
1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

1

Chronos+: An Accurate Blockchain-based
Time-stamping Scheme for Cloud Storage

Yuan Zhang, Student Member, IEEE, Chunxiang Xu, Member, IEEE, Nan Cheng, Member, IEEE,
Hongwei Li, Senior Member, IEEE, Haomiao Yang, Member, IEEE,

and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—We propose Chronos+, an accurate blockchain-based time-stamping scheme for outsourced data, where both the storage
and time-stamping services are provided by cloud service providers. Specifically, Chronos+ integrates a file into a transaction on a
blockchain once the file is created, which guarantees the file’s latest creation time to be the time when the block containing the
transaction is appended to the blockchain. A sufficient number of consecutive blocks that are latest confirmed on the blockchain is
embedded into the file at the creation time. These blocks serve as a time-dependent random seed to prove the earliest creation time,
due to blockchains’ chain quality property. Chronos+ makes the file’s timestamp corresponding to a time interval formed by the earliest
and latest creation times which are derived from the heights of the corresponding blocks. Due to blockchains’ chain growth property,
such a height-derived timestamp can ensure that the time intervals’ range is within a few minutes so as to guarantee the accuracy. We
also point out potential threats towards outsourced time-sensitive files and present security analyses to prove that Chronos+ is secure
against these threats. Comprehensive performance evaluations demonstrate the efficiency and practicality of Chronos+.

Index Terms—Time-stamping, blockchain, cloud storage, digital investigations.

F

1 INTRODUCTION

W ITH the digital data being explosively generated in re-
cent years, people are increasingly outsourcing their

data to cloud servers [2], [3], [4]. Cloud Storage services
free people from deploying and maintaining local storage
devices and enables them to access the outsourced data
from different devices and places via the Internet [5], [6],
[7]. In general, the cloud service provider needs to maintain
the outsourced data for a prolonged period of time for
data archiving [8], [9], [10], [11] and keep track of when
the file was created for post investigations. For example, in
cloud-based intellectual property systems, a file when an
inventor first applied for a patent should be maintained
during the lifetime of the patent to determine the patent
term. More crucially, this file also serves as a key evidence
to indicate who is the first inventor of the patent when a
dispute arises [12]. However, it is usual that the defendant
argues about the timeliness of the digital evidence during
the trial. The defendant might dispute the creation time
of the file which is admitted by investigators and utilized
for the judgment is not the actual one in reality. Since all
files are outsourced to cloud servers, an adversary may

• Y. Zhang, C. Xu, H. Li, and H. Yang are with the Center for
Cyber Security, School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, China (e-
mail: ZY LoYe@126.com; chxxu@uestc.edu.cn; hongweili@uestc.edu.cn;
haomyang@uestc.edu.cn).

• N. Cheng is with the School of Telecommunication, Xidian University,
China (e-mail: dr.nan.cheng@ieee.org).

• X. Shen is with the Department of Electrical and Computer Engineering,
University of Waterloo, Canada (e-mail: sshen@uwaterloo.ca).

A preliminary version [1] of this paper was presented at the 2019 IEEE
International Conference on Communications (ICC’ 19).
The corresponding authors are Chunxiang Xu and Yuan Zhang.

incentivize cloud service providers to back-date/forward-
date the target file to increase his profits in the system.

Cryptographic time-stamping is the most important way
to certify when a file was created in digital investigations.
Existing schemes [13], [14], [15], [16] utilize a trusted service
provider (TSP) to assist users in time-stamping their files,
where a file is transmitted to TSP once it is created, and
TSP time-stamps it and responses the file owner with the
timestamp. Integrating this mechanism into cloud storage
services can securely time-stamp outsourced files. However,
there are two problems in such a system:

1) Existing schemes [13], [14], [15], [16] bear a strong
assumption that TSP is reliable and honest. Once TSP
is compromised, the recorded timestamps can be arbi-
trarily modified, and the security of these schemes is
broken. As such, TSP becomes a single point of failure
in these systems.

2) With the deployment of TSP, users’ interaction pattern
in cloud storage systems is changed: since TSP is a
trusted entity that is independent of the cloud service
provider, the users are required to interact with both
TSP and cloud server to secure their files in data out-
sourcing. Consequently, users have to bear not only an
additional communication burden but also extra costs
to employ TSP.

On the other hand, a secure time-stamping scheme
can be extended from current blockchain-based storage
schemes (e.g., Blockstack [17] and Catena [18]) to address
the single-point-of-failure problem and to free from heavy
costs to employ TSP. Specifically, with the introduction
of the blockchain, the cloud server can provide both the
storage and secure time-stamping services: Once a file is
generated, it is outsourced to the cloud server. Then, the file

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

2

is integrated into a transaction on a public blockchain (i.e.,
Bitcoin [19]). After the transaction is recorded into a block on
the blockchain, the file has been time-stamped. The block’s
timestamp that indicates the time when the block was added
to the blockchain can serve as the file’s timestamp to show
that the file was generated earlier than this point in time.
Since the blockchain is resistant to modification, anyone can-
not back-date/forward-date the recorded file. Nevertheless,
this scheme cannot be directly adopted in practice, due to
the following reasons. First, Catena [18] and Blockstack [17]
are constructed on Bitcoin [19], the timestamp of a block
on the Bitcoin blockchain may suffer from up to two-hour
errors1. Second, there is a gap between the file’s creation
time and the time that the block containing the transaction
is appended to the blockchain. Due to the limited handling
capacity of the Bitcoin system [20], a transaction cannot be
recorded into the Bitcoin blockchain immediately once it is
created, in which it takes about 1 hour for a transaction to
be accepted into a mined block in extreme cases. Third, the
block’s timestamp can only indicate the latest creation time
of the file, which fails to prove the earliest creation time
of the file. Thus, such a scheme cannot accurately indicate
when the file was created.

In this paper, we present an accurate blockchain-based
time-stamping scheme dubbed Chronos+ for cloud storage
systems2. In Chronos+, both the time-stamping and data
outsourcing services are provided by a Chronos+ log server
which is subject to a cloud service provider. When the log
server receives a time-stamping request on a file from a
user, it conducts a transaction that integrates the file on
a public blockchain. To overcome the long delay to con-
duct a transaction in Bitcoin, we construct Chronos+ on a
more expressive public blockchain system, i.e., Ethereum
[21], [22]. As such, the physical time when the block is
appended to the Ethereum blockchain can be considered as
the file’s latest creation time. The key idea behind Chronos+

to accurately determine the physical time when the block is
appended to the blockchain is to derive the time from the
block’s height, due to the fact that the height of blockchain
would be steadily increased with respect to both short and
long terms, which is formalized as the chain growth property
of blockchains [23]. To indicate the earliest creation time of
the file, a sufficient number of consecutive blocks that are
latest confirmed on Ethereum is embedded into the file on
the user side before outsourcing. Due to the chain quality
property of blockchains [24], [25], these blocks cannot be
fully controlled by an adversary, and thereby can serve as
a time-dependent random seed to enable users to prove the
earliest creation time of the file. As such, the file’s timestamp
in Chronos+ is a time interval formed by its earliest and
latest creation physical times, where Chronos+ enables the
range of the time interval to be few minutes. Besides, with
a repaid growth in user demands, a foreseeable increase
of time-stamping requests from different users might be
sent to the log server. As individual time-stamping of these
growing requests could be cumbersome, we further extend
Chronos+ to support batch time-stamping, where the log

1. https://en.bitcoin.it/wiki/Block timestamp
2. In the preliminary version [1], the proposed scheme is called

Chronos. In this extended version, we enhance Chronos in terms of
security and efficiency, which is expressed by the symbol “+”.

server can efficiently handle multiple requests from different
users simultaneously.

Specifically, the contributions of this paper are summa-
rized as follows.

• We analyze the characteristics of outsourced files
that need to be protected by time-stamping schemes.
With the analysis, we point out potential threats
towards time-stamping schemes for cloud storage
systems. We also introduce a concept of window of
time-stamping (WoT) to measure the practicality of
time-stamping schemes.

• We present an accurate, secure, and scalable time-
stamping scheme called Chronos+ based on the
Ethereum blockchain. Chronos+ is suitable for cloud
storage systems, since it enables outsourced files to
be time-sensitive without changing the user’s in-
teraction pattern. Chronos+ proves that a file was
created during a time interval formed by its earliest
and latest creation times which are derived from the
heights of corresponding blocks and serve as the
timestamp of the file. We also extend Chronos+ to
support batch time-stamping where multiple time-
stamping requests from different users can be per-
formed simultaneously in an efficient manner.

• We provide security analysis to prove that Chronos+

is secure against existing attacks. We give a com-
prehensive performance evaluation, which demon-
strates that Chronos+ is efficient in terms of com-
putation, communication, and monetary costs and
WoT. We also conduct experiments on mobile devices
to show that Chronos+ can be deployed for mobile
users.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. In Section 3, we
present preliminaries. We define the system model, threat
model, and design goals in Section 4. In Section 5, we
overview Chronos+. In Section 6, we propose Chronos+. We
analyze the security of Chronos+ in Section 7 and evaluate
its performance in Section 8. Finally, we draw the conclu-
sions and outlook the future work in Section 9.

2 RELATED WORK

The time-stamping technique plays an important role in
protecting digital files, especially in digital investigations.
In time-stamping schemes, a file is time-stamped once it is
created such that it can be time-sensitive. The security of
the time-stamping ensures that anyone (including the file
owner) cannot back-date and forward-date the file.

The problem of time-stamping digital files is first intro-
duced by Haber et al. [13], where the first time-stamping
scheme was proposed. In this scheme, a trusted service
provider (TSP) is introduced to provide the time-stamping
service for its users. The key observation behind the scheme
in [13] is that the sequence of users requesting timestamps
and the files they want to time-stamp cannot be known
in advance. With this observation, Haber et al. utilized a
hashchain to link a sequence of files from different users via
a secure hash function. However, this scheme bears a strong
assumption that TSP is reliable. Once an adversary colludes

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

3

with TSP, a new hashchain can be regenerated such that
an existing file can be re-time-stamped. Following the work
proposed by Haber et al., some schemes [14], [15] were pro-
posed with enhanced efficiency. However, the fundamental
issue of trusting TSP still exists in these schemes.

In the last decade, we have witnessed the explosive
generation of digital data, which causes users the data
management problem [26], [27], [28], [29]. Currently, users
always prefer to utilizing cloud storage servers to manage
their data. Data outsourcing makes the guarantee of data
timeliness more challenging than ever, and thereby requires
a new time-stamping mechanism for outsourced files. Re-
cently, blockchains have been envisioned as a powerful tool
to enhance cloud storage services in terms of security and
efficiency [30], [31], [32], [33], [34], [35]. Interestingly, the
hashchain in [13] serves as a fundamental primitive for
Bitcoin [19] which is the most prominent manifestation of
blockchains. Some works have investigated how to con-
struct secure time-stamping schemes on public blockchains
that frees from the trusting of TSP. Typical schemes include
universal hash time [36] and cryptographic time-stamping
through sequential work [37]. The key idea behind these
schemes is to enable all files from different users to form
an authenticated data structure (e.g., hashchain and Merkle
hash tree) with the aid of a public blockchain (e.g., Bitcoin).
The timeliness of these files in the data structure is reflected
in the chronological order. By doing so, one can determine
that a file was generated no earlier than the previous one
and no later than the subsequent one. However, these
schemes have some issues in practice. First, the timestamp
of a file depends on other files in the system, which can-
not accurately reveal the physical time when the file was
created. Second, these schemes are designed for traditional
storage systems where users store their files locally and
cannot be directly adopted in cloud storage systems.

Another line of work focuses on designing blockchain-
based secure storage systems [38], [39], which can be ex-
tended to support secure time-stamping. Typical schemes
include Blockstack [17] and Catena [18]. The key technique
behind these schemes to support time-stamping is to in-
tegrate each file into a transaction on a public blockchain.
After the transaction is recorded into a block, the block’s
timestamp can serve as the file’s timestamp. However, such
a mechanism is also confronted with two problems. First,
the block’s timestamp on public blockchains is not accurate,
which may suffer from an unacceptable time error. For
example, in Bitcoin, the time error may be up to two hours.
Second, the timestamp can only prove that the file was
generated no later than a point in time.

In the previous version of this paper [1], a secure
time-stamping scheme for outsourced files via a pub-
lic blockchain, dubbed Chronos, has been proposed. In
Chronos, the accuracy of a file’ timestamp is improved
by deriving the timestamp from the corresponding block’s
height on the blockchain. The earliest creation time of a
file is proven by utilizing the chain quality of the public
blockchain. Compared with Chronos [1], we have made the
following improvements in this paper.

• We first analyze existing schemes (including the pre-
liminary scheme in [1]) and point out that they are

vulnerable to a type of adversaries called malicious
competitors. Specifically, in existing schemes, if a ma-
licious user colludes with the time-stamping service
provider, he can launch an attack of “stealing the
thunder” by changing the ownership of a target file.

• We propose a time-stamping scheme called Chronos+

based on Ethereum to enhance both the security
and efficiency. In particular, Chronos+ is secure
against malicious competitors and supports batch
time-stamping where the service provider can serve
multiple users simultaneously in an efficient way.

• We introduce the concept of WoT to measure the
practicality of secure time-stamping schemes. We
evaluate the performance of Chronos+, which proves
that Chronos+ is efficient. We also conduct the exper-
iment on mobile devices to demonstrate that the high
efficiency of Chronos+ on the user side.

3 PRELIMINARIES

3.1 Notations and conventions
We use ` to denote the security parameter. Given a finite
set S, |S| denotes the number of elements in S. Given two
bit-strings x and y, we denote by x||y their concatenation.

3.2 Digital signature and bilinear map
Digital signature. A digital signature scheme enables a
signer who has established a public key to sign a message
using the corresponding private key. Anyone who obtains
the public key can check that the message originated from
the signer and was not modified. We utilize BLS signature
algorithm [40], [41] to construct Chronos+, since it is con-
siderably shorter and is faster to compute compared with
other signature algorithms. BLS signature is constructed on
the bilinear map described below.

Bilinear maps. We assume that G is an additive group
whose order is a prime p and GT is a multiplicative group
with the same order. e : G×G→ GT is a bilinear map if it
has three properties: (i) Bilinearity: e(xP, yQ) = e(P,Q)xy ,
∀ P,Q ∈ G and a, b ∈ Z∗p ; (ii) Non-degeneracy: ∀ P,Q ∈ G
and P 6= Q, e(P,Q) 6= 1; (iii) There is an efficient algorithm
to compute e.

3.3 Blockchain
A blockchain consists of multiple data elements that are
called blocks. A group of participants [42], [43] maintains
the blockchain, where all blocks are linked to form a chain
and secured utilizing a secure hash function. The partici-
pants aim at achieving a consensus on the new blocks and
securely appending them to the blockchain without trusting
each other. Blockchains are publicly verifiable and inher-
ently resistant to modification [44], [45]. They can be mainly
classified into two types: private blockchains (including
consortium blockchains) and public blockchains. In private
blockchains, the participants should be authorized by a
centralized authority who can be considered as the owner of
the blockchain. Here, the authority can consist of multiple
parties, in this case, the blockchain is called consortium
blockchain. In public blockchains, the participants can freely
join and leave the systems without others’ permission.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

4

Block height

Block Header

Previous block hash Nonce

Timestamp Merkle root

Block hash

Transactions

…

……

…

…

Block height

Block Header

Previous block hash Nonce

Timestamp Merkle root

Block hash

Transactions

…

……

…

…

Block height

Block Header

Previous block hash Nonce

Timestamp Merkle root

Block hash

Transactions

…

……

…

…

Fig. 1. A simplified Ethereum blockchain

Transaction

From [Payer’s address]

To [Payee’s address]

Value [Transaction Value]

Data [A hexadecimal string]

Signature
[A signature on this transaction under the payer’s key]

Fig. 2. A graphical transaction in Ethereum

Public blockchains serve as a key component in decen-
tralized cryptocurrencies, e.g., Bitcoin [19] and Ethereum
[21]. Essentially, in these cryptocurrencies, the blockchain
is used to record a public ledger to keep track of the
ownership of each underlying value token. A transaction
can be considered a function that changes the ownership of
specific tokens and updates the ledger. The participants who
maintain the blockchain and add new blocks containing
transactions are called miners. The security of blockchains
ensures that only valid transactions can be recorded. Con-
sensus algorithms play a key role in blockchain systems.
Currently, public blockchain systems can be based on mul-
tiple consensus algorithms, e.g., proof-of-work (PoW) [19],
[21], proof-of-stake (PoS) [46], proof-of-space [47], etc. In this
paper, we construct the scheme on a well-established and
widely-used (PoW-based) public blockchain, i.e., Ethereum,
since it is more expressive than other public blockchains.

A simplified Ethereum blockchain is illustrated in Fig. 1.
A block consists of two parts of data. The first one is called
the block header which is used to compute the hash value
of the block. It includes the following data fields.

• Hash value of the last block. It serves as a pointer to
point to the previous block, such that all blocks form
a chain.

• Nonce. It is a solution of the PoW puzzles. The miner,
who is the first one that finds a valid nonce, can
determine and publish this block.

• Timestamp. It is a physical time that indicates when
the corresponding block was created. In reality,
this timestamp is not accurate, since others would
not verify its accuracy. In Ethereum, the timestamp
would suffer from up to 900-seconds errors.

• Merkle root. It is the root value of a Merkle hash tree
computed from all transactions in the current block.

The second one is called the transaction data, which

includes all transactions in the current block. A graphical
transaction in Ethereum is shown in Fig. 2. In Ethereum, the
ledger can be thought of as a state transition system, where
there is a “state” consisting of the ownership status of all
existing Ethers (the value token of Ethereum) and a function
that takes a state and a transaction as input, and outputs
a new state which is the result. The state is composed of
accounts which are addresses in the network. Generally,
Ethereum supports two types of accounts: externally owned
accounts and contract accounts. Contract accounts are con-
trolled by the corresponding contract code. One can invoke
the contract by transferring Ethers to the corresponding con-
tract account. Externally owned accounts are controlled by
the corresponding private keys. Anyone who has a private
key can transfer Ethers from the corresponding externally
owned account to other accounts (including the externally
owned ones and contract ones). In the transaction, there
is a data field. Ethereum enables the user who creates the
transaction to set an arbitrary binary string on the data field.
More technique details can be found in [19], [21].

From the perspective of cryptography, the blockchain
can be considered as a cryptographic protocol that is exe-
cuted among multiple participants. Such a protocol has the
following three fundamental properties [23], [24], [25], [48]:

• ϕ-chain consistency. At any point, the blockchains in
two honest participants can differ only in the last ϕ
blocks with overwhelming probability in ϕ.

• (ι, ϕ)-chain quality. In an honest party’s blockchain,
the fraction of blocks mined by honest parties in any
sequence of ϕ-successive blocks is at least ι.

• Chain growth. The blockchain height would be in-
creased steadily with respect to both short term and
long term.

4 PROBLEM STATEMENT

4.1 System model
As shown in Fig. 3, there are three entities in Chronos+: User,
Chronos+ log server, and authenticated auditor.

• User. The user is the owner of data files, she/he gen-
erates new files and requests time-stamping services
from the Chronos+ log server. Chronos+ supports
batch time-stamping such that multiple files gener-
ated by different users at the same time can be time-
stamped simultaneously. We stress that different
users are independent in the batch time-stamping,
and it would not require any additional operations
or investments on the users’ devices.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

5

Chronos+ Log
Server

User

Data File

Authenticated
Auditor

Output

Timestamp

…

Fig. 3. System model

• Chronos+ log server. The log server provides users
both data outsourcing and time-stamping services.
In reality, as users prefer to outsource their files to
cloud servers, the log server can be subject to cloud
service providers. We stress that Chronos+ can also
be applied in traditional storage systems where users
store their data locally. In this case, the log server is
subject to the user herself/himself.

• Authenticated auditor. The authenticated auditor can
access the data files stored on the log server and out-
puts a timestamp for a specific file, which indicates
the physical time when the file was generated.

Characteristics of outsourced files protected by time-stamping
schemes. Generally, files to be time-stamped are tamper-
unpredictable and should be archived timely. It means that
when a file is created, the file creator (i.e., file owner)
cannot establish the necessary knowledge and motivation to
tamper with the timestamp of the file [13]. Meanwhile, the
file should be outsourced and time-stamped timely, and the
log server needs to well maintain the file and its timestamp
to archive data for post investigations. Consequently, the
time when the file was accepted by the log server can be
considered as the creation time of the file.

Chronos+ impliedly supports the case of multiple log
servers, since the auditor can output the physical time when
a file was generated. In particular, given two files and the
corresponding timestamps, the physical time when these
two files were generated can be kept consistent no matter
which log server they are store on. For the sake of brevity,
we only show the single log server in Chronos+.

4.2 Threat model
As discussed in Section 4.1, the files Chronos+ protects are
tamper-unpredictable and should be archived timely [7],
[12]. It means that the user cannot establish any motiva-
tion to stop or procrastinate on time-stamping the newly
generated files. In other words, the user would request the
time-stamping service from the log server at the time a file
is created. The user would honestly follow this process to
guarantee the normal archiving service.

In reality, time-stamping schemes are confronted with
threats from two different angles: malicious users and ratio-
nal log server.

Malicious users. There are two types of malicious users.

• Malicious file owner. After the files are outsourced
and timestamped, some of them are found to be

incriminating and arguable. As such, a file owner
may attempt to back-date/forward-date existing files
to increase his profits in the system. For example,
in a digital investigation, a malicious file creator
may attempt to tamper with existing timestamps of
files to cover up his wrongdoing. We stress that the
file owner would not be misbehavior when she/he
requests the timestamp of a file from the log server,
since the file owner cannot establish the necessary
knowledge and motivation to tamper with the times-
tamp of the file at this time and the normal archive
server would be impeded by such a misbehavior.

• Malicious competitor. A malicious competitor is a valid
user in the system. He targets at a specific group of
users in the system to “steal the thunder”. For in-
stance, in a cloud-based intellectual property system,
when a user uploads a patent to the log server, a
malicious competitor can intercept and tamper with
the patent to change the ownership of the patent.
This problem is further exacerbated by the fact that
the malicious competitor can incentivize the log
server to perform the above attack. We stress that
any external adversary (e.g., malicious hackers) can
become a valid user in the system to increase the
advantage. Therefore, an external adversary can be
considered as a malicious competitor.

Rational log server. We consider the log server as a
rational entity. Since the log server is subject to a cloud
service provider, this assumption inherits the one in existing
secure cloud storage systems [12], [49], [50], [51]. Partic-
ularly, the log server will only deviate from the scheme
if its profits can be increased. It can be incentivized by
malicious users (including file owners and competitors) to
back-date/forward-date the outsourced files. Different from
existing works [13], [14], [15], [16], in Chronos+, we assume
that any adversary might collude with the log server to
modify the files’ timestamps.

In our threat model, we also assume that the budget
of adversaries is limited, since an adversary who has an
unlimited budget can break the security of any blockchain
system. Furthermore, since the auditor is subject to authori-
ties and its inputs are publicly verifiable, the correctness of
timestamps generated by the auditor can be easily proven.
Therefore, we would not consider malicious auditors.

4.3 Window of time-stamping

With the system model described in Section 4.1, in order to
assess the practicality of secure time-stamping schemes, we
introduce a concept of window of time-stamping (WoT).

Definition 1. Window of time-stamping (WoT) is a time in-
terval from the time that a request on a file’s timestamp is
made to the time that the timestamp is securely recorded.

Since the longer WoT, the larger the time errors in the
timestamp and the longer the latency period that a user has
to bear for time-stamping a file. WoT is one of the most
significant factors to affect the practicality of secure time-
stamping schemes. Therefore, the shorter WoT is, the more
practical a time-stamping scheme is.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

6

4.4 Challenges and design goals

In this paper, we target at designing a blockchain-based
accurate time-stamping scheme, in which there exist three
challenges:

1) How to ensure the accuracy of files’ timestamps. Since
the timestamp of a block in Bitcoin might suffer from up
to two-hour errors, secure time-stamping schemes that
are derived from Bitcoin-based storage systems [17],
[18] cannot guarantee the accuracy of files’ timestamps.
This problem cannot be well addressed by only sub-
stituting Bitcoin by other blockchain systems, because
existing public blockchain systems do not provide a
mechanism to ensure the accuracy of blocks’ times-
tamps. Therefore, how to ensure the accuracy of files’
timestamps is a challenging problem.

2) How to prove the earliest creation time of files. Ex-
isting blockchain-based time-stamping schemes, such
as universal hash time [36] and the scheme in [37],
only can prove that a file was generated no earlier
than another file. A straightforward way to prove the
earliest creation time of a file is to require the file owner
to embed creation time in the file before outsourcing
to the log server. However, such the strategy requires
synchronization among all users and all log servers.
This would cause a heavy burden on users, especially
for those who equip low-power devices. Thus, how to
prove the earliest creation time of files in an efficient
and non-repudiation way is very challenging.

3) How to resist malicious competitor. In the threat model
of existing schemes, malicious competitors are not con-
sidered. However, a malicious competitor might target
specific users to “steal the thunder”. Note that encrypt-
ing the files to be time-stamped cannot resist malicious
competitors, since they can collude with the log server
to compromise the target files. Hence, how to thwart
malicious competitors without sacrificing performance
and functionality is a challenge.

To support secure time-stamping under the aforemen-
tioned model, three objects should be achieved.

• Efficiency: Time-stamping files should not introduce
heavy computation and communication costs on
both the log server and users. The log server should
be able to handle multiple tasks from different users
simultaneously. WoT should be as short as possible.

• Functionality: The scheme should prove that a file
was generated during a time interval. The accuracy
of timestamp should be ensured and the range of
time interval should be kept as short as possible.

• Security: After a file is time-stamped, neither the file
owner nor the log server can modify the recorded
timestamp, even if they collude with each other. A
malicious competitor cannot break the security.

5 OVERVIEW OF CHRONOS+

Before presenting Chronos+, we start with a plain
blockchain-based time-stamping scheme which is derived
from existing blockchain-based secure storage systems(e.g.,

Log Server

User

Bitcoin
Blockchain

…… ……

… …

Block 𝑡 Block 𝑡 + 1

𝑭 𝝈

𝑭 𝝈

One-way Hash

digest

Storage

Timestamp

…

Block 𝑡 + ℎ

Timestamp Timestamp

Authenticated
Auditor

File’s
Timestamp

Fig. 4. Plain blockchain-based time-stamping scheme

Catena [18], Blockstack [17], Tierion3, and Factom4). As
shown in Fig. 4, the plain scheme works as follows.

A user creates a file F and computes the corresponding
signature σ. Then she/he sends {F, σ} to the log server.
The log server creates a transaction in Bitcoin and uploads
the transaction to the Bitcoin blockchain, where {F, σ} is
recorded into the transaction5. After the transaction is con-
firmed, the log server maintains F , σ, and other auxiliary
information (e.g., the information about the block and the
transaction containing the data) locally. The timestamp of
the block containing {F, σ} serves as the file’s timestamp.

In the plain scheme, the accuracy of the timestamp is ar-
guable, which cannot accurately indicate when the file was
created. The inaccuracy is mainly caused by two reasons.

1) The block’s timestamp on the Bitcoin blockchain is
confronted with up to two-hour errors.

2) A transaction has to wait to be lumped into a block
with a considerably long delay (about 1 hour and more
in extreme cases).

Improving the accuracy. To guarantee the accuracy of the
file’s timestamp, an alternative way to obtain the times-
tamp should be investigated. The key observation behind
Chronos+ is that the blockchains’ property of chain growth
can actually be utilized to construct a “clock” indicating
the time that each block was chained to the blockchain.
Specifically, chain growth formalizes blockchains’ property
that a blockchain’s height will steadily increase in respect
of both short and long terms. This enables us to accurately
derive the physical time when a block was appended to
the blockchain from the block’s height on the blockchain.
Such the height-derived timestamp overcomes the time
errors in the block’s timestamp. To avoid the considerably
long delay caused by uploading the transaction to the
Bitcoin blockchain, we built Chronos+ on Ethereum, since
the handling capacity of Ethereum is stronger than those
of Bitcoin. This reduces the delay of uploading transactions
significantly.

Proving the earliest creation time. The above schemes fol-
low the same paradigm: the file’s timestamp only corre-
sponds to the time when the block containing the file was
appended to the blockchain. However, such a timestamp
only can prove that the file was created earlier than the time

3. https://tierion.com/
4. https://www.factom.com/
5. Catena [18] is constructed on the Bitcoin blockchain [19], and

utilizes the TOX mechanism to enable multiple data files (even if they
are generated by different users) to be chained. Furthermore, Catena
employs the “OP-RETURN” outputs to store the data in the Bitcoin
blockchain.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

7

when the block was appended. This would be insufficient
for protecting time-sensitive data in reality, especially when
malicious competitors exist. A trivial method to prove the
earliest creation time of a file is to let the user embed
the creation time in the file before sending to the log
server. Whereas, this requires a precise time synchronization
among all users and all log servers6, and would introduce
heavy communication and computation costs.

We resolve this deadlock by utilizing (ι, ϕ)-chain quality
of blockchains. Instead of requiring the user to embed phys-
ical time in the file to prove the earliest creation time, the
user only embeds a time-dependent random seed in the file
for this purpose. The time-dependent random seed is unpre-
dictable and unforgeable, which proves that the seed was
generated no earlier than a point in time. We observe that
the hash values of ϕ-successive blocks on the blockchain can
actually serve as such a time-dependent random seed. With
the integration of the hash values of ϕ-successive blocks that
are latest confirmed on the Ethereum blockchain, Chronos+

enables users to prove that the file was generated no earlier
than the physical time that the last block of ϕ-successive
ones was appended to the blockchain. Again, this physical
time is also derived from the block’s height to ensure its
accuracy. Therefore, the file’s timestamp in Chronos+ is a
time interval denoted by [ts1, ts2], where ts1 is extracted
from the height of the last block in ϕ-successive ones that
are latest confirmed on the Ethereum blockchain when the
file was created, and ts2 is extracted from the height of the
block containing the file.

Resistance against malicious competitors. There is still a
subtle security problem. Consider a malicious competitor
who targets at a specific user for stealing her/his file. To
this end, the malicious competitor intercepts the file sent
from the user, compromises the user’s network, changes the
ownership of the file (e.g., changing the author information),
and sends the modified file to the log server. By doing so,
the malicious competitor is able to steal the user’s thunder.
Note that such an attack cannot be thwarted by encrypting
the file on the user before outsourcing, since the contents
of files protected by time-stamping schemes should always
be publicly verifiable, and the malicious competitor may
incentivize the log server to perform the attack.

We address this issue by an elaborate mechanism of
“unlock on delivery”. Specifically, the user encrypts the file
(using a symmetric encryption algorithm) and sends the
ciphertext to the log server. The log server time-stamps
the ciphertext as described before. After the timestamp is
generated, the user sends the encryption/decryption key to
the log server. The log server then decrypts the ciphertext
and stores the file as well as the encryption/decryption
key and the timestamp locally. The “stealing the thunder”
attack no longer works, because the malicious competitor
cannot change the ownership of the file without the encryp-
tion/decryption key, even if he colludes with the log server.

Security against equivocation attacks. In reality, a malicious
user may collude with the log server to perform equivoca-
tion attacks to modify an existing timestamp of a specific
file that generated by himself. In particular, after a file is

6. We stress that an inherent requirement to design Chronos+ is to
support the case of multiple log servers, as discussed in Section 4.1.

outsourced and the corresponding information is recorded
into a transaction on the blockchain, the file owner is able
to incentivize the log server to “re-time-stamp” the file and
substitute the newly generated timestamp for the existing
one. As such, the malicious user can equivocate on the
timestamp of the target file. It is cumbersome to detect
such the attack in practice, since it requires an auditor to
maintain the entire blockchain and scan it to ensure the
non-equivocation. The plain scheme resists the attack by
utilizing a non-membership proof which is constructed on
the Bitcoin’s UTXO mechanism [18]. However, Chronos+

cannot follow this strategy to resist equivocation attacks,
since Ethereum does not use the UTXO mechanism.

To guarantee the non-equivocation, we construct a new
non-membership proof on the Ethereum’s blockchain. The
accounts used to create the transactions in Chronos+ are
specially-crafted and dedicated, which enables an authen-
ticated auditor to check whether the number of transactions
created by the account matches the number of files that have
been time-stamped. This number can be easily extracted
from the “nonce” field of the account in Ethereum. This
yields our final scheme which provides a secure, accurate,
and efficient time-stamping service for users.

6 THE PROPOSED CHRONOS+

6.1 Construction of Chronos+

A user U , a log server LS , and an authenticated auditor
A are involved in Chronos+. Fig. 5 shows Chronos+. We
describe next the four algorithms of Chronos+, Setup, Out-
source, TimeStamp, and CheckStamp.

Setup. With the security parameter `, the system param-
eters {p, P,G,GT , e, h,H,ALS , AU ,E/D} are determined,
where G is an additive group whose generator is P with
a prime order p, GT is a multiplicative group with the same
order, e : G×G→ GT is a bilinear pairing, h : {0, 1}∗ → Zp,
H : {0, 1}∗ → G, ALS is the LS’s account and AU is the U ’s
account on the blockchain, and E/D is a symmetric encryp-
tion/decryption algorithm (e.g., AES). U randomly chooses
skU ∈ Z∗p as the secret key and computes pkU = skUP as
the corresponding public key. U also chooses kU ∈ Zp as an
encryption/decryption key for E/D.

Outsource. U generates a new file and outsources it to
LS as follows.

• U generates a new file F and encrypts it using kU as:

C = E(kU , F).

• Based on the current time, U acquires the hash values
of ϕ-successive blocks that are latest confirmed on
the Ethereum blockchain. The hash values of these
blocks are denoted by Blt−ϕ+1, Blt−ϕ+2, · · · , Blt,
respectively, where t is the height of the block that
is latest confirmed on the blockchain, and we recom-
mend ϕ ≥ 12 for Ethereum.

• U computes θ = H(C||Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt)
and σ = skUθ.

• U sends Ĉ = {C,Blt−ϕ+1, Blt−ϕ+2, · · · , Blt, σ} to
LS .

• Upon receiving Ĉ, LS checks whether the block cor-
responding to Blt is the latest one that is confirmed

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

8

User

Blockchain …… ……
… …… …

Block
𝑡 − 𝜑 + 1

Block
𝑡 − 𝜑 + 2

Block
𝑡

Block
𝑡+𝜑+1……

𝝋 successive blocks

Encryption
Signature

Chronos+ Log
Server

Decryption

One-way Hash

digest

Storage

Transaction
From

The log server’s address

To
The user’s address

Value
0

Data
The digest of the file

Signature
A signature on this transaction

under the log server’s key

①

③

②

④

Authenticated
Auditor

File’s
Timestamp

Fig. 5. The proposed Chronos+

on the blockchain7. If the checking fails, LS rejects it;
otherwise, LS verifies the following equation:

e(σ, P) = e(H(C||Blt−ϕ+1|| · · · ||Blt), pkU). (1)

If Eq. 1 holds, LS accepts Ĉ; otherwise, LS rejects it.

TimeStamp. LS time-stamps Ĉ as follows.

• LS computes a digest of Ĉ as

δ = h(Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt||C||σ).

• LS generates a transaction shown in Fig. 5, where
LS transfers 0 Ether from its account ALS to U ’s
account AU and sets δ on the data value of the
transaction. LS then uploads the transaction to the
Ethereum blockchain. Ideally, this transaction would
be recorded in the block whose height is t+ ϕ+ 1.

• Once the transaction is accepted and confirmed by
the blockchain, U sends kU to LS .

• LS decrypts C by computing

F = D(kU , C).

If the decryption fails, LS aborts; otherwise, LS
stores

{Blt−ϕ+1, · · · , Blt, t+ ϕ+ 1, F, kU , σ}.

CheckStamp. Given {Blt−ϕ+1, · · · , Blt, t + ϕ +
1, F, kU , σ}, A can check the creation time of F as follows:

• A acquires the information of ALS and AU from the
Ethereum blockchain.

• A extracts the number of transactions from ALS to
AU based on the nonce value of ALS .

• A checks whether the number of transactions
matches the number of data files generated by U . If
the checking fails, A aborts.

• A computes C = E(kU , F) and verifies the validity
of σ. If the verification fails, A aborts.

7. In practice, the block corresponding to Blt may be not the latest
one due to the delay caused by communication. However, this delay
would not be long and the block can be accepted if it is one of the latest
ones that is confirmed on the blockchain. For the sake of brevity, we do
not consider the delay in this section.

• Based on the block height t+ϕ+1,A locates the block
and extracts δ′ from the corresponding transaction
and verifies the following equation:

h(Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt||C||σ) = δ′.

If the verification fails, A aborts.
• A computes

ts1 = τ + ρ · t, (2)
ts2 = τ + ρ · (t+ ϕ+ 1), (3)

where τ is 2015-07-30, 03:26:13 PM +UTC (i.e., the
time the genesis block of Ethereum was appended)
and ρ is the average time that a new block is mined
from the day of 2015-07-30 to the day the block is
appended to the blockchain in Ethereum. We will
provide the details on setting ρ in Section 6.3.

• A outputs [ts1, ts2] as a timestamp of F , which
indicates that F was generated during [ts1, ts2].

6.2 Support for batch time-stamping
In reality, multiple files from different users may be time-
stamped concurrently. The individual time-stamping of
these files for the log server and users could be tedious,
inefficient, and inaccurate. Given n time-stamping tasks
on n distinct files from n different file owners, it is more
advantageous for the log server to batch these tasks to-
gether and time-stamp these files at one time. Therefore,
we extend Chronos+ to support batch time-stamping, which
is described below.

We assume that there are n users {U1,U2, · · · ,Un}.
Setup. The system parameters {p, P , G, GT , e, h, H ,

ALS send, ALS receive, E/D} are determined with `, where
ALS send and ALS receive are two accounts of LS on the
Ethereum blockchain, and other parameters are the same as
the ones described before. For i = 1, 2, · · · , n, Ui generates
{skUi , pkUi} and kUi as the same as the basic scheme.

Outsource. For i = 1, 2, · · · , n, Ui generates a new file
and outsources it to LS as follows.

• Ui generates a new file Fi and encrypts it as

Ci = E(kUi , F).

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

9

Tx1 …… TxTx

Tx1

From
𝐴ℒ𝒮_

To
𝐴ℒ𝒮_

Value
0

Data
𝛿

Signature
A signature on this

transaction under ℒ𝒮’s key

Block

Height: 𝑡 + 𝜑 + 1

Fig. 6. Transaction on the Ethereum blockchain

• Based on the current time, Ui acquires
Blt−ϕ+1, Blt−ϕ+2, · · · , Blt from the Ethereum
blockchain.

• Ui computes σi = skUiθi, where

θi = H(Ci||Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt).

• Ui sends Ĉi = {Ci, Blt−ϕ+1, Blt−ϕ+2, · · · , Blt, σi}
to LS .

• Upon receiving Ĉi, LS checks the validity of
Blt−ϕ+1, Blt−ϕ+2, · · · , Blt. In the batch time-
stamping, n files from n users who choose
the same Blt−ϕ+1, Blt−ϕ+2, · · · , Blt are time-
stamped simultaneously. Then LS computes θi =
H(Ci||Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt) and verifies the
following equation:

e(
n∑

i=1

σi, P) =
n∏

i=1

e(θi, pkUi). (4)

If the equation 4 holds, LS accepts Ĉi.

TimeStamp. On receiving Ĉ1, Ĉ2, · · · , Ĉn, LS time-
stamps them as follows.

• LS computes

δ = h(Blt−ϕ+1|| · · · ||Blt)||h(C1||σ1)|| · · · ||h(Cn||σn).
• LS generates a transaction Tx1 shown in Fig. 6,

where 0 Ether is transferred from ALS send to
ALS receive, and δ is set to the data value of Tx1.

• LS uploads the transaction to the Ethereum
blockchain. Ideally, this transaction would be
recorded in the block whose height is t+ ϕ+ 1.

• Once the transaction is accepted and confirmed by
the blockchain, LS sends the information of the
corresponding block to all users.

• For i = 1, 2, · · · , n, Ui verifies that h(Ci||σi) has
been recorded into the Ethereum blockchain. If the
verification passes, Ui sends kUi to LS .

• LS decrypts Ci by computing Fi = D(kUi , Ci), and
locally stores the data which is shown in Table. 1.

TABLE 1
Data stored on LS

Blt−ϕ+1, Blt−ϕ+2, ..., Blt t+ ϕ+ 1

F1 kU1 σ1

· · · · · · · · ·
Fn kUn σn

CheckStamp. This algorithm is the same as that in the
basic scheme, we would not repeat it for the sake of brevity.

0 150 300 450 600 750 900 1050 1200 1350
4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

B
lo

ck
T

im
e

 (
s)

The number of days after the day the first block was generated

 BlockTime on the day
 BlockTime before the day
 Ideal setting

Fig. 7. BlockTime of Ethereum

6.3 Accuracy of height-derived timestamps
We denote the average time block mining on the Ethereum
blockchain by BlockTime. Fig. 7 shows BlockTime8, where
the blue dash line indicates BlockTime of system setting (i.e.,
15s), the red line indicates BlockTime on the x-th day after
the day of τ (i.e., the genesis block was created, 2015-07-30
+UTC), and the black dot line indicates BlockTime from the
day of τ to the x-th day after τ (x is the corresponding
value of the X-axis). As shown in Fig 7, BlockTime in
Ethereum is larger than the pre-set one, due to the network
delay, the fluctuation of network hashing power and so on.
Therefore, if we set ρ = 15 in equation 2 and 3, the height-
derived timestamp is still not accurate. However, although
BlockTime is not equal to 15 seconds, the chain growth
property is not broken, since BlockTime in Ethereum still
falls into a small range of time with respect to both short or
long term, even if BlockTime is fluctuating on a single day.
We assume that ρx is the average BlockTime from τ to the
x-th day after the day of τ . In equation 2 and 3, ρ should be
set to ρx when the block was appended to the blockchain on
the x-th day after 2015-07-30 +UTC. We can compute ρx as

ρx =

x∑
j=1

ρ̂x

x+ 1
, (5)

where ρ̂x denotes the BlockTime on the x-th day after the
day of τ (shown by the red line in Fig. 7). We stress that
BlockTime on each day is very important for the Ethereum.
Multiple supernodes and full nodes have maintained and
released Ethereum’s BlockTime on each day in real time.
Therefore, ρ̂x can be easily derived from the Ethereum
blockchain. To ensure the accuracy of height-derived times-
tamp, ρx should be periodically adjusted due to the fluc-
tuation of BlockTime in Ethereum. For example, when
x = 1146, i.e., the day is 2018-09-16, ρx = 15.72s. When
x = 1322, i.e., the day is 2019-03-13, ρx = 15.65704769s.

Another factor that affects the accuracy of files’ times-
tamps is the range of the time interval, i.e., the range of
[ts1, ts2] denoted byRTS . In Chronos+, for the x-th day after
the day of τ , RTS = ϕρ̂x. For the recommended ϕ = 12,
RTS in Chronos+ is around 3 minutes. Although RTS varies

8. The data are collected from Etherscan, https://etherscan.io

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

10

with BlockTime, it would not be too large in practice, due to
chain growth property of the blockchain.

7 SECURITY ANALYSIS

In this section, security properties of Chronos+ are analyzed
from three aspects.

7.1 Resistance against malicious file owners

A malicious file owner may attempt to forward-date his file.
Forward-dating files is a critical issue in the physical world,
where the timestamp of a file could be a dated entry at-
tached to the corresponding file recorded in a notebook, the
adversary can attach a file to a dated entry that corresponds
to a point in the future. However, it is hard to forward-date
files in Chronos+, due to the following two reasons.

First, the earliest creation time of the file in Chronos+

is derived from the corresponding ϕ-successive blocks that
are latest confirmed on the blockchain. Due to the property
of (ι, ϕ)-chain quality, any adversary whose hashrate is
less than 51% of the network’s mining hashrate cannot
fully control these ϕ-successive blocks [52]. Therefore, the
hash value of these blocks cannot be pre-determined, which
makes the pre-generation of the file’s timestamp impossible.
Second, the adversary cannot let miners in the blockchain
system procrastinate on collecting the transaction containing
the file’s information to forward-date the file, since the se-
curity of blockchains ensures that a valid transaction could
be recorded into the blockchain within a determined time
interval [25], [46], [53].

The malicious file owner may also attempt to back-date
his file. In this case, the goal of malicious file owner is to
forge a timestamp for a newly created file to convince others
that the file was created at a point in the past. The adversary
has two possible strategies:

1) He integrates the file information into an existing trans-
action on the blockchain.

2) He creates a new transaction where the file information
is integrated and records the transaction into a target
block that has been chained to the blockchain at a point
in the past.

We give a security analysis of Chronos+, with respect to
the two strategies above.

Strategy 1) requires the malicious file owner to modify
the blockchain without detection. Specifically, the data field
is a part of the transaction, and thereby is a part of the
chained block. Adding a new data value to an existing trans-
action on blockchain essentially modifies the blockchain it-
self. This is impossible due to the ϕ-chain consistency which
formalizes the security property that blockchain systems are
inherently resistant to modification [24], [46].

Strategy 2) requires the malicious file owner to fork the
blockchain. In particular, as shown in Fig. 8, in this attack,
at a point in time, the blockchain has the form indicated
by blue blocks in Fig. 8. The malicious file owner creates
a new transaction where the information about the file is
integrated, and attempts to record this transaction into a
chained block on the blockchain (indicated by the first red
block). Since each block includes the hash value of the
previous one, if the malicious file owner substitutes the

… … …Ethereum
Blockchain:

…

… …The file is integrated
into this transaction
to back-date.

Fig. 8. Back-dating a file by forking the blockchain

target block by the newly generated one (which contains
the newly created transaction), the validity of the blockchain
is broken. The only way to perform this attack is to fork
the blockchain, i.e., he makes the blockchain including the
newly generated block (shown within the yellow rectangle)
become the main chain. However, due to the security of
Ethereum, it is infeasible to fork the blockchain for adver-
saries whose budget is limited and hashrate is less than 51%
of the network’s hashrate.

7.2 Resistance against adversarial competitors

For an adversarial competitor in the system, we mainly
focus on thwarting the attack of stealing the thunder (short
for AST). In AST, the adversarial competitor first intercepts
the file sent from a target user and changes the ownership
of the file. Then, he requests a timestamp on the modified
file from the log server. Note that AST can be performed by
the adversarial competitor who compromises the log server.

Chronos+ is secure against adversarial competitors, due
to the proposed “unlock on delivery” paradigm. Partic-
ularly, in Chronos+, the user requests the time-stamping
service on the ciphertext from the log server. The log server
integrates the digest of the ciphertext into a transaction on
the blockchain to time-stamp the file. After the transaction
is confirmed, the user then sends the encryption/decryption
key to the log server. The log server decrypts the ciphertext
and well maintains the file and the key. The authenticated
auditor who can access the file and the key is able to check
the correspondence between the digest of the ciphertext in
the transaction and the file maintained by the log server.
Since the file is encrypted when it is time-stamped, the
malicious competitor cannot change the ownership of the
file, even if he compromises the log server. Recall that the
goal of the adversarial competitor is to steal the thunder,
if he colludes with the log server to change the ownership
of an existing file after the file is time-stamped, he cannot
prove that the modified file was generated earlier than the
existing one.

We further stress that the main goal of Chronos+ is
to provide a secure and accurate time-stamping service
for users. We assume that the integrity of files stored on
the log server has already been guaranteed by orthogonal
techniques [9], [41], [54].

7.3 Resistance against compromised log server

In regards to the compromised log server, we prove that
Chronos+ is secure against equivocation attacks.

After a file is time-stamped, the log server may equiv-
ocate about the file on the blockchain to substitute the
existing timestamp by a newly created one. This attack
is shown in Fig. 9, where the log server creates a new

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

11

… … …Ethereum
Blockchain:

…

The information on the
file 𝑭 has integrated into
this transaction.

The information on the
file 𝑭 has integrated into
this transaction.

Fig. 9. Equivocation about the file F

transaction and integrates the information about a time-
stamped file F into the transaction (since the log server
has the encryption/decryption key, it can compute the ci-
phertext). Consequently, two transactions on the blockchain
correspond to the same file, which causes an equivocation.
The log server can only release the newly created transaction
to show the timestamp of F .

However, in Chronos+, such the attack can be easily de-
tected. Note that when the authenticated auditor checks the
timestamps of the files, it first checks whether the number
of transactions the log server creates matches the number of
files that have been time-stamped. If the checking fails, the
timestamp of the file would be invalid. Since the log server’s
account used to create transaction is specially-crafted and
dedicated, the number of transactions the log server creates
can be easily obtained from the “nonce” field of the account.
Therefore, Chronos+ resists the compromised log server.

8 PERFORMANCE EVALUATION

In this section, the performance of Chronos+ is evaluated
and the practicality of Chronos+ is measured. The experi-
ment is conducted on a laptop with macOS, an Intel Core
i7 CPU, and 16GB DDR3 of RAM. cryptographic operations
are implemented by using C language and MIRACL library.
The security level is chosen to be 80 bits for the evaluation,
where the underlying elliptic curve is an MNT curve9 whose
base field size is 159 bits and embedding degree is 6.
The feasibility of Chronos+ for mobile users is also tested,
where the experiment on the user side is conducted on a
smartphone (HUAWEI MT2-L01) with the Android 4.2.2
system, a Kirin 910 CPU with memory 1250 MB, and we
use SetCPU to change the frequency of the smartphone for
the experiment.

8.1 Communication overhead
The communication overhead between the user and the
log server is proportional to the size of the file to be
time-stamped. In the following evaluation, we exclude the
communication costs caused by sending/receiving the file.
On the user side, the communication costs to time-stamp a
file are ϕ · |ĥ|+ ϕ · |ĥ|+ |σ|+ |kU |, where |ĥ| is the size of a
block’s hash value in Ethereum, i.e., 256 bits. When ϕ = 12,
the communication costs are around 0.8 KB.

On the log server side, the communication costs consist
of three parts. The first one is to acquire hash values of
ϕ-successive blocks from the Ethereum blockchain to ver-
ify the validity of the ϕ-successive blocks received from

9. Actually, MNT curve is used to construct Type-3 pairings, i.e.,
e : G2 × G1 → GT , where G1 and G2 are additive groups. Since
Type-3 pairings are more efficient than Type-1 pairings when we choose
the same security level, in the implementation of Chronos+, we utilize
Type-3 pairing to analyze the performance. This would not affect the
feasibility and security of Chronos+.

the user; The second one is to upload transactions to the
Ethereum blockchain; The third one is to prove the times-
tamp of the file to the user and receive the decryption key
from the user. In Chronos+, the transaction is simple. The
size of the transaction is about 109 + X bytes, where X
is the size of the data value. In the single-user case, the
communication costs on the log server are around 0.94 KB.
Compared with the individual time-stamping, the batch
time-stamping is more advantageous for the log server
on the communication overhead when it serves multiple
users simultaneously, which is shown in Fig. 10. Compared
with the individual time-stamping, the batch time-stamping
indeed reduces the log server’s communication costs, as
more than 40% of per-task communication costs are saved.
The communication evaluation also demonstrates that the
communication costs are acceptable in practice, since they
can be negligible when being compared with the size of
time-stamped files.

8.2 Computational overhead
The computational costs with respect to basic cryptographic
operations are introduced in Table 2.

TABLE 2
Notation of operations

Symbol Operation

HashG hash a value into G
MultG group operation in G
PairGT

computing pairing e(χ, ς) where χ, ς ∈ G
Enc symmetric encryption/decryption operation
HashZp hash a value into Zp

Tx conducting a transaction in Ethereum

On the user side, the data sent to the log server includes
the encrypted file and the corresponding signature. Since
generating files depends on the user’s requirements, we
would exclude this part of computation in the following.
As such, the corresponding computation costs are

c ·HashG + c ·MultG + c · Enc,
where c is the number of files to be time-stamped. We show
the computation delay on the user in Fig. 11, where the
experiments are conducted on a laptop and a smartphone
with different frequencies (denoted by f). According to the
experiment results, we can observe that the computation
delay on the not-so-powerful smartphone is very short.

On the log server side, the computational costs are

2c · PairGT
+ c ·HashG + c ·HashZp

+ c · Tx+ c · Enc,
where c is the number of files. In our experiment, the com-
putational delay on the log server for a user is within 20ms.
In reality, the log server would serve lots of users simultane-
ously. In this case, the batch time-stamping scheme would
improve computation efficiency significantly. In Fig. 12, we
show the experiment results of the comparison between
the individual time-stamping and batch time-stamping with
respect to the computational delay, which shows that the
per-task computational costs can be reduced more than 45%.
The experiment results prove that Chronos+ is efficient and
can be easily deployed in practice.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

12

0 3 6 9 12
0.00

0.25

0.50

0.75

1.00

C
o

m
m

u
n

ic
a

tio
n

co
st

s
pe

r
ta

sk
 (

K
B

)

Number of users

 Individual time-stamping
 Batch time-stamping

Fig. 10. Communication costs of individual
and batch time-stamping

0 2 4 6 8 10 12
0

200

400

600

800

1000

C
o

m
p

ut
a

tio
n

 d
e

la
y

(m
s)

Number of files

 User with a laptop
 Mobile user (CPU f = 208 MHz)
 Mobile user (CPU f = 624 MHz)
 Mobile user (CPU f = 1196 MHz)
 Mobile user (CPU f = 1596 MHz)

Fig. 11. Computation delay on the user w.r.t.
the number of files to be time-stamped

0 3 6 9 12
0

3

6

9

12

15

18

C
o

m
p

ut
a

tio
n

al
 d

e
la

y
pe

r
ta

sk
 (

m
s)

Number of users

 Individual time-stamping
 Batch time-stamping

Fig. 12. Computation delay on the log server
w.r.t. the number of users

Timeline:

The file 𝐹 is
generated

The log server has received 𝐹, the
digest of 𝐹 is computed, and the
transaction including the digest is
broadcast to the Ethereum network

The transaction is recorded to the
Ethereum blockchain

The transaction is confirmed and
the timestamp of 𝐹 is generated

𝑡 𝑡 𝑡

WoT

Fig. 13. Illustration of WoT

0 5 10 15
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

D
e

la
y

(s
e

co
n

d
)

The index of the transaction

Time the transaction to complete
Time to confirm the transaction
 WoT

Fig. 14. Evaluation of WoT

8.3 Measurement of practicality
The practicality of Chronos+ is measured in two aspects.

First, WoT of Chronos+ is measured. WoT consists of
three parts, as shown in Fig. 13. The first one is the time to
process the file F , which has been evaluated in Section 8.2
and is denoted by t1; The second one is the time to record
the transaction to the blockchain (denoted by t2); The third
one is the time to confirm the transaction (denoted by t3).

Since Chronos+ is constructed on Ethereum, its WoT
mainly depends on the time to record and confirm a transac-
tion. Specifically, When the transaction including the digest
of F is generated, it would be recorded to the blockchain,
which requires a latency t1. Then, the log server needs to
confirm that the file is successfully time-stamped, which
requires a latency t2. In Ethereum, a block and its trans-
actions are deemed to be confirmed if at least ϕ-successive
blocks are mined following it. We evaluate t2, t3, and WoT
by conducting 15 transactions on the Ethereum blockchain,
where we use MyEtherWallet10 as the wallet App. The
evaluation results are shown in Fig. 14.

At the time of writing this paper (Mar. 2019), Chronos+’s
WoT is around 2.7 minutes. Since the Ethereum system

10. https://www.myetherwallet.com/

would dynamically adjust the difficulty, generally, WoT of
Chronos+ would not exceed 300 seconds.

Second, the monetary costs to time-stamp a file is mea-
sured. Chronos+ does not rely on smart contracts. The
monetary costs to time-stamp files are mainly caused by
conducting transactions on the blockchain and record the
digest to the transaction. As of Mar. 2019, time-stamping a
file requires one to pay about 5 US cents11 for conducting a
transaction (a hash value is included into the transaction) in
Ethereum. This can be acceptable to users in respect of the
value of the file protected by Chronos+.

9 CONCLUSION

In this paper, potential threats towards outsourced time-
sensitive files have been pointed out. Chronos+, a secure
blockchain-based time-stamping scheme for cloud storage
systems has been proposed, where both the storage and
time-stamping services are provided by a Chronos+ log
server which is subject to a cloud service provider. Chronos+

provides an accurate way to prove that a file was created
during a time interval formed by the earliest and latest
creation times. The security of Chronos+ has been analyzed,
which has proven that Chronos+ is secure against malicious
users and compromised log server. A concept of window
of time-stamping (WoT) has been introduced to measure
the practicality of time-stamping schemes. A comprehen-
sive evaluation has been conducted to demonstrate that
Chronos+ is efficient in terms of communication, compu-
tation, and monetary costs, and WoT.

For our future work, more complex functionalities in
Chronos+ need to be investigated. Specifically, in cloud
storage systems, in addition to files, some operations (such
as access to files and search for a file) on outsourced files
performed by either cloud service providers or users should
also be time-stamped for post investigations. This remains
an open research issue that should be further explored.

ACKNOWLEDGEMENT

This work is supported by the National Key R&D Program
of China under Grant 2017YFB0802000, the National Nat-
ural Science Foundation of China under Grants 61872060,
61370203, the Sichuan Science and Technology Program un-
der Grants 2019YFS0068, and the China Scholarship Coun-
cil. The first author would like to thank the colleagues

11. https://bitinfocharts.com/comparison/ethereum-
transactionfees.html

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

13

from BBCR lab, University of Waterloo, for their valuable
discussions.

REFERENCES

[1] Y. Zhang, C. Xu, H. Li, H. Yang, and X. Shen, “Chronos: Secure and
accurate time-stamping scheme for digital files via blockchain,” in
Proc. ICC, 2019, pp. 1–6.

[2] H. Wang, D. He, A. Fu, Q. Li, and Q. Wang, “Provable data
possession with outsourced data transfer,” IEEE Trans. Services
Computing, to appear, doi: 10.1109/TSC.2019.2892095.

[3] Y. Yang, Z. Zheng, X. Niu, M. Tang, Y. Lu, and X. Liao,
“A location-based factorization machine model for web service
qos prediction,” IEEE Trans. Services Computing, to appear, doi:
10.1109/TSC.2018.2876532.

[4] J. Liang, Z. Qin, S. Xiao, J. Zhang, H. Yin, and K. Li, “Privacy-
preserving range query over multi-source electronic health records
in public clouds,” Journal of Parallel and Distributed Computing,
accepted 2019, to appear.

[5] A. Zhou, S. Wang, Z. Zheng, C. Hsu, M. R. Lyu, and F. Yang,
“On cloud service reliability enhancement with optimal resource
usage,” IEEE Trans. Cloud Computing, vol. 4, no. 4, pp. 452–466,
2016.

[6] M. Li, L. Zhu, and X. Lin, “Privacy-preserving traffic monitoring
with false report filtering via fog-assisted vehicular crowdsens-
ing,” IEEE Trans. Services Computing, pp. 1–11, accepted 2019, to
appear, doi: 10.1109/TSC.2019.2903060.

[7] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep:
An efficient and secure deduplication scheme for cloud-assisted
ehealth systems,” IEEE Trans. Industrial Informatics, vol. 14, no. 9,
pp. 4101–4112, 2018.

[8] Y. Miao, X. Liu, K. R. Choo, R. H. Deng, J. Li, H. Li,
and J. Ma, “Privacy-preserving attribute-based keyword search
in shared multi-owner setting,” IEEE Trans. Dependable and
Secure Computing, pp. 1–15, accepted 2019, to appear, doi:
10.1109/TDSC.2019.2897675.

[9] A. Yang, J. Xu, J. Weng, J. Zhou, and D. S. Wong, “Lightweight
and privacy-preserving delegatable proofs of storage with data
dynamics in cloud storage,” IEEE Trans. Cloud Computing, to
appear, doi: 10.1109/TCC.2018.2851256.

[10] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. Shen,
“Enabling fine-grained multi-keyword search supporting classi-
fied sub-dictionaries over encrypted cloud data,” IEEE Trans.
Dependable and Secure Computing, vol. 13, no. 3, pp. 312–325, 2016.

[11] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Fs-peks:
Lattice-based forward secure public-key encryption with keyword
search for cloud-assisted industrial internet of things,” IEEE Trans.
Dependable and Secure Computing, pp. 1–15, accepted 2019, to ap-
pear, doi: 10.1109/TDSC.2019.2914117.

[12] Y. Zhang, X. Lin, and C. Xu, “Blockchain-based secure data prove-
nance for cloud storage,” in Proc. ICICS, 2018, pp. 3–19.

[13] S. Haber and W. S. Stornetta, “How to time-stamp a digital
document,” in Proc. CRYPTO, 1990, pp. 437–455.

[14] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency
and reliability of digital time-stamping,” in Sequences II: Methods in
Communication, Security, and Computer Science, 1992, pp. 329–334.

[15] A. Buldas, H. Lipmaa, and B. Schoenmakers, “Optimally efficient
accountable time-stamping,” in Proc. PKC, 2000, pp. 293–305.

[16] H. Massias, X. S. Avila, and J.-J. Quisquater, “Design of a secure
timestamping service with minimal trust requirement,” in Proc.
SITB, 1999, pp. 1–8.

[17] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A
global naming and storage system secured by blockchains,” in
Proc. USENIX ATC, 2016, pp. 181–194.

[18] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation
via bitcoin,” in Proc. IEEE S & P, 2017, pp. 393–409.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
https://bitcoin.org/bitcoin.pdf.

[20] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A techni-
cal survey on decentralized digital currencies,” IEEE Communica-
tions Survey & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[21] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[22] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “De-
tecting ponzi schemes on ethereum: Towards healthier blockchain
technology,” in Proc. WWW, 2018, pp. 1409–1418.

[23] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in
blockchain protocols,” IACR Cryptology ePrint Archive, vol. 2015,
pp. 1–19, 2015.

[24] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Proc. EUROCRYPT, 2015,
pp. 281–310.

[25] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, “Bitcoin as
a transaction ledger: A composable treatment,” in Proc. CRYPTO,
2017, pp. 324–356.

[26] H. Yang, Q. Zhou, M. Yao, R. Lu, H. Li, and X. Zhang, “A practical
and compatible cryptographic solution to ADS-B security,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3322–3334, 2019.

[27] Y. Miao, Q. Tong, K. R. Choo, X. Liu, R. H. Deng, and H. Li,
“Secure online/offline data sharing framework for cloud-assisted
industrial internet of things,” IEEE Internet of Things Journal, pp.
1–11, accepted 2019, to appear, doi: 10.1109/JIOT.2019.2923068.

[28] J. Ni, K. Zhang, X. Lin, and X. Shen, “Securing fog computing for
internet of things applications: Challenges and solutions,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 601–628,
2018.

[29] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and se-
cure decision tree classification for cloud-assisted online diagnosis
services,” IEEE Trans. Dependable and Secure Computing, pp. 1–13,
accepted 2019, to appear, doi: 10.1109/TDSC.2019.2922958.

[30] H. Yang, X. Wang, C. Yang, X. Cong, and Y. Zhang, “Securing
content-centric networks with content-based encryption,” Journal
of Network and Computer Applications, vol. 128, pp. 21–32, 2019.

[31] J. Weng, J. Weng, and W. Luo, “Deepchain: Auditable and privacy-
preserving deep learning with blockchain-based incentive,” Cryp-
tology ePrint Archive, report 2018/679, 2018.

[32] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep
reinforcement learning for computation offloading in blockchain-
empowered mobile edge computing,” IEEE Trans. Vehicular Tech-
nology, vol. 68, no. 8, pp. 8050–8062, 2019.

[33] Z. Li, Z. Yang, and S. Xie, “Computing resource trading for edge-
cloud-assisted internet of things,” IEEE Trans. Industrial Informat-
ics, vol. 15, no. 6, pp. 3661–3669, 2019.

[34] Y. Zhang, C. Xu, J. Ni, H. Li, and S. Xie, “Blockchain-
assisted public-key encryption with keyword search against
keyword guessing attacks for cloud storage,” IEEE Trans.
Cloud Computing, pp. 1–14, accepted 2019, to appear, doi:
10.1109/TCC.2019.2923222.

[35] D. Liu, A. Alahmadi, J. Ni, X. Lin, and X. Shen, “Anonymous
reputation system for iiot-enabled retail marketing atop pos
blockchain,” IEEE Trans. Industrial Informatics, vol. 15, no. 6, pp.
3527–3537, 2019.

[36] J. Coleman, “Universal hash time,”
https://www.youtube.com/watch?v=phXohYF0xGo.

[37] E. Landerreche, C. Schaffner, and M. Stevens, “Cryptographic
timestamping through sequential work,” CWI Amsterdam, Tech.
Rep., 2018.

[38] W. Jiang, H. Li, G. Xu, M. Wen, G. Dong, and X. Lin, “Ptas: Privacy-
preserving thin-client authentication scheme in blockchain-based
pki,” Future Generation Computer Systems, vol. 96, pp. 185–195,
2019.

[39] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang,
and R. H. Deng, “CrowdBC: A blockchain-based decentralized
framework for crowdsourcing,” IEEE Trans. Parallel and Distributed
Systems, vol. 30, no. 6, pp. 1251–1266, 2018.

[40] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Proc. ASIACRYPT, 2001, pp. 514–532.

[41] Y. Zhang, C. Xu, X. Liang, H. Li, Y. Mu, and X. Zhang, “Efficient
public verification of data integrity for cloud storage systems from
indistinguishability obfuscation,” IEEE Trans. Information Forensics
and Security, vol. 12, no. 3, pp. 676–688, 2017.

[42] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in Proc. IEEE BigData Congress, 2017, pp. 557–564.

[43] ——, “Blockchain challenges and opportunities: A survey,” Inter-
national Journal of Web and Grid Services, vol. 14, no. 4, pp. 352–375,
2018.

[44] M. Conti, S. Kumar, C. Lal, and S. Ruj, “A survey on security
and privacy issues of bitcoin,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3416–3452, 2018.

[45] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making
big data open in edges: A resource-efficient blockchain-based

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2947476, IEEE
Transactions on Services Computing

14

approach,” IEEE Trans. Parallel and Distributed Systems, vol. 30,
no. 4, pp. 870–882, 2018.

[46] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Proc.
CRYPTO, 2017, pp. 357–388.

[47] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs
of space,” in Proc. CRYPTO, 2015, pp. 585–605.

[48] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-based public
integrity verification for cloud storage against procrastinating
auditors,” IEEE Trans. Cloud Computing, pp. 1–15, accepted 2019,
to appear, doi: 10.1109/TCC.2019.2908400.

[49] K. Yang, Z. Liu, X. Jia, and X. Shen, “Time-domain attribute-
based access control for cloud-based video content sharing: A
cryptographic approach,” IEEE Trans. Multimedia, vol. 18, no. 5,
pp. 940–950, 2016.

[50] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in inter-
net of things with privacy preserving: Challenges, solutions and
opportunities,” IEEE Network, vol. 32, no. 6, pp. 144–151, 2018.

[51] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial
data,” IEEE Trans. Information Forensics and Security, vol. 14, no. 4,
pp. 870–885, 2018.

[52] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s
entropy,” Cryptography and Communications, vol. 10, no. 1, pp. 211–
233, 2018.

[53] R. Goyal and V. Goyal, “Overcoming cryptographic impossibility
results using blockchains,” in Proc. TCC, 2017, pp. 529–561.

[54] X. Zhang, H. Wang, and C. Xu, “Identity-based key-exposure
resilient cloud storage public auditing scheme from lattices,”
Information Sciences, vol. 472, pp. 223–234, 2018.

Yuan Zhang (S’16) received his B.E. degree in
University of Electronic Science Technology of
China (UESTC), China, in 2013. He is currently
a Ph.D. candidate at the School of Computer
Science and Engineering, University of Elec-
tronic Science Technology of China, and is a
visiting Ph.D. student at BBCR Lab, Department
of Electrical and Computer Engineering, Univer-
sity of Waterloo, Canada. His research interests
include applied cryptography, data security, and
blockchain technology. He is a student member

of IEEE.

Chunxiang Xu (M’06) received the B.Sc. and
M.Sc. degrees in applied mathematics from Xi-
dian University, Xi’an, China, in 1985 and 2004,
respectively, and the Ph.D. degree in cryptogra-
phy from Xidian University in 2004.

She is currently a Professor with the Center for
Cyber Security, the School of Computer Science
and Engineering, UESTC. Her research inter-
ests include information security, cloud comput-
ing security and cryptography. She is a member
of IEEE.

Nan Cheng (S’12–M’16) received the B.E. and
M.S. degrees from Tongji University, Shanghai,
China, in 2009 and 2012, respectively, and the
Ph.D. degree from the University of Waterloo,
Waterloo, ON, Canada, in 2016. He is currently
a Professor with School of Telecommunication,
Xidian University. His current research focuses
on big data in vehicular networks and self-driving
system.

Hongwei Li (M’12–SM’18) is currently the Head
and a Professor at Department of Information
Security, School of Computer Science and En-
gineering, University of Electronic Science and
Technology of China. He received the Ph.D. de-
gree from University of Electronic Science and
Technology of China in June 2008. He worked
as a Postdoctoral Fellow at the University of
Waterloo from October 2011 to October 2012.
His research interests include network security
and applied cryptography. He is the Senior Mem-

ber of IEEE, the Distinguished Lecturer of IEEE Vehicular Technology
Society.

Haomiao Yang (M’12) received the M.S. and
Ph.D. degrees in computer applied technology
from University of Electronic Science and Tech-
nology of China, Chengdu, China, in 2004 and
2008, respectively. He has worked as a Post-
Doctoral Fellow in the Research Center of In-
formation Cross over Security at Kyungil Univer-
sity. His research interests include cryptography,
cloud security, and the cyber security for avi-
ation communication. Now, he is an associate
professor in School of Computer Science and

Engineering and Center for Cyber Security of UESTC.

Xuemin (Sherman) Shen (M’97–SM’02–F’09)
received the Ph.D. degree in electrical engi-
neering from Rutgers University, New Brunswick,
NJ, USA, in 1990. He is currently a University
Professor with the Department of Electrical and
Computer Engineering, University of Waterloo,
Waterloo, ON, Canada. His research focuses on
resource management in interconnected wire-
less/wired networks, wireless network security,
social networks, smart grid, and vehicular ad
hoc and sensor networks. He is a registered

Professional Engineer of Ontario, Canada, an Engineering Institute of
Canada Fellow, a Canadian Academy of Engineering Fellow, a Royal
Society of Canada Fellow, and a Distinguished Lecturer of the IEEE
Vehicular Technology Society and Communications Society.

Dr. Shen received the R.A. Fessenden Award in 2019 from IEEE,
Canada, the James Evans Avant Garde Award in 2018 from the IEEE
Vehicular Technology Society, the Joseph LoCicero Award in 2015 and
the Education Award in 2017 from the IEEE Communications Society.
He has also received the Excellent Graduate Supervision Award in 2006
and the Outstanding Performance Award 5 times from the University
of Waterloo and the Premier’s Research Excellence Award (PREA) in
2003 from the Province of Ontario, Canada. He served as the Technical
Program Committee Chair/Co-Chair for the IEEE Globecom’16, the
IEEE Infocom’14, the IEEE VTC’10 Fall, the IEEE Globecom’07, the
Symposia Chair for the IEEE ICC’10, the Tutorial Chair for the IEEE
VTC’11 Spring, the Chair for the IEEE Communications Society Techni-
cal Committee on Wireless Communications, and P2P Communications
and Networking. He is the Editor-in-Chief of the IEEE INTERNET OF
THINGS JOURNAL and the Vice President on Publications of the IEEE
Communications Society.

