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Secure and Privacy-Preserving Decision Tree
Classification with Lower Complexity

Liang Xue, Dongxiao Liu, Cheng Huang, Xiaodong Lin, Xuemin (Sherman) Shen

Abstract—As a widely-used machine-learning classifier,
a decision tree model can be trained and deployed at a ser-
vice provider to provide classification services for clients,
e.g., remote diagnostics. To address privacy concerns
regarding the sensitive information in these services (i.e.,
the clients’ inputs, model parameters, and classification
results), we propose a privacy-preserving decision tree
classification scheme (PDTC) in this paper. Specifically,
we first tailor an additively homomorphic encryption
primitive and a secret sharing technique to design a
new secure two-party comparison protocol, where the
numeric inputs of each party can be privately compared
as a whole instead of doing that in a bit-by-bit manner.
Then, based on the comparison protocol, we exploit the
structure of the decision tree to construct PDTC, where
the input of a client and the model parameters of a service
provider are concealed from the counterparty and the
classification result is only revealed to the client. A formal
simulation-based security model and the security proof
demonstrate that PDTC achieves desirable security prop-
erties. In addition, performance evaluation shows that
PDTC achieves a lower communication and computation
overhead compared with existing schemes.

Keywords—decision trees, data privacy, model privacy,
secure comparison, machine-learning classification

I. INTRODUCTION

Machine learning as a service (MLaaS) has emerged
as one kind of popular remote service that leverages

the extraordinary computation capability of service providers
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such as Google and Amazon to provide prediction and classi-
fication services for clients. Among various machine-learning
models in MLaaS, a decision tree classification model is a
popular and powerful model known for its interpretability and
effectiveness, which can be applied in many applications, such
as genome sequencing[1], spam filters[2], and online medical
diagnosis[3]. Under the MLaaS service paradigm, a client can
submit his or her personal data (i.e. a feature vector) to a ser-
vice provider who deploys a pre-trained decision tree model,
and the service provider can evaluate the decision tree model
using the client’s data and return the classification result back
to the client.

Although the decision-tree-based MLaaS has many advan-
tages, it still suffers from privacy threats from the perspec-
tives of the client and the service provider. The client’s data[4]

may contain sensitive personal information, such as financial
records and medical data in the credit assessment and remote
health diagnosis applications, and the final classification re-
sults may also reveal private information of clients, such as
a diagnosed disease, which should also be concealed from
the service provider. At the same time, the pre-trained clas-
sification models are regarded as valuable intellectual prop-
erty of service providers, which should not be disclosed to
clients. Moreover, many recent researches[5-7] even indicate
that the training dataset can be extracted from the model if
an adversary is allowed to access the model in a white-box
manner, which results in violating the European general data
protection regulation (GDPR). Therefore, it becomes an ur-
gent requirement to develop a privacy-preserving decision tree
classification scheme that protects data privacy for clients and
model privacy for service providers.

Generic secure multi-party computation protocols[8-10] uti-
lize garbled circuit[11] and homomorphic encryption[12,13] to
achieve privacy-preserving decision tree classification. The
basic idea is to transform the decision tree classification into
secure integer comparison in the ciphertext domain. LIU et
al.[14] proposed a programming framework called ObliVM.
The proposed framework compiles the generic programs into
oblivious representations that are suitable for secure compu-
tation. Unfortunately, the size of the generated oblivious pro-
gram is proportional to the size of the decision tree, which
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may affect classification efficiency especially when the de-
cision tree is large. Some protocols[15,16] exploited the ad-
ditively homomorphic encryption to achieve private decision
tree classification, where the threshold at each decision node
and the input data are expressed in a binary form. A client
needs to encrypt the data in a bit-by-bit manner using a homo-
morphic encryption scheme, and sends the ciphertexts to the
service provider. The service provider performs the compar-
ison homomorphically on the ciphertexts and returns the re-
sults to the client. Since each bit of the data is encrypted, the
approaches may incur expensive cost in terms of computation
and communication overhead for both the client and the ser-
vice provider. Although existing schemes have achieved rich
functionalities of decision tree classification, it still remains
a very challenging task to design a privacy-preserving deci-
sion tree classification scheme with less communication and
computation overhead.

In this paper, we aim to improve the efficiency of the de-
cision tree classification, while preserving both the client data
privacy and the provider model privacy. The main contribu-
tions of this paper can be summarized as follows.

• We design a novel secure numeric comparison protocol
from a homomorphic encryption primitive and a secret shar-
ing technique. Specifically, instead of encrypting the numbers
to be compared in bits, the protocol achieves secure numeric
comparison in a more efficient way in terms of the computa-
tional and communication cost.
• Based on the secure numeric comparison protocol, we

construct a privacy-preserving decision tree classification
scheme (PDTC) with versatile privacy preservations. Client
data privacy, including the inputs and the classification results,
and the model privacy are preserved in the proposed scheme.
• Under the simulation-based security model with the

semi-honest client and service provider, we formally prove the
security of PDTC. Moreover, the simulation results on differ-
ent datasets show the efficiency of PDTC.

The remainder of this paper is organized as follows. Sec-
tion II shows the related works. In section III, we describe
the system model, security model, and the design goals. In
section IV, we review the preliminaries pertaining to our con-
struction. In section V, we give our construction, followed by
the security analysis in section VI and performance evaluation
in section VII. We conclude the paper in section VIII.

II. RELATED WORK

In this section, we briefly review the literature related to
the privacy-preserving decision tree classification and secure
multi-party computation.

BRIKELL et al.[17] proposed the pioneering scheme for
privacy-preserving evaluation of branching programs with the

combination of garbled circuits, blinding techniques and ho-
momorphic encryption in a novel way. The server first trans-
lates a branching program into an equivalent form, where each
classification node is encrypted and remains unknown to the
client unless the appropriate key is obtained. In order for the
client to obtain the correct key corresponding to the classifica-
tion result, oblivious attribute selection and homomorphic en-
cryption are employed. In the final stage, a client only learns
the classification label. The size of the generated program is
linear to the size of the decision tree, thereby incurring high
communication overhead and making it less efficient for large-
scale trees. BOST et al.[18] constructed secure classification
protocols for a wide range of applications, including decision
trees and hyperplane decision. They treated decision trees as
a multivariate polynomial, which is a combination of terms,
each of which represents a path from the root to a leaf. The
terms can be represented as the multiplications of the value
of a leaf node and boolean values at the decision nodes on
this path. The calculation of the polynomial in their scheme
requires fully homomorphic encryption (FHE).

WU et al.[15] proposed a decision tree classification scheme
that only utilizes additively homomorphic encryption (AHE).
The authors employed randomization techniques to conceal
decision tree structures. The two parities run a secure compar-
ison protocol[19] which reveals a decision string as the classi-
fication result to the client via an oblivious transfer protocol
with the server. TAI et al.[16] cleverly exploited the structure
of the decision trees and marked the left edge of a decision
node with the cost b and right edge of the node with the cost
1− b, where b ∈ {0,1} is the comparison result at that deci-
sion node. The edge costs along each path are summed and
randomized, and the result is called the path cost. The clas-
sification value related to each leaf node is added to the cor-
responding path cost and the results are returned to the client.
TUENO et al.[20] represented a decision tree as an array. In
their scheme, only d comparisons need to be executed, where
d represents the decision tree height. They introduced the
concept of oblivious array indexing, which allows the par-
ties to obliviously select the index of the next node. KISS
et al.[21] proposed a private decision tree classification scheme
with modular designs. They systematically reviewed the state-
of-the-art protocols and identified new combinations of these
protocols that can provide better runtime and communication
tradeoffs. TUENO et al.[22] proposed a novel decision tree
classification scheme where a client can delegate the calcula-
tion to the server to reduce the overall communication rounds.
They also instantiated the main protocol using the binary rep-
resentation of the input and arithmetic circuit, respectively.
ZHANG et al.[23] proposed a secure framework that enables
the server to outsource the decision tree model to the cloud
while preserving both the client and the server privacy. They
designed a secure comparison scheme for the decision nodes
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using a two-server model and additive secret sharing. In this
paper, we integrate the homomorphic encryption and secret
sharing in a new way so that the secure integer comparison is
achieved and computational costs for both parties are reduced.

III. PROBLEM FORMULATION

In this section, we first define the system model and secu-
rity model. Then, we identify the design goals that need to be
achieved in this paper.

A. System Model
As shown in Fig. 1, three entities are involved in our sys-

tem: a service provider, clients, and a trusted authority (TA).
• A service provider. A service provider (e.g, a medical

center) holds a trained decision tree model and provides clas-
sification services to clients. As the model is proprietary, the
service provider is not willing to leak the model parameters to
clients.
• Clients. A client owns a private input which is repre-

sented as a feature vector that contains information of differ-
ent attributes, such as weight, heart rate, blood pressure, etc.
The client would like to leverage the model generated by the
service provider to obtain the classification result of her in-
put. Since the input contains sensitive information, the client
would not offer the feature vector to the service provider in
the plain text. In addition, due to the limited storage and com-
putation resources of the client, the communication and com-
putation overhead at the client should be small.
• TA. A TA is introduced to issue the identity certificates

to both parties, which can be used for mutual authentication
between the client and the service provider.

At a high level, our system works as follows. First, clients
and the service provider generate their public-private keys and
register with a TA, who will issue certificates for them. Then,
a client encrypts his or her input vector and sends the cipher-
text to the service provider. After receiving the input of the
model, the service provider executes the decision tree classi-
fication on the ciphertexts and returns the protected result to
the client, who can recover the classification result using his
or her private key.

B. Security Model
We adopt the simulation-based model[24] in this paper,

which compares the real-world protocol execution with the
ideal-world function evaluation with a trusted party. In this
paradigm, a protocol π securely achieves a function f if the
following holds. 1) There exists an ideal-world adversary A ′

(sometimes referred to as a simulator S ) for any real-world
adversary A, which can perform the equivalent attack. 2) No
feasible environment can distinguish whether it is interacting
with the real-world A and π or the ideal-world f and A ′. The

Clients Service provider

TA

Encrypted input vector

Protected result

Registe
r Register

Figure 1 System model

environment, modeled as a polynomial-size circuit, takes λ as
a security parameter and chooses inputs for entities. It acts as
a distinguisher between the two executions.

In our protocol, we denote m as the number of internal
nodes in the decision tree, and n as the feature vector dimen-
sion. m,n and the client public key are known to the public.
We assume that the client and service provider in the proto-
col are semi-honest, which means they behave according to
the protocol specification, but are curious about the counter-
party’s input[15,16]. In the following, we define the real-world
and ideal-world executions with a formal security definition
of the decision tree classification.

Real-world execution. Let π be a decision tree classifica-
tion protocol. The execution of π and A is coordinated by
the environment, denoted as Z . First, Z generates a key pair
and a feature vector X = (x1, · · · ,xn) for the client as the in-
puts. Z also chooses a decision tree model T for the service
provider and Z reveals the input of either a corrupted client or
provider to the adversary A . During the protocol execution,
the honest party behaves according to the protocol specifica-
tion, and the corrupted party behaves as directed by A . Since
A is semi-honest, the corrupted client or provider will also
follow the protocol. At the end of the protocol, A computes
an output of an arbitrary function based on its view and sends
the output to the environment Z . The honest party also gives
its output to Z . After the protocol execution, Z outputs a bit
b. We denote REALπ,A ,Z (λ ) as a random variable of the bit
value.

Ideal-world execution. In the ideal world, there is a trusted
party that evaluates the function f securely and provides out-
puts to the parties. At the beginning, Z first gives the service
provider a model T and the client a vector X . The honest
party sends its input to the trusted party. The input of cor-
rupted party is given to the adversary. Since the adversary A ′

is semi-honest, it instructs the corrupted party to submit the in-
put it received to the trusted party. After receiving the inputs
X from the client and T from the service provider, the trusted
party calculates T (X) and sends the result to the client. After
the execution of the function, the honest party gives its output
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to Z . The adversary computes an output of an arbitrary func-
tion based on its view and sends it to Z . Finally, Z outputs a
bit b. We denote IDEAL f ,A ′,Z (λ ) as the random variable of
the bit value.

Based on the executions in the real world and ideal world,
we have the following definition of security.
Definition 1 (Security) Given a client with input X and a
service provider with a model T , a protocol π is said to se-
curely implement the decision tree classification functionality,
if for any semi-honest probabilistic polynomial time (PPT) ad-
versary A and every polynomial-size circuit family Z , there
exists a PPT adversary A ′ so that the following probability is
negligible:

|Pr[REALπ,A ,Z (λ ) = 1]−Pr[IDEAL f ,A ′,Z (λ ) = 1]|.

C. Design Goals
• Security: The proposed scheme should achieve data pri-

vacy and model parameter privacy based on Definition 1. To
be specific, for the data privacy, the service provider can fulfill
the decision tree classification functionality without knowing
the client input and the classification result. On the other hand,
for the model parameter privacy, the parameters of the model,
as the intellectual property of the service provider, cannot be
inferred by the client.
• Efficiency: Considering that the client may be resource-

constrained and the delay requirement of the classification
services, the communication overhead and computation over-
head of the client and the service provider should be small.

IV. PRELIMINARIES

In this section, we present the preliminaries that are used to
construct our scheme, which include decision tree classifica-
tion and homomorphic encryption.

A. Decision Tree Classification
Decision tree models are widely used in machine learning

services. A decision tree is a binary tree, and each internal
node or decision node represents a test on an attribute. The
input of a decision tree is an n-dimensional feature vector
X = {x1, · · · ,xn} and the decision tree has a threshold vec-
tor Y = {y1, · · · ,ym}, where m denotes the number of deci-
sion nodes. Each decision node Dk corresponds to a Boolean
function fk(X) = 1{xik < yk}, where ik ∈ [n] and {yk}k∈[m]

are thresholds. We say that 1{xik < yk} equals to 1 if and only
if xik < yk. The outcome of each decision node determines the
branch taken next. Each leaf node represents a classification
result.

Decision tree classification means that given an input X ,
an evaluation fk(X) at each decision node is performed and a
classification result of the vector X is returned. As shown in

    

          

0 1

0 1 0 1

x2 < y1

x1 < y2                                  x3 < y3

z1                                z2               z3                            z4

Figure 2 A decision tree

Fig. 2, the input X is {x1,x2,x3}, and the threshold vector Y
is {y1,y2,y3}. z1, · · · ,z4 are leaf nodes, which correspond to
different classification results. If fk(X) = 0, the left branch of
the node is taken, otherwise, the right branch is taken. Once
we reach a leaf node, the decision value for that node is out-
putted. We denote the longest length from the root node to any
leaf node as the depth of the tree. Without loss of generality,
we assume the decision trees are complete binary trees.

B. Homomorphic Encryption
An additively homomorphic public key encryption scheme

is composed of three algorithms: KeyGen, Encryption, and
Decryption. The key generation algorithm outputs a pubic key
pk and a private key sk. Encryption algorithm takes as input
a message τ and a random number s, and generates an cipher-
text c. We denote an encryption of τ as Encpk(τ). Decryption
algorithm takes as input a ciphertext c and the private key sk,
and outputs a plaintext. By utilizing the additive homomor-
phism property, given the encryptions of two messages τ0 and
τ1, one can output an encryption of τ1 + τ2. In addition, given
an encryption of τ and a scalar l, the encryption of lτ can be
homomorphically calculated.

In our scheme, we use a variant of Paillier’s encryption with
fast decryption[25] as the homomorphic encryption scheme.
The details of the scheme are shown in Tab. 1. In this fast
variant, the trapdoorness relies on the knowledge of α in-
stead of λ , making the decryption algorithm run in com-
plexity O(|n|2|α|) rather than O(|n|3) in the original scheme.
Thus, it can reduce the computation cost of the client, who
may have limited computing power compared with the ser-
vice provider. In the scheme, L(x) = (x−1)/N, and λ here
is lcm(p− 1,q− 1). Bα denotes the elements of order Nα ,
where 1 6 α 6 λ .

V. PRIVACY-PRESERVING DECISION
TREE CLASSIFICATION

In this section, we first present our secure comparison pro-
tocol, then show the detailed construction of our proposed
PDTC.
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Table 1 The variant of Paillier encryption with fast decryption

Choose two large prime numbers p and q

Public key (pk):

N = pq, a base g ∈B

Private key (sk):

λ

Encryption:

randomly select r

c = Encpk(τ) = gτ rn mod N2

Decryption:

τ = Decsk(c) =
L(cλ mod N2)

L(gλ mod N2)
mod N

Homomorphic:

Encpk(τ1)Encpk(τ2) mod N2 = Encpk(τ1 + τ2) mod N2

Encpk(τ)
l mod N2 = Encpk(lτ) mod N2

A. Secure Comparison Protocol
One of the main building blocks to construct privacy-

preserving decision tree classification is a secure comparison
protocol. In private comparison protocols, there are two par-
ties, P1 and P2, where P1 holds a private value v1 and P2 holds
a private value v2. At the end of the protocol, P1 and P2 can
determine the comparison result 1{x < y} without knowing
the other party’s input.

To compare v0 and v1, we compute w = v0− v1 and check
whether w is positive. The difference w between the two val-
ues should be hidden, and only the comparison result can be
revealed by the two parties[26,27]. The basic idea of our pro-
tocol is that the comparison is performed on a finite field of
modulus N and we use homomorphic encryption to compare
the values without knowing the plaintexts. Moreover, multi-
plicative hiding is utilized to hide the w by multiplying it with
a large random number r. In the finite field, negative values
can be denoted as the upper half of the interval [0,N − 1],
which means [

−
⌊

N
2

⌋
,−1

]
≡
[⌈

N
2

⌉
,N−1

]
.

We denote ||v|| as the bit length of a value v. Given a large
number N and two positive values v0 and v1, we can obtain
that (v0− v1)r > N/2⇔ v0 < v1 if the bit lengths of v0,v1,
and r are less than ||N||/2− 1. From this property, we can
compare the two values without revealing the difference w.
Moreover, although w is randomized by r, one may factor the
result to get the information of w. To prevent this information
leakage, we add a small value r′ to it. The process of the
comparison protocol is shown as below.

P1 encrypts its private value v1 using the Paillier cryptosys-
tem and sends the ciphertext to P2.

P2 randomly chooses r and r′, where ||r|| 6 ||N||/2, and
r′ < r. Then, P2 homomorphically calculates the encryption

of r(v1− v2)+ r′ using the public key of P1, and returns the
ciphertext back to P1.

To learn the comparison result, P1 decrypts the ciphertext
and compares the result with N/2. If it is greater than N/2, P1

knows that v1 < v2, otherwise, v1 > v2.
At the end of the protocol, P1 learns the comparison result

and P2 learns nothing.
In order for P1 and P2 jointly determine the comparison re-

sult, which means that P1 cannot learn the actual result without
the information of P2, we combine the secret sharing during
the comparison. To be specific, after receiving the encryp-
tion of v1, P2 randomly chooses a bit b ← {0,1}. If b = 0,
P2 returns the encryption of r(v1− v2)+ r′ to P1; otherwise,
it replies with r(v2− v1)+ r′. P1 decrypts the ciphertext, and
compares the result with N/2. If it is greater than N/2, P1 sets
b′ = 1. We can obtain that b

⊕
b′ = 1 if v1 < v2.

B. Detailed Construction of PDTC
In our system, a client with an input vector X interacts with

a service provider who holds a private decision tree model to
obtain the correct classification result without revealing the
input. The client and the service provider first generate their
public-private key pairs and register with a TA. The client gen-
erates its query by encrypting the features in X with the fast
variant of Paillier’s encryption, and sends the ciphertext of X
to the service provider. Based on our secure comparison pro-
tocol, the client and service provider obliviously evaluate the
decision tree and secretly share the comparison results at each
decision node. Following the idea of TAI et al.[16] that assigns
the edge cost for each edge in the decision tree based on the
comparison result at the corresponding decision node, we rep-
resent each leaf node as the sum of the edge costs along the
path and the classification value related to the leaf node. After
the evaluation, the service provider returns the encrypted clas-
sification result to the client, who can recover it using its pri-
vate key. Overall, our scheme consists of three phases: query
vector generation, numeric comparison at decision nodes, and
path evaluation. The notations used in our protocol are shown
in Tab. 2.

1) Query Vector Generation: The client and the ser-
vice provider generate the public-private key pair (pkc,skc),
(pks,sks) based on the KeyGen algorithm of the fast variant of
Paillier encrytion. Then, they register themselves with a TA,
who is responsible for issuing public certificates that can be
used for authentication. Assume pkc is (g,N) and skc is α . For
a query vector X = {x1,x2, · · · ,xn}, where ||xi||6 ||n||/2−1,
i ∈ [n], the client encrypts each feature xi using its public key
by randomly choosing a number s < N and calculating the ci-
phertext as 〈xi〉 = gxi+Ns mod n2. Then, the client sends the
generated ciphertext vector 〈X〉 to the service provider. Here,
we assume the service provider and the client can authenticate
with each other by using the public key certificates.
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Table 2 System parameters

Acronym Definition

n dimension of a feature vector

d the depth of a tree

Dk a decision node

m the number of decision nodes in a tree

pkc,skc the public-private key pair of the cleint

pks,sks the public-private key pair of the service provider

[n] the set of integers {1,2 · · · ,n}

〈τ〉 an encryption of τ under Paillier cryptosystem

||x|| the bit length of x

bk the comparison result at the decision node Dk

Ek,0,Ek,1 the left, right edge of decision node Dk

Li the ith leaf node

Pi the path from the root node to the Li

T (X) the classification result of the input X

2) Numeric Comparison at Decision Nodes: The service
provider and the client cooperate to obtain the comparison re-
sult of the client’s input and a threshold value at each decision
node. Denote m as the number of the decision nodes in the tree
and the threshold corresponding to the decision node Dk is yk,
where k ∈ [m]. Let fk(X) = 1{xik < tk} be the Boolean func-
tion associated with Dk. For the decision node Dk, the service
provider chooses a random bit bk1 and two random numbers
rk and r′k, where ||rk||6 ||N||/2−1, and r′k < rk. For the query
vector 〈X〉= (〈x1〉, · · · 〈xn〉) received from the client, the ser-
vice provider calculates the comparison result based on 〈xik〉
and yk. The process for secure comparison between the client
and the service provider is shown as follows.
• Service provider. For each decision node Dk, k ∈ [m],

if bk1 = 0, the service provider computes the ciphertext
Encpkc(ck) as

Encpkc(ck) = (〈xi〉Encpkc(N− yk))
rk Encpkc(r

′
k) =

(Encpkc(xik)Encpkc(N− yk))
rk Encpkc(r

′
k) =

Encpkc(rk(xik − yk)+ r′k).

If bk1 = 1, the service provider calculates Encpkc(ck) as

Encpkc(ck) =
(
Encpkc(yk)〈xi〉N−1)rk Encpkc(r

′
k) =(

Encpkc(yk)Encpkc(xik)
N−1)rk Encpkc(r

′
k) =

Encpkc(rk(yk− xik)+ r′k).

Then, the service provider sends the ciphertexts
{Encpkc(ck)}k∈[m] to the client.
• Client. For k ∈ [m], the client decrypts the ciphertext

Encpkc(ck) using its secret key skc and obtains the ck. If
ck > N/2, the client sets bk2 = 1; otherwise, it sets bk2 = 0.
Note that bk2 is actually a secret share of the comparison re-
sult at the decision node Dk. Then, the client encrypts the bk2

  

        

0

1

0    

b2 1−b2
0

b1

b2                                            b3

z1                                z2               z3                            z4

b3 1−b3

b2 1−b1

Figure 3 Edge cost of a decision tree

using its public key and sends the ciphertexts 〈bk2〉, k ∈ [m] to
the service provider.
• Service provider. For k ∈ [m], the service provider com-

putes 〈bk〉 = 〈bk1 ⊕ bk2〉 homomorphically using the fact that
for a bit x ∈ {0,1},x⊕0 = x, and x⊕1 = 1− x. The resulting
bk corresponds to the actual comparison result at the decision
node Dk.

3) Path Evaluation: For each decision node Dk, k ∈ [m],
let bk be the result of 1{xik < yk}. If bk = 1, which means
xik < yk, the classification result u of the input X is in the right
subtree of the node Dk; otherwise, the result is in the left sub-
tree of Dk. We assign the edge cost of the left outgoing edge of
Dk as eck,0 = bk, and the edge cost of the right outgoing edge
of Dk as eck,1 = 1− bk. Let Ek,0 (Ek,1) denote the left (right)
edge of the Dk. For i∈ [m+1], let Pi denote the path of the leaf
node zi from the root node. The path cost pc of a leaf node
can be represented as the summation of the edge cost along
the path. As shown in Fig. 3, the path cost of the leaf nodes
are: pc1 = b1 + b2, pc2 = b1 +(1− b2), pc3 = (1− b1)+ b3,
and p4 = (1−b1)+(1−b3). If b1 = 0 and b2 = 1, we can see
that only the path cost of the leaf node z2 is 0. That is, if the zk

represents the final classification result, the path cost pck is 0.
We can use this property to evaluate the decision tree so that
the client can recover the classification result of its input. The
process of path evaluation is shown as below.
• Service provider. For i ∈ [m+ 1], the service provider

calculates the path cost pci of each leaf node zi as 〈pci〉 =
〈∑Ek, j∈Pi eck, j〉, where k∈ [m] and j∈{0,1}. Then, the service
provider chooses two random values hi and h′i from ZN , and
computes 〈pci〉 = 〈hi · pci〉. Assume the classification result
corresponds to the leaf node zi is vi, which is an element in
ZN . The service provider computes the ciphertext of vi as

〈vi〉= 〈h′i · pci + vi〉.

Finally, the service provider sends {〈pci〉,〈vi〉}i∈[m+1] to
the client in random order.
• Client. After receiving the ciphertexts, the client decrypts

the ciphertexts 〈pci〉, i ∈ [m+1] and checks whether pci = 0.
If pci′ = 0, where i′ ∈ [m+1], the client recovers the classifi-
cation result by decrypting the 〈vi〉 using its secret key.
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VI. SECURITY ANALYSIS

In this section, we prove that the client data privacy
and model parameter privacy are preserved in the proposed
scheme by showing that the scheme is secure against a semi-
honest service provider and secure against a semi-honest
client.
Theorem 1 The proposed decision tree classification
scheme is secure against semi-honest adversaries.

Security against a semi-honest service provider. De-
note π as the proposed protocol, and f as the secure deci-
sion tree classification function. We first prove that π is se-
cure against a semi-honest service provider, which means the
privacy of the client data is preserved. Assume adversary
A is a semi-honest service provider in the real world exe-
cution. We construct an ideal world simulator S and prove
that |Pr[REALπ,A ,Z (λ ) = 1]−Pr[IDEAL f ,S ,Z (λ ) = 1]| is
negligible. The ideal-world S acts as follows.
•S first receives the input T from the environment Z , and

sends it to the trusted party. After receiving the inputs from
the client and S , the trusted party performs f and returns the
result to the client.
•S generates a public-private key pair (pk,sk) for the Pail-

lier cryptosystem, and for i ∈ [n], S randomly chooses n ran-
dom values xi, where ||xi||6 ||N||/2−1, and N is a component
of pk. Then, S sends the Encpk(xi) to A .
• After A responds with the ciphertexts ck, where k ∈ [m],

S randomly chooses bk from {0,1}, and sends the encryp-
tions Encpk(bk) to A . After receiving the response from A ,
S outputs it to Z .

Since the adversary is semi-honest, the client would ob-
tain the classification result T (X) from the service provider,
where X is the input of the client. In the ideal world, the
trusted party executes the function f and returns the result to
the client. Thus, the outputs of the client in the real-world
execution and ideal world execution are the same.

We then prove that the outputs of A and S to the environ-
ment Z have an identical distribution. In the real world, A
receives the encryptions of {xi}, i ∈ [n], and the encryptions
of bk2 ,k ∈ [m], which are secret shares of the comparison re-
sults. When S interacts with A , A receives n independent
encryptions of random numbers, and also m encryptions of
bk,k ∈ [m], where bk are randomly chosen from {0,1}. Since
the Paillier cryptosystem is semantically secure, from the view
of A , it is computationally indistinguishable whether it is in-
teracting with the client in the real world or interacting with
S . Thus, the view and output distributions of A and S
are computationally indistinguishable, and REALπ,A ,Z and
IDEAL f ,S ,Z have the same distribution for Z . Therefore,
the protocol is secure against a semi-honest service provider.

Security against a semi-honest client. Let A be a semi-
honest client in the real-world execution. We prove that π

is secure against semi-honest client, which means the model
privacy of the service provider is preserved. We construct a
simulator S as follows.
• First, S receives the input vector X and sends it to the

trusted party, who executes the function f and returns the re-
sult v̂ to S .
• S starts running A on input X . Let pk = (g,N) be the

public key of A . For k ∈ [m], S randomly chooses bk from
{0,1}.
• After receiving the encryptions of the feature vector X

from A , S responds to A as follows.
For k ∈ [m], if bk=0, S chooses a random value ĉk from

ZN , where ĉk < N/2.
Otherwise, S chooses a random value ĉk from ZN ,

where ĉk > N/2.
S returns the collection of the ciphertexts

{Encpk(ĉk)}k∈[m] to A .
• After receiving the encrypted bit string from A , S

chooses a random index i∗ R← [m+ 1], and sets p̂ci∗ = 0. For
i ∈ [m+ 1] and i 6= i∗, S samples p̂ci

R← ZN . Then, S sets
v̂i∗ = v̂. For i ∈ [m+ 1] and i 6= i∗, S samples v̂i

R← ZN . Fi-
nally, S sends the encryptions {Encpk(p̂ci),Encpk(v̂i)}i∈[m+1]
to A .
•S outputs whatever A outputs.
Since the honest service provider has no output at the end

of the protocol, we only need to show that the output of S to
Z is computationally indistinguishable from the output of A
to Z .

In the real world, what the client receives from the service
provider consists of two components: the ciphertexts of the
comparison results {ck}k∈[m] at each decision node, and the
final classification result v of the input X . For the distribution
of ck,k∈ [m], since the service provider chooses bk1 uniformly
and bk1 ⊕ bk2 = 1{xik < yk}, where k ∈ [m], ik ∈ [n], for a fix
index j ∈ [m], there is an equal probability that ck 6 [N]/2 or
ck > [N]/2. We can see that ĉk sampled by S and ck have
the same distribution. In addition, since the service provider
here is honest, for the client, the received classification re-
sult v from the service provider is the same as the value v̂
received from the trusted party. Thus, it is computationally
indistinguishable whether the client is interacting with S or
the service provider, and the view and outputs of S and A are
computationally indistinguishable. Therefore, the protocol is
secure against a semi-honest client.

VII. PERFORMANCE EVALUATION

A. Numerical Analysis
As shown in section V, our scheme consists of three phases:

query vector generation, secure comparison, and path evalu-
ation. Let n be the dimension of the feature vector, m be the
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Table 3 Complexity comparison

Scheme
Complexity

Client Service provider Rounds

BOST et al.[18] O((n+m)t) O(mt) > 6

WU et al.[15] O((n+m)t +d) O(mt +2d) 6

TAI et al.[16] O((n+m)t) O(mt) 4

this work O(n+m) O(m) 4

number of the decision nodes in the tree, d be the depth of
the tree, and t be the number of bits needed to represent one
feature. In the phase of query vector generation, the client
needs to encrypt n ciphertexts and sends them to the service
provider. During the secure comparison, the service provider
computes m ciphertexts and returns them to the client. For
the client, it needs to decrypt m ciphertexts, then encrypts
m resulting comparison bits and sends the ciphertexts to the
service provider. In the phase of path evaluation, the ser-
vice provider generates the ciphertexts of the path cost and
classification value for each leaf nodes, which means the ser-
vice provider needs to compute 2(m+1) ciphertexts and sends
them to the client. For the client, it needs to perform at most
m + 2 decryptions to get the final classification result. We
compare the computational complexity of our protocol with
Refs. [18], [15] and [16], as shown in Tab. 3.

B. Simulation Results
To evaluate the performance of the proposed scheme, we

conduct the simulations on Windows 10 enterprise with Intel
Core i7-7500U CPU @2.9 GHz and 8 GB RAM memory. We
implement the Paillier cryptosystem in Visual Studio 2012,
and generate the public and private keys by calling the func-
tions of Miracl library[28]. The prime p and q in the private
key have a bit length of 512 in our experiments.

We measure the computation cost for both the client and
service provider on five datasets from UCI repository[29],
which are the same as the datasets for Refs. [15,16], and ap-
plication domains include heart disease diagnosis and credit
assessment. Tab. 4 demonstrates the computation time and
the bandwidth needed for the client and the service provider
to complete the decision tree classification. From Tab. 4, we
can see the proposed scheme has good performance in vari-
ous applications. Even for the spambase data which have high
dimension input vectors and the tree model has large depth,
the time cost required for the client is less than 2 s and the
bandwidth needed is about 0.08 MB.

Note that in our protocol, the client and the service provider
do not need to encrypt the values to be compared in bits, which
greatly reduces the computation and communication overhead
for both two parties. Moreover, for the service provider, there
is no need to transform a non-complete tree into a complete bi-
nary tree. Thus, our protocol is also highly efficient for sparse

Table 4 Performance on UCI datasets

Dataset n d m
Computation (s) Bandwidth (KB)

Client Server Upload Download

breast-cancer 9 8 12 0.297 0.114 5.376 9.728

heart-disease 13 3 5 0.162 0.051 4.608 4.352

housing 13 13 92 1.989 0.834 26.88 71.168

credit-screening 15 4 5 0.168 0.051 5.12 4.352

spambase 57 17 58 1.989 0.528 29.44 45.056
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trees. When the number of the decision nodes goes from 10 to
100, the computation time and the bandwidth required for the
client and the service provider are shown in Fig. 4 and Fig. 5,
where the dimension of feature vectors is set to 15. Since
the client needs to perform n+m encryption operations and
2m+2 decryption operations, when n is fixed as 15, the com-
putation cost for the client increases linearly with the number
of decision nodes. For the service provider, it needs to exe-
cute 3m+ 2 encryption operations, the computation cost for
the service provider also grows linearly with m. For the band-
width required, the client needs to upload n+m ciphertexts
and download 3m+2 ciphertexts, when the dimension of fea-
ture vectors is fixed, the communication overhead also grows
linearly with the number of decision nodes.

VIII. CONCLUSION

In this paper, we have proposed a secure and privacy-
preserving decision tree classification scheme, where the in-
puts and the classification results of the client are concealed
from the service provider, and privacy of the model param-
eters is also preserved from the client. With the design of
an efficient secure comparison protocol, the proposed deci-
sion tree classification scheme has achieved a lower compu-
tation and communication overhead for both the client and

Authorized licensed use limited to: University of Waterloo. Downloaded on November 30,2020 at 01:39:23 UTC from IEEE Xplore.  Restrictions apply. 



24 Journal of Communications and Information Networks

80

60

40

20

0

B
an

dw
id

th
 (

K
B

)

Upload
Download

0               20               40               60               80              100
The number of decision nodes

Figure 5 Bandwidth vs. the number of decision nodes

the service provider. Moreover, the formal security proof has
demonstrated that the proposed scheme achieves the desired
properties under the semi-honest model. In future work, we
will investigate the security and privacy requirements of other
machine-learning classification models as well as their design
and implementation challenges for real-world applications.
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