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Abstract 

Advancing comfort technology and analytics to personalize thermal experience in the 
built environment 

by 

Jihyun Kim 

Doctor of Philosophy in Architecture 

University of California, Berkeley 

Professor Gail Brager, Chair 

 

Nearly 60% of global energy consumption in buildings is used for space heating and 
cooling to provide occupant comfort. Yet, a large portion of occupants are dissatisfied 
with the buildings’ thermal environment. There are many reasons for thermal 
dissatisfaction in buildings, but a fundamental cause is the current practice of 
delivering uniform thermal conditions based on universal rules, without accounting for 
individual differences in comfort requirements. To address these issues, a growing 
body of research has emerged to better reflect individual’ comfort requirements. This 
dissertation contributes to this research by providing the following primary 
innovations: 1) Internet-connected personal comfort system (PCS) and 2) personal 
comfort models that can help to deliver personalized comfort experiences in occupied 
spaces. In particular, I developed and field-tested the new capabilities of PCS (data 
reporting, wireless connectivity) that could support individualized learning and 
coordinated controls with other building systems. I also proposed a new framework 
for thermal comfort modeling – personal comfort models that can predict individuals’ 
thermal comfort, instead of the average response of a large population, using Internet 
of Things and machine learning. As a practical use case, I developed a set of 
personal comfort models using the PCS field study data to demonstrate how the 
proposed framework can be implemented. The results showed that personal comfort 
models produced superior accuracy over conventional comfort models (PMV, 
adaptive) and that PCS heating and cooling control behavior was a strong predictor of 
individuals’ thermal preference and could be used as an individualized comfort 
feedback for HVAC controls. The results of this dissertation showed a synergistic 
effect between PCS and personal comfort models that could enable occupant-centric 
comfort management in buildings. 
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1.  INTRODUCTION 

Buildings consume over one-third of final energy consumption in the world, and 
nearly 60% of global energy consumption in buildings is used for space heating and 
cooling to provide occupant comfort (IEA, 2013). Despite this, a large portion of 
occupants are dissatisfied with the buildings’ thermal environment. According to a 
survey of 144 buildings across the United States, Canada, Europe and Australia 
(Altomonte and Schiavon, 2013; Karmann et al., 2017), only 44% of surveyed 
buildings manage to achieve the modest goal of 80% thermal satisfaction set by 
standards (ANSI/ASHRAE, 2013). 

There are many reasons for thermal dissatisfaction in buildings (e.g., overcooling, 
overheating), but a fundamental cause is the current practice of delivering uniform 
thermal conditions based on universal rules, without accounting for individual 
differences in comfort requirements. Thermal comfort is a subjective phenomenon 
influenced by a range of factors, and it can differ widely between individuals. Hence, 
it is unreasonable to expect everyone to be satisfied in a uniformly conditioned space 
even if the conditions meet current standards (van Hoof, 2008). Yet, most buildings 
lack a systematic approach to incorporate occupant feedback into thermal controls, 
nor do they provide means for individuals to modify their own thermal environment. 

To address these issues, a growing body of research has emerged to better reflect 
individual’ comfort requirements in everyday comfort management. In particular, this 
research leverages recent developments in the Internet of Things (IoT) and machine 
learning to personalize comfort experience in occupied spaces. This dissertation 
contributes to this research by providing the following primary innovations and 
contribution to knowledge:  

1)   Internet-connected Personal Comfort Systems (PCS) – a comfort technology, 
which decentralizes heating and cooling control for individual occupants, with 
new capabilities to report individual-specific comfort data and interact with 
central systems to provide coordinated thermal controls. 

2)   Personal Comfort Models – a new modeling approach for thermal comfort that 
learns individuals’ comfort requirements directly from data collected in their 
everyday environment, and produces accurate comfort predictions to inform 
control decisions of thermal conditioning systems. 

Through these, I attempt to move the building industry towards occupant-centric 
comfort management and empower occupants to have a voice and take control of 
their own thermal comfort in the built environment. 
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1.1   BACKGROUND – COMFORT PREDICTION AND CONTROL 

UNIVERSAL APPROACH TO COMFORT PREDICTIONS 

There are two main models that underpin the current practice of comfort management 
in buildings: predicted mean vote (PMV) and adaptive models. The PMV model treats 
thermal comfort as a physical-physiological phenomenon and expresses human 
thermal sensation as an outcome of the heat transfer between a human body and its 
surrounding environment. It is the most widely accepted model, developed from 
extensive laboratory experimental data analyzed by Fanger (1970). In contrast, 
adaptive models account for people’s inherent ability to adapt to variable environment 
conditions in naturally-conditioned buildings by drawing a linear relationship between 
comfortable indoor temperature and prevailing outdoor temperature based on global 
field study data (de Dear and Brager, 1998; Nicol and Humphreys, 2002). Both 
models are adopted into the international standards (ANSI/ASHRAE, 2013; CEN, 
2007; ISO, 2005), shaping thermal conditions of buildings around the world. 

The underlying assumption of both PMV and adaptive models is that they can 
determine a ‘comfortable” thermal environment to satisfy thermal comfort of the 
majority of occupants (i.e., 80%). The problem is that both models define ‘comfort’ 
based on the average response of large populations; as such, their accuracy 
decreases when individuals’ thermal comfort responses differ from the population 
mean. Moreover, they rely on a single model to predict comfort for all situations, 
failing to account for other factors and relationships that may influence occupants’ 
thermal comfort. For over half a century, comfort research and provisions have 
focused on “the search for a universally applicable set of optimum comfort conditions” 
(Cole et al., 2008). Human thermal comfort is highly individual-specific and context-
sensitive; hence, it is impossible to predict everyone’s comfort with a one-size-fits-all 
approach. 

PERSONALIZED APPROACH TO COMFORT PREDICTIONS 

The building industry would benefit from different approaches to modeling comfort for 
everyday comfort management. With the advent of IoT and data opportunities, efforts 
are underway to investigate the possibility of learning about individuals’ thermal 
comfort requirements, and predicting their comfort needs, directly from data collected 
in their everyday environment. I term the output of these efforts as personal comfort 
models (defined in more detail in Chapter 3). This new modeling approach can 
fundamentally change today’s generic, ‘one-size-fits-all’ comfort management by 
making individual-specific and context-relevant comfort predictions available for 
occupant-centric environmental control. 

In recent years, there have been an increasing number of publications on the topic of 
personal comfort models (summarized in Chapter 3). Interestingly, many of these 
efforts did not originate from the traditional thermal comfort research, but rather 
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consist of independent work across various academic disciplines as well as industry 
organizations. However, the efforts to date have been quite fragmented across a wide 
range of disciplines and display significant variations in their approach from each 
other, as well as from traditional thermal comfort research. Therefore, it is necessary 
to establish a unified framework for personal comfort models to understand the 
variety of activities on this topic and provide guidance for future efforts in this 
emerging research area. 

PERSONAL HEATING AND COOLING CONTROLS 

A paradigm shift is taking place in the building industry which will ultimately move our 
focus from centralized to personal control (Brager et al., 2015). Various types of PCS 
will be at the heart of this paradigm shift by providing individual occupants means to 
control heating and cooling within their own workstation to meet their comfort needs. 
PCS comes in many different forms including desktop fans, heated and cooled 
chairs, heated and cooled desktop surfaces, and foot and leg warmers. These 
devices specifically target sensitive body parts to leverage their influence on the 
whole-body thermal comfort (Arens et al., 2006).  

PCS has proven to have substantial power to correct an individual’s temperature from 
a too-warm or too-cool condition toward a comfortable (thermally neutral) condition 
(Zhang et al., 2015b). This is supported by a substantial number of laboratory studies 
so far, and a limited number of long-term field studies. The field study results have 
been very positive from a comfort perspective. Moreover, PCS presents an 
opportunity to reduce energy consumption in buildings. Well-designed PCS uses very 
low energy to provide heating and cooling – almost negligible compared to the energy 
use of conventional space-based HVAC (heating, ventilation, and air conditioning) 
systems; hence, its impact on the overall building energy is small. Because local 
cooling and heating via PCS can improve thermal satisfaction and lead to higher 
tolerance of temperature excursions (Melikov and Knudsen, 2007; Watanabe et al., 
2009; Zhang et al., 2010c, 2010b; Zhai et al., 2013), an extended range of acceptable 
ambient temperatures can allow building operators to widen thermostat temperature 
setpoints of the central HVAC systems to save significant amounts of energy (Hoyt et 
al., 2015a; Schiavon and Melikov, 2008). However, this range varies among PCS 
device types and individuals. In addition, not everyone in the building may have PCS 
or use it at the same time. Therefore, a uniform adjustment to the acceptable 
temperature range due to PCS across the building space may face some practical 
challenges. In order to operationalize PCS’s potential energy savings, we need to first 
understand the impact of PCS on individuals’ thermal comfort, and then develop 
control strategies that leverage the extended individual’s comfort range afforded by 
PCS. 
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CONNECTING PCS TO THE INTERNET OF THINGS 

To unlock the full potential of PCS, I undertook extensive hardware and software 
upgrades of the existing PCS devices (Arens et al., 2015; Pasut et al., 2015) along 
with a group of researchers at University of California, Berkeley and added new 
capabilities including data logging and wireless connectivity (Andersen et al., 2016b). 
As a result, these PCS devices can now share information and interact with other 
building systems. With these changes, PCS does not need to operate in isolation but 
can work with other building systems to deliver coordinated comfort solutions in the 
built environment to improve both occupant comfort and energy performance. 

The first PCS device that received these new capabilities is the heated and cooled 
chair (referred to as PCS chairs from here on) (Bauman et al., 2017). The PCS chairs 
have fans and heating strips embedded into the chair back and seat, consume 
extremely small energy (14 W at max), and operate on a chargeable battery. The 
newly updated PCS chairs can record continuous streams of data, such as heating 
and cooling usage, chair occupancy, and environmental conditions. The advantage of 
PCS data is that it can be traced to specific individuals; hence, one can learn about 
individuals’ thermal control behavior and preferences from the data. Such knowledge 
can enable intelligent comfort management in both new and existing buildings to 
provide ‘just the right’ amount of conditioning to meet occupant needs, in contrast to 
the over-conditioning that results from tight setpoint ranges. Moreover, the software 
stack developed for the PCS chairs allows interaction between PCS and BAS 
(building automation system) on the same communication platform via the Internet. 
Hence, the intelligence built on PCS data can turn into actionable feedback for HVAC 
controls to improve occupant comfort and energy performance in buildings. 

1.2   STATEMENT OF THE PROBLEM 

Both Internet-connected PCS and personal comfort models present innovative paths 
to personalized comfort in the built environment. Together, they can create a 
synergistic effect by generating person-specific comfort data and intelligence 
respectively to enable occupant-centric comfort management. However, additional 
research is needed to address the following problems. 

1)   Internet-connected PCS: There is a need to test and evaluate the new 
capabilities of PCS in real-world settings with real users. Also, there is a need 
to assess the value of PCS use data – how it can improve our understanding of 
occupant comfort and make informed control decisions to employ PCS as 
effectively as possible.  

2)   Personal comfort models: There is a need for a unified framework for personal 
comfort models to understand the various modeling approaches on this topic 
and provide a systematic approach to model development and guidance for 
real-world applications. Moreover, there is a need to demonstrate the use of 
such a framework through modeling examples using real-world data. 
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1.3   OBJECTIVES 

The objectives of this dissertation are to: 

•   Test Internet-connected PCS chairs through a field study with human subjects. 
•   Evaluate the importance of PCS data by assessing its ability to describe 

occupant thermal comfort and behavior in everyday environments. 
•   Develop a unified framework for personal comfort models, which includes: 

o   a review of the current state of research on personal comfort models  
o   definitions, concepts, and methods for modeling and evaluation 
o   system architecture for thermal control integration 
o   a discussion of model applications in building design, control, and 

standards 
•   Demonstrate the use of the proposed framework by developing personal 

comfort models using PCS data. 

1.4   DISSERTATION OVERVIEW 

•   Chapter 2 describes the new PCS technologies and field study methods, and 
present findings from the analysis of PCS data collected from the field study. 

•   Chapter 3 introduces the proposed framework for personal comfort models. 
•   Chapter 4 provides an example of personal comfort models developed with 

PCS data using the methods described in the proposed framework. 
•   Chapter 5 provides a final discussion of the two innovations presented in this 

dissertation – Internet-connected PCS and personal comfort models, and 
suggests directions for future research. 
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2   A FIELD STUDY WITH INTERNET-CONNECTED PCS 

2.1   BACKGROUND 

Technological advances are accelerating innovations in buildings, helping us to 
reimagine how we provide thermal comfort in the built environment. Personalized yet 
customizable user-experience is no longer a requirement of just the online world. 
Buildings are also expected to provide smart comfort solutions that take occupant 
feedback and deliver a customized environment to meet the unique requirements of 
individual occupants. However, there is a limit to how much a centralized system can 
do to satisfy everyone with the traditional approach of providing uniformly conditioned 
air to shared spaces in a building with a single controlled set-point. 

Personal Comfort Systems (PCS) offer an alternative or complementary solution to 
centralized systems by allowing a highly customizable microclimate zone in an 
occupant’s workstation without affecting others in the same space. With PCS, 
individuals can use personal control to provide local heating and cooling to meet their 
comfort needs and desires. Hence, it can also be used to provide individualized 
comfort solutions in naturally-conditioned buildings. PCS comes in many different 
forms including fans (Arens et al., 1998; Schiavon et al., 2017), heated and/or cooled 
chairs (Watanabe et al., 2009; Melikov and Knudsen, 2007; Pasut et al., 2015), and 
foot warmers (Zhang et al., 2010b; Oi et al., 2011; Zhang et al., 2015a). These 
devices specifically target sensitive body parts (e.g., head, feet) to leverage their 
influence over whole-body thermal comfort (Arens et al., 2006). Applying local 
heating and cooling to sensitive body parts can not only restore comfort but also elicit 
pleasant sensations, a process termed “alliesthesia”,  (Zhang et al., 2015b; Brager et 
al., 2015; Parkinson and de Dear, 2015, 2016). This shifts the focus of comfort 
provision from minimizing discomfort to providing delightful experiences (Heschong, 
1979; Erwine, 2016). Another benefit of PCS is the extended range of acceptable 
ambient temperatures, which allows central HVAC systems to operate in wider 
temperature setpoints, leading to significant energy savings (Sekhar, 1995; Hoyt et 
al., 2015b; Veselỳ and Zeiler, 2014; Zhang et al., 2015b). 

PCS provides a wealth of data that can be traced to specific individuals. With the 
introduction of Internet-connected PCS chairs by the Center for Built Environment 
(CBE), University of California, Berkeley (Andersen et al., 2016b), we now have 
access to a continuous stream of heating and cooling usage data, along with 
occupancy status and environmental measurements (e.g., air temperature, relative 
humidity) via embedded sensors. This presents a unique opportunity to learn 
individuals’ thermal control behavior and comfort preferences. Such knowledge can 
enable intelligent comfort management in both new and existing buildings to provide 
‘just the right’ amount of conditioning to meet occupant needs, in contrast to over-
conditioning that results from tight setpoint management. The PCS chairs can 
communicate and interact with building automation systems (BAS) via Internet. 
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Therefore, the intelligence built on PCS chairs can turn into actionable feedback for 
HVAC (heating, ventilating, and air conditioning) operations to optimize occupant 
comfort and energy use in buildings. 

In summer 2016, I carried out the first field study with Internet-connected PCS chairs 
involving 37 occupants in an office building located in northern California (Bauman et 
al., 2017). To our knowledge, it is the largest field study ever conducted with PCS. 
The objective of this field study was to (1) evaluate the new capabilities of PCS chairs 
via human subject testing in a typical office environment; and (2) improve our 
understanding of occupant comfort and behavior through the analysis of PCS data. In 
this chapter, I describe the field study methods and a novel dataset that measures 
continuous PCS usage and local environmental conditions. I then report the results of 
my field data analysis that examine the relationship between occupant behavior, 
comfort, and environment of PCS users. Lastly, I summarize key insights drawn from 
the analysis that would benefit comfort analytics and building controls, as well as 
areas for improvement for PCS chairs. 

2.2   METHODS 

INTERNET-CONNECTED PCS CHAIRS 

The Internet-connected PCS chairs have the following technological components: 

Chair hardware: At the base, we used the same physical chair previously developed 
by CBE (Arens et al., 2015; Pasut et al., 2015) – a mesh-type office chair with three 
fans and two heating strips integrated into the seat and back (Figure 2-1). The 
heating strips use a maximum of 14 W. The fans use a maximum of 3.6 W. A 168 Wh 
battery powers the chair, which lasts for several days with average use. The chair has 
a contact switch underneath the seat which closes when the user sits down, providing 
chair occupancy information. This switch is also used to conserve battery power by 
automatically turning off heating strips and fans when the chair is unoccupied. The 
previous heating and cooling settings are restored when the user returns to the seat. 
The maximum surface temperature of the heating strips is 40 °C, which is lower than 
the body’s heat pain thermoreceptor threshold (43 °C), and the fans use ambient air, 
not cooled air, to create cooling effects. These features help to avoid potential 
discomfort that could result from overheating or overcooling. 

Digital controller: Previous designs used an analog controller to enable local control 
of heating and cooling. I replaced this with a digital controller with new capabilities 
including: (1) supporting wireless telemetry and remote actuation via IEEE 802.15.4 
radio and Bluetooth (an external antenna is added to the controller to improve signal 
range); (2) logging data locally when wireless connectivity is lost and uploading it 
when connectivity is restored; (3) measuring air temperature and relative humidity at 
the chair location as well as chair occupancy status via embedded sensors; (4) 
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allowing separate control of the back and seat heating/cooling via individual PWM 
knobs on a physical user interface (Figure 2-1); (5) indicating battery charge status 
via a LED light on the user interface; and (6) enabling a pulse width modulation signal 
to dissipate excess energy into the heating strips. Appendix A provides more details 
about the newly developed digital controller for PCS chairs. 

 

Figure 2-1. PCS chair designed and developed by the Center for the Built Environment and the 
Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. 
The images show hardware and heating and cooling elements of the chair, the new controller with 
wireless connectivity, and the newly designed user interface that allows separate control of seat and 
back heating/cooling. 

Network connectivity: The digital controller transmits data to a cloud server via a 
gateway device. There are two types of gateway devices that can be used for the 
chair connectivity: (1) a Bluetooth-enabled mobile phone, and (2) an 802.15.4 router. 
The use of mobile phones reduces deployment effort by avoiding the installation of 
local network infrastructure, and allowing flexible chair location through the wide 
coverage of a mobile phone’s cellular networks. However, it requires the 
development of mobile applications to enable telemetry reporting via Bluetooth 
across various operating systems and devices. Also, real-time telemetry may not be 
guaranteed if the chair communication depends on the availability and network 
coverage of the chair user’s mobile phone. An 802.15.4 router provides reliable real-
time telemetry because its physical location and network configuration can be fixed. 
Once installed, the router can talk to multiple chairs allowing scalable field 
deployment. But it requires more upfront deployment effort due to the installation of 
local network infrastructure. For this field study, I used 802.15.4 routers for the chair 
communication to have control over wireless connectivity and data reporting during 
the field study. I installed a total of five border routers to cover 37 chairs. 

Software suite: The following online tools were developed to support the chair 
deployment: (1) plotter, and (2) status dashboard (shown in Appendix A). The plotter 
allows query, visualization, and download of time-series data. The status dashboard 
provides real-time status monitoring of chair data streams. Both tools are built on the 
sMAP (simple Measurement and Actuation Profile) – an open-source software that 
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enables accessing and storing time-series data and actuating connected devices, 
developed by UC Berkeley’s Electrical Engineering and Computer Sciences 
Department (Dawson-Haggerty et al., 2010). 

FIELD STUDY 

The field study with Internet-connected PCS chairs took place in the San Mateo 
County (SMC) office building in Redwood City, CA, between April and October 2016. 
The site offers real-world settings with typical office workers to conduct field 
experiments, which is quite a rare opportunity in academic research that often resort 
to university buildings and student subjects. This location has a Köppen Csb climate 
zone (California climate zone 3, ASHRAE climate zone 3C) characterized by dry, 
warm summers and mild winters.  

Building description: The SMC office building is a 5-­‐story, 13,200 m2 (142,000 ft2) 
building, shown in Figure 2-2 (a). Constructed in 1999, the building houses the county 
government and administrative offices for approximately 400 county employees. It is 
predominately open plan with some enclosed offices and conference rooms along the 
perimeter. The perimeter zones have a window-to-wall-ratio of approximately 0.6 on 
the first floor and 0.45 on all other floors. The windows are not operable or externally 
shaded, but do have interior blinds. 

HVAC system: The building has a conventional single-duct variable air volume (VAV) 
reheat with overhead air distribution system, served by two rooftop units with direct 
expansion coils and evaporatively cooled condensers. A gas-fired hot water boiler 
serves these units and supplies hot water to the terminal reheat coils distributed 
throughout the building. The HVAC system in the building underwent a complete 
controls retrofit 18 months before the study period, which has brought it up to current 
industry best practice. The building has a Distech and Tridium/Niagara based BAS 
and two Internet-based building management software tools: Comfy and Trendr 
(https://www.comfyapp.com/product/). Comfy provides an online solution for 
thermostat control that adjusts the zone temperature setpoints based on occupant 
votes via mobile devices/computers and generates immediate hot/cold responses 
from the building’s HVAC system. Trendr facilitates web-based archiving and remote 
access to BAS trend data. The building’s HVAC system is in operation only during the 
occupied hours (6 am-6 pm) and is turned off otherwise. 

Subject description: 37 occupants on the first and fifth floors of the building 
participated in the field study (17 male and 20 female). The majority (30 subjects) 
were in open-plan offices while 7 subjects had enclosed offices. Figure 2-2 (b) shows 
a participant in his office with a PCS chair. The study entailed having a PCS chair for 
a 12-week period and taking a series of surveys. I compensated the subjects $1 per 
survey, up to $15 per week. Due to limited chair availability, I staged the chair 
deployment in three phases to maximize the total number of subjects. The first phase 
was April – July with 10 subjects; the second phase was June – September with 17 
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subjects; and the third phase was July – October with 10 subjects, as shown in Figure 
2-3. 

 

Figure 2-2. (a) San Mateo County office building, the southwest façade. (b) A field study subject in an 
open-plan office, seated in a PCS chair. 

 

Figure 2-3. Timeline for PCS deployments at San Mateo County office building. 

DATA COLLECTION 

The field study produced the following data sets. 

Background survey: All subjects completed a one-time background survey at the 
beginning of the study to provide information about personal characteristics (i.e., sex, 
age, height, weight), general thermal comfort satisfaction, and morning commute 
method (See Appendix B for the survey questions). 
 
Daily (right-now) survey: After a one-week adjustment period with their PCS chair, the 
subjects took short online surveys (less than 1 minute to complete) three times daily 
for 12 weeks. The survey included questions about their current thermal comfort 
(acceptability, preference), clothing ensembles, motivations for chair use if being 

Apr May Jun Jul Aug Sep Oct Nov

1st phase:
2nd phase:

3rd phase:

background survey daily (short) survey

2016:
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used at the time of survey, and resulting satisfaction (See Appendix C for the survey 
questions). I asked the subjects to primarily follow email reminders to take surveys, 
but allowed some flexibility in survey timing to accommodate their office schedules 
and responsibilities. I provided a web link to the survey in the email to ensure that 
they were easy to access. Depending on the participation rate, I extended the survey 
period for some subjects by a few more weeks to increase the total survey count per 
person. In total, I collected 4655 survey responses (averaging 125 surveys per 
subject with the 25th to 75th percentile range of 110-141). 

PCS control behavior: I gave all subjects a PCS chair to use according to their 
comfort needs and desires during the study period. Each PCS chair recorded 
heating/cooling intensity (in a scale from 0 to 100%), heating/cooling intensity and 
location (seat, back), and chair occupancy at 20-s intervals. Figure 2-4 shows an 
example of this data for a single PCS chair. Note that the chair allows separate 
control of the back and seat heaters/fans; hence, simultaneous heating and cooling 
can be recorded (e.g., back heater and seat fan). In total, I obtained 5.1 million chair 
data points from 37 participants after aggregating the raw data into one-minute 
intervals. 

Indoor environment: I measured the subject’s local thermal environment continuously 
via environmental sensors using both the PCS chairs and independent data loggers. 
The chair’s environmental sensor, located underneath the seat pane (about 0.5 m 
from the ground), recorded air temperature (±0.25°C accuracy) and relative humidity 
(±2.0% accuracy) at 20-s intervals. I provided redundancy by installing a HOBO data 
logger (Model U12-012, Onset, USA) in each subject’s workstation near the breathing 
zone in a sitting position (about 1.0 m from the ground). The data logger recorded air 
temperature (±0.37°C accuracy), relative humidity (±2.5% accuracy), and globe 
temperature (±0.37°C accuracy) (only for perimeter offices) at 5-min intervals. 

Outdoor environment: I obtained outside weather data from a nearby weather station 
via the National Centers for Environmental Information, National Oceanic and 
Atmospheric Administration website (https://www7.ncdc.noaa.gov/CDO/cdo). This 
dataset includes outdoor temperature, precipitation, and sky coverage measured at 
San Carlos weather station (WBAN 93231). 

HVAC system: I also obtained VAV control settings from Trendr, which included the 
following data at 5-min intervals: room temperature (measured at the thermostat on 
the wall), supply airflow, damper position, heating output, and discharge air 
temperature in the 10 HVAC zones where the subjects were located.  
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Figure 2-4. Example of continuous PCS chair data of a subject between 7am and 7pm. Tair refers to 
indoor dry-bulb air temperature measured via the temperature sensor embedded in the PCS chair. The 
location of heating and cooling shown here refers to either the back or the seat. 

The UC Berkeley’s Committee for the Protection of Human Subjects (IRB-2011-04-
3163) reviewed and approved these methods. 

2.3   RESULTS 

The following sections report key findings from the field data analysis. I conducted all 
statistical analyses described in this chapter in R (version 3.4) and RStudio (version 
1.0.143). 

EXPOSED ENVIRONMENTAL CONDITIONS 

Table 2-1 summarizes the overall environmental conditions (indoor and outdoor) 
during the study period, excluding non-operating hours and weekends. 
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Table 2-1. Statistical summary of the field conditions (indoor and outdoor) during occupied hours 
excluding weekends and holidays. 

Variable Mean Median Lower and upper percentiles (5 / 25 / 75 / 95) 
Indoora    

Air temperature (°C) 23.5 23.4 21.8 / 22.8 / 24.1 / 25.3 
Globe temperatureb (°C) 23.2 23.1 21.4 / 22.4 / 24.0 / 25.6 
Relative humidity (%) 48.4 48.3 41.8 / 46.0 / 50.6 / 54.9 

Outdoor    
Temperature (°C)    

Cool season (Apr – May) 13.8 13.9 10.0 / 12.8 / 15.0 / 17.8 
Warm season (Jun – Aug) 15.1 15.0 12.8 / 13.9 / 16.1 / 18.9 
Cool season (Sep – Oct) 13.9 13.9 11.1 / 12.8 / 15.0 / 17.8 

a Indoor conditions refer to the measurements taken at the subjects’ workstations by data loggers located at approximately 1.0m from the 
ground (breathing zone in sitting position), not by the chair sensors located at 0.5m from the ground (underneath the chair seat pane). 
b globe temperature is only measured in perimeter workstations. 

The weather in Redwood City, CA during the field study period was mostly dry and 
sunny with mild to warm daytime temperatures. A comparison to the average long-
term climate data confirmed that the measured temperatures were representative of 
this region’s climate. The subjects were exposed to slightly different weather 
conditions because the study consisted of three phases with different start and finish 
dates. The first phase (Apr-Jul) included a cool season and the beginning of a warm 
season. The second (Jun-Sept) and third (Jul-Oct) phases included a more 
consistent warm season with some cool weather towards the end. The indoor air 
temperature remained mostly within a relatively narrow range of 22-25 °C during the 
occupied hours, largely unaffected by the outdoor conditions. The difference between 
air and globe temperatures along the perimeter offices was small (mean = 0.3 °C, 
standard deviation = 0.6 °C). Relative humidity was relatively uniform with little 
variations across different workstations (mean = 48%, standard deviation = 3.4%). 
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Figure 2-5. (a) Distribution of indoor air temperature measured at each subject’s workstation during the 
field study period. The mean values are marked with a red dot. (b) Hourly distribution of indoor air 
temperature over the field study duration, shown in 25-75th (red line) and 5-95th (grey line) percentile 
ranges. (c) Density curves of the difference in temperature measurements by distributed sensors at the 
subjects’ workstations vs. zonal thermostats. There were 19 workstations in the Interior zone and 18 
workstations in the perimeter zone. 

With distributed environmental sensing via PCS chairs and data loggers, I had high 
visibility into the subjects’ local thermal conditions. Figure 2-5 (a) shows the 
distribution of air temperature at each chair location during the study period. The 
majority of the subjects experienced conditions that were within the ‘comfortable’ 
range according to the current standards (i.e., ASHRAE 55, ISO 7730, EN 15251); 
however, some were exposed to a wider temperature variation than others during the 
study period. Figure 2-5 (b) shows the distribution of indoor temperatures across 
different workstations occupied by the subjects. On average, the difference in air 
temperature exposures by different subjects during the same hour was as much as 
1.1 °C based on 25-75th percentile range and 2.9 °C based on 5-95th percentile 
range. This indicates that individuals may experience different thermal conditions 
even in the same moment depending on their location within the building. To 
understand how well the building’s HVAC sensors capture temperature variations 
across different building spaces, I compared local temperature measurements to the 
zonal thermostat readings in Figure 2-5 (b). The discrepancy between the two 
readings across all chair locations was 0.5 °C on average with standard deviation of 
0.8 °C. The measured temperatures in interior offices were often warmer than 
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thermostat readings (possibly due to equipment heat gain). Exterior offices were both 
cooler and warmer than the thermostat readings as they were exposed to solar heat 
gains or losses through the building envelope that are not always captured by 
thermostat sensors (since they are typically installed on interior walls). This shows 
that local temperatures and thermostat readings are not always in agreement, and 
depending on where the thermostats are located, temperature readings may not be 
representative of the conditions experienced by individuals in their local areas. 

THERMAL COMFORT ASSESSMENT OF PCS USERS 

The daily thermal comfort assessment via online surveys consisted of two questions: 
thermal acceptability (4-point discrete scale) and thermal preference (3-point discrete 
scale) of the overall thermal environment considering both the surrounding ambient 
and chair conditions. I did not include the traditional thermal sensation question in the 
questionnaire because it could be confusing or misunderstood by PCS chair users. I 
discovered this from interviews with the subjects during the beta-testing of PCS 
chairs (Bauman et al., 2017). Because PCS provided heating and cooling directly 
onto portions of their body, the subjects tended to report the sensation they felt from 
the chair’s heating or cooling rather than assessing whole body sensation from the 
overall environment. As such, they often voted ‘warm’ or ‘cool’ sensation when the 
chair’s heating or cooling was on, and they did not associate those votes with 
discomfort; in fact, they were usually perceived them positively. Also, they considered 
‘neutral’ as a void of warm or cool sensation and tended to not vote ‘neutral’ when 
they were using the chair’s heating or cooling. To eliminate the source of confusion 
and misinterpretation, I removed this question from the survey for this field study. 

Figure 2-6 summarizes the results of the subjects’ thermal comfort responses 
collected from daily surveys. PCS chair users had high comfort satisfaction during the 
study period. Based on thermal acceptability, 96% of the votes found their thermal 
environment either ‘acceptable’ or ‘slightly acceptable’ over a range of air 
temperatures (21.9-25.3 °C based on 5-95th percentile range), far exceeding the 80% 
goal of the ASHRAE thermal standard (ANSI/ASHRAE, 2013). Furthermore, recent 
research showed that even this relatively low temperature satisfaction goal was only 
met in 10% of 144 surveyed buildings, indicating that actual temperature satisfaction 
is far lower than 80% in most buildings (Karmann et al., 2017). Only 3.6% voted 
slightly unacceptable, and less than 1% voted unacceptable. This is similar to the 
result observed in an earlier laboratory study with PCS chairs (Pasut et al., 2015) that 
achieved over 90% comfort satisfaction over a temperature range of 18-29°C. Based 
on thermal preference, 70% of the votes indicated that subjects found their thermal 
environment sufficiently good – matching their preferred state and wanting ‘no 
change’ to the current conditions. 17% and 13% of the votes expressed subjects’ 
desire to be cooler and warmer, respectively. Interestingly, the ‘warmer/cooler’ votes 
were mostly associated with the ‘slightly acceptable’ and ‘unacceptable’ votes in 
thermal acceptability as shown in Figure 2-6 (c). This indicates that a preferred 
thermal environment may be different from what is perceived as ‘acceptable’, and 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 
16 

those in suboptimal comfort conditions know what they want in their thermal 
environment (i.e., warmer, cooler) to improve their comfort. 

 

Figure 2-6. Distribution of thermal acceptability (a) and thermal preference (b) votes from daily surveys 
by all 37 subjects during the field study period. The total survey counts were 4655. (c) The relative 
frequency of thermal preference votes for each of the thermal acceptability categories. 

Figure 2-7 (a) shows the distribution of thermal preference responses over the 
coincident indoor temperatures. The one-way analysis of variance (ANOVA) indicated 
statistically significant differences in the observed indoor temperatures between the 
three preference categories, as shown in Table 2-2. The median temperature for 
‘want cooler’ votes (23.7 °C) was slightly warmer than that of ‘want warmer’ votes 
(23.2 °C). 

Table 2-2. One-way ANOVA test results for 3 thermal preference categories (dependent variable: Indoor 
temperature). 

 Df Sum Sq Mean Sq F value Pr (>F) 

Thermal preference 2 236 117.91 111.8 <2e-16*** 

Residuals 4634 4886 1.05   

Significance Codes: 0 ‘***’ 0.001’**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Multinomial logistic regression on aggregated thermal preference votes with respect 
to indoor temperature showed that the probability of voting for ‘no change’ was the 
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highest at 23.1 °C. The subjects were more likely to vote for ‘want cooler’ when 
temperature were warmer. The opposite was true for ‘want cooler’ votes. 

 

Figure 2-7. (a) Boxplots of the aggregated thermal preference votes (i.e., ‘no change’, ‘want cooler’, 
‘want warmer’) from all subjects over coincident indoor temperatures. (b) Multinomial logistic regression 
curves for thermal preference categories over indoor temperature. The dotted line represents Preferred 
Ta, which is the temperature at which the probability of voting for ‘no change’ is highest. The distribution 
of thermal preference votes over coincident indoor temperatures is shown at the top. 

However, such trends were not always observed when logistic regression was 
performed at individual levels, as shown in Figure 2-8. Within moderate temperature 
exposures, many did not follow changes in temperatures when voting for ‘want 
cooler/warmer’. In fact, some subjects showed only certain preferences within the 
exposed temperatures that logistic regression only produced binary results (e.g., no 
‘want cooler’ trends for User 7, 19) or did not converge at all (e.g., only ‘no change’ 
votes for User 15, 21). Also, the likelihood for voting for ‘want cooler/warmer’ varied 
quite a lot between individuals even under the same temperatures; therefore, 
temperature alone – even when measured local to the occupant – cannot explain 
individuals’ thermal preferences. Note that the reliability of logistic regression will 
decrease as the sample size decreases, particularly towards the extremes of 
individuals’ temperature exposures (marked as ‘tick’ marks at the bottom of each plot 
in Figure 2-8). 
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Figure 2-8. Multinomial logistic regression curves for thermal preference votes over indoor temperatures 
for individual subjects. 

Figure 2-9 (a) shows the distribution of thermal acceptability responses over the 
coincident indoor temperatures. The one-way ANOVA indicated statistically 
significant differences in the observed indoor temperatures between the four 
acceptability categories, as shown in Table 2-3. Within the moderate temperature 
exposures observed in this field study, the subjects associated with unacceptability 
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mostly with cooler temperatures. This is also shown in the logistic regression curves 
for thermal acceptability vs. indoor temperature in Figure 2-9 (b). However, there 
were too few votes for ‘unacceptable’ and ‘slightly unacceptable’ (12 and 170 votes 
respectively out of the total 4655 votes) to make any meaningful conclusions about 
this trend. Most of the logistic regression at individual levels did not converge due to 
heavy imbalance between the acceptability categories; hence, the results were not 
reported. 

 

Figure 2-9. (a) Boxplots of the aggregated thermal acceptability votes (i.e., ‘acceptable’, ‘slightly 
acceptable’, ‘slightly unacceptable’, ‘unacceptable’) from all subjects over coincident indoor 
temperatures. (b) Multinomial logistic regression curves for thermal acceptability categories over indoor 
temperature. 

Table 2-3. One-way ANOVA test results for 4 thermal acceptability categories (dependent variable: 
Indoor temperature). 

 Df Sum Sq Mean Sq F value Pr (>F) 

Thermal acceptability 3 38 12.687 11.56 1.51e-07*** 

Residuals 4633 5084 1.097   

Significance Codes: 0 ‘***’ 0.001’**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

PCS CONTROL BEHAVIOR 

Figure 2-10 shows the overall chair usage of each subject during the field study 
period. On average, chair heating and/or cooling were on 76% of the time during 
which the chair was occupied, indicating active chair usage by the subjects. However, 
individuals’ chair usage pattern varied widely. For example, some used the chair’s 
heating/cooling function more frequently than others while seated. Some subjects 
primarily used heating over cooling, or vice versa. 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 
20 

 

Figure 2-10. Distribution of PCS control modes (i.e., ‘heating’, ‘cooling’, ‘both’, ‘none’) showing relative 
chair usage by all and each subject during the field study period. 

I plotted the distribution of observed control modes against coincident indoor 
temperatures (Figure 2-11 (a)) to understand the relationship between the choice of 
control mode and exposed thermal conditions. The one-way ANOVA indicated 
statistically significant differences in the observed indoor temperatures between the 
four PCS control modes, as shown in Table 2-4. Although the median temperature for 
different PCS control models did not vary by much, the likelihood for cooling usage 
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increased at warmer temperature and heating usage increased at cooler 
temperatures, as shown in logistic regression curves (Figure 2-10 (b)). 

 

Figure 2-11. (a) Boxplots of the aggregated PCS control usage (i.e., ‘none’, ‘cooling’, ‘heating’, ‘both’) 
from all subjects over coincident indoor temperatures. (b) Multinomial logistic regression curves for PCS 
control modes over indoor temperature. 

Table 2-4. One-way ANOVA test results for 4 PCS control modes (dependent variable: Indoor 
temperature). 

 Df Sum Sq Mean Sq F value Pr (>F) 

PCS control mode 3 61022 20341 14207 <2e-16*** 

Residuals 3326400 4762403 1   

Significance Codes: 0 ‘***’ 0.001’**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

To understand what may trigger people to switch the chair’s heating/cooling ‘on’ from 
‘off’ mode, I examined the subjects’ chair occupancy patterns, time of day, and 
seasons (Figure 2-12). I only looked at the instances where the subjects intentionally 
activated heating/cooling, and excluded the instances where the chair automatically 
activated heating/cooling based on the previous setting remembered by the chair 
software. The distribution of the switching-on behavior is expressed in relative 
frequency as a proportion of the total occurrences. The data show that intentional 
heating or cooling occurred shortly after sitting in the chair (within 6 min of being 
seated), indicating that people’s desire for heating/cooling may arise mostly during 
transitional periods. This is particularly prominent at the beginning of the office hours 
during the warm season (Jun-Aug), where the occupants often selected cooling 
mode. This could be to offset people’s heightened metabolic rate during a short 
period after arriving from their morning commute. 
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Figure 2-12. (a) Relative frequency of heating and cooling switch-on behavior by the subjects. Only the 
instances where the subjects intentionally turned on heating/cooling were plotted. I excluded the 
instances where the chair software automatically turned on heating/cooling based on the previously 
stored setting. (b) Relative frequency of heating and cooling switch-on behavior by hour of day and 
seasons (warm vs. cool). The warm season includes Jun-Aug, and the cool season includes Apr-May 
and Sep-Oct.  

In Figure 2-13, I cross-linked thermal preference and acceptability votes with 
coincident chair control settings to better understand the relationship between the 
subjects’ comfort perception and behavior. Note that I asked the subjects to consider 
both ambient and chair thermal conditions when voting their thermal preferences. As 
shown, the chair users were mostly comfortable with their environment, voting for ‘no 
change’ to their thermal conditions 70% of the time and ‘acceptable’ or ‘slightly 
acceptable 96% of the time. They were actively using the chair to address their 
comfort needs and desire. The subjects sometimes wanted to be cooler (17%) or 
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warmer (13%), and when this occurred, their choice of control mode provided some 
indication of what they preferred. When the subjects preferred a cooler environment, 
they used cooling mode more actively than heating mode. Similarly, when they 
preferred a warmer environment, they used heating mode more actively than cooling 
mode. In such cases, the room might have been warmer or colder than the chair’s 
cooling/heating capacity, not allowing the subjects to reach their desired comfort 
levels. Or, the body might have been too warm or cold so that the chair’s 
cooling/heating was not fast enough to offset discomfort. Note that some people used 
heating mode when they voted for ‘want cooler’. This is because the subjects often 
used the chair’s back heater for a therapeutic reason – to relieve back pain – while 
simultaneously cooling the seat. Some subjects preferred to be warmer/cooler but did 
not use the chair. According to the survey comments, this is because the subjects 
often forgot to use the chair or had busy schedules, drained battery, errors with the 
chair, etc. 

 

Figure 2-13. (a) Frequency of thermal preference votes from all subjects overlaid with coincident PCS 
control modes (i.e., ‘heating’, ‘cooling’, ‘both’, ‘none’). (b) Frequency of thermal acceptability votes from 
all subjects overlaid with coincident PCS control modes. 

I further examined the chair data to find information that might help us to distinguish 
who wanted changes (‘warmer/cooler’) from no changes in their thermal environment. 
Figure 2-14 plots the mean control intensity of chair fans and heaters used at the time 
of survey for each of the three preference categories. I observed that the subjects 
who expressed their desire for warmer/cooler tended to have a higher control 
intensity than those who were comfortable and wanted no changes to their thermal 
environment. This indicates that the level of heating/cooling intensity might be used to 
describe the direction of people’s preferred thermal condition. The benefit of PCS 
data is that it can be traced back to individual occupants and be available 
continuously in real-time; hence, it can be used to predict individuals’ thermal 
preference and inform HVAC control decisions. 
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Figure 2-14. Mean control intensity (recorded in 0-100%) of PCS heaters and fans across all subjects 
used at the time of survey for each of thermal preference categories (i.e., ‘want warmer’, ‘want cooler’, 
‘no change’). 

USER FEEDBACK ON PCS CHAIRS 

In addition to the core thermal comfort questions, I also included a few questions in 
the daily surveys to ask about people’s satisfaction (a 7-point scale from ‘very 
satisfied’ to ‘very dissatisfied’) and motivation (multiple choices including ‘other’ with a 
text entry box) for PCS use. I developed the potential reasons for PCS use in the 
multiple choices based on the interview responses from chair users during the beta 
testing. The subjects could select more than one response to the multiple-choice 
questions. 

The survey feedback showed that the subjects were highly satisfied with chairs’ 
heating and cooling performance (Figure 2-15 (a)). The overwhelmingly positive 
rating – 99% satisfaction (‘somewhat satisfied’ to ‘very satisfied’) from daily surveys 
confirms this. There were some differences in people’s motivation for chair cooling 
vs. heating (Figure 2-15 (b-c)). As for cooling, the subjects primarily used the chair to 
get relief from the heat in the room. They also used the cooling because they liked 
the sensation against their body or they needed to cool down from physical activities. 
As for heating, the pleasant sensation was the top reason for using the PCS chair, 
followed by a therapeutic reason to relieve back pain. Improving thermal comfort was 
ranked third in the list of reasons for heating use. Such outcomes provide field 
evidence of thermal pleasure associated with local heating and cooling. Other 
reasons that motivated the chair use included staying alert, relieving hot flashes, etc. 
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Figure 2-15. Distribution of (a) satisfaction rating with PCS heating or cooling, (b) reasons for PCS 
cooling use, and (c) reasons for PCS heating use. The data is based on the subjects’ responses to the 
questions asked only when they were using their PCS chair at the time of daily survey. The subjects 
were allowed to select more than one in multiple choices for (b) and (c). 

2.4   DISCUSSION 

Below I summarize key insights drawn from the data analysis, as well as areas for 
improvement for PCS chairs. 

Variability in temperature conditions across different building spaces 

Individual occupants are exposed to different temperature conditions across different 
building spaces, even within the same VAV zone (as much as 1.1 °C based on 25-
75th percentile range and 2.9 °C based on 5-95th percentile range). This could be 
caused by the building’s physical design (e.g., interior/perimeter zone), HVAC design 
(e.g., supply diffuser type and location), or other factors. Such variations in 
temperature exposure are difficult to capture in conventional HVAC systems as there 
is typically one temperature measurement (i.e., the thermostat) per zone covering a 
large area, and sometimes even several separate enclosed rooms. Depending on 
where the thermostat is located, temperature readings may not be representative of 
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what is experienced by individuals in their local areas (on average, 0.5±0.8 °C 
differences observed) and temperature control may not be optimized for the 
majority’s comfort. This is why relying on a single measurement for temperature 
control of the entire zone can potentially lead to discomfort. Modern buildings are 
becoming more extensible, capable of integrating various sensors via the Internet. 
Distributed sensing via connected sensors, such as the ones embedded in PCS 
chairs, can complement the building’s existing sensing network and would allow more 
representative and robust temperature control due to increased visibility into local 
thermal conditions and redundancies in case any of the existing sensors go out of 
service.  

Individual differences in thermal preference 

Occupants often have different thermal preferences even when they are all exposed 
to the same temperature, as shown in Figure 2-7 (b). This could be simply because of 
the differences in opinions, or other factors beyond temperatures. Regardless, 
differences in comfort preferences can lead to conflicts among occupants over 
thermostat setpoints in shared spaces and ultimately cause dissatisfaction with their 
environment. The challenge with conventional VAV systems is that there is only one 
thermostat serving multiple occupants and individuals may not get to set the 
temperature according to their desire. Providing PCS in the areas with conflicts in 
temperature preferences or unmet comfort needs can provide individuals with 
personal control over their immediate thermal environment and improve the overall 
satisfaction of building occupants. This field study showed very high thermal 
acceptability (96%) among PCS users in a mechanically-conditioned building with 
moderate temperature exposures (21.9-25.3 °C based on 5-95th percentile range). If 
the use of PCS would be able to maintain comfort at greater temperature ranges, 
central HVAC systems can maintain ambient conditions within a range in which the 
PCS can correct for each individual’s thermal comfort needs, instead of a much 
narrower range that is a compromise for all occupants in that space. The extended 
range of temperature setpoints can also lead to significant energy savings in 
buildings . Moreover, PCS provide fast-acting heating or cooling that can help to 
address immediate comfort needs of building occupants (e.g., cooling after walking 
up the stairs, warming after entering from a cold outdoor) with very little energy use 
(Pasut et al., 2013). Such responsiveness is not only impossible to achieve with 
conventional HVAC systems, as they condition the entire thermal zone, but also 
impractical due to substantial energy consequences and the needs of others 
occupying the same zone. As such, PCS can be used to provide complementary 
comfort solutions to traditional systems for greater satisfaction and reduced energy 
use. 

Behavior as a predictor of thermal preference 

When thermal control is provided, people use it to address their comfort needs; 
hence, the resulting behavior can be regarded as an expression of one’s thermal 
preference. This is confirmed through my analysis of PCS control usage data. The 
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choice of heating vs. cooling revealed adaptive actions taken by occupants to 
address their comfort (or other physiological) needs. On the other hand, the heating 
and cooling intensity indicated whether occupants wanted additional heating or 
cooling in their thermal environment. The benefit of PCS data is that it can be traced 
back to individuals and it is available continuously in real-time; hence, the data can 
be used to predict individuals’ thermal preference dynamically. Such predictions can 
act as an individualized comfort feedback for HVAC controls to provide ‘just the right’ 
amount of conditioning to meet occupant needs, in contrast to over-conditioning that 
results from tight setpoint management. One caveat is that not all chair use is 
motivated by thermal comfort, such as subjects using the chair’s heating to relieve 
back pain. Hence, the predictive algorithm needs to be able to filter out such 
situations and correctly identify those related to thermal comfort.  

Applicability of comfort scales for PCS users 

Different comfort scales inform different aspects about thermal comfort of PCS users. 
Thermal acceptability describes the level of ‘acceptability’ of a given environment  by 
the users while thermal preference describes what preferred condition would be if 
they can make changes to their environment. It is possible that even when people are 
not in their ideal state of comfort, they may still report their thermal condition as 
‘acceptable’ – meaning it is tolerable or not bad enough to complain. I observed this in 
the survey results when the subjects in suboptimal comfort state (‘slightly 
unacceptable’ or ‘slightly acceptable’) expressed their desire to be warmer or cooler. 
From a building control perspective, both scales are useful as thermal acceptability 
informs about who is on the verge of discomfort while thermal preference informs 
about how to improve their condition. Such information can help HVAC systems to 
provide preventive or corrective control strategies to improve comfort satisfaction of 
building occupants.  

Thermal pleasure could be another comfort scale relevant to PCS users as it is a 
frequent reason for PCS heating/cooling use. This scale would address the concept 
of alliesthesia in thermal comfort assessment, shifting our focus from minimizing 
discomfort to creating delightful experience for occupants.  

Lastly, I think that the conventional version of the thermal sensation scale (7-point 
scale from ‘hot’ to ‘cold’) is not appropriate for PCS users as the local heating or 
cooling can cause confusion and misinterpretation of the scale. Further research is 
needed to design a sensation scale applicable to PCS users along with the 
appropriate survey question and understand its implications in building controls. 

Implications for temporal and spatial alliesthesia 

This study, through the rich data collected from PCS users in a typical office building 
over a six-month period, suggests that PCS offers the possibility of bringing 
alliesthesial experience into everyday environment. There are two types of 
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alliesthesia – temporal and spatial. The temporal form can be enhanced by the fast-
responding heating and cooling afforded by PCS in non-steady state environments 
(e.g., during spatial or metabolic transitions). The fact that the activation of PCS 
heating and cooling consistently occurred within the first few minutes of sitting, 
especially right after morning commute, as shown in Figure 2-12. This suggests 
potential opportunity to experience temporal alliesthesia by PCS users – 24.6% of the 
PCS cooling use was attributed to cooling down from physical activity, as shown in 
Figure 2-15 (b). Even greater potential impact may be in the spatial form of 
alliesthesia, since PCS applies thermal stimulus to specific parts of the body. Studies 
have shown that applying local heating or cooling onto certain body parts can 
significantly influence the overall comfort and can also elicit pleasurable experience 
(Zhang et al., 2010a; Parkinson and de Dear, 2016). In fact, the survey results 
confirmed that one of the main motivation for PCS heating and cooling was the 
pleasurable sensation against their body – 26.5% of the PCS cooling use and 35.1% 
of the PCS cooling use, as shown in Figure 2-15 (b-c). The chair heating or cooling 
could potentially be pulsed through a cycle assuring that both forms of alliesthesia 
operate continuously in steady state. This can not only be implemented with the 
remote actuation capability of the Internet-connected PCS chairs but also can be fine-
tuned to individuals’ comfort needs and desires with the insights gained from the PCS 
data. As PCS becomes more diversified in its forms (wearables) and equipped with 
advanced technologies, opportunities await to map the effects of different 
combinations of heating and cooling across different body parts and develop 
alliesthesial models that can have practical significance for individuals’ comfort 
experience in everyday environment.  

Areas to improve Internet-connected PCS chairs 

Overall, the field testing of Internet-connected PCS chairs was successful. The 
subjects were highly satisfied with the chair’s heating and cooling performance, 
particularly when compared against thermal satisfaction typically reported in 
buildings. The communication system of the chairs mostly functioned well during the 
six-month study. Nonetheless, there are some areas for improvement, as listed 
below, that I identified from field inspections and user feedback. 

•   Battery charging: I noticed that our prototypes’ LiFePO 4 battery life decreased 
over time requiring more frequent charging. Because of this, many chair users 
left the charging cable connected to the battery all the time, presenting 
potential tripping hazards and frequent damages to the charger (e.g., broken 
plug). A larger capacity battery, or a battery with a longer life, or low power 
continuous wireless charging (currently under development by CBE) would 
improve this situation. 

•   Data privacy: Despite the strict data policy – removal of personal identifiers 
from the database and restricted access to core research personnel, a few 
subjects still expressed concerns about their organization potentially 
accessing sensitive personal data (e.g., chair occupancy). For PCS to be 
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adopted as part of a building system, I think it is critical for organizations to 
develop rigorous data privacy measures to protect sensitive data and build 
trust with PCS users. 

•   Control automation: Survey responses indicated that occupants often forgot to 
use the chair’s heating or cooling because of their busy schedules. This is 
particularly a problem when they first arrive at work in the morning. Software 
solutions such as pre-programming heating and cooling sequences or 
enabling a smart algorithm that learns and automates repetitive control 
behavior can help to address this problem. 

•   Ergonomic diversity: Modern offices encourage diverse furniture design to 
meet individuals’ ergonomic needs and preference. The current PCS chair 
design with standard dimensions and adjustability has limitations to 
accommodate different workstation configurations and postures required by 
occupants (e.g., standing desk, high chair). Allowing greater adjustability and 
customizability beyond the standard design would be beneficial for mass 
market adoption of PCS chairs. 

•   Combined PCS solutions: Some subjects brought their own desktop fan and 
used it in combination with PCS chairs. Such combination is not only intuitive 
but also has scientific grounding, in that past research has shown that cooling 
is most effective when applied in the breathing zone and heating is effective 
when applied to feet (Zhang et al., 2010a). Hence, offering a combination of 
complementary PCS devices, as demonstrated in (Pasut et al., 2015) via the 
offering of PCS chairs and desktop fans together, can provide more effective 
heating or cooling than offering a single device alone. 

2.5   SUMMARY 

The purpose of this chapter is to report findings of the field study with new PCS chairs 
equipped with data logging and wireless communication capabilities. I conducted the 
field study in an office building located in northern California by recruiting 37 
occupants to use PCS chairs according to their comfort needs and desire during the 
summer of 2016. The methods included the installation of PCS chairs and a 
communication network, as well as continuous measurement of each subject’s PCS 
usage, workstation microclimate and HVAC system settings, plus a web-based 
survey that the subjects took several times a day. I collected over 5 million chair data 
points and over 4500 survey responses during the study period. The key findings of 
data analysis include the following: 

•   PCS chairs produced high comfort satisfaction, resulting in 96% acceptability 
in typical office environments (21.9-25.3 °C) and 70% wanting no changes to 
given thermal conditions. This was much higher than the minimum 80% 
satisfied requirement of ASHRAE Standard 55, which recent evidence suggest 
is only met in less than half of buildings in practice. 
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•   The preferred temperature with PCS chairs was 23.1 °C based on the survey 
analysis of all subjects. However, individuals often displayed different thermal 
preferences even under the same temperature conditions, indicating that 
indoor temperature alone is not a good predictor of thermal preference. 

•   The use of PCS chairs was often motivated by pleasurable sensation and 
short-term comfort needs (such as on first arrival), offering field evidence of 
both spatial and temporal alliesthesia via fast-responding local heating and 
cooling. 

•   Local temperatures experienced by individual occupants vary across different 
parts of the building, even within the same VAV zone (as much as 1.1 °C 
based on 25-75th percentile range and 2.9 °C based on 5-95th percentile 
range). Such variations are often not captured in conventional HVAC systems 
as most buildings only have one temperature measurement (i.e., the 
thermostat) per zone. Distributed sensing via connected sensors, such as the 
ones embedded in PCS chairs, can complement the building’s existing 
sensing network and allow more robust and representative temperature 
control. 

•   Individuals’ PCS control behavior can be an indicator of their thermal 
preference. I found that the control modes indicate the type of thermal needs 
(i.e., heating, cooling) that occupants have while the control intensity indicates 
whether they want additional heating or cooling beyond what PCS is providing. 
Hence, PCS control behavior can potentially be used as an individualized 
comfort feedback for HVAC controls. 

Our present findings demonstrate that PCS can not only provide comfort satisfaction 
far exceeding the 80% goal of the ASHRAE thermal comfort standard (ASHRAE 
Standard 55) but also produce highly individualized data that can improve our 
understanding of occupant comfort and behavior. Since the software stack developed 
for the PCS chairs allows interaction between PCS and BAS on the same 
communication platform, the intelligence built on PCS data can turn into actionable 
feedback for HVAC controls. For future research, it would be useful to apply the 
findings from this study to comfort predictions and environmental controls to improve 
occupant satisfaction and energy performance in buildings. 
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3   A FRAMEWORK OF PERSONAL COMFORT MODELS 

3.1   BACKGROUND 

An increasing number of researchers are investigating how to learn and predict 
individuals’ thermal comfort requirements directly from data collected in their 
everyday environment. I term the output of these efforts as personal comfort models 
(defined in more detail below). This new modeling approach can fundamentally 
change today’s generic, ‘one-size-fits-all’ comfort management by making individual-
specific and context-relevant comfort predictions available for occupant-centric 
environmental control. The opportunities associated with personal comfort models 
have generated significant interest within the research and industry communities. 
Academics are exploring new data types and modeling techniques to better predict 
individuals’ thermal comfort in buildings or other systems (e.g., vehicles). The 
industry is leveraging advanced analytics and cloud-based control to deliver 
customized heating and cooling in the occupied spaces (e.g., Nest, Comfy). 
However, the efforts to date have been quite fragmented across a wide range of 
disciplines and display significant variations in their approach from each other, as well 
as from traditional thermal comfort research. To address these issues, I developed a 
unified framework for personal comfort models to understand the variety of activities 
on this topic, and provide guidance on future efforts in this emerging research area. 

3.2   PROBLEM DEFINITION 

Thermal comfort is an important goal for the built environment as it affects occupant 
satisfaction (Frontczak et al., 2012; Wagner et al., 2007), health (Allen et al., 2015; 
Fisk and Rosenfeld, 1997), and productivity (Leaman and Bordass, 1999; Tham and 
Willem, 2010; Wargocki et al., 2000; Wyon, 2004). To understand what makes an 
environment thermally comfortable to the occupants, researchers have focused on 
developing empirical models that can represent human perception of thermal comfort 
in terms of the given conditions or factors (e.g., personal, environmental, etc.). There 
are two main models that underpin the current practice of comfort management in 
buildings: predicted mean vote (PMV) and adaptive models. The PMV model treats 
thermal comfort as a physical-physiological phenomenon and expresses human 
thermal sensation as an outcome of the heat transfer between a human body and its 
surrounding environment. It is the most widely accepted model, developed through 
extensive laboratory experiments by Fanger (1970), which became the basis of the 
standards ISO 7730 (2005) and ASHRAE 55 (2013). In contrast, adaptive models 
account for people’s inherent ability to adapt to variable environment conditions in 
naturally-conditioned buildings by drawing a linear relationship between comfortable 
indoor temperature and prevailing outdoor temperature based on global field study 
data. Currently, there are mainly two adaptive models standards: the ASHRAE 55 
adaptive model by de Dear and Brager (1998) and the EN 15251 adaptive model by 
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Nicol and Humphreys (2002). Despite their successful adoption into international 
standards, both types of models (PMV and adaptive) have several inherent limitations 
when applied to comfort management in buildings. 

First, a full implementation of the PMV model requires very specific input variables 
that are costly and difficult to obtain in buildings. Two of the environmental variables – 
mean radiant temperature and air velocity – are not typically monitored in existing 
buildings and require expensive instruments to accurately measure (in particular, air 
velocity). Two personal variables – clothing insulation and metabolic rates – are 
impossible to collect in an automated fashion, and their values are often assumed or 
simplified, which undermines the predictive accuracy of the model (Alfano et al., 
2011). 

Second, even if all of the input variables are accurately obtained, both existing 
models show poor predictive performance when applied to individuals (Auffenberg et 
al., 2015; van Hoof, 2008). This is because the models are aggregate models, 
designed to predict the average comfort of large populations; hence, their accuracy 
decreases when predicting individuals’ thermal comfort responses due to large 
variations in thermal comfort between people. The irony is that this is exactly the 
situation in practice where the models are used – groups of occupants in a building 
with varying degrees of comfort perception sharing the same thermal zone. 

Third, both models do not adapt or re-learn. They are based on a fixed set of data 
collected from either laboratory (PMV) or the field (adaptive) measurements. Hence, 
model properties and coefficients may not accurately describe the comfort 
characteristics of individual occupants in a particular field setting. Unfortunately, there 
is no provision that allows for the update of either of these existing models based on 
occupant feedback and field-collected data in new circumstances. Therefore, they 
cannot be calibrated to better match the relationships in a particular setting. 

Lastly, these models do not allow modifications to their respective set of input 
variables. Only pre-defined variables are entered into the models regardless of the 
existence of other factors that may affect the actual outcome. New variables (e.g., 
sex, body mass index, time of day, age, health status, etc.) that may potentially be 
relevant to the occupants’ thermal comfort in a particular setting cannot be 
incorporated into the model, thus reducing the potential to improve predictive 
accuracy and enhance our understanding of contextual impacts on human thermal 
comfort. 

To overcome the drawbacks listed above, both academia and industry have been 
looking for ways to improve the practical relevance of thermal comfort models for 
building operations. With the emergence of the Internet of Things allowing us to 
generate highly granular and personal data, efforts have begun to analyze such data 
for the prediction of individuals’ thermal comfort. This chapter provides a synthesis of 
this new research area called personal comfort models. 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 

 
33 

3.3   PERSONAL COMFORT MODELS 

DEFINITION 

A personal comfort model predicts an individual’s thermal comfort response, instead 
of the average response of a large population. The key characteristics of personal 
comfort models are that they: (1) take an individual person as the unit of analysis 
rather than populations or groups of people; (2) use direct feedback from individuals 
(e.g., thermal sensation, preference, acceptability, pleasure) and additional relevant 
data (e.g., personal, environmental, technological), to train a model; (3) prioritize 
cost-effective and easily-obtainable data; (4) employ a data-driven approach, which 
allows flexible testing of different modeling methods and potential explanatory 
variables; and (5) have the capacity to adapt as new data is introduced to the model. 

Personal comfort models can be used to better understand specific comfort needs 
and desires of individual occupants and characterize a set of conditions that would 
satisfy their thermal comfort in a given space. Such information can inform the design 
and control decisions of a building or other systems (e.g., vehicle, aircraft, personal 
comfort systems) to provide optimal conditioning for improved comfort satisfaction 
and energy efficiency. These qualities are in line with the current trend of intelligent 
comfort management (Talon and Goldstein, 2015). 

REVIEW OF CURRENT STATE OF RESEARCH 

In recent years, there have been an increasing number of publications on the topic of 
personal comfort models. Interestingly, many of these efforts did not originate from 
the traditional thermal comfort research, but rather consist of independent work 
across various academic disciplines as well as industry organizations. As such, this 
research often shows a significant departure from the conventional approach to 
thermal comfort modeling, and therefore represents a unique perspective and 
contribution to our field.  

To better understand the current state of research and development on personal 
comfort models, I provide a review of relevant literature published in the past ten 
years. To address the first two characteristics of personal comfort models noted 
above, the review only includes studies that focus on individual occupants as a unit of 
analysis, and use human feedback in the model development. This effectively 
excludes 1) studies that adopt a data-driven approach to modeling, but predict 
thermal comfort of general populations rather than individual occupants (Chen et al., 
2015; Choi and Yeom, 2017; Dai et al., 2017; Farhan et al., 2015; Ghahramani et al., 
2016a; Vissers, 2012), and 2) studies that use synthetic data instead of real-world 
data to model individuals’ thermal comfort (Ari et al., 2008; Bermejo et al., 2012; Peng 
and Hsieh, 2017). 
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Table 3-1 summarizes the findings from this literature review. It is organized by data 
sources, input and output variables, modeling methods, model evaluation, and 
continuous learning methods, and ordered by the year of publication. 

Table 3-1. Summary of major studies of personal comfort models. 

Source Data Input variables* Output 
variables 

Modeling 
methods 

Model evaluation Continuous 
learning 
methods 

Occupant 
feedback 

Physical 
measurement 

Accuracy Convergenc
e 

(Li et al., 
2017) 

Field 
data 
from 7 
subjects 

3-point 
thermal 
preference 
(warmer / no 
change / 
cooler), clo, 
heart rate, skin 
temperature, 
activity 

Ta, RH, CO2, 
window state 
(open/close), 
Tout, outdoor 
humidity 

3-point thermal 
preference 
(warmer / no 
change / 
cooler) 

Random 
Forest 

Overall 
accuracy = 
80% 

80% 
classification 
accuracy 
achieved 
after 50 
samples 
(60% of the 
total data) 

N/A 

(Cheung et 
al., 2017) 

Field 
data 
from 15 
subjects 

Continuous 
thermal 
acceptability 
scale with 4 
labels (clearly 
acceptable / 
just 
acceptable / 
just 
unacceptable / 
clearly 
unacceptable), 
activity, air-
conditioning 
status, 
location 

Ta, RH, CO2 Continuous 
thermal 
acceptability 
scale with 4 
labels (clearly 
acceptable / 
just acceptable 
/ just 
unacceptable / 
clearly 
unacceptable) 

Gaussian 
Process 

R2 between 
predicted 
and actual 
votes = 0.18 
and 0.26 for 
2 subjects 
respectively 

N/A N/A 

(Lee et al., 
2017) 

Field 
data 
from 
ASHRA
E RP-
884 
databas
e 

3-point 
thermal 
preference 
(warmer / no 
change / 
cooler), clo, 
MET 

Ta, MRT, RH, 
Va 

3-point thermal 
preference 
(warmer / no 
change / 
cooler) 

Bayesian 
inference, 
clustering 

Logloss 
maximized 
with optimal 
number of 
clusters 

N/A N/A 

(Jiang and 
Yao, 2016) 

Lab data 
from 20 
subjects 

ASHRAE 7-
point thermal 
sensation 
scale, clo, 
MET 

Ta, MRT, RH, 
Va 

ASHRAE 7-
point 
sensation 
scale 

C-Support 
Vector, 
Classification 

Mean 
accuracy: 
proposed 
model =  
89.8% 
PMV model 
= 49.7% 

N/A N/A 

(Auffenberg 
et al., 2015) 

Field 
data 
from 
ASHRA
E RP-
884 
databas
e 

ASHRAE 7-
point thermal 
sensation 
scale, clo, 
MET 

Top, RH, 
Tout, 
seasons 

ASHRAE 7-
point 
sensation 
scale 

Bayesian 
network 

17.5 – 23.5% 
accuracy 
gains 
compared to 
PMV and 
ASHRAE-55 
adaptive 
models 

Root mean 
square error 
converged 
after 10 
votes 

Full 
relearning 
with new 
votes 
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(Ghahramani 
et al., 2015) 

Field 
data 
from 33 
subjects 

11-point 
thermal 
preference 
scale with 3 
labels (cooler 
/no change / 
warmer) 

Ta 3 comfort 
conditions 
(uncomfortably 
warm / 
comfortable / 
uncomfortably 
cool) 

Bayesian 
network, 
online 
learning 

Mean 
accuracy: 
proposed 
model =  
70.1% 
PMV model 
= 56.1% 

N/A Kolmogorov-
Smirnov test 
to remove 
statistically 
irrelevant 
data points 
as new votes 
are added 

(Jazizadeh 
et al., 2014a) 

Field 
data 
from 4 
subjects 

Continuous 
thermal 
preference 
scale with 2 
labels (cooler / 
warmer) at 
both ends 

Ta 5-level thermal 
sensation 
index (very 
cold / cold / 
neutral / warm 
/ very warm), 
associated air 
temperatures 

Fuzzy rules Mean error 
in predicted 
associated 
air 
temperatures 
= 1.17 °C 

N/A N/A 

(Zhao et al., 
2014b) 

Field 
data 
from 9 
subjects 

Continuous 
thermal 
sensation 
scale with 5 
labels (hot / 
warm / neutral 
/ cold / 
extremely 
freezing) 

Ta, MRT, RH, 
Va 

ASHRAE 7-
point thermal 
sensation 
scale 

Least square 
estimation 

Mean square 
error: 
proposed 
model = 0.53 
PMV model 
= 1.16 

N/A Weighted 
forgetting 
factor to 
place more 
emphasis on 
recent data 
and gradually 
remove 
historical 
data 

(Zhao et al., 
2014a) 

Lab data 
from 11 
subjects 

2 complaint 
conditions (too 
hot / too cold) 

Ta, RH 2 complaint 
conditions (hot 
/ cold) 

Classification False 
positive rate 
≤ 0.3 

N/A N/A 

(Gao and 
Keshav, 
2013) 

Field 
data 
from 1 
subject 

ASHRAE 7-
point thermal 
sensation 
scale 

Ta, RH, Va, 
infrared 
intensity of 
clothing 

ASHRAE 7-
point thermal 
sensation 
scale 

Least square 
linear 
regression 

Root mean 
square error 
= 0.54, 
Pearson 
correlation 
coefficient = 
0.89 
between 
predicted 
and actual 
votes 

N/A N/A 

(Rana et al., 
2013) 

Field 
data 
from 6 
subjects 

ASHRAE 7-
point thermal 
sensation 
scale 

Ta, RH ASHRAE 7-
point thermal 
sensation 
scale 

Support 
vector 
machine, 
humidex 

Overall 
accuracy = 
80% 

N/A N/A 

(Daum et al., 
2011) 

Field 
data 
from 6 
subjects 

ASHRAE 7-
point thermal 
sensation 
scale 

Ta Probability of 3 
comfort 
conditions (too 
hot / 
comfortable / 
too cold) 

Logistic 
regression 

N/A Model 
congruency 
increased 
from 0.66 to 
0.87 after 90 
votes based 
on one 
subject 

Removal of 
votes older 
than 30 days 
in the vicinity 
of Ta ± 0.25 
°C with new 
data entry 

(Feldmeier 
and 
Paradiso, 
2010) 

Field 
data 
from 10 
subjects 

3 comfort 
states (hot / 
cold / neutral) 

Ta, RH comfort 
distance from 
the decision 
boundary 
between ‘hot’ 
and ‘cold’ data 
points 

Linear 
discriminant 

Except for a 
few points, 
the predicted 
comfort 
states match 
with the 
reported 
comfort state 
during the 
study period 

N/A Recalculation 
of the comfort 
distance with 
new data 
entry 
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(Liu et al., 
2007) 

Field 
data 
from 113 
subjects 

ASHRAE 7-
point thermal 
sensation 
scale 

Ta, MRT, RH, 
Va 

3 comfort 
conditions 
(cool / warm / 
comfort) 

Neural 
network 

80% 
accuracy 
achieved 
with 20 
samples 
based on 2 
subjects 

Neural 
network 
converged 
after 3000 
iterations 

N/A 

*Note: Ta = indoor air temperature, Top = operative temperature, MRT = mean radiant temperature, RH = relative humidity, Va = air 
velocity, clo = clothing insulation, MET = metabolic rate, CO2 = carbon dioxide level, Tout = outdoor air temperatureKey advances made in 
this collective research about personal comfort models include (1) improved predictive power with 20-40% accuracy gains compared to 
conventional comfort models by employing machine learning algorithms, and (2) diversities in types of data and occupant feedback 
obtained from various sensors and connected devices, well beyond the traditional thermal comfort variables. 

Current research gaps include:  

•   Lack of a unified modeling framework. Research primarily focuses on 
predictive accuracy of the model rather than developing a systematic approach 
to build and evaluate the model for general benefits. 

•   Lack of connection to thermal comfort fundamentals. Previous researchers 
often apply their own interpretations or assumptions in their proposed models 
that are not necessarily grounded in existing thermal comfort research. 

•   Lack of vision for real-world integration. Past research is typically missing 
efforts to describe how the proposed models can be integrated into real-world 
systems to enable intelligent comfort management. 

•   Lack of industry standards. There have been no standardization efforts to 
guide the development and evaluation of personal comfort models and ensure 
their performance in building design and control. 

3.4   A MODELING FRAMEWORK 

Developing a personal comfort model involves the following processes (see Figure 
3-1), including:  

•   Data collection – determine what data will be the basis for the learning 
algorithms and how to collect it 

•   Data preparation – process and prepare raw data into the format ready for 
modeling 

•   Model selection – select learning algorithms appropriate for the given data and 
application goals 

•   Model evaluation – validate predictive performance of the model and readiness 
for its use in applications 

•   Continuous learning – update the model based on new data to ensure 
accuracy and relevance over time 
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Figure 3-1. Modeling process of personal comfort models 

DATA COLLECTION 

To model an individual’s thermal comfort, we need data that: 1) expresses his/her 
perception of thermal comfort, and 2) describes the given conditions or factors (e.g., 
personal, environmental, etc.) influencing that perception. Table 3-2 lists the type of 
data and possible collection methods that can be used for the development of 
personal comfort models. 

Table 3-2. Examples of data types and collection methods* for personal comfort models 

Category Data types 
Thermal comfort perception1 Sensation, preference, acceptability, pleasure 
Personal factors  

Physiological Skin temperature2, heart rate2, metabolic rate 
 Clothing insulation 
 Sex, age, body mass index, health status (e.g., dementia) 

Behavioral Turning on/off fans or heater, thermostat adjustments, opening/closing windows 
Environmental factors  

Indoor3 Air temperature, mean radiant temperature, operative temperature, relative humidity, air velocity 
Outdoor4  Air temperature, running mean temperature, humidity, precipitation 

 Climate, season 
Other factors Time, location, context (e.g., home, office, car, outdoor), occupancy type (e.g., private, shared)  
 Thermal history, cultural expectations (e.g., dress code) 
 Mechanical system settings5 (e.g., thermostat setpoints), availability of occupant controls 

*Frequently used data collection methods include 1survey, 2wearable sensors, 3environmental sensors, 4weather stations, 5building 
automation systems, etc. 

Data collection is more straightforward for some of these variables than others, and 
here are some of the key considerations for some of them. The Appendix includes 
additional criteria to consider.   

•   Thermal comfort metrics: Thermal comfort can be assessed using survey 
questionnaires that ask about thermal sensation, acceptability, preference, 
satisfaction, or a combination (Schweiker et al., 2017). The perceptions are 
then mapped to the measured physical conditions at the time. Thermal 
sensation is by far the most frequently used metric in personal comfort models 
due to its association with the PMV model, and an assumption is then made 
associating comfort with neutral sensation. Thermal acceptability can also be 

Data  
collection

Data  
preparation

Model  
selection

Model  
evaluation

Continuous  
learning
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used with the assumption that “acceptability” is equated with “comfort”. It is 
possible that even when people are not in their ideal state of comfort, they may 
still find it “acceptable”, meaning that it is tolerable or not bad enough to 
complain. Thermal preference is a closer measure of what ideal conditions 
would be, and can be effective if the objective is to use it for the control of 
HVAC (Heating, Ventilation, and Air Conditioning) systems because it 
suggests a direction of change. Thermal satisfaction is often used in the 
assessment of buildings during post occupancy evaluations. It is important to 
understand that different metrics can lead to different assessment of comfort 
requirements, which can have different energy consequences (Berglund, 
1979; Brager et al., 1993). Hence, one can consider the impact of different 
metrics on both comfort and energy outcome when selecting specific metrics 
to model individuals’ thermal comfort. 

•   Variations in scale construction: The standards suggest the use of a 7-point 
ordered or continuous scale for thermal sensation (‘hot’ to ‘cold’), a 3-point 
categorical scale for thermal preference (‘warmer’/’no change’/’colder’), and a 
continuous or 7-point categorical scale for thermal acceptability (‘acceptable’ 
to ‘unacceptable’) (see Figure 3-2). Although it would be ideal if researchers 
used standardized scales for consistency and easy comparisons between 
different models, that is not always the case. Some modelers (Ghahramani et 
al., 2015; Zhao et al., 2014b) have opted to modify or create new scales to 
satisfy their own modeling purposes (e.g., 11-point thermal preference scale, 
5-point thermal sensation scale). The effects of varying scale points are not yet 
well understood in thermal comfort research and the existing ones have been 
challenged (Schweiker et al., 2017). A classic psychology experiment (Miller, 
1956) recommends limiting the response options to 5-7 because our ability to 
make judgments significantly decreases when we are presented with more 
than 7 alternatives simultaneously. 

•   Determining survey frequency: Surveying too often can burden occupants, 
while not surveying enough can lead to insufficient data collection. The 
reviewed studies applied different survey frequencies. Jiang and Yao (Jiang 
and Yao, 2016) surveyed subjects every 10 min during the chamber 
experiments; however, such frequency is not realistic in practice as it can 
significantly interfere with occupants’ daily tasks. Most field studies limit survey 
requests to a few times a day (Rana et al., 2013), or to every hour (Zhao et al., 
2014b), or allow occupants to freely submit surveys with certain rules in place 
(e.g., minimum intervals between consecutive surveys) (Ghahramani et al., 
2015). Determining the right level of survey frequency can, in part, be best 
informed by the number of data points required to produce reliable predictions 
– this is further discussed in 4.4 Model Evaluation. 

•   Measuring clothing insulation: Most personal comfort models do not include 
clothing insulation as their input variable. This may be a deliberate choice to 
reduce the burden of monitoring variables that are difficult to track in real-world 
settings. The only exception is the study by Gao and Keshav (2013), in which 
the occupant’s clothing insulation was estimated based on the infrared 
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intensity of clothing measured by an infrared camera installed in the room. 
However, tracking occupants’ clothing insulation via an infrared camera is not 
only expensive but can also be perceived as invading one’s privacy. An 
alternative method is to use the ASHRAE-55 dynamic predictive clothing 
model (Schiavon and Lee, 2013) to approximate daily clothing pattern based 
on the early morning outdoor temperature. Although this model would only 
predict the average clothing of a group of people and does not distinguish 
between individual differences in clothing choice, it can at least provide an 
estimated input that follows climate variations. 

•   Physiological and behavioral data: Personal data about either comfort-related 
physiological states of the body or behavioral coping strategies are most 
commonly obtained via surveys. As such, the data collection is often 
stochastic and the data accuracy is difficult to validate due to the self-reported 
and self-measured nature of survey responses. Hence, one might supplement 
surveys with objective methods of collecting individual-specific data to ensure 
consistency and quality of the data that can be integrated into personal comfort 
models. As examples, research shows that wearable sensors or connected 
devices can provide continuous data tracking of occupants’ physiological 
conditions (e.g., skin temperature, heart rate) (Choi et al., 2012; Vissers, 2012; 
Hamatani et al., 2015; Ghahramani et al., 2016a; Cheng et al., 2017; Choi and 
Yeom, 2017; Li et al., 2017) or behavioral actions (e.g., personal fan use, 
thermostat adjustments) (Bermejo et al., 2012; Li et al., 2017). 

•   Challenging environmental measurement: Radiant temperature and air 
velocity are often omitted or simplified in the development of personal comfort 
models, largely because modelers intentionally target easily obtainable data 
and the instrumentation to collect these variables is costly. However, several 
studies (Alfano et al., 2011) have shown that these variables significantly 
affect thermal comfort predictions. Efforts are underway to reduce the cost and 
increase the capabilities (e.g., wireless data transfer, longer battery life, 
reduced equipment size) of these instruments for scalable and automated data 
collection in practice (e.g., Hamilton wireless sensor (Andersen, 2017)). 

•   Other influencing factors: Other factors that may influence individuals’ thermal 
comfort include, but are not limited to, time factors (e.g., hour, day, season) 
(Auffenberg et al., 2015; Chun et al., 2008); thermal conditioning systems and 
settings (e.g., active or passive systems, heating/cooling setpoints, availability 
of occupant control) (Brager et al., 2004; de Dear and Brager, 1998); building 
types (e.g., home vs. office) (Karjalainen, 2009; Oseland, 1995); culture (e.g., 
socio-economic status, dress code) (Brager and de Dear, 1998; Shove, 2004; 
Shove et al., 2008); health, mood, demographic attributes (e.g., sex, age) 
(Indraganti and Rao, 2010; Karjalainen, 2007; van Hoof et al., 2017); and 
thermal history (e.g., living/working in air-conditioned vs. naturally ventilated 
buildings, temperature cycles and ramps, short and long term thermal 
exposure) (Brager and de Dear, 1998; Chun et al., 2008; Kolarik et al., 2009; 
Zhang and de Dear, 2017). Many of these factors can be easily obtained 
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without instrumentation to record. Hence, efforts are needed to evaluate their 
importance in predicting individuals’ thermal comfort. 

•   Prioritizing data collection: In practice, it may not be possible to capture all the 
relevant information one needs to develop a personal comfort model. The 
degree to which a certain data type is relevant for a particular individual or 
physical setting may not be apparent. I recommend an iterative approach by 
first targeting the most relevant data for human thermal comfort, and the most 
easily obtainable data for a particular setting, to build the initial model; 
subsequent steps could then expand the datasets as needed to improve the 
model. Note that certain variables may not contribute much to the predictive 
power of the model initially or continuously; however, their relative 
contributions can change over time. For example, humidity may have more of 
an effect in warmer seasons than others, or mean radiant temperature may 
have an effect only during times when there is direct solar gain into the space. 
Hence, it is useful to create a repository of relevant data and periodically 
update the model to reflect changing relationships in the data. 

 

Figure 3-2. Examples of thermal comfort scales (Adopted from ISO 10551 (ISO, 1995))  

DATA PREPARATION 

Personal comfort models integrate highly heterogeneous data sets that are often 
presented in different structures, granularity, and volume. Therefore, it is important to 
prepare the raw data into a format ready for modeling. This involves (1) cleaning 
missing values, outliers, and measurement errors that can misrepresent the general 
trends in observed data; (2) feature scaling to normalize numerical data into a 
consistent range and mean when different scales can skew the model outcome (e.g., 
distance-based clustering) or affect computational speed (e.g., gradient descent); (3) 
aggregating to reduce the volume and granularity of the data by summarizing raw 
values into statistically representative values (e.g., mean) or grouping into discrete 
categories (e.g., Yes/No); (4) feature creation to explore new variables (e.g., rate of 
temperature change) drawn from the raw data that may influence individuals’ thermal 
comfort; (5) merging to combine time-series data from heterogeneous sources with 
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different logging intervals and frequencies; and (6) partitioning to split the data set 
into training and test sets in order to evaluate and fine-tune the trained model based 
on new data. 

MODEL SELECTION 

Personal comfort models often explore non-traditional data types and relationships in 
order to better predict individuals’ thermal comfort. Because of this, there is a strong 
interest in adopting machine learning to make predictions directly from the patterns 
learned from the data. This is a significant departure from the traditional modeling 
approach which was predominantly based on statistical modeling (e.g., linear 
regression) to discover generalizable findings. There are many algorithms available 
in machine learning, and so it is easy to get overwhelmed when trying to select one 
for personal comfort models. 

One way to help navigate the different algorithms is to identify the type of predictions 
expected from the model. The predictions of personal comfort models can be 
numerical (e.g., comfortable temperatures), or categorical (e.g., thermal preference 
classification – ‘warmer’/ ‘no change’/ ‘cooler’). Moreover, one can evaluate whether 
the underlying assumptions and rules adopted by these algorithms are appropriate 
for the given dataset (e.g., data size, quality) and application goals (e.g., real-time 
thermostat control). To guide the selection of appropriate algorithms for personal 
comfort models in particular, I first briefly describe the functional distinctions of 
popular machine learning algorithms in a general way (Witten et al., 2016). 

•   Regression algorithms predict response variables by establishing 
mathematical relationships between different variables. Examples include 
ordinary least squares, linear, and logistic regressions. Since regression 
algorithms require specific mathematical equations to express the 
relationships between variables, their predictive performance depends on how 
accurately these equations represent the true relationships in the real-world. 
The predicted outcomes are usually numerical as the regression is drawn from 
continuous data. However, one can use logistic regression to transform linear 
predictions into probability outcomes between 0 and 1 in order to generate 
categorical predictions. 

•   Decision tree algorithms construct a tree-like model that predicts the target 
response by learning decision rules inferred from the data. Examples include 
Classification and Regression Tree (CART) and conditional decision trees. 
They can be used for both numerical and categorical predictions. Although 
these algorithms perform fast with large datasets, they are prone to overfitting. 
One can use more advanced tree algorithms such as Random Forests or 
Gradient Boosted Trees to reduce the risk of overfitting by aggregating 
predictions of many decision trees. 
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•   Bayesian algorithms apply Bayes’ Theorem to make predictions based on the 
probability of prior events. Examples include Naïve Bayes and Bayesian 
Network. Bayes’ Theorem assumes all input features are independent from 
one another despite the fact that such independence rarely occurs in reality. 
However, Bayesian algorithms tend to perform fairly accurately and can 
efficiently handle large datasets (Bishop, 2006). They can be used for both 
numerical and categorical predictions.  

•   Kernel algorithms map input data into a higher dimensional vector space to 
model non-linear relationships or patterns. Examples include Support Vector 
Machines, Radial Basis Function, Gaussian Process, and Linear Discriminant 
Analysis. They can be effective at modeling complex problems such as human 
thermal comfort and are fairly robust against overfitting (Hofmann et al., 2008). 
However, kernel algorithms can become computationally expensive with high 
dimensional datasets. They can be used for both numerical and categorical 
predictions. 

MODEL EVALUATION 

The goal of model evaluation is to assess how good the model is in predicting 
individuals’ thermal comfort, identify aspects of the model in need of improvement, 
and provide the basis for comparing different models. I list the following criteria that 
can help the evaluation process.  

•   Prediction accuracy assesses how correctly the model predicts. This is 
typically measured based on the differences between the predicted outcome 
and true outcome. For numerical predictions (e.g., acceptable temperature), 
frequently used metrics include the square of the Pearson correlation 
coefficient (R2) and root mean square error (RMSE). For classifications (e.g., 
thermal preference), common metrics include classification accuracy (i.e., the 
fraction of all instances that are correctly classified) and Receiving Operating 
Characteristics (ROC) (Hanley and McNeil, 1982). Note that when the model 
produces probability estimates, calculating prediction accuracy requires a 
threshold to separate one class from another. Also, evaluating the model 
accuracy of different classes require an understanding of their respective 
misclassification costs as predicting a particular class wrong may have bigger 
consequences than others. See the Appendix for a further discussion of the 
optimal thresholds and misclassification costs. 

•   Prediction consistency assesses how much the model predictions vary from 
one sample to another. This helps to evaluate the generalizability of a model 
outside of the training samples. I can measure prediction consistency as the 
degree of spread in predicted values within or across different test sets for 
numerical estimations, and as the degree of spread in prediction accuracy 
across different test sets for classifications. Prediction consistency can be 
expressed using metrics such as variance, standard deviation, or confidence 
interval. 
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•   Model convergence assesses whether the model has converged its learning to 
produce a stable prediction behavior. This helps to determine a quantifiable 
target for data collection and model performance. For personal comfort 
models, model convergence can be evaluated based on: 1) number of data 
points to reach steady-state prediction errors (see Figure 3-3) (Auffenberg et 
al., 2015); 2) number of iterations to reach target performance level (Liu et al., 
2007); or 3) congruency represented as the area of overlap between trained 
and idealized models (Daum et al., 2011). 

 

Figure 3-3. Example of model convergence. RMSE refers to the root mean square error of predicted vs. 
observed thermal sensation votes. In the legend box, ‘Personal’ refers to the proposed personal comfort 
models in (Auffenberg et al., 2015); ‘Adaptive’ refers to the ASHRAE-55 adaptive model; and ‘PMV’ 
refers to the Predicted Mean Vote model. 

CONTINUOUS LEARNING 

Both human perception and physical conditions of thermal comfort can change over 
time. For example, seasons (Nicol et al., 1999) and prevailing outside weather (Rijal 
et al., 2010) can influence people’s preference for cooling and heating. Therefore, 
personal comfort models should adapt to changes observed in the new data, when 
available, in order to stay relevant and accurate over time. Previous studies suggest 
the following methods to continuously update personal comfort models: (1) remove 
statistically irrelevant points from the data set as new data is entered (Ghahramani et 
al., 2015); (2) apply forgetting factors to give more weight to recent data and less 
weight to historical data (Zhao et al., 2014b); (3) remove samples older than one 
month within similar temperature ranges when new data is entered (Daum et al., 
2011); and (4) perform full relearning upon every new data entry (Auffenberg et al., 
2015). While these proposed methods show how personal comfort models can adapt 
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to changes over time, only Ghahramani et al. (Ghahramani et al., 2015) tested their 
proposed method against an actual dataset. Hence, more efforts are needed to 
evaluate these methods as well as other promising methods against real data. Lastly, 
techniques for continuous learning should be performed efficiently in a scalable 
fashion to handle the growing volume of data collected from various connected 
sensors and devices. 

3.5   INTEGRATION INTO THERMAL CONTROLS 

Integrating personal comfort models into indoor environmental control of buildings or 
other systems (e.g., vehicle) offers an opportunity to respond to individuals’ comfort 
needs and desires in everyday comfort management. Such integration requires the 
following major technological components, as shown in Figure 3-4. 

Connected sensors and devices enable collection of input data for the development 
of personal comfort models (e.g., thermal comfort perception, personal and 
environmental measurements). For occupants’ thermal comfort, personal computers 
or mobile devices are an effective way to collect survey feedback on current thermal 
perception. For physiological data, wearable devices or infrared cameras with 
communication capabilities can help to monitor occupants’ heart rate, skin 
temperature, metabolic activity, etc. For behavioral data, one can leverage various 
connected devices or mobile applications available in the market (e.g., occupancy 
sensor, pedometer, GPS tracker, smart thermostat) to track individuals’ occupancy 
status, location, movements, and heating and cooling behavior. HVAC systems 
typically monitor air temperature and sometimes carbon dioxide levels via 
environmental sensors installed in thermal zones. They also track control settings 
(e.g., heating and cooling setpoints, airflow rate) that drive the thermal condition in 
each zone. Additional environmental sensors with wireless connections can be 
installed to monitor individuals’ local environmental conditions and provide additional 
coverages in the building’s environmental sensor network. For outdoor environmental 
conditions, one can set up a local weather station or access a public record of 
weather information available online. 

Network and connectivity enables data transfer from various sensors and devices to a 
central server. The sensors or devices can transmit data directly to the server or 
through a local network hub or gateway via various wireless and wired 
communication channels (e.g., Wi-Fi, RFID, Bluetooth, Cellular, Ethernet). The HVAC 
sensors and control settings can be obtained from the building’s BAS (Building 
Automation System) trend logs. Sending the BAS data to the server may require a 
communication driver to interface the BAS software. The frequency of data reporting 
can range from several minutes to a few seconds depending on the time resolution 
required by the controller to make control decisions. 

A central server hosts the function of data warehousing, analytics, optimization, and 
actuation commands. 1) Data warehousing refers to the electronic storage of historic 
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data collected from different sources. It supports archives and queries of historic 
thermal comfort data. 2) Analytics includes the function of developing and updating 
personal comfort models as well as synthesis of real-time information and model 
predictions to determine which control actions needed to improve thermal satisfaction 
in the occupied spaces. 3) Optimization processes recommendations from the 
analytics and determines the best course of actions that would support the 
organization’s comfort goals and other interacting or competing goals (e.g., energy 
efficiency, cost savings). Dounis and Caraiscos (2009) provide a comprehensive 
review of advanced control algorithms for optimization that can be used to manage 
occupants’ thermal and illuminance comfort, indoor air quality and energy 
conservation. 4) Actuation commands involves sending specific instructions to 
controllers including the type of systems (e.g., HVAC systems, ceiling fans), control 
settings (e.g., thermostat setpoints, terminal air flow rate), spatial scales (e.g., whole 
building, single thermal zone), time factors (e.g., duration, schedules), etc. 

The controllers receive actuation commands from the server to drive the operation of 
thermal conditioning systems. In commercial buildings, the controller is typically a 
BAS which controls the building’s HVAC systems. But, it can also be other systems 
that provide thermal conditioning with the capability to electronically receive actuation 
commands (e.g., Nest, ecobee). The server can use the system’s communication 
protocols (e.g., BACnet) or Application Programming Interface (API), if available, to 
send actuation commands to the controller. The challenge of working with these 
communication protocols or APIs includes the lack of public access and 
standardization – without these it is difficult to develop new applications that leverage 
existing systems and scale them across different systems. sMAP (Simple Measuring 
and Actuation Profile) is an open source information exchange and actuation platform 
that can greatly simplify the interaction between the server and different control 
systems due to its vendor-agnostic approach that unifies control access points 
(Dawson-Haggerty et al., 2010). 
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Figure 3-4. System architecture for occupant-responsive environmental control 

3.6   DISCUSSION 

I discuss some of the challenges and opportunities for applications of personal 
comfort models by answering the following critical questions. 

1.   How can we ensure sufficient collection of occupant feedback on thermal 
comfort? 

Collecting sufficient data that expresses individuals’ perception of thermal comfort is 
critical. Currently, this data is captured through surveys. However, securing 
consistent feedback is difficult (Rana et al., 2013). Some strategies may help, such as 
using survey reminders via email or pop-up notifications. Another option is to pool 
relevant survey responses from other occupants in order to increase the data size 
when there are insufficient data points to develop a personal comfort model 
(Schumann et al., 2010a). The relevance can be determined based the degree of 
similarity in environmental conditions (e.g., temperature ranges), building types (e.g., 
naturally-ventilated vs. mechanically-conditioned), or personal attributes (e.g., age, 
sex). Proxy variables that supplement or replace direct survey responses on thermal 
comfort after training are also a valid path. Research has shown correlations between 
individuals’ thermal comfort survey responses and thermal control behavior (e.g., 
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thermostat adjustments) (Bermejo et al., 2012) and physiological conditions (e.g., 
heart rate, skin temperature) (Choi et al., 2012; Ghahramani et al., 2016a; Choi and 
Yeom, 2017; Dai et al., 2017; Nkurikiyeyezu et al., 2017), both of which can be 
measured continuously via non-intrusive monitoring technologies (e.g., smart 
thermostats, wearable sensors). Hence, they could potentially be used in personal 
comfort models as proxy variables to infer individuals’ thermal comfort. 

2.   How can personal comfort models be generalizable to a larger population? 

Personal comfort models are designed to predict thermal comfort for a single person; 
hence, they are not necessarily directly applicable to other occupants. However, as 
the size and diversity of data increases, repeatable patterns may surface that can be 
generalized to a larger population. For example, grouping of models may form to 
provide general descriptions about thermal comfort that can be attributed to certain 
population segments (e.g., gender, age) or space types (e.g., office, home, car). 
These repeatable patterns can serve as the foundation for creating generalizable 
thermal comfort profiles. The profiles can provide several benefits to the building 
industry at large, including serving as: 1) reasonable baseline models that can be 
readily applied to a new person who does not yet have a personal comfort model or 
whose personal comfort model is still under development; 2) a set of thermal comfort 
profiles that can be used for building/system design and operation to better 
characterize specific thermal comfort requirements across different segmentations of 
the building population; and 3) a more realistic building energy estimation that reflects 
the differences in individuals’ thermal comfort requirements in HVAC control settings  

3.   How can we resolve the differences in thermal preferences among the 
occupants in shared spaces? 

This is not a new problem. It exists whether personal comfort models are available or 
not. With personal comfort models, such differences are revealed and quantified so 
that they can be addressed. The existing studies have explored two approaches 
regarding this issue: 1) consensus-based solutions, and 2) technological solutions 
(for either individuals or groups), often with overlaps between them. 

For consensus-based solutions, Jazizadeh et al. (2014a) selected a temperature 
setpoint that minimized the error between everyone’s preferred and actual room 
temperatures. In the case that acceptable comfort levels could not be achieved for all 
occupants in a zone, Ghahramani et al. (2014) incrementally increased the 
acceptable temperature range of individuals within a pre-defined discomfort 
threshold. Murakami et al. (2007) determined the temperature setpoint by a majority 
vote. Lee et al. (2008) assigned varying priorities to different occupant groups (e.g., 
more emphasis on employees over visitors) in order to determine optimal 
temperature in public zones. Although these strategies needed a system to ultimately 
adjust the setpoint, the underlying decision making was consensus-based. 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 
48 

For technological solutions, Erickson and Cerpa (2012) enabled real-time thermostat 
setpoint adjustments based on occupants’ requests to address the comfort issues in 
shared spaces as they occur. However, this scheme can introduce potential gaming 
of the system and biases toward more vocal occupants. To reduce these effects, they 
limited the vote per person to one in every 10 min and averaged the votes to 
determine the new temperature setpoint at the end of the voting period. Another 
example of a technological solution used personal comfort systems (PCS) to provide 
local heating and cooling without affecting others in the same space (Zhang et al., 
2015b). With PCS, individuals can address their own comfort needs or desires in 
shared spaces, and therefore be less vulnerable to the thermal conditions set by the 
centralized systems. In shared spaces, increasing the granularity of the control (e.g., 
lowered number of occupants per variable air volume box) is also a technological 
solution that could help.  

4.   What is the impact on energy when using personal comfort models to make 
control decisions? 

The ultimate goal for improved building operation is to simultaneously improve both 
energy and comfort performance, but many people still view this as a tradeoff where 
you can only improve one at the expense of the other. Conceptually, personal comfort 
models can help improve performance in both comfort and energy by providing 
information about individuals’ thermal comfort requirements, such as acceptable 
temperature limits for a given space. If the acceptable temperature limits are greater 
than the default temperature setpoint ranges, one can expect HVAC energy savings 
(i.e., fans, reheat) by widening the temperature setpoints (Ghahramani et al., 2016b; 
Hoyt et al., 2015b; Schiavon and Melikov, 2008; Sekhar, 1995). Examples of 
demonstrated energy savings include: 10% energy savings by implementing real-time 
setpoint control using individuals’ online requests (2012); more than 20% savings 
using the consensus-based temperature control strategy (2007); up to 24% by 
adjusting temperature setpoints based on hot or cold complaints by the occupants 
(2010); 39% reduction in daily average airflow by resetting temperature setpoints 
according to occupants’ preferred temperatures (2014a); and 51% reduction in daily 
average air flow by allowing occupants’ comfort level to slightly deviate from their 
preferred temperatures (2014). These savings are based on the volume of energy 
consumption (i.e., kWh). The buildings can also save on the utility cost (i.e., $) under 
variable rates and demand charges by dynamically adjusting HVAC loads during 
peak hours. 

Whether such savings are transferable to another zone or another building depends 
on the thermal comfort requirements of individuals in a given space. It also depends 
on how acceptable temperature limits are defined, such as which thermal comfort 
metric (i.e., thermal sensation, acceptability, preference) is used to determine comfort 
conditions in the personal comfort model. For example, anchoring the model on 
thermal acceptability can lead to wide temperature ranges that are tolerable but not 
ideal. On the other hand, thermal preference, which can be considered the most 
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idealistic metric, can lead to very narrow temperature ranges that are energy-
intensive to maintain. Instead of relying on a single metric, we can develop an 
integrated model that takes into account multiple metrics. This can lead to a more 
holistic representation of individuals’ thermal comfort (Langevin et al., 2013) and 
allow greater flexibility to make control decisions to support various organizational 
goals (e.g., comfort, energy, cost). 

5.   What is the role of standards with respect to personalized thermal comfort 
models? 

Existing standards take prescriptive approaches to thermal comfort provision by 
specifying detailed criteria of an acceptable thermal environment that would satisfy 
the majority of occupants (i.e., 80%). However, a very small percentage of buildings 
fulfil this objective. Data-driven occupant-centric comfort management is gaining 
attention among progressive and forward-thinking building professionals (Talon and 
Goldstein, 2015). Personal comfort models can play an essential role in this new 
paradigm by generating accurate predictions of individuals’ comfort requirements and 
closing the loop between occupants and HVAC systems. However, the existing 
personal comfort models have been independently developed by both academics and 
corporations and are not always in agreement with the standards’ approach to 
thermal comfort assessment. Hence, these research efforts need to be guided in 
order to assure accurate and reliable performance of the model, and to create a more 
standard protocol for different applications. 

Standards can play an important role by allowing a performance-based approach to 
thermal comfort provision, thus allowing more flexibility in buildings to accommodate 
context- and occupant-specific comfort requirements that cannot currently be 
satisfied by the traditional prescriptive approach. Towards this end, standards should 
provide guidelines for this performance-based approach, addressing data collection, 
privacy and security requirements for data storage and access, and the development, 
testing, validation, and implementation of the custom models in buildings. 

3.7   SUMMARY 

A personal comfort model is a new approach to thermal comfort modeling that 
predicts individual’s thermal comfort responses, instead of the average response of a 
large population. In particular, it leverages Internet of Things and machine learning to 
learn individuals’ comfort requirements directly from the real-world data. The review 
of the existing personal comfort models shows improved predictive power compared 
to conventional comfort models (PMV, Adaptive). However, they lack in the following 
areas: systematic modeling processes, thermal comfort fundamentals, vision for real-
world integration, and standardization efforts. To address these gaps, I developed a 
definition of personal comfort models and proposed a unified modeling framework by 
establishing important concepts and methodologies based on prior thermal comfort 
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research and machine learning best practice. The modeling framework focused on 
data collection and preparation, model selection and evaluation, and continuous 
learning. I provided system architecture for the integration of personal comfort models 
in thermal controls, and described the potential role of standards in providing 
guidance to assure accurate and reliable performance of personal comfort models in 
real-world applications. 

Personal comfort models can benefit the building industry by providing necessary 
data to improve the level of thermal comfort among occupants and optimize energy 
use in buildings. With advances in comfort technologies penetrating the built 
environment, the demand for personalized thermal experience will increase. To meet 
this demand, more research is needed to turn the insights generated from personal 
comfort models into actionable control strategies in order to yield a tangible impact on 
people’s comfort satisfaction in buildings. I hope that my work has provided a 
foundation for that to occur. 

The next chapter provides a practical example of how the proposed framework in this 
chapter can be implemented by developing personal comfort models using the PCS 
field study data presented in Chapter 2. 
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4   DEVELOPING PERSONAL COMFORT MODELS USING 

OCCUPANT HEATING AND COOLING BEHAVIOR 

4.1   BACKGROUND 

Providing an acceptable indoor environment is one of the primary functions of 
buildings as it affects occupant satisfaction (Frontczak et al., 2012; Wagner et al., 
2007), health (Allen et al., 2015; Fisk and Rosenfeld, 1997), and productivity 
(Leaman and Bordass, 1999; Tham and Willem, 2010; Wargocki et al., 2000; Wyon, 
2004). Thermal comfort, in particular, is of great importance because it drives the 
operation of HVAC (heating, ventilating, and air conditioning) systems which 
consume 50% of building energy use in developed countries (Pérez-Lombard et al., 
2008). To establish criteria for thermal comfort in building design and operation, the 
standards (ANSI/ASHRAE, 2013; CEN, 2007; ISO, 2005) use two main models – 
Predictive Mean Vote (PMV) and adaptive comfort models, and specify a set of 
thermal conditions that would satisfy a majority (80%) of the occupants. The PMV 
model (Fanger, 1970) provides a mathematical expression of occupants’ thermal 
sensation in terms of environmental (air temperature, radiant temperature, air speed, 
humidity) and personal (metabolic rate, clothing insulation) factors. Fanger derived 
the model from chamber experiment data based on heat balance principles, which is 
now the default thermal comfort model for building design and operation. The 
adaptive models (de Dear and Brager, 1998; Nicol and Humphreys, 2002) provide a 
linear regression of acceptable indoor operative temperatures, derived from field 
study data, as a function of outdoor temperature, and are an alternate thermal 
comfort model for naturally-conditioned spaces. 

However, both PMV and adaptive models have inherent limitations when used to 
predict occupants’ comfort in real buildings. First, both PMV and adaptive models 
show poor predictive accuracy when applied to a small group of people or individuals 
because they are designed to predict the average comfort of a large population 
(Auffenberg et al., 2015; van Hoof, 2008). Second, a full implementation of the PMV 
model requires very specific input variables (e.g., air speed, metabolic rate, clothing 
insulation) that are costly and difficult to obtain in the real-world settings and 
therefore, they are often assumed or simplified. Third, the models do not allow 
additions to their respective set of input variables; hence new variables that show 
relevance to the occupants’ thermal comfort in the real-world settings cannot be 
incorporated in their predictions (e.g., sex, body mass index, time of day, etc.). Lastly, 
the model properties (e.g., function, coefficients) are fixed by the original data set 
(i.e., laboratory data for the PMV model, and field data for the adaptive models), and 
cannot be updated to reflect the actual comfort conditions of individuals in a particular 
setting. 
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To overcome the drawbacks listed above, I propose a new modeling approach called 
a personal comfort model. A personal comfort model predicts individuals’ thermal 
comfort responses instead of the average response of a large population. The key 
characteristics of personal comfort models are that they: (1) take an individual person 
as the unit of analysis rather than populations or groups of people; (2) use direct 
feedback from individuals and relevant data to train a model; (3) prioritize cost-
effective and easily-obtainable data; (4) employ a data-driven approach, which allows 
flexible testing of different modeling methods and potential explanatory variables; and 
(5) has the capacity to adapt as new data is introduced to the model. Personal 
comfort models can be used to better understand specific comfort needs and desires 
of individual occupants and characterize a set of conditions that would satisfy their 
thermal comfort in a given space. Such information can inform the design and control 
decisions of a building or a system to provide optimal conditioning for improved 
comfort satisfaction and energy efficiency. These qualities are in line with the current 
trend of intelligent comfort management (Talon and Goldstein, 2015). 

In recent years, an increasing number of studies (Auffenberg et al., 2015; Cheung et 
al., 2017; Daum et al., 2011; Ghahramani et al., 2015; Jazizadeh et al., 2014b; Jiang 
and Yao, 2016; Liu et al., 2007; Rana et al., 2013) have attempted to develop 
different forms of personal comfort models in order to describe unique comfort 
characteristics of individual occupants based on the data collected from the actual 
spaces. These models predict individuals’ thermal comfort by correlating 
environmental measurements with occupant feedback obtained via survey. The 
machine learning algorithms employed for their model development include support 
vector machine, neural networks, fuzzy rules, logistic regression, Gaussian process, 
and Bayesian network. The results showed significantly improved predictive accuracy 
(17-40% gain) compared to conventional comfort models (PMV, adaptive), reinforcing 
the need for an individualized approach to predict thermal comfort. One study 
(Ghahramani et al., 2014) showed the integration of personal comfort models in 
thermostat control to determine optimal temperature setpoints for select zones. The 
results showed a 12% reduction in average airflow rate in tested zones while 
maintaining or improving comfort. While these studies suggest a promising role of 
personal comfort models in comfort prediction and building control, they share a 
common drawback – using surveys as the sole mechanism to obtain occupant 
feedback about thermal comfort as an ongoing part of building operations. In practice, 
securing sufficient data collection through surveys for training the model is difficult 
due to the potential fatigue and eventual decay in participation (Rana et al., 2013). 
Without sufficient comfort feedback, a personal comfort model cannot describe 
individual-specific comfort needs and desire. Hence, an alternative and/or 
supplementary feedback source that informs about individuals’ thermal comfort is 
needed for the development of personal comfort models. 

Research shows that tracking occupant behavior with thermal control devices (e.g., 
thermostats, fans) can be non-intrusive yet provide additional data points that can be 
used to infer individuals’ thermal comfort (Bermejo et al., 2012). Individuals interact 
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with thermal control devices available in the space to meet their cooling and heating 
needs; hence, the resulting behavior can be regarded as an expression of one’s 
thermal preference. The difference is that we can record behavior in a far less 
intrusive way than surveys. Personal Comfort System (PCS) such as a heated and 
cooled chair (hereinafter referred to as a PCS chair) provides local heating and/or 
cooling via embedded heating strips and fans (Figure 2-1) (Watanabe et al., 2009; 
Pasut et al., 2015; Arens et al., 2015). With personally-owned thermal control devices 
such as PCS, we can trace the associated behavior back to individual occupants, 
creating a direct link to personal comfort. However, no studies have used records of 
occupant behavior with personally-owned thermal control devices for individuals’ 
comfort predictions. 

In this chapter, I present a novel approach for developing personal comfort models 
that use occupant behavior with PCS chairs to predict individuals’ thermal preference. 
In addition, I offer the following contributions to the field of thermal comfort modeling: 
(1) evaluating new variables (i.e., behavior, time factors, system control settings) that 
may affect thermal comfort; (2) comparing the performance of six machine learning 
algorithms (i.e., Classification Tree, Gaussian Process Classification, Gradient 
Boosting Method, Kernel Support Vector Machine, Random Forest, Regularized 
Logistic Regression) for the development of personal comfort models; and (3) 
developing evaluation criteria that account for prediction accuracy, variability, and 
convergence of personal comfort models. 

LINKING BEHAVIOR TO THERMAL COMFORT 

Occupants interact with a variety of building elements (e.g., thermostats, fans, local 
heaters, shades, operable windows, etc.) that impact their comfort. Starting with the 
premise that, when experiencing discomfort, “people react in ways which tend to 
restore their comfort”– such reaction is described as adaptive behavior (Humphreys 
and Nicol, 1998). Field studies show ample evidence of adaptive behavior displayed 
through the use of various thermal control devices available in buildings (Brager et 
al., 2004; Inkarojrit, 2005; Karjalainen, 2009; Raja et al., 2001; Warren and Parkins, 
1984; Zhang and Barrett, 2012). Opening windows for a cool breeze and turning up 
the thermostat to heat the room are examples of adaptive behavior. With the lowered 
cost of sensors and ubiquitous wireless connectivity in buildings, tracking occupants’ 
interaction with thermal control devices has become more affordable over the years. 
Once the initial infrastructure is installed, continuous data acquisition can be 
automated, requiring no additional work by the occupants other than their normal 
behavior. Hence, thermal control devices provide an excellent platform to learn about 
occupants’ thermal preferences. 

Most existing literature to date has studied thermal control behavior and thermal 
comfort in isolated manners without quantitatively linking the two. Behavior literature 
(Andersen et al., 2013; Fritsch et al., 1990; Haldi and Robinson, 2009; Herkel et al., 
2008; Yun et al., 2009) tends to focus on predicting the state of thermal control 
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devices to estimate their effects on the indoor environment, without analyzing the 
impact on comfort. Conversely, comfort literature (Brager et al., 2004; de Dear and 
Brager, 1998; Nicol and Humphreys, 2002) generally focuses on assessing the 
thermal comfort of occupants who have access to those devices without explicitly 
accounting for their actual control actions. Understanding the link between the two 
can provide insights into the underlying comfort drivers behind the control actions. A 
few studies (Haldi and Robinson, 2010; Langevin et al., 2015; Liu et al., 2013) map 
thermal control actions to occupants’ comfort to quantitatively describe the 
relationship between the two. However, their unit of analysis is individual devices that 
are typically shared in buildings (e.g., windows). As such, their findings cannot be 
personalized (with the exception of private offices). Despite the substantial use of 
personally-owned thermal control devices (e.g., desk fans, space heaters) when 
available, only two studies (Langevin et al., 2015; Nicol, 2001) addressed them, but 
their analysis is based on aggregated users instead of following individuals. 
Characterizing individuals’ thermal control behavior is important since occupants 
often have different thermal preferences. This research gap represents an excellent 
opportunity to learn individuals’ thermal preferences based on their behavior with 
personally-owned thermal control devices. 

CONNECTED PCS CHAIR AND CONTINUOUS DATA 

Personal comfort system (PCS) refers to heating and cooling devices that allow 
individuals to control their local thermal environment to meet their comfort needs or 
desires (Veselỳ and Zeiler, 2014; Zhang et al., 2015b). The current practice of 
delivering uniform thermal conditions does not account for individual differences in 
comfort requirements. Grivel and Candas (Grivel and Candas, 1991) show that the 
standard deviation in individual differences in preferred temperature is 2.6°C, all other 
things being equal. But given the natural variations in people’s clothing and activity 
levels, differences in people’s preferred temperature in the same building are likely to 
be even greater. Hence, it is impossible to satisfy everyone sharing the same space 
with a single thermostat. PCS offers a complementary solution to centralized systems 
by creating a highly customizable microclimate zone in an occupant’s workstation 
without affecting others in the same space. In this case, the centralized system is 
then responsible for maintaining ambient conditions within a range in which the PCS 
can correct for each individual’s thermal comfort needs, instead of a much narrower 
range that is a compromise for all occupants in that space. The wider range of 
acceptable ambient temperature conditions will allow HVAC systems to operate 
under a wider temperature setpoints, leading to significant energy savings (Sekhar, 
1995; Schiavon and Melikov, 2008; Hoyt et al., 2015b; Ghahramani et al., 2016b). 

PCS comes in many different forms including personal fans (desk, tower, standing), 
personal heaters (convective, radiant, or conductive), and systems such as heated 
and/or cooled chairs. These devices target sensitive body parts that can have a 
significant influence on the whole-body thermal comfort. Studies have shown that 
local cooling and heating via PCS can improve thermal satisfaction (Bauman et al., 
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1998; Amai et al., 2007; Watanabe et al., 2010) and lead to higher acceptance of 
wider temperature excursions (Zhang et al., 2015b). In recent years, a group of 
researchers at the Center for the Built Environment (CBE) at the University of 
California, Berkeley developed a new controller for PCS chairs that can record 
continuous streams of heating and cooling usage data, occupancy status, and 
environmental measurements (e.g., air temperature, relative humidity) via embedded 
sensors (Andersen et al., 2016b). This presents a unique opportunity to learn 
individuals’ thermal control behavior and comfort preferences. Such knowledge can 
enable intelligent comfort management in both new and existing buildings to provide 
‘just the right’ amount of conditioning to meet occupant needs, in contrast to over-
conditioning that results from tight setpoint management. 

4.2   METHODS 

DATA SETS 

To develop personal comfort models, I used the data from a field study that examined 
the behavior and thermal comfort perceptions of 38 occupants who used a PCS chair, 
developed by CBE, in an office building located in northern California, between April 
and October 2016. To my knowledge, it is the largest field study ever conducted with 
PCS. (Bauman et al., 2017) provides detailed descriptions of the field study methods. 

The field study produced the following data sets: (1) PCS chair data: Each PCS chair 
recorded heating/cooling intensity (in a scale from 0 to 100%) and heating/cooling 
location (seat, back), chair occupancy, air temperature, and relative humidity at 20-s 
intervals. Figure 4-1 shows an example of PCS chair data; (2) Environmental data: 
HOBO data loggers (Model U12-012, Onset, USA) recorded air temperature, relative 
humidity, and globe temperature (only for perimeter offices) at 5-min intervals in each 
workstation where the subjects were located; (3) Survey data: The subjects 
completed an online survey three times daily to report their current thermal 
acceptability, thermal preference, and clothing ensembles; (4) HVAC system data: 
Variable Air Volume (VAV) control settings and thermostat readings in the HVAC 
zones where the subjects were located were downloaded at 5-min intervals from the 
building’s BAS; and (5) Weather data: The hourly weather data of a nearby weather 
station was downloaded from the National Centers for Environmental Information, 
National Oceanic and Atmospheric Administration 
(https://www7.ncdc.noaa.gov/CDO/cdo). 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 
56 

 

Figure 4-1. Example of continuous PCS chair data of a subject between 7am and 7pm. Tair refers to 
indoor air temperature measured via the temperature sensor embedded in the PCS chair. The location 
of heating and cooling shown here refers to either the back or the seat. 

Table 4-1 summarizes the field study conditions represented in the data sets. 

Table 4-1. Statistical summary of field conditions (indoor and outdoor) across all subjects during 
occupied hours excluding weekends and holidays.  

 Indoor Outdoor 
 Air temperature (°C) Globe temperature* (°C) Relative humidity (%) Temperature (°C) 

Mean 24.3 24.0 47.4 14.4 
Median 24.2 23.8 47.1 13.9 

Lower and upper 
percentiles 

(5/10/90/95) 
22.2 / 22.6 / 26.2 / 26.9 21.8 / 22.2 / 26.0 / 26.7 41.8 / 43.0 / 52.1 / 54.1 12.2 / 12.2 / 17.2 / 17.8 

* Globe temperature only reflects the conditions in perimeter workstations. 

DATA PREPARATION 

I processed the data using the following steps: (1) Data cleansing: I grouped the PCS 
chair data into 1-min intervals. The anomalous (i.e., outside of equipment control 
range) and unlikely (i.e., outside of normal exposed environmental conditions) values 
were replaced with a value from the prior interval; (2) Feature creation: I created new 
features from the existing data sets to provide additional information about 
individuals’ behavior and environmental conditions. First, I calculated duration and 
frequency of heating/cooling use in the previous 1 h, 4 h, 1 d, and 1 wk to describe 
short- and long-term control behavior patterns. I normalized the duration of 
heating/cooling use by the occupied duration of each time interval. Second, I 
quantified ramping conditions in air temperature (slope, °C/h) to indicate changes in 
ambient conditions experienced in the occupied space. Positive values indicate 
warming conditions while negative values indicate cooling conditions. The absolute 
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value indicates the magnitude of changes. Lastly, I computed weighted running mean 
outside air temperature over the previous 30 days as per the calculation methods in 
ASHRAE 55, Informative Appendix I (ANSI/ASHRAE, 2013) to measure the impact of 
prevailing outdoor conditions; (3) Data merging: I merged the survey data with chair, 
HVAC, and weather data based on the nearest date/time for each subject. The final 
set consists of 4743 entries with 67 features.  

Table 4-2 shows the list of features used for model development. Note that the term 
“feature” is the same as “variable” in this chapter; and (4) Pre-processing: I 
standardized all numerical features to have zero mean and unit variance. All levels of 
categorical features were converted into dummy features encoded in a series of zero 
and one. I removed constant features (with zero variance) and missing values from 
the data set. 

Table 4-2. Description of features used for personal comfort models. 

Category Feature Unit Type* 
Survey 
  

Thermal preference warmer/no change/cooler C 
Clothing insulation level clo N 

PCS control behavior 
  
  

Control location seat/back/both/none C 
Control intensity  % N 
Control frequency in the past x (x = 1h, 4h, 1d, 1wk) number of use N 
Occupancy status seated/unseated/unknown C 
Occupancy frequency in the past x (x = 1h, 4h, 1d, 1wk) number of occupancy N 
Ratio of control duration over occupancy duration in the past x  
(x = 1h, 4h, 1d, 1wk) % N 

Date/Time 
  

Hour of day h (0-23) N 
Day of week d (0-6) N 

Indoor environment 
  
  

Air temperature °C N 
Operative temperature °C N 
Relative humidity % N 
Slope in air temperature °C/h N 

Outdoor environment 
  

Outdoor air temperature °C N 
Sky cover clear/scattered C 
Weighted mean monthly temperature °C N 
Precipitation Yes/No C 

HVAC system 
  
  
  
  

Room temperature °C N 
Room airflow ft3/min N 
Room damper position % N 
Room heating output % N 
Room discharge air temperature °C N 

* Type includes categorical (C) and numerical (N) features. 
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MACHINE LEARNING ALGORITHMS 

In this chapter, I used machine learning to solve multiclass classification problems of 
an occupant’s thermal preference (‘warmer’/’no change’/’cooler’). I used thermal 
preference as the dependent variable because it informs about how to improve 
current comfort conditions by describing the occupant’s preferred comfort state; 
hence, thermal preference can be used to make actionable recommendations for 
HVAC control to improve the occupant’s comfort satisfaction. I use survey responses 
of thermal preference as the ground truth to verify the predicted thermal preference of 
individual occupants. As such, the data size for each model is limited by the total 
survey responses per occupant. Although a wide variety of algorithms exist in 
machine learning, the given dataset precludes some algorithms (e.g., deep neural 
network) due to its high dimensional and small size data. Considering this, I selected 
six machine learning algorithms that do not require strong data assumptions, and 
describe each algorithm and its hyper-parameter settings below. I used an exhaustive 
grid search to identify the best performing parameter settings for each machine 
learning algorithm. 

Classification Tree (CTree): CTree creates a tree-like model that predicts the value of 
a target variable by learning simple decision rules inferred from the data features. I 
adopted the non-parametric conditional inference tree algorithm implemented in the 
Party package (version 1.2-3), which used multiple significance tests to grow the tree. 
I varied the maximum tree depth from 10 to 50 by factors of ten. The splitting 
threshold was varied from 0.1 to 0.9 with 0.1 intervals. 

Gaussian Process Classification (GPC): GPC solves a latent function for 
classification with a generic Gaussian process, which is then squashed through a 
logistic function to produce probabilistic classification. I implemented GPC with the 
kernlab package (version 0.9-25), which included several approximation algorithms 
for acceleration. I used the radial basis kernel and varied the kernel width from 2-5 to 
23 with an incremental factor of 2. 

Gradient Boosting Method (GBM): GBM generates a prediction model based on an 
ensemble of many weak classifiers to build a stronger classification committee. I used 
the AdaBoost procedure (Freund and Schapire, 1996) implemented in the gbm 
package (version 2.1.3) to combine basic tree classifiers for ensemble learning. I 
varied the maximum depth of feature interaction from 1 to 5 by a step size of one, and 
the number of boosting iterations from 100 to 500 by a step size of 100. 

Kernel Support Vector Machine (kSVM): kSVM uses optimal separating hyperplane 
that maximizes the separation margin of two data groups (classes) to build a 
prediction model. Its dual form allows the use of kernels to efficiently operate in high 
dimensional spaces. I used the kernlab package (version 0.9-25) which implemented 
the sequential minimal optimization algorithm to train SVM classifiers with the 
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Gaussian radial basis function kernel. I varied the kernel width from 2-5 to 23 with a 
factor of 2. I varied the penalty parameter from 0.1 to 5 by 0.5. 

Random Forest (RF): RF is an ensemble classifier that produces mean predictions of 
many decision trees constructed from random subsets of the dataset. I implemented 
RF using the randomForest package (version 4.6-12). I grew 500 trees and fixed the 
size of the feature set considered at each split to 15. 

Regularized Logistic Regression (regLR): LR models a posterior distribution for 
classification as a sigmoidal function of linear combinations of features. I combine LR 
with elastic net regularization to penalize inefficient logistic regression coefficients 
(Zou and Hastie, 2005). I use the glmnet package (version 2.0-10) to train LR models 
with elastic net regularization. I varied the penalty parameter from 100 to 101 by 0.02. 
The mixing parameter was varied from 0 (Ridge) to 1 (Lasso) by a step size of 0.2. 

I used k-fold cross validation to randomly split the data into training and test sets to 
estimate the predictive performance of a model. The cross validation was split in two 
folds to avoid small sample size in each class and repeated 150 times to reduce bias 
that may be introduced by certain data splits. I applied the same data splits across all 
tested algorithms to allow direct comparison of their performance. Note that the 
current data set exhibits unequal distribution in thermal preference classes. To 
address this imbalance, I resampled the training data to match the size of minority 
classes to that of the majority class. The final model was tuned based on the 
parameters that produced the best predictive performance on the cross validation set. 
I used R (version 3.4) and RStudio (version 1.0.143) to run all of the models 
described in this chapter. I used the caret package (version 6.0-76) as a wrapper to 
interface different machine learning algorithms and conduct pre-processing, 
resampling, and cross validation. 

PERFORMANCE EVALUATION 

To evaluate the performance of personal comfort models, I used the following criteria:  

•   Prediction accuracy: does the model correctly predict? 
•   Prediction variability: how consistent is the model prediction?  
•   Model convergence: has the model converged its learning? 

These criteria help to assess how good a model is in predicting individuals’ thermal 
preference, identify aspects of a model in need of improvement, and provide the 
basis for comparing different modeling methods. 

I use the Area Under the Receiver Operating Characteristic (ROC) Curve as the base 
metric to quantitatively assess the above criteria. ROC curves provide a standard 
way of describing the predictive behavior of a binary classifier (Hanley and McNeil, 
1982; Majnik and Bosnić, 2013). The curve plots the probability of true positive rate 
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(i.e., the probability of correctly classifying samples as positive) over false positive 
rate (i.e., the probability of falsely classifying samples as positive) across all possible 
discrimination thresholds (Figure 4-2). Hence, it is ideal when the optimal threshold is 
unknown. The Area Under the Curve (AUC) reduces the information of the ROC 
curve into a single index to estimate the predictive accuracy of a classification model. 
AUC can vary between 0 and 1; AUC = 0.5 denotes random guessing while 1.0 
indicates perfect accuracy. I use the “one versus the rest” method (Ferri et al., 2009) 
to extend binary ROC into the three-class classification problem of thermal 
preference. The overall performance of a thermal preference classifier is computed 
by averaging AUC of the ROC curves for all three classes. 

 

Figure 4-2. Graphical definition of receiving operating characteristic curve.  

Using AUC, I quantify each performance criterion listed above. Table 4-3 lists the 
performance criteria and corresponding measures used for model evaluation in this 
chapter where: prediction accuracy is the average AUC of all cross validation sets, 
prediction variability is the standard deviation of AUC within the cross validation sets, 
and model convergence is the rate of change in AUC over training data size. 

Table 4-3. Performance criteria and measures used for model evaluation 

Criteria Description Measure 
Predictive accuracy Accuracy of model predictions Mean AUC of cross validation sets 
Prediction variability Dispersion of model predictions Standard deviation of AUC of cross validation sets 
Model convergence Convergence of learning rate Derivative of AUC over training data size 
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4.3   RESULTS AND DISCUSSION 

PREDICTION ACCURACY AND VARIABILITY 

Table 4-4 summarizes the prediction accuracy and variability of the six algorithms 
(CTree, GPC, GBM, kSVM, RF, and regLR) used to develop personal comfort models 
for 34 out of the 38 subjects who participated in the field study. There were 4 subjects 
who only voted for ‘no change’ as a result of mild indoor temperatures during the 
study period. The table does not include these subjects since models cannot be 
trained on a single class. I report the results in mean and standard deviation of cross-
validated AUC. The last row in the table shows the average performance of each 
algorithm across all subjects. The last column shows the average and the highest 
AUC of the six algorithms used for personal comfort models for each subject. I also 
provide the prediction results of the PMV and adaptive models to compare the 
personal and conventional comfort models. I used the comf package (version 0.1.4) 
to compute the PMV and adaptive models as per the calculation methods in ISO 
7730 (2005) and ASHRAE 55 (2013), respectively. I used the field data (i.e., air 
temperature, operative temperature, humidity) and the static values (i.e., air velocity = 
0.1 m/s, metabolic rate = 1.2 met, clothing insulation = 0.6) for the PMV calculation. 
To compare the results on the same scale, I convert PMV into thermal preference 
classes based on the following assumptions: |PMV| ≤ 0.5 is ‘no change’; PMV > 0.5 is 
‘want cooler’; and PMV < -0.5 is ‘want warmer’, as used in (Ghahramani et al., 2015). 
These assumptions reflect 80% thermal satisfaction with 10% dissatisfaction from 
whole-body discomfort and 10% dissatisfaction from local discomfort. To convert the 
output of the adaptive model into thermal preference classes, I assume acceptable 
operative temperature within 80% acceptability limits to be ‘no change’; and 
greater/less than the upper/lower 80% acceptability limits to be ‘want cooler/warmer’, 
respectively. 

Table 4-4. Predictive performance of personal comfort models and conventional comfort models across 
all subjects. Prediction accuracy and variability are expressed as the mean and standard deviation 
(shown in brackets) of all cross-validated AUC respectively. 

User 
ID 

Data 
size 

Conventional comfort 
Personal comfort models* 

models 

PMV Adaptive CTree GBM GPC kSVM RF regLR Median / 
Best 

1 172 0.55 
(0.04) 

0.50 
(0.00) 

0.76 
(0.05) 

0.80 
(0.06) 

0.84 
(0.04) 

0.83 
(0.03) 

0.86 
(0.05) 

0.83 
(0.05) 0.83 / 0.86 

2 132 0.52 
(0.04) 

0.52 
(0.04) 

0.52 
(0.06) 

0.53 
(0.06) 

0.48 
(0.07) 

0.48 
(0.08) 

0.58 
(0.06) 

0.53 
(0.05) 0.52 / 0.58 

3 167 0.52 
(0.04) 

0.50 
(0.00) 

0.61 
(0.06) 

0.64 
(0.06) 

0.75 
(0.04) 

0.73 
(0.05) 

0.73 
(0.05) 

0.69 
(0.06) 0.71 / 0.75 

4 138 0.60 
(0.02) 

0.54 
(0.03) 

0.76 
(0.07) 

0.85 
(0.05) 

0.81 
(0.06) 

0.82 
(0.05) 

0.87 
(0.04) 

0.86 
(0.05) 0.83 / 0.87 
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5 147 0.50 
(0.00) 

0.50 
(0.00) 

0.60 
(0.13) 

0.62 
(0.13) 

0.73 
(0.07) 

0.70 
(0.09) 

0.65 
(0.11) 

0.61 
(0.13) 0.64 / 0.73 

6 135 0.50 
(0.00) 

0.50 
(0.00) 

0.60 
(0.11) 

0.67 
(0.11) 

0.62 
(0.14) 

0.63 
(0.12) 

0.66 
(0.11) 

0.65 
(0.13) 0.64 / 0.67 

7 82 0.53 
(0.04) 

0.50 
(0.00) 

0.51 
(0.06) 

0.59 
(0.08) 

0.58 
(0.07) 

0.57 
(0.08) 

0.61 
(0.08) 

0.63 
(0.08) 0.58 / 0.63 

8 132 0.72 
(0.03) 

0.50 
(0.00) 

0.54 
(0.08) 

0.61 
(0.10) 

0.58 
(0.07) 

0.59 
(0.08) 

0.64 
(0.10) 

0.60 
(0.10) 0.59 / 0.64 

9 110 0.67 
(0.13) 

0.50 
(0.00) 

0.50 
(0.10) 

0.51 
(0.20) 

0.74 
(0.08) 

0.74 
(0.09) 

0.56 
(0.17) 

0.48 
(0.13) 0.53 / 0.74 

10 118 0.50 
(0.00) 

0.50 
(0.00) 

0.49 
(0.09) 

0.55 
(0.14) 

0.68 
(0.09) 

0.68 
(0.09) 

0.59 
(0.11) 

0.52 
(0.13) 0.57 / 0.68 

11 110 0.47 
(0.01) 

0.50 
(0.00) 

0.52 
(0.11) 

0.58 
(0.11) 

0.54 
(0.07) 

0.53 
(0.09) 

0.55 
(0.12) 

0.59 
(0.11) 0.55 / 0.59 

12 124 0.40 
(0.12) 

0.50 
(0.00) 

0.51 
(0.11) 

0.68 
(0.15) 

0.67 
(0.17) 

0.71 
(0.15) 

0.81 
(0.10) 

0.75 
(0.13) 0.70 / 0.81 

13 147 0.50 
(0.00) 

0.50 
(0.00) 

0.64 
(0.06) 

0.70 
(0.05) 

0.67 
(0.05) 

0.66 
(0.05) 

0.71 
(0.05) 

0.71 
(0.05) 0.69 / 0.71 

14 33 0.46 
(0.08) 

0.50 
(0.00) 

0.67 
(0.20) 

0.60 
(0.11) 

0.51 
(0.07) 

0.59 
(0.12) 

0.73 
(0.16) 

0.68 
(0.11) 0.63 / 0.73 

15 110 0.54 
(0.04) 

0.50 
(0.00) 

0.62 
(0.09) 

0.73 
(0.07) 

0.72 
(0.07) 

0.71 
(0.07) 

0.74 
(0.06) 

0.70 
(0.07) 0.72 / 0.74 

16 141 0.50 
(0.00) 

0.50 
(0.00) 

0.60 
(0.08) 

0.66 
(0.07) 

0.68 
(0.07) 

0.66 
(0.06) 

0.68 
(0.07) 

0.66 
(0.07) 0.66 / 0.68 

17 103 0.57 
(0.10) 

0.50 
(0.00) 

0.57 
(0.12) 

0.69 
(0.17) 

0.66 
(0.18) 

0.70 
(0.20) 

0.69 
(0.17) 

0.64 
(0.25) 0.67 / 0.70 

18 140 0.50 
(0.00) 

0.50 
(0.00) 

0.77 
(0.06) 

0.83 
(0.04) 

0.79 
(0.06) 

0.82 
(0.05) 

0.85 
(0.04) 

0.83 
(0.04) 0.82 / 0.85 

19 148 0.53 
(0.02) 

0.50 
(0.00) 

0.57 
(0.06) 

0.62 
(0.06) 

0.60 
(0.05) 

0.60 
(0.05) 

0.65 
(0.06) 

0.63 
(0.06) 0.61 / 0.65 

20 132 0.50 
(0.00) 

0.50 
(0.00) 

0.74 
(0.07) 

0.85 
(0.05) 

0.82 
(0.03) 

0.81 
(0.04) 

0.85 
(0.04) 

0.83 
(0.06) 0.83 / 0.85 

21 65 0.50 
(0.00) 

0.50 
(0.00) 

0.55 
(0.07) 

0.58 
(0.09) 

0.68 
(0.08) 

0.66 
(0.12) 

0.66 
(0.08) 

0.59 
(0.09) 0.62 / 0.68 

22 121 0.50 
(0.00) 

0.50 
(0.00) 

0.66 
(0.09) 

0.70 
(0.06) 

0.77 
(0.06) 

0.76 
(0.06) 

0.72 
(0.06) 

0.72 
(0.06) 0.72 / 0.77 

23 134 0.54 
(0.04) 

0.50 
(0.00) 

0.67 
(0.08) 

0.76 
(0.07) 

0.77 
(0.05) 

0.76 
(0.05) 

0.80 
(0.05) 

0.77 
(0.05) 0.76 / 0.80 

24 116 0.62 
(0.03) 

0.60 
(0.03) 

0.75 
(0.05) 

0.83 
(0.03) 

0.84 
(0.03) 

0.83 
(0.03) 

0.87 
(0.03) 

0.87 
(0.03) 0.84 / 0.87 

25 109 0.50 
(0.00) 

0.50 
(0.00) 

0.85 
(0.08) 

0.94 
(0.04) 

0.94 
(0.03) 

0.94 
(0.02) 

0.96 
(0.02) 

0.93 
(0.05) 0.94 / 0.96 

26 49 0.72 
(0.12) 

0.50 
(0.00) 

0.53 
(0.13) 

0.58 
(0.14) 

0.52 
(0.14) 

0.61 
(0.16) 

0.62 
(0.13) 

0.71 
(0.13) 0.59 / 0.71 

27 138 0.54 
(0.03) 

0.50 
(0.00) 

0.61 
(0.06) 

0.62 
(0.06) 

0.65 
(0.05) 

0.64 
(0.06) 

0.67 
(0.05) 

0.61 
(0.06) 0.63 / 0.67 

28 218 0.52 
(0.02) 

0.50 
(0.00) 

0.86 
(0.04) 

0.92 
(0.02) 

0.90 
(0.02) 

0.90 
(0.02) 

0.93 
(0.02) 

0.90 
(0.02) 0.90 / 0.93 

29 185 0.50 
(0.00) 

0.50 
(0.00) 

0.77 
(0.22) 

0.95 
(0.04) 

0.78 
(0.20) 

0.87 
(0.11) 

0.93 
(0.07) 

0.94 
(0.07) 0.90 / 0.95 

30 86 0.52 
(0.02) 

0.50 
(0.00) 

0.59 
(0.07) 

0.60 
(0.06) 

0.62 
(0.05) 

0.64 
(0.05) 

0.62 
(0.05) 

0.65 
(0.05) 0.62 / 0.65 
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31 133 0.49 
(0.01) 

0.50 
(0.00) 

0.55 
(0.07) 

0.52 
(0.07) 

0.58 
(0.07) 

0.57 
(0.08) 

0.54 
(0.07) 

0.54 
(0.07) 0.54 / 0.58 

32 44 0.58 
(0.08) 

0.50 
(0.00) 

0.64 
(0.11) 

0.74 
(0.10) 

0.83 
(0.08) 

0.83 
(0.09) 

0.81 
(0.08) 

0.76 
(0.12) 0.79 / 0.83 

33 133 0.56 
(0.04) 

0.54 
(0.03) 

0.83 
(0.05) 

0.88 
(0.03) 

0.89 
(0.03) 

0.89 
(0.03) 

0.91 
(0.03) 

0.89 
(0.03) 0.89 / 0.91 

34 136 0.53 
(0.05) 

0.50 
(0.00) 

0.84 
(0.05) 

0.90 
(0.03) 

0.90 
(0.03) 

0.89 
(0.03) 

0.91 
(0.03) 

0.92 
(0.03) 0.90 / 0.92 

Median 123 0.52 
(0.03) 

0.50 
(0.00) 

0.61 
(0.08) 

0.68 
(0.07) 

0.70 
(0.07) 

0.71 
(0.07) 

0.71 
(0.06) 

0.70 
(0.06) 0.68 / 0.73 

* The best and worst performing algorithm among the six personal comfort models are marked in green and purple colors respectively for 
each subject. 

For these subjects with PCS chairs, the median accuracy of personal comfort models 
was 68%. When I only consider the best performing algorithm from each subject, this 
value became 73%. On average, personal comfort models based on the best 
performing algorithms improved predictions by 43% from that of conventional comfort 
models. The PMV and adaptive models predicted individual thermal preference only 
slightly better than random guessing (50%). This is because conventional comfort 
models are designed to predict the comfort of a large population instead of specific 
individuals, and their predictions are biased towards ‘no change’ due to the relatively 
mild indoor environmental conditions observed in the field study. There was a large 
variation in prediction accuracy between individual’s models. Some models produced 
over 90% prediction accuracy while others predicted worse than random guessing. 
This indicates that individual’s decision-making process for thermal preference differs 
a lot in their complexity and that there are people that are more predictable than 
others. The variability in prediction accuracy among the repeated cross validations 
sets (300 sets) for individuals’ personal comfort models was fairly small, mostly within 
0.10 standard deviation, indicating stable prediction behavior in the trained models. 
However, this value increased to 0.25 depending on the subjects and modeling 
methods. 

To compare the prediction accuracy of different modeling methods, I plot a bar chart 
by grouping the results by modeling methods (Figure 4-3). The boxplots are ordered 
by their mean value. Among the tested algorithms, RF displayed the highest 
performance (median AUC=0.71), followed by kSVM and regLR. The difference 
between the top three algorithms was small (within 1% of each other). The middle tier 
included GPC and GBM with the median AUC of 0.70 and 0.68 respectively. The 
worst performing model was CTree. On average, CTree performed 10% worse than 
RF and 7% worse than the average of all other algorithms. This is not surprising as 
CTree draws its decision rules by recursive splitting of a dataset which can lead to 
myopic rule selection and overfitting. However, CTree generates a highly 
interpretable model (easy to understand how the model generates rules/fits) and runs 
fast with large datasets. More complex models such as RF, kSVM, and regLR tend to 
produce better predictive accuracy because they are effective at handling high 
dimensions (i.e., a large number of features) and controlling noise in the data. But, 
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they are often difficult to interpret and computationally expensive (e.g., kSVM 
required three more CPU times on average to complete the same task as CTree for 
this dataset). 

 

 

Figure 4-3 (a) Distribution of prediction accuracy across all subjects for each modeling method. The top 
boxplots six represent personal comfort models. The bottom two represents conventional comfort 
models. The boxplots are ordered by the decreasing order of mean AUC, marked as a red circle. The 
dashed line indicates a reference line for random guessing. (b) Distribution of prediction accuracy 
across all subjects grouped into personal comfort models and conventional comfort models (labeled as 
“Personal models” and “Conventional models” respectively). 

While I focus on predictive accuracy to compare different modeling methods here, 
note that there are other factors such as computational speed, interpretability, 
robustness, scalability, etc. that impact the quality of a model. Depending on the 
application of the model (e.g., real-time HVAC control), some of these factors may 
have a greater influence on model selection than others. 

MODEL CONVERGENCE 

Model convergence indicates whether the current model has converged its learning 
to produce stable predictions or not. Figure 4-4 shows the learning curve of the 
individuals’ personal comfort models as a function of prediction accuracy over training 
data size. To plot this curve, I repeatedly ran each subject’s model by adding five 
data points at a time in the sequential order of data collection until the model 
exhausts the full data set. The x-axis represents the number of data points increased 
from left to right. The y-axis represents the mean AUC of cross validation sets (two 
folds repeated 150 times). I applied the same tuning parameters across all subset 
models in this figure. To determine whether a model has converged or not, I 
calculated the rate of learning by taking the derivative of the curve with respect to 
data size. I considered a model to have converged when the derivative plateaus 
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(within ±0.001) for two successive runs. Based on this rule, I determined the training 
data size at which the individuals’ model first converged and showed this as a boxplot 
in this figure as well. Note that the boxplot does not include the data from the four 
individuals (User 10, 14, 26, and 32) whose model did not converge within the given 
data set. The Appendix includes separate plots of the individuals’ learning curve to 
show their unique convergence pattern more clearly. I also show the overall learning 
trend across all subjects in this figure by fitting a local polynomial regression line to 
the aggregated prediction accuracy of everyone’s personal comfort models.  

 

Figure 4-4. Learning curve of individual subjects’ personal comfort models expressed as the derivative 
of mean AUC with respect training data size (shown in dashed lines). The solid line is the local 
polynomial regression (LOESS) fit to aggregated mean AUC of all subjects’ models over training data 
size. The boxplot shows the distribution of the training data size at which the individuals’ model first 
converged. 
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The aggregated trend shows that prediction accuracy generally improves as the 
number of samples increases. However, the individual subjects display different 
learning trends from one another. For some, the learning converged quickly while for 
others it is still ongoing (as shown in Figure 4-5). This indicates that the amount of 
data needed to achieve a stable prediction behavior varies between individuals. I 
observe that convergence occurs when sample size reaches 64 on average. This 
means that individual subjects need to supply over 60 survey responses in order to 
produce a model with stable predictions. However, depending on the occupants’ 
survey participation, obtaining sufficient training data can be challenging if the survey 
participation rate is low (e.g., User 14, 26, and 32 submitted less than 50 survey 
responses over the three-month period). Note that some models go through more 
than one convergence (See Figure 4-5). This is because the model has to relearn 
new patterns in the data with the addition of new data points. And, each time the 
model relearns, it needs enough sample size to reach stable predictions. For future 
studies, I suggest the use of online machine learning to automatically update models 
as new samples of data arrive. Convergence does not guarantee good predictive 
performance. Converged models can suffer from poor accuracy and large variability 
in predictions. Hence, the evaluation of a personal comfort model should consider all 
three criteria – prediction accuracy, variability, and convergence. 
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Figure 4-5. Learning curve of each subject’s personal comfort model expressed as a function of mean 
prediction accuracy over training data size. The shadow indicates the confidence interval of cross-
validated AUC. 

VARIABLE IMPORTANCE 

Understanding which variables contribute the most to the predictive power of a model 
can help to eliminate ineffective variables and reduce the cost of data collection. 
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However, testing significance of all variables and their possible combinations in a 
high dimensional dataset is computationally impossible (>~1010 years). I simplified 
this process by grouping variables that come from a single data source and 
measuring their predictive performance to understand how little data one might need 
to collect to have a model with strong predictive power. I took a stepwise approach to 
run models for all subjects by adding the variables from each variable group until the 
model included all variable groups. The intent was to quantify the additional 
improvement that each variable group contributed to the prediction accuracy. I fixed 
the modeling method to RF and applied two-fold cross validation repeated 150 times. 
The order of the variable groups is determined based on the effort involved in data 
collection during the field study so that most easily obtainable data is introduced to 
the model first. The order was: 1)  PCS control behavior, because the data was 
automatically reported via PCS chairs; 2) date/time, because they were extracted 
from the time stamp of the PCS chair data: 3) HVAC system and 4) outdoor 
environment, because they required interfacing with a third-party online software to 
access the data; 5) indoor environment, because the data collection required 
additional sensor installation for globe temperature measurements; 6) clothing 
insulation, because it required occupant’s survey participation to collect the data. 
Note that this order is applicable to this particular field study and it may change in 
different settings. Since the variables in each group come from a single data source, 
there is no difference in the cost of data collection within each variable group. 

Figure 4-6 (a) summarizes the results from the model runs. The results show that 
PCS control behavior alone (Comb. 1) could produce 69% prediction accuracy on 
average, which is a notable increase over the prediction accuracy of conventional 
comfort models (PMV and adaptive) for this dataset (0.52 and 0.50 respectively). 
Adding other variable groups only improved the mean prediction accuracy by 4% 
compared to the model with PCS control behavior alone. This means that, on 
average, the models based on PCS control behavior alone could attain the majority of 
prediction accuracy produced by the models that include all field data (0.73). To give 
a sense of how different variable groups independently perform from one another, I 
plot the prediction results of individual variable groups in Figure 4-6 (b). The main 
takeaway from this analysis is that the variable group with PCS control behavior 
(69%) still produced the best results among all. The prediction accuracy of all other 
variable groups ranged between 60-63%. As an interesting side note, even the lowest 
group (outdoor environment), with a prediction accuracy of 0.60, achieves a 
significant improvement over conventional comfort models. Thus, in general, it is 
clear that machine learning helps to improve prediction accuracy. However, unlike 
conventional models, applying these machine learning methods to predict individual’s 
thermal comfort requires training data (i.e. approximately 60 surveys per occupant in 
this case), which the conventional comfort models do not. Note also that these results 
are based on the comfort conditions that the subjects were exposed to during the field 
study – a relatively narrow range of indoor environmental conditions that are typical in 
mechanically-conditioned office buildings. Outside these narrow conditions, the 
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indoor environment will become a more important factor to individuals’ thermal 
preference.  

 

Figure 4-6 (a) Prediction accuracy of model runs with different variable combinations. The variable 
combinations are constructed by accumulatively adding features from each variable groups until all 
features in the database are included in the model. (b) Prediction accuracy of separately evaluated 
variable groups (PCS control behavior, date/time, HVAC system, outdoor environment, and indoor 
environment). Clothing insulation is not included since a fixed value (0.6) was used in all model runs. 
Bar plots and error bars indicate the average and standard deviation of AUC across all subjects 
respectively.  

Practically speaking, the choice of model parameters is not always based on 
accuracy but rather on the cost of collecting the data. For this study, PCS chairs 
provided a convenient platform to collect continuous data that can be individually 
identifiable. The strong predictive power of PCS control behavior signals that it can 
potentially replace survey feedback as the “ground truth” when you have these kinds 
of systems. This means that one can use the continuous PCS data to directly model 
individuals’ thermal preference and dynamically control thermostat setpoints to match 
their preferences. Such is the case for many commercial “smart” thermostats (e.g., 
Nest) that learn occupants’ thermal preference based on their thermostat control 
behavior and automatically create a temperature schedule according to their desired 
settings. However, the learning based on thermostats may represent more than one 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 
70 

person since they are typically shared in many spaces; hence, it can be biased 
toward a few individuals who drive the thermostat settings. The PCS chairs are 
usually individually owned and operated; therefore, the temperature schedule can be 
determined based on the learning of individuals’ thermal control behavior rather than 
group behavior. 

4.4   LIMITATIONS 

There are several limitations in my current modeling approach. First, the size of the 
dataset, which is determined by the number of survey responses received from each 
person, limits the performance of the model. This limitation also applies to all 
previous thermal comfort studies that rely on survey feedback. One way to overcome 
this limitation is to use continuous PCS control behavior to directly model individuals’ 
comfort requirements. Another solution is to increase the data size by pooling 
relevant survey responses from other occupants (Schumann et al., 2010b). Second, I 
based the models on one-time batch learning. However, batch learning can be 
computationally challenging over time as the data size grows. Hence, I suggest 
online machine learning to dynamically adapt new patterns in the data and 
automatically update the model as needed. Third, I treat misclassification costs 
among different thermal comfort classes the same in the present analysis. I 
acknowledge that the cost of misclassifying certain classes (e.g., ‘cooler’, ‘warmer’) 
can differ from others (e.g., ‘no change’). However, current literature at the time of 
this work did not offer information that could help to specify the exact 
consequences/cost of misclassifying thermal preference. This void represents an 
area for future research. 

4.5   SUMMARY 

Thermal comfort is a subjective phenomenon which can display large differences 
among individual occupants. Therefore, providing a satisfactory thermal environment 
requires an understanding of the unique comfort requirements of individuals. In this 
chapter, I present a new modeling approach, personal comfort models to predict 
individuals’ thermal preference based on learning from a novel type of occupant 
feedback – thermal control behavior with PCS chairs and six different machine 
learning algorithms to improve consistent data collection and prediction accuracy. 
From the results, I draw the following conclusions. 

•   Personal comfort models produced the median accuracy of 0.73 based on the 
best performing algorithm, improving the predictions of conventional comfort 
models (PMV and adaptive) which produced a median accuracy of 0.51. The 
PMV and adaptive models predicted individual thermal preference only slightly 
better than random guessing for the relatively mild indoor environmental 
conditions observed in the field study. Such outcome confirms that an 
individual approach can significantly improve comfort predictions of the actual 
occupants in building space. 
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•   Among the six machine learning algorithms used for model development, the 
algorithms with capabilities to control high dimensions and noise in the data 
(e.g., RF, kSVM, regLR) produced higher accuracy than the algorithms without 
them, but they were more computationally expensive. Hence, depending on 
the application of the model, one may need to assess the value of accuracy 
against the computational cost when selecting algorithms. 

•   The personal comfort models generally converged when the data size reached 
64 survey inputs. This means that occupants need to supply over 60 survey 
responses to produce a stable prediction of their thermal preference. This is a 
limiting factor for models that require survey feedback for training purposes. 

•   Personal comfort models based on PCS control behavior produced the best 
prediction accuracy when individually assessing all categories of field data 
acquired in the the study (i.e., date/time, HVAC system, outdoor environment, 
indoor environment, and clothing insulation). This shows that individuals’ 
heating and cooling behavior with PCS is a strong comfort predictor and can 
potentially replace survey feedback as the ground truth for personal comfort 
models. 

Personal comfort models can provide more accurate representations of occupants’ 
comfort needs and desires. Moreover, they can produce continuous predictions that 
can inform temperature settings in day-to-day building operations. The next logical 
step is to demonstrate the integration of personal comfort models into thermostat 
control to close the feedback loop between occupants and HVAC systems – this is a 
topic well worth pursing to make a tangible impact on occupant satisfaction and 
energy use in buildings. 
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5   OVERALL DISCUSSION  

This chapter presents a final discussion that connects key findings drawn from the 
research tasks covered in the previous chapters. It is organized into four broad 
sections: 1) lessons learned from this research, 2) implications for comfort 
management in practice, 3) additional considerations for building design and controls, 
and 4) future research areas that can build upon this research. 

5.1   LESSONS LEARNED 

Personalizing comfort experience in the built environment requires understanding, 
and responding to, individuals’ comfort needs and preferences. This dissertation has 
presented innovative personal comfort technology and personal comfort analytics that 
can help achieve this goal. 

For personal comfort technology, along with a multi-disciplinary team of researchers, 
I transformed a PCS chair into an IoT device to unlock its big data and smart control 
potentials. The data analysis of the PCS field study (Chapter 2) showed that 
occupants frequently used local heating and cooling when PCS chairs were available, 
and PCS users displayed high comfort satisfaction, far exceeding what is typically 
achieved in buildings. These results not only confirm the conclusions of other studies 
(Veselỳ and Zeiler, 2014; Zhang et al., 2015b) on the effectiveness of PCS in 
providing thermal satisfaction but also provide a quantitative link between related 
adaptive behavior and thermal comfort. The occupants found PCS chairs particularly 
useful in addressing transient comfort needs, eliciting pleasurable experiences 
(alliesthesia), as well as providing therapeutic effects (back pain relief) – all these are 
beyond the capabilities or responsibilities of conventional HVAC systems. Such 
findings offer compelling evidence that PCS is a highly effective comfort technology, 
and it can be a “game changer” in today’s building management, shifting the comfort 
goal from merely reducing discomfort to creating delightful thermal experiences 
(Heschong, 1979; Erwine, 2016). The analysis also showed that PCS control 
behavior was able to dynamically describe individuals’ thermal preference, indicating 
that the data generated from Internet-connected PCS could potentially act as 
individualized comfort feedback for HVAC controls. 

For personal comfort analytics, I proposed a new framework (Chapter 3) for thermal 
comfort modeling called personal comfort models that can predict individuals’ thermal 
comfort instead of simply for a large population. In particular, this framework 
incorporates IoT and machine learning to leverage highly personalized data available 
from buildings in use and advanced modeling techniques with strong predictive 
performance. Such a framework can benefit the building industry by providing a new 
path for thermal comfort modeling that can support occupant-centric control 
paradigms. The proposed framework also establishes concepts and definitions based 
on decades of thermal comfort research; hence, it can be a useful guideline for 
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current and future activities on personal comfort analytics in both academia and 
industry. While the framework is primarily developed for environmental controls in 
buildings, its applications can be extended to other types of human occupancy such 
as vehicles or aircraft. The extended applications would need to consider specific 
comfort characteristics and challenges that are unique to other environments (e.g., 
transient conditions, temporary occupancy, thermal expectation, system constraints). 

As a practical use case, I developed a set of personal comfort models using the PCS 
field study data (Chapter 4) to demonstrate how the proposed framework can be 
implemented. The results showed that personal comfort models produced superior 
accuracy over conventional comfort models (PMV, adaptive), and that heating/cooling 
control behavior was a strong predictor of individuals’ thermal preference – which is 
one of the findings in Chapter 2 and the underlying assumption behind learning 
algorithms for many smart thermostats (e.g., Nest). This work also demonstrated the 
usefulness of PCS data for the development of personal comfort models, showing a 
great synergy between personal comfort technology and personal comfort analytics. 
The successful development of personal comfort models invites many promising 
applications. The most immediate one would be the integration of the models into 
thermostat controls to close the feedback loop between occupants and HVAC 
systems. 

5.2   IMPLICATIONS FOR COMFORT MANAGEMENT IN BUILDINGS 

Both PCS and personal comfort models can have significant implications for 
occupant comfort and can greatly influence building design and control. Figure 5-1 
illustrates how they can be integrated into building controls. 

The default scenario (Figure 5-1(a)) describes the conventional approach to comfort 
provision that uses centralized HVAC systems with standards-based temperature 
controls. In this scenario, space heating and cooling is provided based on pre-defined 
temperature setpoints as recommended by the comfort requirements from ASHRAE 
Standard 55 or equivalent. Occupants usually do not have much control over the 
setpoints due to limited or no access to thermostats. Even if a thermostat is available, 
occupants in shared spaces may need to reconcile differences in comfort needs 
among them before making an adjustment. Hence, individuals severely lack control 
over their thermal environment, and HVAC systems operate without feedback from 
their occupants. 
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Figure 5-1.  Example scenarios of the control integration of PCS and personal comfort models in a 
shared thermal zone. Individually, PCS and personal comfort models can each improve this situation. 
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Individually, PCS and personal comfort models can each improve this situation. 

•   PCS can provide personal control of local heating/cooling by creating highly 
customizable environments within individuals’ workstations (Figure 5-1(b)). 
PCS can also elevate the overall comfort experience by quickly fulfilling 
individual-specific or time-sensitive comfort needs that cannot be met by 
centralized HVAC systems. 

•   Personal comfort models can provide individualized comfort feedback back to 
HVAC systems that can lead to more representative, data-driven temperature 
controls in buildings (Figure 5-1(c)). Personal comfort models can also be 
used for continuous comfort assessment and support other advanced control 
strategies that require occupants’ comfort feedback to set boundary decisions 
for their energy or cost optimization engines (e.g., time-averaged ventilation 
control strategy (Kaam et al., 2017), cost-responsive supply air temperature 
reset strategy (Raftery et al., 2018)). 

However, in both of these scenarios, the full potential of PCS and personal comfort 
models cannot be realized due to the constraints in the existing system. 

•   For PCS, acting alone, the energy savings potentials (i.e., low energy 
consumption for the same comfort effects) cannot be fully exploited as we do 
not know to what extent individuals’ temperature acceptance can be corrected 
due to PCS use. 

•   For personal comfort models, again acting alone, there is a limit to how much 
centralized systems can respond to individuals’ comfort feedback as the 
information still has to be translated into a single temperature setpoint for the 
control of a single VAV terminal in shared thermal zone (One-person thermal 
zones would be an exception to this case). 

Such limitations can be overcome when these two innovations work together (Figure 
5-1(d)). Personal comfort models can help to achieve the PCS energy savings 
potential by quantifying the corrected comfort temperatures from PCS use so that 
HVAC systems can adjust temperature setpoints accordingly. PCS can address 
individual differences in comfort needs via decentralized conditioning while offloading 
some of the HVAC responsibilities in thermally challenging areas. Moreover, PCS 
can supply continuous streams of individualized data that can support the 
development of personal comfort models and interact with other systems to provide 
coordinated comfort solutions that can lead to greater satisfaction and efficiency. 
Hence, their combined effect is greater than the sum of their individual effects. 
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Figure 5-2. Example of data-driven temperature controls in a VAV zone shared by two PCS users (b), 
based on preferred and acceptable comfort temperatures predicted from their personal comfort models 
(a). The scenario is based on the field data collected during summer months and illustrates the 
adjustments that can be applied to the cooling temperature setpoint in the shared VAV zone. 

Figure 5-2 provides a hypothetical example of how the integration of PCS and 
personal comfort models can inform HVAC temperature controls over the course of a 
day. Assuming two occupants with a PCS chair in a shared VAV zone, I calculated 
preferred and acceptable temperature ranges of these individuals based on their 
personal comfort models developed from PCS data and survey responses. Although 
they displayed different temperature requirements, both occupants were comfortable 
at temperatures above the zone’s default cooling setpoint – offering an opportunity to 
increase the cooling setpoint by as much as 1 °C. Since the information is available 
as a time-series, it can help centralized HVAC systems to dynamically adjust 
temperature setpoints and optimize energy use in buildings. Note that this scenario is 
based on the field data collected during summer months; as such, I only showed the 
adjustment to the cooling temperature setpoint. A similar adjustment can be made to 
the heating temperature setpoint as the updates are made to models with winter data. 

The setpoint adjustments shown in Figure 5-2 (b) are based on the models that were 
developed in a tightly controlled environment (21.1-23.3 °C deadband). Studies have 
shown that PCS can correct comfort temperatures as much as 6 °C  on the cooling 
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side and 10 °C on the heating side (Zhang et al., 2015b); hence, the opportunity to 
expand HVAC temperature setpoints may be greater if the occupants were exposed 
to greater temperature swings and the predictions were made based on that. 

5.3   ADDITIONAL CONSIDERATIONS FOR BUILDING DESIGN AND 

CONTROL 

A full integration of PCS and personal comfort models will invite discussion that is 
likely to challenge the way we design and control buildings. Below I list some 
important topics that would require further discussion within the building industry. 

Interaction between centralized and decentralized systems: Although the benefit of 
PCS is evident, conventional design processes have not caught up with this new 
approach and likely view it as a supplementary system working independently from 
the rest of the building systems. This may change with the new generation PCS that 
are capable of interacting with other systems on the same communication platform. 
Buildings can leverage this new capability to facilitate a more integrated approach 
between centralized and decentralized systems in order to improve both the overall 
comfort satisfaction and energy performance. For this to happen, it is important for 
designers to recognize PCS as an essential part of building systems and incorporate 
it into environmental control strategies. 

The benefit of IoT and predictive analytics to the building industry: The integration of 
IoT and predictive analytics in comfort management is increasing in both residential 
(e.g., Nest) and commercial buildings (e.g., Comfy). The data and insights generated 
from the predictive analytics will not only benefit individual buildings but also the 
building industry and research communities at large by improving our understanding 
of human comfort in various contexts, and facilitating the discovery of repeatable 
patterns that can be generalized to larger populations. Hence, efforts are needed to 
share these resources – both data and insights in order to expand the existing 
knowledge about human comfort and support further innovations in comfort 
management. 

Human perception of automation and controllability: IoT and predictive analytics are 
likely to accelerate automation of building controls. While automation can be 
positively viewed from the system perspectives, its impact on building occupants and 
operators is not well understood in the building industry. To a certain extent, too much 
automation can be perceived as a loss of control and may result in dissatisfaction and 
distrust of the system. As the building industry moves forward with IoT-based control 
automation, we need to better understand the relationship between automation and 
human variables and determine the ‘right mix’ between automation and personal 
controllability in comfort management. 
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The role of humans in data-driven building controls: There seems to be a lot of hope 
in the future of predictive modeling in many industries that data can represent and 
replace humans in the control loop. While models can get better over time with more 
data and training, they are only an approximation of reality and cannot fully describe a 
person’s needs and desires. Making room for human judgments and interventions in 
the system design can not only provide a point of stability in the system operation but 
also offer an opportunity to correct and refine existing models. As such, it is important 
to reassess and redefine the role of humans in everyday comfort management as the 
building industry moves towards more data-driven building controls. 

5.4   FUTURE RESEARCH SUGGESTION 

This study revealed many areas for future research, which are outlined below: 

Coordinated comfort controls between HVAC and PCS: Given that PCS can 
communicate with BAS on the same communication platform (i.e., sMAP), the logical 
next step is to integrate PCS into buildings’ comfort management to complement 
existing systems in the physical areas where centralized heating and cooling is not 
effective. This can allow the optimization of HVAC settings at both supply and 
discharge levels, which can lead to significant energy savings and comfort 
improvement. Additional research is needed to implement different integrated 
strategies in practice, and monitor both comfort responses and energy use. 

Integration of distributed environmental sensing in HVAC controls: The field study 
showed that thermostat sensors poorly represent temperature conditions experienced 
by individual occupants across different building spaces. Hence, making control 
decisions based on zone-based thermostat readings alone can lead to discomfort 
and poor satisfaction. There is a need to develop control logics that integrate 
distributed environmental sensing in temperature control decisions for HVAC 
systems, and conduct field testing to assess their feasibility in building operations. 

Personal comfort models in the HVAC feedback loop: Personal comfort models 
provide individualized comfort feedback that can be incorporated into temperature 
controls. The next step is to develop methods to identify the patterns of different 
comfort needs and preferences among individuals in shared spaces and determine 
optimal temperature settings that can maximize comfort satisfaction. There is a need 
for more research where one can use simulations to test control logics and energy 
impacts, and then lab or field studies to assess the impact on occupants and building 
operations. 

Continuous learning in personal comfort models: Personal comfort models are 
intended for real-world applications; hence, their predictions need to stay relevant 
and accurate over time. In Chapter 3, I listed several methods that can be used for 
ongoing updates of personal comfort models; however, most of them are conceptual, 
not tested with real data. Hence, future research is needed to validate the proposed 

PhD Dissertation, Dept. of Architecture, UC Berkeley 2018 www.escholarship.org/uc/item/58m331fr



 

 
79 

methods with real data. When evaluating continuous learning methods, one should 
consider not only predictive accuracy but also other criteria that are important in real-
world applications such as computational speed, interpretability, robustness, 
scalability, etc.  

Building a public database for personal comfort models: To develop personal comfort 
models, some of the previous studies have used publicly available data (e.g., 
ASHRAE Thermal Comfort Database I, from RP-884). However, the data in ASHRAE 
Database I are not always individually-identifiable, giving not enough data to develop 
a reliable model per person. To overcome this challenge, other studies collected their 
own data that are large in size and rich in personal information. Combining these 
separate data together can create a powerful database for more robust modeling and 
generalizations that can benefit a wider audience. Hence, cross-institutional efforts 
are needed to build a public database that contains individually-identifiable data to 
encourage further innovations in personal comfort models. 

Standardization of algorithm-based comfort management: The industry is rapidly 
adopting algorithm-based comfort management for both residential and commercial 
thermostat controls (e.g., Nest, Comfy). These algorithms are mostly proprietary, 
independently developed, and not always in agreement with the comfort standards’ 
approach (i.e., ASHRAE 55, ISO 7730, EN 15251). Hence, there is a need to develop 
a set of guidelines that can be adopted by these standards to ensure accurate and 
reliable performance of these algorithms in real-world applications. Such guidelines 
should address data collection, privacy and security requirements for data storage 
and access, and the development, testing, validation, and implementation of the 
custom models in buildings. 
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6   CONCLUSIONS 

This dissertation presented the following innovations: 1) Internet-connected PCS and 
2) personal comfort models that can help to deliver personalized comfort experiences 
in occupied spaces. In this dissertation, I demonstrated how they could create a 
synergistic effect by generating person-specific comfort data and intelligence 
respectively, and enable occupant-centric comfort management in buildings. 

I developed and field-tested the new capabilities of PCS (i.e., data reporting, wireless 
connectivity) that could support individualized learning and coordinated controls with 
other connected systems in buildings. The field data analysis confirmed the value of 
PCS data as valuable feedback about individuals’ comfort and behavior in localized 
environmental conditions that can inform building control decisions. The study also 
confirmed the effectiveness of PCS in producing high comfort satisfaction – 96% 
thermal acceptability in 21-26 °C temperature range. It provided field evidence of 
other PCS benefits, such as thermal pleasure and pain relief, that could enhance 
experiences of building occupants beyond meeting thermal satisfaction. 

I also proposed a new framework called personal comfort models to establish the 
foundation for personalized comfort intelligence in the field of thermal comfort. The 
goal of this framework is to predict specific comfort requirements of individual 
occupants for the purpose of occupant-responsive environmental control. 
Specifically, this framework established modeling methodologies to improve 
predictive accuracy and real-world relevance of individuals’ comfort predictions using 
IoT data and machine learning. 

To demonstrate the feasibility of the proposed framework, I developed and evaluated 
personal comfort models using the individualized comfort data collected from 37 
office workers, who used PCS chairs during a 6-month field study. The modeling 
results confirmed that an individualized approach to thermal comfort modeling 
significantly improved the accuracy of individuals’ thermal preference compared to 
conventional comfort models (i.e., PMV, Adaptive). They also showed that 
individuals’ thermal control behavior was a strong comfort predictor and could be 
used as an individualized comfort feedback for HVAC controls. 

The findings of this research can be applied to building design and control to better 
reflect individuals’ comfort requirements in everyday comfort management. For this to 
take place, more research and collaboration across different disciplines and 
organizations are needed to increase analytic capabilities, demonstrate system 
integrations, and standardize control practices in the building industry. I hope that the 
contributions of this work have provided necessary tools to move thermal comfort 
research and practice in that direction. 
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APPENDIX A: PCS HARDWARE AND SOFTWARE 

STORM CONTROLLER OVERVIEW 

The final generation of the PCS controller and user interface for this project included 
the Storm hardware platform communicating via IEEE802.15.4 to border routers to 
the server via the Internet. The user interface was redesigned to include two knobs 
(seat and chair) that provided both heating (rotated right) and cooling (rotated left). 
The integration architecture for the PCS chair is composed of three tiers, as shown in 
Figure A-1. The user interface is an Android application running on the user’s smart 
phone. 

  

Figure A-1. Personal Comfort System chair integration architecture. 

At the core of this controller is a Storm – a reusable Cortex-M4 module running a 
TinyOS based software stack. The Storm module provides an IEEE 802.15.4 radio so 
that chairs can send telemetry to the control suite described in the next section, as 
well as have their settings changed remotely. The carrier board provides application 
specific functionality – a monitoring power supply, interface circuitry and Bluetooth 
connectivity. 

The Storm module is used due to its ultra-low operating current. Although the power 
requirements of the fans and heating strips dominate, they are used only periodically. 
The rest of the controller is continuously on and sending telemetry so it is 
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advantageous to minimize its quiescent current. By using the Storm, a chair that is 
unoccupied or occupied by a person comfortable with his/her environment consumes 
less than 1mA on average while sending telemetry packets once per second. With 
the equipped battery, this allows the chair to continue sending telemetry for years 
between charges. Although the use of a more powerful core module such as a 
Raspberry Pi or other Linux machine is possible given the large battery pack, these 
devices consume hundreds of mA at a minimum and would reduce the maximum 
time between charges by two to three orders of magnitude. A power monitoring circuit 
monitors the battery to alert the operator when the chair needs recharging. 

The interface circuitry connects to the heating strips and fans to provide fine-grained 
setting of the fan and heat intensity independently on the seat and back of the chair. 
The heating strips use an energy efficient pulse width modulated (PWM) open drain 
circuit so that all the energy is dissipated in the heating strip, irrespective of intensity 
setting. This is an improvement over the analog rheostat control, which wasted 
energy in the control circuitry. Unfortunately, as we were retrofitting existing chairs, 
the fans were not compatible with PWM control – they did not have a dedicated PWM 
control line and attempting to PWM the power line resulted in audible buzzing and 
motor stalls. We therefore use voltage mode control to modulate the fan intensity. As 
the fans use only 3.6W (and substantially less as the voltage drops off) this is 
acceptable, although future revisions of the chair will use PWM-compatible fans such 
as those from personal computers. 

A temperature and relative humidity sensor was added to the controller to enable 
accurate distributed environmental monitoring. This information enables direct 
comparison between the settings that the user chooses, and the environment that 
he/she is in. In actual deployments, the temperature at the location of individual 
chairs in a room can differ significantly from the temperature reported by the 
thermostat. The temperature sensors in the chairs can be used to compensate for 
this in HVAC control loops. The sensor is thermally isolated to minimize heat gain 
from the rest of the controller, a design choice we found lacking in the majority of 
smart thermostats available off the shelf. 

CHAIR CONTROL CIRCUITRY 

The chair contains circuitry in two locations. The “brain” resides underneath the chair 
near the battery and runs the main control logic for the chair, along with radio 
communication. It is composed of two parts, a Firestorm and the Chair Shield. These 
plug into each other to form one board. The other piece of circuitry is the UI board on 
the end of a tether which is used as a control interface by the user. Figure A-2 shows 
all three boards: 
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Figure A-2. Hardware for the PCS deployment in the San Mateo County Building. 

The Firestorm platform is discussed in detail in Andersen et al. (2016a), and the 
design is open source. The chair shield was purpose built for this application, and 
contains: 

•   High efficiency switched-mode power supply from 14V to 5V 
•   A plug for interfacing with the chair heating strips and fans 
•   A plug for interfacing with the UI board 
•   A real time clock for storing time 
•   Switching circuitry for the fans and heating strips 

The UI board is also purpose built for this application and contains 

•   A secondary microprocessor to handle IO 
•   Two rotary dials for the user to indicate their control preference 
•   Two rings of LEDs to indicate the current setting of the board 
•   A plug that uses a standard networking cable to speak to the chair shield 
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FIRMWARE 

The board is programmed using the Synergy stack, also described in Andersen et al. 
(2016a). The firmware images for the boards can be found on a github site1. The 
schematics for all three boards are in the following figures. 

 

 

Figure A-3. Schematic of Firestorm 1.3 

                                                
1 https://github.com/SoftwareDefinedBuildings/pecs-fw 
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Figure A-4. Firestorm layout. 
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Figure A-5. Schematic of Storm B.01--Main and IO. 
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Figure A-6. Schematic of the shield. 
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Figure A-7. Schematic of the physical user interface control knobs. 

 

Figure A-8. User interface board layout. 
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SOFTWARE STACK 

The following software supports PCS deployment: (1) plotter and (2) status 
dashboard. The plotter, shown in Figure A-9, allows query, visualization, and 
download of historic time-series data. The status dashboard, shown in Figure A-10, 
provides real-time status monitoring of the chair data streams. Both tools are built on 
the sMAP (simple Measurement and Actuation Profile) – an open-source software that 
enables accessing and storing time-series data as well as actuating connected 
devices, developed by UC Berkeley’s Electrical Engineering and Computer Sciences 
Department (Dawson-Haggerty et al., 2010). 

 

Figure A-9. The plotter. 
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Figure A-10. The status dashboard. 
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APPENDIX B: BACKGROUND SURVEY 

Please start by entering your unique ID. 

Please tell us a little about yourself. 

What is your age? 

m   30 or under 
m   31 - 50 
m   Over 50 

What is your gender? 

m   Female 
m   Male 

What is your height? 

What is your weight? 

In a typical week, which of the following commute methods do you spend the most 
time utilizing? (you can select more than one if applicable) 

q   Car 
q   Bike 
q   Walk 
q   Public transportation 
q   Other: ____________________ 

Thermal comfort 

Overall, how sensitive are you to the warm/hot temperature? 

   Very  
Insensitive   Insensitive   Slightly  

Insensitive   Neutral   Slightly  
Sensitive   Sensitive   Very  

Sensitive  

. m   m   m   m   m   m   m   
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Overall, how sensitive are you to the cool/cold temperature? 

   Very  
Insensitive   Insensitive   Slightly  

Insensitive   Neutral   Slightly  
Sensitive   Sensitive   Very  

Sensitive  

. m   m   m   m   m   m   m   

Overall, how satisfied are you with the temperature in your workspace? 

   Very  
Dissatisfied   Dissatisfied   Somewhat  

Dissatisfied   Neutral   Somewhat  
Satisfied   Satisfied   Very  

Satisfied  

. m   m   m   m   m   m   m   

How would you best describe the source of your dissatisfaction? (check all that apply) 

q   humidity too high (damp) 
q   humidity too low (dry) 
q   air movement too high 
q   air movement too low 
q   incoming sun 
q   hot/cold window surfaces 
q   heat from office equipment 
q   drafts from windows 
q   drafts from vents 
q   drafts falling from the ceiling 
q   my area is hotter than other areas 
q   my area is colder than other areas 
q   thermostat is inaccessible 
q   thermostat is adjusted by other people 
q   heating/cooling system does not respond quickly enough to the thermostat 
q   clothing policy is not flexible 
q   other: ____________________ 

Which of the following do you personally adjust or control in your workspace? (check 
all that apply) 

q   Window blinds or shades 
q   Operable window 
q   Thermostat 
q   Portable heater 
q   Portable fan 
q   Door to interior space 
q   Other: ____________________ 
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The End. Thank you! 
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APPENDIX C: DAILY (RIGHT-NOW) SURVEY 

How do you feel right now?  

Start by entering your unique ID. 

Right now, how acceptable is the thermal environment at your workspace (consider 
both room and chair)? 

   Unacceptable   Slightly  
unacceptable  

Slightly  
acceptable   Acceptable  

  m   m   m   m   

You would prefer to be: 

m   Cooler 
m   No change 
m   Warmer 

Please select your clothing ensemble: 
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Are you using the chair's cooling or heating mode right now? 

m   Yes 
m   No 

Please enter any comments you have about your comfort chair. 

Please identify your primary reasons for using the chair's COOLING mode. [Check all 
that apply] 

q   To get relief from the heat of the room 
q   I like the cooling sensation of the chair against my body 
q   I want to increase the air movement around me 
q   To cool down from physical activity (walking to my office, climbing stairs, running, 

biking, etc.) 
q   Other: ____________________ 
q   I'm not using the chair's cooling mode right now 

Please identify your primary reasons for using the chair's HEATING mode. [Check all 
that apply] 

q   To get relief from the coolness of the room 
q   I like the warming sensation of the chair against my body 
q   To relieve my back pain 
q   To warm myself from sitting still for long periods of time 
q   Other: ____________________ 
q   I'm not using the chair's heating mode right now 

 

How satisfied are you with the comfort chair in achieving the desired result? 

   Very  
Dissatisfied   Dissatisfied   Somewhat  

Dissatisfied   Neutral   Somewhat  
Satisfied   Satisfied   Very  

Satisfied  

  m   m   m   m   m   m   m   

 

You answered that you are not using the chair but prefer to be warmer or cooler. Is 
there a reason why you are not using the chair? 

 

Thank you! 
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