of curvature in these regions
increases for smaller plate separations but remains less than
that of swimmers very close to the wall. Nonetheless, this effect
means that the curvature is more sensitive to height variations
when there is close confinement by a second wall. A bacterium
can switch between clockwise and counterclockwise arcs due
to small changes in height without necessarily crossing from
one wall to the other.

The reversed curvature can be explained by considering the
motion of objects between parallel no-slip boundaries. Ganatos
et al. [38] showed that a sphere rotating without translation
about an axis parallel to the walls would experience a lateral
force that could change in sign by varying the plate separation
while keeping the position of the sphere relative to the closer
wall fixed. For simplicity, suppose that the bacterium cell body
and flagellum behave as counter-rotating spheres. The lateral
forces on the body and flagellum act in opposite directions,
resulting in a torque that rotates the swimmer about the wall
normal direction, as described in greater detail by Lauga et al.
for bacteria near a single plane boundary [18]. The presence
of the second no-slip wall can reverse the directions of the
forces on the body and flagellum, depending on the position of
the swimmer and the channel height, resulting in the reversed
curvature we observe.

Boundary-escaping swimmers generally follow paths of
much lower curvature since they avoid the rotation-inducing
boundaries. These swimmers exhibit the third form of motion
we observe: “bouncing” between the top and bottom plates
in nearly straight trajectories. Oscillations are suppressed by
confinement, but for large plate separations, the inclination
angle will tend to oscillate between 0.1 rad, or 6◦, above and
below the horizontal.

This angle of 0.1 rad also appears as the dominant scattering
angle for boundary escapers leaving a single plane boundary.
The phase plane diagram for L/ā = 5 in Fig. 2(a) shows a
“funneling” of trajectories toward this inclination angle as the
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swimmers deflect and escape from the wall. This effect is
particularly significant if we consider swimmers that collide
with the wall at sharper angles than included in the phase
plane diagram (i.e., θ < −0.2) and align with the wall due
to steric interactions. Provided collisions do not result in
attachment to the surface, we would expect the bacterium to
swim away from the wall with an outgoing angle of roughly 6◦
irrespective of the incoming angle. This finding is reminiscent
of experimental observations of the alga, Chlamydomonas
reinhardtii, by Kantsler et al. [39]. For these micro-organisms,
the constant scattering angle was determined to be due
to contact between the waving flagella and the wall. Our
analysis of model bacteria does not include direct contact with
walls, but an analogous outcome emerges from hydrodynamic
interactions.

V. CONCLUSION

By analyzing the phase plane diagrams for the dynamics
of bacterium-like model swimmers near a single no-slip
boundary and between two parallel plates, we have shown
that qualitatively different trajectories can arise depending on
the swimmer and the plate separation.

When the gap between parallel plates is greater than about
one or two swimmer lengths (∼10 μm for typical bacteria),
the swimmer effectively interacts with one wall at a time
and the behavior can be inferred from previously known
results for single plane boundaries [10]; swimmers either
tend to collide with walls, migrate to a stable configuration
swimming parallel and close to the wall, or escape from
the wall due to hydrodynamic interactions. We found a
tendency for boundary-escaping swimmers to leave the wall
with a particular angle, about 0.1 radians for the swimmer
shape used here. Between parallel plates, boundary-escaping
swimmers are repeatedly deflected from one wall to the other in
nearly linear trajectories. Boundary-accumulating swimmers
are invariably attracted to stable circular orbits near one of
the walls. Swimmers with intermediate shapes can exhibit

both types of behavior. If such swimmers are subjected to
stochastic fluctuations, as physical bacteria are, we could
expect alternating periods of “bouncing” between walls and
tracing out circular arcs along the walls.

Reducing the plate separation leads to a change in be-
havior for both boundary-accumulating and -escaping swim-
mers. When the plates are strongly confining, both types
of swimmers are attracted to the center of the channel,
swimming parallel to the walls. This is particularly significant
for boundary-accumulating swimmers because it implies a
transition from circular orbits to linear trajectories, which
allow quick migration of the organisms. A suitably chosen
plate separation could potentially be used to fractionate a
population of bacteria by allowing only individuals of a certain
characteristic to pass through freely.

We also found an intriguing theoretical prediction of
curvature reversal; a swimmer moving parallel to the walls
roughly midway between a wall and the center of the channel
should follow a curved path of opposite curvature to that when
the swimmer is very close to the wall.

Recent experimental evidence is consistent with our
predictions for the transition from curved to straight paths
of boundary accumulators in channels of decreasing height
[36]. Other outcomes of our theoretical analyses can also be
verified experimentally with currently available techniques.
For example, bacterial flagella can be sheared and allowed
to grow back [29]. At different stages of regrowth, we
would be able to observe bacteria with flagella of different
lengths and monitor boundary-accumulating behavior. Further
experimental studies, guided by theoretical predictions, would
help us to better understand and control the locomotion of
bacteria in confined environments. Similar remarks apply for
prospective future modeling studies, to understand the impact
of biodiversity by further exploring parameter space, the
role of the bacterial hook compliance, and flagellar bundling
in swimming dynamics for bacteria in confined geometries
together with a more extensive investigation of different
geometries and surface topographies.
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