
1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2791432, IEEE
Transactions on Dependable and Secure Computing

Providing Task Allocation and Secure Deduplication
for Mobile Crowdsensing via Fog Computing

Jianbing Ni, Student Member, IEEE, Kuan Zhang, Member, IEEE, Yong Yu, Member, IEEE,
Xiaodong Lin, Fellow, IEEE, Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Mobile crowdsensing enables a crowd of individu-
als to cooperatively collect data for special interest customers
using their mobile devices. The success of mobile crowdsensing
largely depends on the participating mobile users. The broader
participation, the more sensing data are collected; nevertheless,
the more replicate data may be generated, thereby bringing
unnecessary heavy communication overhead. Hence it is critical
to eliminate duplicate data to improve communication efficiency,
a.k.a., data deduplication. Unfortunately, sensing data is usually
protected, making its deduplication challenging. In this paper, we
propose a fog-assisted mobile crowdsensing framework, enabling
fog nodes to allocate tasks based on user mobility for improving
the accuracy of task assignment. Further, a fog-assisted secure
data deduplication scheme (Fo-SDD) is introduced to improve
communication efficiency while guaranteeing data confidentiality.
Specifically, a BLS-oblivious pseudo-random function is designed
to enable fog nodes to detect and remove replicate data in
sensing reports without exposing the content of reports. To
protect the privacy of mobile users, we further extend the Fo-
SDD to hide users’ identities during data collection. In doing
so, Chameleon hash function is leveraged to achieve contribution
claim and reward retrieval for anonymous mobile users. Finally,
we demonstrate that both schemes achieve secure, efficient data
deduplication.

Keywords: Mobile crowdsensing, fog computing, task alloca-
tion, secure deduplication.

I. INTRODUCTION

Mobile crowdsensing [1] is a compelling paradigm that
allows a large group of individuals to collaboratively sense
data and extract information about social events and national
phenomena with common interest using their mobile devices,
e.g., smart phones, smart glasses, drones, cameras and smart
vehicles. It supports an ever-increasing number of sensing
applications, ranging from social recommendation, such as
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restaurant recommendation, vehicular navigation and parking
space discovery, to environment monitoring, such as air quality
measurement, noise level measurement and dam water release
warning [2], [3]. With the human intelligence and user mobil-
ity, it improves the quality of sensing data, extends the scale
of sensing applications, and reduces the cost on high-quality
data collection.

In mobile crowdsensing, one of the main challenges is
to find proper mobile users for sensing tasks to achieve
efficient and scalable data collection [4]. Firstly, due to the
unique requirements of sensing tasks and the user mobility,
a crowdsensing server (CS-server) collects various types of
information about mobile users, e.g., location, reputation and
activity pattern, and thereby customizes a task allocation
policy for each sensing task [5]. For example, to measure
traffic congestion in downtown Toronto, the CS-server should
recruit the mobile users driving on the roads in downtown
Toronto. Secondly, it is hard to guarantee that the potential
mobile users could receive the assigned sensing tasks and
upload sensing reports in time [6]. Thirdly, to perform sensing
tasks, mobile users have to travel to specific locations with a
certain cost on time and travel. Therefore, there should be an
effective framework for the CS-server to allocate sensing tasks
to proper mobile users.

In addition, with the increasing number of participating
mobile users, there are inevitably some duplicates in sensing
reports [7]. For a social event or national phenomenon, mobile
users in the same location may obtain the same sensing data
and generate the identical or similar items in sensing reports.
For example, let us consider the following two scenarios:

• To measure the air quality in an urban area, mobile
users measuring at proximate points may submit the same
measurements;

• To survey the satisfaction on the government in a certain
area, some mobile users may make the same options and
give similar comments.

In these cases, the replicate data consumes a large amount
of network bandwidth and storage space. A straightforward
method to reduce the overhead is to discard the redundant
copies on intermediates. Nevertheless, this approach exposes
the detailed sensing data, which may contain plenty of person-
al information about mobile users, e.g., location, references,
occupations, health status and religious beliefs [8]. To preserve
the privacy of mobile users, data encryption is widely used to
achieve data confidentiality, but brings a huge obstacle on the
detection of replicate data for intermediates. Message-locked
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encryption (MLE) [9] (the most prominent manifestation of
which is convergent encryption) may resolve this problem,
where the same plaintexts always map to the same ciphertexts.
Nonetheless, MLE is inherently subject to off-line brute-force
attacks [10], where adversaries can learn the sensing data by
guessing the possible plaintexts in encrypted sensing reports.
Furthermore, the sensing data is predictable in some mobile
crowdsensing applications, such as air quality measurement,
place recommendation and traffic congestion monitoring. As
a result, an attacker may guess to obtain the correct sensing
data in an encrypted sensing report. Therefore, it is necessary
to design a secure data deduplication mechanism to allow the
intermediates to detect replicate reports without violating the
privacy of mobile users.

However, if the equality of sensing reports can be detected
in public, anyone can predict that the mobile uses are in ap-
proximate positions or have similar preferences knowing that
they submit the identical sensing reports. For this “duplicate-
linking” leakage, some sensitive information would be exposed
in duplicate-sensitive mobile crowdsensing applications, e.g.,
air quality monitoring and place recommendation. In these
applications, the mobile users in the same location or with
the same profiles may report the identical sensing data. If
two mobile users report identical measurements, the one may
predict that the other is nearby. If two patients report the same
symptoms, they may have the same disease [11]. Therefore,
it is important to prevent privacy disclosure from the identical
reports in mobile crowdsensing. However, data deduplication
and privacy preservation are inherently in conflict. On one
hand, if the intermediates can detect the replicate reports, they
can know that there may be some correlation between the
corresponding mobile users. On the other hand, if the privacy
of mobile users is perfectly preserved, it is impossible for the
intermediates to perform data deduplication. Therefore, it is an
open problem to design a straightforward approach to prevent
“duplicate-linking” leakage in duplicate-sensitive applications.

Furthermore, once the redundant copies in sensing reports
are deleted, the CS-server cannot identify the contributions of
mobile users. Although the redundant copies do not contribute
to the completeness of sensing results, they improve their
trustworthiness [12]. The CS-server should not ignore the
contributions of the mobile users whose data are replicate with
others’. However, if these mobile users are rewarded, some
lazy mobile users may acquire unfair benefits by replaying
the sensing reports generated by other mobile users and eaves-
dropped on communication channels. This “duplicate-replay”
attack should be abandoned to get rid of the lazy mobile users,
who are unwilling to perform crowdsensing tasks, but greedy
for benefits. In short, it is of significant importance to not
only support secure data deduplication over sensing reports
against brute-force attacks, “duplicate-linking” leakage and
“duplicate-replay” attacks, but also record the contributions
of mobile users fairly without exposing the sensing data.

To the end, we exploit fog computing [13] to support
accurate task allocation and secure data deduplication for
mobile crowdsensing, which is a new architecture providing
computing, storage and networking services proximate to
terminal devices with appealing properties, including location

awareness, geographic distribution and low latency. With fog
computing, a large number of decentralized mobile devices
can self-organize to communicate and potentially collaborate
with each other via a fog node located at the edge of the
Internet [14]. In this paper, we propose a Fog-assisted Mobile
CrowdSensing framework (Fo-MCS) that enables fog nodes to
perform task allocation based on the mobility patterns of users
to improve the accuracy of task assignment. Under this frame-
work, we design a Fog-assisted Secure Data Deduplication
scheme (Fo-SDD) based on BLS-Oblivious Pseudo-Random
Function (BLS-OPRF) to achieve the detection of replicate
data, and extend the Fo-SDD to prevent “duplicate-linking”
leakage for duplicate-sensitive applications. Specifically, the
main contributions of our paper are as follows:

• We develop fog-assisted task allocation based on the local
information about mobile users, such as mobility patterns
and preferences. Specifically, the CS-server firstly assigns
the sensing tasks to the fog nodes located in the intended
sensing area. Then the fog nodes, acting as geography-
related local servers, further find proper mobile users to
fulfill the tasks. Fo-MCS not only reduces the overhead
of CS-server on task allocation, but also improves the
accuracy of task assignment.

• We design a BLS-OPRF scheme based on the BLS sig-
nature [15] to generate the encryption key of sensing data
and enable fog nodes to detect and delete the identical
sensing data in sensing reports for saving communication
bandwidth. During this process, the fog nodes can learn
nothing about the reports, except the equality of sensing
data. Meanwhile, we also leverage the key-homomorphic
signature [16] to sign the sensing data and allow fog
nodes to aggregate the signatures of mobile users. By
doing so, the CS-server only receives one copy of repli-
cate sensing reports, but learns the contributions of the
mobile users who generate these replicate sensing reports.

• We balance the trade-off between data deduplication and
privacy preservation against “duplicate-linking” leakage.
We leverage blind signatures [17] to ensure that no one
can link the sensing reports to a specific mobile user,
even if the user submits the identical reports with others.
Nevertheless, once the participating mobile users are
anonymous, it is difficult for the CS-server to distribute
benefits based on their contributions. To address this
issue, we utilize Chameleon hash function [18] to enable
mobile users to claim their contributions and retrieve the
corresponding rewards. In addition, the misbehavior of
mobile users, including double-reporting of sensing data
and double-retrieving of benefits, could be detected to
guarantee the fairness of mobile crowdsensing.

The remainder of this paper is organised as follows. In
section II, we review related work about task allocation
and data deduplication. In section III, we define the Fo-
MCS framework, security threats and design goals. Then, we
describe our Fo-SDD and discuss its security in section IV,
followed by the extend Fo-SDD in section V. We evaluate the
performance of both schemes in section VI, and finally, we
conclude our paper in section VII.
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II. RELATED WORK

To ensure sensing tasks to be fulfilled effectively, how
to select mobile users to perform the tasks is critical in
mobile crowdsensing. Several reputation-based task allocation
mechanisms [19], [20] have been proposed to evaluate the
trustworthiness of mobile users and assign tasks to the mobile
users with high reputation. Wang et al. [20] proposed an
anonymous reputation management scheme and a data trust
assessment scheme. These schemes enforce both positive and
negative reputation updates and preserve the identities of mo-
bile users without the involvement of trusted third parties. To
achieve better accuracy, Kazemi et al. [21] defined reputation
scores to represent the probability that a mobile user can
perform a task correctly, and a confidence level to state that
a task is acceptable if its confidence is higher than a given
threshold. Moreover, spatial-temporal correlation is widely
used to recruit mobile users. Kazemi and Shahabi [22] focused
on spatial task assignment for spatial crowdsourcing, in which
the service provider allocates tasks using greedy, least location
entropy priority or nearest neighbor priority algorithm based
on the location of mobile users. To et al. [5] defined maximum
task assignment problem and proposed three solutions to
resolve this problem by utilizing spatial distribution and travel
cost of mobile users. The first approach is based on local
optimization strategy, while the second one improves the
overall task allocation by assigning higher priority to sensing
tasks located in the moving area of mobile users. The third
approach incorporates the travel cost of mobile users in task
assignment. To keep location privacy in spatial crowdsourcing,
Shen et al. [23] proposed a secure task assignment protocol
by utilizing additive homomorphic encryption. This protocol
can protect the location privacy of mobile users in a semi-
honest adversary model. Pournajaf et al. [4] investigated an
approach for allocating crowdsensing tasks to mobile users
without sharing the location of mobile users to the CS-server,
and proposed a two-stage optimization method to globally
optimize task allocation using cloaked location. Wang et al.
[24] leveraged spatial and temporal correlation among the data
in different areas to reduce the number of allocated tasks, and
proposed a novel crowdsourcing task allocation framework by
combining compressive sensing, Bayesian inference and active
learning techniques. The CS-server can dynamically adjust
the minimum number of sub-area of tasks in each cycle for
ensuring data quality. In addition, due to the limited power of
mobile devices, energy is also an important factor to determine
the selection of mobile users. Xiong et al. [25] proposed an
energy-efficient mobile crowdsensing framework that guaran-
tees the required number of mobile users returning reports and
the minimized number of redundant tasks allocated. Energy
consumption on data reporting for a specific mobile user or
overall users is dramatically reduced. Liu et al. [26] intro-
duced the concept of quality-of-information (QoI) to evaluate
data granularity and presented a QoI-aware energy-efficient
scheme to optimize QoI for mobile crowdsensing. Xiong et
al. [27] defined a spatial-temporal coverage metric for mobile
crowdsensing and proposed a generic mobile crowdsensing
framework in energy-efficient Piggyback crowdsensing model,

which optimizes the task allocation with various incentives.

To achieve secure deduplication, Bellare et al. [9] intro-
duced the concept of message-locked encryption and proposed
several schemes against “duplicate-faking” attacks for space-
efficient secure outsourced storage. However, these schemes
are vulnerable to off-line guessing attack if the messages are
predictable. To prevent this attack, Keelveedhi et al. [10] uti-
lized server-aided encryption to achieve deduplicated storage
and presented RSA-oblivious pseudo-random function (RSA-
OPRF) to add randomness into the deterministic ciphertexts.
A duplicateless encryption for simple storage (DupLESS)
was proposed to offer a secure, easily-deployed solution for
efficient outsourced storage supporting data deduplication.
Consequently, to further enhance the security of MLE, Bellare
et al. [28] presented interactive MLE, where the upload and
download protocols are interactive between the client and
server, to achieve security for messages that are both correlated
and parameter dependent. Following Bellare et al.’s works, Li
et al. [29], [30] investigated the problems of authorized data
deduplication with the considering of privileges of users in
a hybrid cloud, and reliable key management to ensure that
the deduplicated outsoureced data is readable for multiple
data owners. Wen et al. [31] further studied the reliable
key management problem in secure data deduplication and
leveraged group key agreement to support dynamic file update.
Liu et al. [32] pointed out the client-side encryption is at
odds with the practice of data deduplication and proposed
a secure cross-user deduplication scheme supporting client-
side encryption without the dependance on additional servers.
Recently, Cui et al. [33] and Zheng et al. [34] considered
the data deduplication in some emerging applications and
services, such as named data networking and cloud-based
media hosting. Specifically, Cui et al. [33] introduced the
problem of near-duplicate detection in content-centric services
and presented a secure near-duplicate detection system over
encrypted in-network storage for effective resource utilization
and possible traffic alleviation. Zheng et al. [34] explored the
deduplication of encrypted multimedia contents for the cloud
to eliminate the extra storage and bandwidth cost.

In our preliminary work [35], we proposed a fog-based d-
eduplicated mobile crowdsensing scheme (Fo-DSC) to achieve
fog-based task allocation and secure data deduplication, simul-
taneously. However, Fo-DSC is vulnerable to brute-force at-
tacks and duplicate-linking leakage. In this paper, we proposed
a fog-assisted secure data deduplication scheme to improve
the security of Fo-DSC in mobile crowdsensing. We design
a BLS-OPRF mechanism to enable fog nodes at the edge of
networks to detect and delete the replicate sensing data in
crowdsensing reports. The idea of BLS-OPRF is derived from
the RSA-OPRF scheme in [10] based on the BLS signature
[15]. Furthermore, we employ the blind signature to prevent
privacy leakage of mobile users from multiple duplicates,
and develop Chameleon hash function to achieve contribution
claim and reward retrieval for anonymous mobile users. In
addition, the communication overhead of Fo-SDD is much
lower than that of the Fo-DSC.
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III. PROBLEM STATEMENT

In this section, we formalize Fo-MCS framework and secu-
rity threats. Then, we identify design goals.

A. Fo-MCS Framework

Fo-MCS framework consists of three layers: service layer,
fog layer and mobile users layer, and four entities: customers,
a CS-server, fog nodes and mobile users. In the service layer,
customers can be individuals or organizations. They have
sensing tasks to fulfill but do not have sufficient resources to
complete individually. Hence, they release these tasks on a CS-
server. The CS-server provides mobile crowdsensing services
for customers. It is responsible to assign sensing tasks to
fog nodes based on the spatial information of tasks, process
sensing reports, and distribute benefits to mobile users. In
the fog layer, the fog nodes are deployed at the edge of the
Internet and stretch from different network equipment, e.g.,
roadside units on roads, access points, gateways and edge
routers. They have computing capability and storage space
to provide computation and storage services to mobile users.
Their responsibilities include assigning sensing tasks to mobile
users on behalf of local servers, processing on sensing reports
and forwarding the processed reports to the CS-server. In the
mobile users layer, the mobile users perform the sensing tasks
to collect data for earning rewards using their own mobile
devices with the capabilities of data sensing, processing and
communication.

As illustrated in Fig. 1, the whole Fo-MCS framework
works as follows. A customer generates a sensing task and
sends it to the CS-server, along with the rewards to attract
mobile users. After obtaining the sensing task, the CS-server
performs fog-assisted task allocation to assign it to mobile
users. Specifically, the CS-server allocates the sensing task to
the fog nodes according to the sensing area of the task and the
coverage areas of fog nodes; and the fog nodes further recruit
mobile users in their coverage areas to fulfill the task based
on their mobility patterns and the task requirements. Then,
the participating mobile users collect sensing data, generate
sensing reports and submit them to the fog nodes. The fog
nodes process the received sensing reports, including data
deduplication and data aggregation, and forward the processed
reports to the CS-server. After that, the CS-server generates a
crowdsensing result for the customer based on the processed
reports. Finally, the customer reads the crowdsensing result
and determines the contributions of mobile users and the CS-
server distributes the rewards to mobile users according to
their contributions on the sensing task.

B. Security Threats

Security threats come from both external and internal at-
tackers. The global eavesdroppers may wiretap on wireless
communication channels to capture the messages exchanged
between two entities, e.g., fog nodes and mobile devices.
The CS-server and fog nodes are both honest-but-curious,
indicating that they follow the protocols agreed with customers
and mobile users honestly, but they are also interested in the

Fig. 1. Fo-MCS Framework

sensing reports generated by mobile users. The mobile users
are honest to perform sensing tasks for benefits, but curious on
the sensing reports submitted by other users, lazy for sensing
data and greedy for benefits. Specifically, the attackers may
launch the following attacks to achieve their goals:

• Brute-Force Attack: A curious entity, including the CS-
server or mobile users, checks all possible sensing data
or measurements with the hope of eventually obtaining
the correct plaintexts in the encrypted sensing reports.

• “Duplicate-Linking” Leakage: The identical sensing re-
ports disclose the equality of sensing data generated by
mobile users. Thus, it is predictable that these mobile
uses are in proximate positions or have similar profiles,
such as references, habits or health status.

• “Duplicate-Replay” Attack: A lazy mobile user captures a
sensing report delivered by others through eavesdropping
and replays it to cheat the fog node to believe that his
report is identical with a submitted one. Thus, the mobile
user would be rewarded although the replayed report will
be deleted by the fog node.

• Double-Reporting: A greedy mobile user may submit
more sensing reports than allowed without being detected,
in such a way that the user would obtain more rewards.

• Double-Retrieving: To acquire more benefits than that
rewarded by the CS-server, a greedy mobile user may
retrieve the rewards more than once without being de-
tected.

In addition, the mobile users may deliver forged sensing data
to cheat customers for benefits. This active attack has been
discussed in [36], [37], which can be resisted by using trust
management of mobile users or tasks duplication among mul-
tiple participants (to recruit multiple mobile users to collect
the same data or measure the same phenomenon). Therefore,
we assume that the majority of mobile users are fully trusted
to perform the sensing tasks, and multiple fog nodes would
not collude together, or collude with the CS-server to invade
the privacy of mobile users. The customers are honest as they
are the beneficiaries of mobile crowdsensing services.
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C. Design Goals

To achieve secure data deduplication under the Fo-MCS
framework and resist the security threats, Fo-SDD should
achieve the following design goals.

• Secure Data Deduplication: To save communication
bandwidth, the replicate data in sensing reports should
be securely deleted. Specifically, the fog nodes are able
to detect and erase the replicate data without learning
any information about the sensing reports. To ensure the
confidentiality of sensing data, Fo-SDD should satisfy the
following security goals:

– Security against Brute-Force Attacks: The sensing
data should be encrypted to prevent attackers from
recovering it through brute-force attacks. Although
the semantic security cannot be achieved, Fo-SDD
should reach high security guarantee, except that
the encrypted sensing reports expose the equality of
underlying sensing data.

– No “Duplicate-Linking” Leakage: The privacy leak-
age from the equality of sensing data should be pre-
vented in duplicate-sensitive applications. A mobile
user cannot predict that another user is similar with
him in some aspects if they submit identical sensing
reports.

– Security against “Duplicate-Replay” Attacks: To pre-
vent lazy mobile users from replaying the captured
sensing reports, it is necessary to prove that the
mobile users actually possess the sensing data if
they submit the corresponding reports to fog nodes.
A lazy mobile user can be detected if he replays
captured sensing reports generated by others.

• Efficient Contribution Claim: The contributions of mobile
users who submit the replicate sensing reports should
not be ignored. To reduce communication overhead and
record the contributions of mobile users, the fog nodes are
able to aggregate the signatures on the identical sensing
data generated by different mobile users. In addition, to
maintain the fairness of mobile users, Fo-SDD should
achieve the following goals:

– Detection of Double-Reporting: A greedy mobile us-
er cannot submit more sensing reports than allowed
to the CS-server without being detected.

– Detection of Double-Retrieving: A greedy mobile
user cannot double-retrieve the rewards from the CS-
server without being detected.

In addition, to offer sophisticated security protection on the
Fo-MCS framework, we should achieve other fundamental
security goals, such as the confidentiality of sensing tasks
against external attackers, the authentication and integrity of
sensing reports.

IV. FO-SDD SCHEME

In this section, we introduce the overview of Fo-SDD, de-
scribe the Fo-SDD in detail and discuss the security properties
of Fo-SDD.

A. Overview of Fo-SDD

To resist brute-force attacks, we design a BLS-OPRF
scheme to prevent attackers from guessing the predictable
sensing data. Specifically, the local fog node Fj aids each
mobile user Ui in its coverage area to generate the encryption
key Si with its secret key xj for the sensing data Pi. Thus, the
attackers cannot compute Si without xj and thereby recover
Pi from the target ciphertext Zi using brute-force attacks.
Unfortunately, a curious Fj is still able to guess Pi in Zi.
To prevent the brute-force attacks of Fj , we employ mobile
fog nodes to generate the encryption key Si of sensing data
Pi for Ui. As a result, a single fog node Fj cannot launch
brute-force attacks to recover Pi from Zi. In addition, to fur-
ther reduce communication overhead and achieve contribution
claim, we allow each mobile user to generate a signature on
the sensing data based on the key-homomorphic signature [16].
The distinguished feature of the key-homomorphic signature
is that the signatures from multiple mobile users who generate
replicate reports can be aggregated to be one signature, while
all the public keys of these mobile users should be used to
verify the validity of the aggregated signature. In this way,
the communication overhead between fog nodes and CS-
server is reduced and the customer can learn the identities of
contributors during the verification of the aggregated signature.
In addition, proxy re-encryption [38] is leveraged to realize
the confidentiality of sensing tasks and allow the CS-server to
efficiently delegate the decryption capability of sensing tasks
to fog nodes.

B. The Detailed Fo-SDD

The Fo-SDD consists of six phases: Service-Setup,
Task-Releasing, Task-Allocation, Data-Collection, Data-
Deduplication and Data-Reading. The detailed Fo-SDD is
described below.

1) Service-Setup: This phase is run by the CS-server to
bootstrap mobile crowdsensing services. Given the security
parameter λ, the CS-server defines two cyclic groups (G,GT )
with the same prime order p, where p is λ bits. Let g be a
random generator of group G, ê : G×G → GT be a bilinear
map. H : {0, 1}∗ → G and H : {0, 1}∗ → {0, 1}λ are two
full-domain hash functions, such as SHA-256 or SHA-3 [39].
(SE ,SD) are the encryption and decryption algorithms of a
deterministic symmetric encryption scheme. Such a scheme
can be constructed from AES scheme with a fixed IV in
CTR mode [39]. (SE, SD) are the encryption and decryption
algorithms of the standard AES scheme [39]. The CS-server
randomly chooses s ∈ Zp as its secret key and computes
S = gs ∈ G as its public key. The DSA signature [39] is
employed to achieve the integrity and authentication of sensing
tasks and sensing reports during transmission.

A fog node Fj randomly chooses xj ∈ Zp as the secret key
and computes Xj = gxj ∈ G as the public key.

A mobile user Ui randomly picks vi ∈ Zp as the secret key
and computes Ui = ê(g, g)vi as the public key.

2) Task-Releasing: When a customer C is willing to collect
data for some purpose, such as measuring air quality, monitor-
ing traffic condition or reconstructing indoor floor plan, C first
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Fig. 2. Data Collection and Deduplication

generates a sensing task T = (Tt, Te, Ta, Tb), indicating the
goal (what to sense), the expiration time (when to sense), the
sensing area (where to sense) and the benefits, respectively.
Then, C chooses a random k ∈ Zp to calculate a temporary
public key K = gk. After that, C encrypts T by randomly
picking r ∈ Zp, T ∈ GT to compute

(C1, C2, C3) = (Sr, T ê(g, g)r, SE(H(C2, T ), Tt||Te||Tb)).

Finally, C sets Cc = (C1, C2, C3) and sends (Cc,K, Ta) to
the CS-server.

3) Task-Allocation: Upon receiving (Cc,K, Ta), the CS-
server first chooses N ∈ Zp as a unique identifier of T and
picks a set of fog nodes F = {F1, · · · ,FN} located in Ta,
where N is the number of fog nodes in the set F. Then, for
each Fj ∈ F, the CS-server uses s and Xj to compute

RKj = X
1
s
j , C ′

j = ê(C1, RKj).

Finally, the CS-server sends (N , C ′
j , C2, C3,K, Ta) to Fj .

When Fj receives (N , C ′
j , C2, C3,K, Ta), it first decrypt-

s the sensing task as T ′ = C2

(C′
j)

1/xj
and Tt||Te||Tb =

SD(H(C2, T
′), C3). Then, Fj checks whether the task T

is expired or not. If not, Fj recruits a set of mobile users
U = {U1, · · · ,UM} to perform T based on the requirements
of T and the mobility patterns of mobile users [4], [21], [25],
where M is the number of mobile users in U. For each Ui ∈ U,
Fj randomly chooses ri ∈ Zp, R ∈ GT and encrypts T as

(Di1, Di2, Di3) = (gri , RUri
i , SE(H(N , R), Tt||Te||Tb)).

Finally, Fj sets Di = (Di1, Di2, Di3) and sends
(N , Di,K, Ta) to Ui.

4) Data-Collection: When receiving (N , Di,K, Ta), Ui

first decrypts the ciphertext Di as R′ = Di2

ê(g,Di1)vi
and

Tt||Te||Tb = SD(H(N , R′), Di3). If this task is not expired,
Ui starts to perform the task, collect and generate the sensing
data Pi according to the requirements of T . Then, Ui randomly
chooses si ∈ Zp to compute Si = H(Pi)

si and sends (N , Si)
to Fj . After Fj receives (N , Si), it calculates S′

i = S
xj

i

and returns S′
i to Ui (To prevent brute-force attacks from

Fj , S′
i can be generated by multiple fog nodes, that is,

S′
i = S

∑
j∈M xj

i , where M is the set of indices of Fj and

its neighboring fog nodes). Then, Ui computes Si = (S′
i)

1
si

and verifies whether

ê(H(Pi), Xj) = ê(Si, g) (1)

holds or not. If not, Ui returns failure and aborts; otherwise, it
calculates Zi = SE(H(N ,Si),Pi). Furthermore, Ui chooses
a random wi ∈ Zp and generates a signature σi as

σi = (σi1, σi2) = (g−wi , gviH(N ,Si,Pi)
wi).

Ui sets the sensing report Pi = (Zi, σi) and sends (N ,Pi) to
Fj . Upon receiving (N ,Pi), Fj computes Yi = H(N , Zi)
and checks whether Yi exists in the database. If yes, Fj

returns success and aborts; otherwise, it keeps (N ,Pi, Yi)
and requests Ui to return (Wi, Ji). Ui generates (Wi, Ji) by
picking a random number ai ∈ Zp to calculate Wi = gai ,
a′i = H(Wi,K

ai), Ji = SE(a′i,Si) and sends (Wi, Ji) to Fj .
It is worth pointing out that the ciphertext of sensing data

Pi supports replicate data detection and deletion. Specifically,
Yi is a tag used to detect the duplicate of Pi. Si is derived
from (N ,Pi) and used to encrypt Pi. Therefore, Fj is able
to detect the replicate data based on Yi in sensing reports.
The data collection and deduplication processes are shown in
Fig. 2, and the information flow of data collection phase is
illustrated in Fig. 3.

5) Data-Deduplication: Upon receiving {P1, · · · ,PM}
from U, Fj checks whether {P1, · · · ,PM} are replicate or not.
If there are two reports, in which Yi=Yî, the reports in Pi and
Pî are identical. If a set of reports {Pi}i∈Q are identical, where
Q is the set of indices of replicate reports, Fj aggregates the
corresponding signatures {σi}i∈Q as

σQ = (σQ1, σQ2) = (
∏

i∈Q σi1,
∏

i∈Q σi2).

Then, Fj keeps the first copy Zî generated by Uî who delivers
(Wî, Jî) and deletes the replicate copies. Fj sets the sensing
reports that are not replicate with others as {Pi} for each
1 ≤ i ≤ M and i /∈ Q. Finally, Fj forwards the deduplicated
reports (N , {(Zi, σi,Wi, Ji)}i/∈Q, Zî, σQ,Wî, Jî) to the CS-
server.

When receiving (N , {(P̂i,Wi, Ji)}i/∈Q, Zî, σQ,Wî, Jî)
from Fj , the CS-server forwards them to the customer C.
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Mobile UserUi Fog Node Fj

C

Fig. 3. Information Flow of Data Collection

6) Data-Reading: When C receives the deduplicated reports
from the CS-server, C uses k to decrypt the deduplicated
reports and checks the contributors (mobile users) as follows:

• For each (Zi, σi,Wi, Ji) ∈ {(Zi, σi,Wi, Ji)}i/∈Q, C com-
putes
Si = SD(H(Wi,W

k
i ), Ji), Pi = SD(H(N ,Si), Zi).

After recovering all sensing reports {(Zi, σi,Wi, Ji)}i/∈Q

that are not replicate with others, C verifies the signatures
{σi}i/∈Q by checking whether

ê(
∏
i/∈Q

σi2, g)
∏
i/∈Q

ê(H(N ,Si, Pi), σi1)
?
=

∏
i/∈Q

Ui. (2)

If yes, C accepts the sensing data {Pi}i/∈Q and learns
{Ui}i/∈Q are the contributors; otherwise, C uses the re-
cursive divide-and-conquer approach to find and delete
the corrupted data.

• For (Zî, σQ,Wî, Jî), C computes
Sî = SD(H(Wî,W

k
î
), Jî), Pî = SD(H(N ,Sî), Zî).

After obtaining the sensing data Pî, C verifies the signa-
ture σQ by checking whether

ê(σQ2, g)ê(H(N ,Sî, Pî), σQ1)
?
=

∏
i∈Q

Ui. (3)

If yes, C accepts the sensing data Pî and learns {Ui}i∈Q

are the contributors of Pî; otherwise, C deletes it.
Finally, C obtains the sensing data ({Pi}i/∈Q, Pî) and

distributes the benefits to mobile users in U based on their
contributions.

C. Security Discussion

Secure Data Deduplication: To deduplicate sensing reports
and achieve data confidentiality, a BLS-OPRF scheme is
designed to compute the encryption key from the sensing data.
Thus, a fog node is able to detect the replicate data based on
the ciphertexts, which are identical if the sensing data is equal.
The Fo-SDD not only supports the deduplication of sensing

reports, but also achieves high security guarantee on sensing
data.

• Security against Brute-Force Attacks: The encryption
key Si is secret that no adversary is able to dis-
tinguish it from a random value, except Fj . Having
(H(Pi)

si ,H(Pi)
sixj ), it is hard to compute H(Pi)

xj ;
otherwise, the Computational Diffie-Hellman (CDH)
problem [15] is intractable. Moreover, since the external
attackers do not have the secret key of Fj , they can-
not guess the sensing data Pi. Thus, the sensing data
is confidential against brute-force attacks. Nonetheless,
since the Decisional Diffie-Hellman (DDH) problem [15]
is tractable, it is possible for Fj to obtain Pi by using
brute-force attacks, that is, to guess a P ′

i and test whether
ê(H(P ′

i), S
′
i) = ê(Si,Si) holds or not. To prevent this

attack from Fj , we employ multiple neighboring fog
nodes to cooperatively generate S′

i for Ui. Thereby, a
single fog node Fj cannot launch brute-force attacks
to acquire Pi, unless all neighboring fog nodes collude
to guess. Certainly, to achieve higher security guarantee
against brute-force attacks, it is possible to employ a
trusted key server to generate encryption keys for all
mobile users, such as a cellular service provider or
network operator.

• Security against “Duplicate-Replay” Attacks: To prevent
lazy mobile users from replaying other users’ sensing
reports, we ensure that only the mobile users possessing
sensing data can generate valid sensing reports. Specifi-
cally, Ui needs to use the sensing data Pi to generate the
signature σi, which would be verified by the customer in
Data-Reading phase. If Ui replays a captured report Zi

without possessing Pi, the misbehavior can be detected
by the customer. Therefore, as long as the key homo-
morphic signature [16] is unforgeable, Fo-SDD is secure
against “duplicate-replay” attacks.

Efficient Contribution Claim: To claim the contribution, Ui

utilizes the key-homomorphic signature scheme to generate σi

on Pi, such that C can confirm whether Ui is the contributor
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of Pi or not by verifying σi. If some mobile users {Ui}i∈Q

upload the same data Pî, Fj aggregates the corresponding
signatures {σi}i∈Q to generate σQ for reducing the commu-
nication overhead from Fj to C. Meanwhile, C is able to
verify the validity of the signature σQ with the public keys
of {Ui}i∈Q. Therefore, C approves that Pî is generated by
{Ui}i∈Q. Since the key-homomorphic signature [16] achieves
existential unforgeability based on the CDH assumption, no
attacker can forge the signatures or claim the contributions of
the eligible mobile users to itself. Therefore, C believes that
the claimed contributions of mobile users should belong to
them indeed.

In addition, it is possible to detect double-reporting and
double-retrieving, since both the customer and the CS-server
know the identities of mobile users. The CS-server can record
the identities when the mobile users deliver their reports and
retrieve their rewards. Once a mobile user double-submits
reports or double-retrieves rewards, the CS-server can find the
misbehavior by checking the records.

V. EXTENDED FO-SDD SCHEME

Since the symmetric encryption scheme used to encrypt
sensing data in Fo-SDD is deterministic, it produces the same
ciphertext from a given identical plaintext and an encryption
key, when it is separately executed by different mobile users.
If several mobile users generate the same sensing data Pi,
the ciphertexts are identical, that is, Zi. As a result, any one
can learn that two sensing reports are identical, and thereby
predict that these mobile uses are in proximate positions or
have similar profiles. To prevent privacy leakage of mobile
users in duplicate-sensitive applications, we extend the Fo-
SDD by means of anonymization. Specifically, we leverage the
blind signature [17] to extend the Fo-SDD to prevent malicious
hackers or curious entities from learning the identities of par-
ticipating mobile users. Unfortunately, once the mobile users
are anonymous, some problems are emerged. For example,
greedy mobile users may submit more sensing reports than
allowed to earn unfair benefits; it is difficult for the CS-server
to distribute rewards to mobile users; and greedy mobile users
may double-draw their rewards from the CS-server. Therefore,
we design a contribution claim and reward retrieval mechanism
from Chameleon hash function [18] to allow mobile users
to claim their contributions and retrieve their rewards fairly.
Meanwhile, the CS-server is able to discover the misbehavior
of greedy mobile users, and thereby recover their identities.

A. Extended Fo-SDD

1) Service-Setup: The CS-server bootstraps the mobile
crowdsensing services following the same procedures as those
in the Fo-SDD, except that five more public parameters
(g0, g1, G,G,F) are needed. g0, g1 are two random generators
of group G, G is a random value chosen from GT , G = ê(g, g)
and F : Zp × {0, 1}∗ → Zp is a pseudo-random function.

A fog node Fj randomly chooses xj ∈ Zp as the secret key
and computes Xj = gxj ∈ G as the public key.

A mobile user Ui randomly picks vi ∈ Zp as the secret key
and computes Ui = Gvi as the public key. Ui is required to

register at the CS-server to obtain an anonymous credential,
which is used to access the crowdsensing services, in the
following steps:

• Ui randomly chooses u′
i ∈ Zp to compute Ai = g

u′
i

0 gvi
1 ,

and sends (Ai, Ui) to the CS-server, along with the
following zero-knowledge proof expressed in Camenisch-
Stalder notation [40]:

PK{(u′
i, vi) : Ai = g

u′
i

0 gvi1 ∧ Ui = Gvi}.
• The CS-server checks PK to ensure (Ai, Ui) is generated

properly. It randomly picks u′′
i , ei ∈ Zp to calculate Bi =

(gAig
u′′
i

0 )
1

s+ei and returns (Bi, u
′′
i , ei) to Ui.

• Ui computes ui = u′
i + u′′

i and checks ê(Bi, Sg
ei)

?
=

ê(ggui
0 gvi

1 , g). If yes, Ui maintains (Bi, ei, ui) along with
vi.

Finally, Ui obtains an anonymous credential (Bi, ei, ui).
2) Task-Releasing: The Task-Releasing phase is the same

as that in Fo-SDD.
3) Task-Allocation: The Task-Allocation phase is the same

as that in Fo-SDD.
4) Data-Collection: Ui follows the same operations as

those in Fo-SDD to recover Tt||Te||Tb, generate Pi, interact
with the CS-server to compute Si and encrypt Pi to obtain Zi.
Furthermore, Ui randomly chooses bi ∈ Zp to compute Yi =
H(N , Zi, t), li = F (vi,N||t||Ui), Vi = gli0 , Ti = GviGYili ,
Hi = GliUi

bi , where t denotes the current reporting period.
After that, Ui picks a random value ai ∈ Zp to calculate
Wi = gai , a′i = H(Wi,K

ai), and Ji = SE(a′i,Si). Finally,
Ui sends the sensing report Pi = (N , Zi, Vi, Ti,Hi,Wi, Ji) to
Fj , along with the following zero-knowledge proof expressed
in Camenisch-Stalder notation [40]:

SPK


(Bi, ei, ui, vi, li, bi) :

ê(Bi, Sg
ei)=ê(ggui

0 gvi
1 , g)∧

Vi = gli0 ∧
Ti = GviGYili∧
Hi = GliU bi

i

 (Zi).

5) Data-Deduplication: Upon receiving {P1, · · · ,PM}
from U, Fj first verifies the validity of SPK and check-
s whether there are double-submitted reports. Given two
sensing reports, Pi = (N , Zi, Vi, Ti,Hi,Wi, Ji) and P′

i =
(N , Z ′

i, V
′
i , T

′
i ,H

′
i,W

′
i , J

′
i), Fj computes Yi = H(N , Zi, t),

Y ′
i = H(N , Z ′

i, t). If Vi = V ′
i and Yi ̸= Y ′

i , the mobile
user double-submits two reports in a time period. Fj recovers
the public key of the greedy mobile user by computing
Ui = ( (Ti)

Y ′
i

(T ′
i )

Yi
)

1
Y ′
i
−Yi , and deletes one of the reports. If Vi = V ′

i

and Yi = Y ′
i , these reports are the same and submitted by

the same mobile user. Fj keeps one of them. If Yi=Yî and
Vi ̸= V ′

i , two sensing reports Pi and Pî are identical, but
delivered by different mobile users. Pi and Pî are replicate
reports. If a set of reports {Pi}i∈Q are replicate, Fj keeps the
first received copy (Zî,Wî, Jî) generated by Uî and deletes
the replicate copies. The sensing reports that are not replicate
with others are {Pi} for each 1 ≤ i ≤ M and i /∈ Q. Finally,
Fj forwards (N , {(Zi,Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q)
to the CS-server.
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When receiving the deduplicated reports
(N , {(Zi,Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q) from Fj ,
the CS-server forwards them to the customer C.

6) Data-Reading: When C receives the deduplicated reports
from the CS-server, C uses k to decrypt the deduplicated
reports and distributes the rewards Tb to the contributors
(mobile users) as follows:

• For each (Zi,Wi, Ji) ∈ {(Zi,Wi, Ji)}i/∈Q, C computes
Si = SD(H(Wi,W

k
i ), Ji), Pi = SD(H(N ,Si), Zi).

After recovering Pi, C checks whether

ê(H(Pi), Xj)
?
= ê(Si, g). (4)

If yes, C accepts Pi and believes Ui actually generates
Pi.

• For (Zî,Wî, Jî), C computes
Sî = SD(H(Wî,W

k
î
), Jî), Pî = SD(H(N ,Sî), Zî).

After recovering Pî, C checks whether

ê(H(Pî), Xj)
?
= ê(Sî, g). (5)

If yes, C accepts Pî and believes {Ui}i∈Q actually
generate Pî.

After obtaining ({Pi}i/∈Q, Pî), C determines the rewards
that the participating mobile users can acquire based on their
contributions. Suppose the mobile user with Hi can earn Bi.
C sends the items {(N ,Hi,Bi)}1≤i≤M to the CS-server.

When a mobile user Ui retrieves the earned rewards, Ui

sends (N ,Hi) to the CS-server. The CS-server randomly picks
l′i ∈ Zp and returns it to Ui. After receiving l′i, Ui computes
b′i = v−1

i (vibi + li − l′i) and returns b′i to the CS-server.
Then, the CS-server calculates H ′

i = Gl′iU
b′i
i , finds the item

(N ,Hi,Bi), in which H ′
i = Hi, and returns the corresponding

rewards Bi to Ui. In addition, if Ui tries to double-retrieve the
benefit, which means that there is another b′′i computed by Ui

for a random challenge l′′i , the secret key of Ui is easy to be
recovered by the CS-server as vi =

l′′i −l′i
b′i−b′′i

.

B. Security Discussion

The extended Fo-SDD only exposes the knowledge that
some anonymous mobile users have submitted identical sens-
ing reports. This is the best result supporting data deduplica-
tion with high security guarantee currently. Now we discuss
the security properties of the extended Fo-SDD.

Secure Data Deduplication: The method to realize data
deduplication in the extended Fo-SDD remains the same as
that in Fo-SDD. The fog node is able to detect the replicate
reports based on the ciphertexts if the sensing data is identical.
The improved security of the extended Fo-SDD is analyzed as
follows:

• No “Duplicate-Linking” Leakage: In the extended Fo-
SDD, we use the blind signature [17] to protect the
identities of mobile users and thereby prevent information
leakage from the equality of sensing reports. Specifi-
cally, in Service-Setup phase, the CS-server generates
the anonymous credentials for mobile users using blind
signatures and each mobile user utilizes the credential

to prove its capability to join crowdsensing activities in
Data-Collection phase without exposing its identity. To
prove the unforgeability of the credential, we assume
that the zero-knowledge proof SPK is sound, that is,
there is an extract algorithm EX to capture the witness
used by the mobile user. In the credential generation
query, an adversary can obtain a valid credential on any
identity with the aid of a simulator, who can use EX
to extract the witness from the proof. If the adversary
can forge a valid credential, the simulator can utilize this
credential to forge a valid blind signature within a non-
negligible probability. However, since the blind signature
is unforgeable under the q-Strong Diffie-Hellman (q-
SDH) assumption [17], it is intractable for the adversary
to forge a valid credential. Therefore, the mobile users
are anonymous in the extended Fo-SDD, as long as the
q-SDH assumption holds. In short, even if a curious entity
can learn the equality of sensing reports, it cannot link
these duplicates to specific mobile users. Therefore, there
is no “duplicate-linking” leakage in the extended Fo-
SDD.

• Security against “Duplicate-Replay” Attacks: To pre-
vent “duplicate-replay” attacks, Fj checks whether
Vi = V ′

i and Yi = Y ′
i in two given sensing

reports Pi = (N , Zi, Vi, Ti,Hi,Wi, Ji) and P′
i =

(N , Z ′
i, V

′
i , T

′
i ,H

′
i,W

′
i , J

′
i). If Vi = V ′

i and Yi = Y ′
i ,

these reports are the same and from the same mobile
user, such that one of the reports may be replayed. Since
a greedy mobile user does not have Pi, the user cannot
obtain Si. Thus, the user is unable to generate a new
sensing report from a captured one. The greedy mobile
user only can replay the captured one, what can be de-
tected by Fj . To ensure all encryption keys can correctly
decrypt the sensing reports, C verifies the recovered data
by checking ê(H(Pi), Xj)

?
= ê(Si, g). If the equation

holds, the sensing data is recovered correctly. Therefore,
the extended Fo-SDD is secure against “duplicate-replay”
attacks.

Efficient Contribution Claim: In the extended Fo-SDD, we
allow honest anonymous mobile users to claim the contribu-
tions and retrieve the rewards from the CS-server, and prevent
a greedy mobile user from double-reporting the sensing data or
double-retrieving rewards. The security of contribution claim
is discussed as follows:

• Detection of Double-Reporting: We design a double-
reporting tag Ti = GviGYili for each sensing report. If a
greedy mobile user Ui submits two sensing reports in a
reporting period to the CS-server, there are two different
pairs (Yi, Ti) and (Y ′

i , T
′
i ), but the same li in two reports.

Having (Yi, Ti) and (Y ′
i , T

′
i ), it is easy to recover the

public key of Ui, that is, Ui = ( (Ti)
Y ′
i

(T ′
i )

Yi
)

1
Y ′
i
−Yi . In addition,

the CS-server cannot slander an honest mobile user. To
do it, a new T ′

i should be computed for the CS-server.
Nonetheless, it is difficult for the CS-server to compute
T ′
i without a valid li. Therefore, if the pseudo-random

function F is secure, the CS-server cannot successfully
slander an honest mobile user.
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TABLE I
RUN TIME OF FO-SDD (UNIT: MILLISECOND)

Phases C CS-server Fj Ui

Task-Releasing 10.329 – – –
Task-Allocation – 33.534 18.649 5.732
Data-Collection – – 4.847 193.459

Data-Deduplication – 1.543 6.234 –
Data-Reading 794.624 – – –

• Detection of Double-Retrieving: Chameleon hash func-
tion [18] is employed to enable mobile users to claim
their contributions and discover greedy mobile users
who double-retrieve the rewards. The Chameleon hash
function is Hi = GliU bi

i , which is a secure hash function
based on Discrete Logarithm (DL) assumption in group
GT . To retrieve the rewards, Ui can use its secret key
vi to open the hash function with (b′i, l

′
i). However, a

greedy anonymous mobile user who double-retrieves the
rewards would be traced, when the CS-server has two
items (b′i, l

′
i) and (b′′i , l

′′
i ), that is, vi =

l′′i −l′i
b′i−b′′i

. Besides, it
is also impossible for the CS-server to slander an honest
mobile user, since it cannot generate a valid item (b′′i , l

′′
i )

without the user’s secret key vi.

In summary, the extended Fo-SDD supports sensing data
deduplication with high security guarantee, and efficient con-
tribution claim with the detection of double-reporting mobile
users or double-retrieving mobile users.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the computational and commu-
nication overhead of Fo-SDD and extended Fo-SDD, and show
the performance of fog-assisted task allocation.

A. Computational Overhead Evaluation

To evaluate the computational overhead, we implement the
Fo-SDD and extended Fo-SDD on a notebook with Intel Core
i5-4200U CPU and the clock rate is 2.29GHz and the memory
is 4.00 GB. The notebook acts as the customer, the CS-server
and a fog node. We also use a HUAWEI MT2-L01 smartphone
with Kirin 910 CPU and 1250M memory to run the operations
on mobile devices. The operation system is Android 4.2.2 and
the toolset is Android NDK r8d. We use a version 5.6.1 of
MIRACL library to implement number-theoretic based meth-
ods of cryptography. The Weiling pairing is utilized to realize
the bilinear pairing operation and the elliptic curve is chosen
with a base field size of 512 bits. The size of the parameter p
is 160 bits. 50 mobile users submit sensing reports, in which
10 reports are replicate. The running time for every entity
in the Fo-SDD and the extended Fo-SDD is shown in Table I
and Table II, respectively. It seems that the operations in Data-
Deduplication phase of the extended Fo-SDD are costly for Fj

to deal with 50 sensing reports simultaneously. But in reality,
these reports are received randomly, instead of arriving at the
same time. Therefore, it is still efficient for Fj to respond to
the mobile users in Data-Deduplication phase.

TABLE II
RUN TIME OF THE EXTENDED FO-SDD (UNIT: MILLISECOND)

Phases C CS-server Fj Ui

Task-Releasing 11.043 – – –
Task-Allocation – 33.968 19.425 5.653
Data-Collection – – 4.275 464.649

Data-Deduplication – 1.434 6617.835 –
Data-Reading 1435.657 – – –

B. Communication Overhead Evaluation

We demonstrate the communication overhead of the Fo-
SDD among the CS-server, C, F and U. The parameter p
is set to be 160 bits. When releasing a sensing task T , C
sends (Cc,K, Ta) to the CS-server, which is 2048 + |T | bits,
where |T | denotes the binary length of T . The CS-server
forwards (N , C ′

j , C2, C3,K, Ta), whose size is 2720+|T | bits,
to each fog node Fj ∈ F. After that, Fj sends 2208 + |T |-
bit (N , Di,K, Ta) to each mobile user Ui ∈ U. After gen-
erating the sensing report, Ui needs to forward 1760 + |Pi|-
bit (N , Zi, σi,Wi, Ji) to Fj , where |Pi| is the binary length
of Pi. Fj performs the data deduplication after obtaining
the reports from U, and forwards the deduplicated reports
(N , {(P̂i,Wi, Ji)}i/∈Q, Zî, σQ,Wî, Jî) to the CS server, which
is of binary length 2208 + 2048(M − |Q|) + |Pi|(M −
|Q| + 1) bits, where |Q| is the number of replicate reports
in {P1, · · · ,PM}. Then, the CS-server sends the deduplicated
reports to C. If there is no replicate data in sensing reports,
that is, |Q| = 1, the communication overhead between Fj and
the CS-server is 160 + 2048M + |Pi|M bits, as well as the
burden between the CS-server and the customer C.

The communication overhead of the extended Fo-SDD
is low. The data exchanged among C, the CS-server,
Fj and Ui in Task-Releasing and Task-Allocation phas-
es has the same length with those in the Fo-SDD. In
Data-Collection phase, Ui needs to forward 6368 + |Pi|-
bit (N , Zi, Vi, Ti,Hi,Wi, Ji,SPK) to Fj . Fj performs the
data deduplication and forwards the deduplicated report-
s (N , {(Zi,Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q) to the CS
server, which is of binary length 1184 + 2048(M − |Q|) +
|Pi|(M − |Q|+ 1) + 1024|Q| bits, where |Q′| is the number
of replicate and non-replayed reports in {P1, · · · ,PM}. Then,
the CS-server forwards the deduplicated reports to C.

We compare Fo-SDD, extended Fo-SDD and TraS (AES
[39] is used to encrypt the sensing data and DSS [39] is used
to claim contributions) about the communication overhead
between the CS-server and the fog nodes. Fig. 4 shows the
comparison of the TraS, Fo-SDD and extended Fo-SDD, when
50% of sensing reports are replicate, and each mobile user
delivers one sensing report to fog nodes. The length of sensing
reports is 512 bits, 1024 bits and 2048 bits in Fig. 4(a), Fig.
4(b) and Fig. 4(c), respectively. With the increasing number
of mobile users participating in crowdsensing activities, Fo-
SDD and extend Fo-SDD can reduce a large number of
communication overhead compared with the TraS. The Fo-
SDD has the best communication efficiency as the replicate
sensing data are deleted and the signatures of mobile users who
report the replicate data are aggregated. Fig. 5 illustrates the
comparison of the TraS, Fo-SDD and extended Fo-SDD about
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the communication overhead, when 50 mobile users submit 50
sensing reports. The length of reports is 512 bits, 1024 bits
and 2048 bits in Fig. 5(a), Fig. 5(b) and Fig. 5(c), respectively.
With the increasing percentage of replicate sensing reports, Fo-
SDD and extend Fo-SDD can save plenty of communication
bandwidth compared with the TraS. As shown in Fig. 4 and
Fig. 5, the Fo-SDD is the most efficient scheme in three ones.
Fig. 6 shows the relation among the TraS, Fo-SDD and ex-
tended Fo-SDD in terms of communication overhead under the
various percentage of replicate data, the report length and the
number of mobile users. In Fig. 6 (a), if the points determined
by the number of mobile users and the percentage of duplicates
are located in the red area, the communication overhead of Fo-
SDD between the CS-server and fog nodes is lower than that
of TraS; otherwise, TraS is more communication-efficient than
Fo-SDD. In Fig. 6 (b), if the points determined by the number
of mobile users and the percentage of duplicates are located
in the blue area, the extended Fo-SDD is more efficient than
the TraS on the communication overhead, and the TraS has
lower communication overhead than the extended Fo-SDD, if
the points are located in the opposite area. For example, if
there are 60 mobile users to deliver 60 sensing reports and the
percentage of duplicates is 60%, the Fo-SDD is more efficient
than the TraS as shown in Fig 6(a), and the extended Fo-
SDD is more efficient than the TraS as shown in Fig 6(b).
In addition, the length of sensing reports does not have a big
impact on the relations of communication efficiency for the
TraS, Fo-SDD and extended Fo-SDD.

C. Performance of Task Allocation

We conduct a simulation to show that the fog-assisted task
allocation approach can improve the accuracy of sensing tasks
assignment. The simulation is conducted on Infocom06 trace
[41], which formalizes the mobility pattern of mobile users.
The setting is similar with the simulation in [42]. We compare
the fog-assisted task allocation approach with two methods.
One is epidemic allocation, in which the CS-server allocates
the tasks to all the mobile users connected with and the mobile
users perform the tasks straightway; the other is random
allocation, where the SC server randomly chooses 5 mobile
users to perform the tasks. As shown in Fig. 7(a), Fig. 7(b)
and Fig. 7(d), fog-assisted method has a higher task perform
ratio, receives more crowdsensing reports and has lower delay
to accomplish the tasks than the random allocation. Although
the epidemic method can get higher perform ratio and lower
delay than the fog-assisted method, the CS-server may receive
a large amount of reports that are collected out of the sensing
area, which results in the waste of precious bandwidth and
storage resources.

VII. CONCLUSIONS

In this paper, we have developed a fog-assisted mobile
crowdsensing (Fo-MCS) framework to improve the accuracy
of task allocation with the aid of fog nodes. We have also
proposed a fog-assisted secure data deduplication scheme (Fo-
SDD) to reduce the communication overhead between fog
nodes and CS-server. The Fo-SDD enables fog nodes to

detect and erase the replicate data in sensing reports, and
provides high security guarantee against brute-force attacks
and “duplicate-replay” attacks. To resist “duplicate-linking”
leakage, we have extended the Fo-SDD to hide the identities
of mobile users, such that no attacker can link the identical
sensing reports to specific mobile users. In addition, we have
leveraged Chameleon hash function to achieve contribution
claim and reward retrieval for anonymous mobile users. Fi-
nally, we have discussed the security and efficiency of the
proposed schemes and demonstrated the advantages of the Fo-
MCS framework. For the further work, we will investigate
location privacy preservation for mobile users in fog-assisted
mobile crowdsensing.
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