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Abstract— Plug-in Electric Vehicles (PEVs) keep on pene-
trating the automobile market. However, uncoordinated PEV
charging can impair the reliability of power grid. In this paper,
an interesting problem of PEV charging power allocation is
investigated, in which both power distribution and transportation
constraints are considered. A novel approach for PEV charging
management based on optimal power flow (OPF) analysis is
proposed to optimize PEV charging energy in a power dis-
tribution system. Firstly, spatial and temporal PEV demand
scheduling is introduced to maximize PEV charging service
capacity while considering the maximum traveling distance
of PEVs. Secondly, to ensure the scalability of the OPF analysis,
a distributed optimization technique, i.e., proximal Jacobian
alternating direction multiplier method, is applied to attain the
optimal power allocation in a decentralized manner. The resulting
PEV charging service capacity in the power distribution system is
improved without violating power distribution and transportation
constraints. Furthermore, kernel density estimation method is
adopted to identify the PEV range anxiety constraint without
the PEV battery information. Simulation results are presented
to validate the effectiveness of our approach with high PEV
penetration.

Index Terms— Electric vehicles, charging management, range
anxiety, distributed algorithm, alternating direction multiplier
method (ADMM), kernel density estimation, smart grid.

I. INTRODUCTION

RECENTLY, Plug-in Electric Vehicles (PEVs) have
attracted public attention due to their low greenhouse

gas emission, incentive legislation, and mature electric vehicle
battery technologies [1]. The marketing stock of PEVs is
expected to reach beyond 40 million by 2025 [2]. Neverthe-
less, high PEV penetration introduces the risk of degrading
reliability and distribution efficiency in the power grid [3].
A large volume of PEV loads connected to the power distrib-
ution system increases the power transmission loss and voltage
drop at distribution nodes [4]–[7]. Furthermore, the uncertainty
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of PEV charging intensifies power profile fluctuation in a day,
which also raises the likeliness of transformer overloading
under the existing power grid infrastructure.

To mitigate the influence of PEV charging on the power
grid, one direct approach is reinforcing the power grid
infrastructure, which, however, requires significant capital
expenditure and construction efforts. Alternatively, smart
charging management is considered as an efficient method
to improve PEV charging service capacity in the existing
power grid [4]–[6]. Appropriate PEV charging power allo-
cation schemes are applied to enable more PEVs charging
simultaneously in the power grid without degrading its reliabil-
ity. However, any charging management is constrained by the
maximum traveling distance of PEVs and user tolerance on the
charging delay, both of which add the difficulty on the man-
agement strategy design. Moreover, the algorithm complexity
should not be neglected while measuring the effectiveness
of a PEV charging management strategy. While conventional
centralized PEV management is a common method to attain
a globally optimal solution, it leads to high time-complexity
due to large-scale system control [8]. In contrast, decentralized
PEV charging management can decompose computation tasks
to PEV charging stations (EVCSs), and each EVCS uses the
local information to compute its local solution for PEV power
allocation in a distributed manner. Consequently, compared
with centralized PEV management, decentralized management
can reduce time-complexity and enable parallel computing in
PEV power allocation. However, it is challenging to achieve
global optimality without complete knowledge of the whole
power grid.

In literature, there are two main methods to increase service
capacity for PEV charging: temporal demand scheduling [4],
[7], [9]–[16] and spatial demand scheduling [16]–[18]. In the
context of temporal demand scheduling, the main strategy
of PEV management is extending or rescheduling the PEV
charging process such that some power demand during peak
hours can be shifted to fill the demand valley during non-
peak hours. The works [9]–[11] propose temporal demand
scheduling schemes to flatten the power profile during a day
by directly controlling PEV charging process in an on-off
charging method. However, PEV charging experience is not
taken into consideration. The works [12]–[14] discuss indirect
price control methods to manage the charging demand and
thereby ensuring system reliability, where the charging cost is
a tool to regulate PEV charging behaviors. However, temporal
demand scheduling is not always feasible to be implemented,
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especially for time-sensitive PEV users in fast charging sta-
tions. In addition, spatial management explores the mobility
nature of PEVs to increase the flexibility of charging demand
scheduling. In this case, finding optimal EVCSs for PEVs
is the primary objective since EVCS is the main recharging
infrastructure, especially for high-density urban areas [19].
By assigning EVCSs to PEVs, power congestion and voltage
drop in the distribution system can be relieved, while the range
anxiety of PEVs and traveling costs become main challenges.
The work [20] estimates PEV traveling range using a machine
learning technique. The proposed algorithm analyzes the range
anxiety of PEVs from the knowledge of their historical trips.
The works [18], [21] propose the distributed charging station
selection solution considering the range anxiety of PEVs.
The work [16] formulates temporal-spatial scheduling problem
for PEV charging into a mixed-integer linear programming
problem. The proposed centralized management strategy bal-
ances factors including the reliability of the considered power
distribution system, the communication delay, and PEV range
anxiety. However, few studies have formulated PEV power
allocation problem with optimal power flow analysis in a
decentralized manner [19].

The objective of this paper is to maximize the overall
energy allocated for PEV charging without overloading the
power distribution system while considering the cost of the
PEV charging management. PEV charging demand is sched-
uled by the proposed power allocation approach in both spatial
and temporal dimensions. The contributions of this paper are
summarized as follows:

1) A PEV charging management approach is proposed to
allocate PEV charging power by solving a power flow
optimization problem and guarantee power distribution
reliability under high PEV penetration. The charging
service capacity of the power distribution system is
maximized by managing the charging demand in both
temporal and spatial dimensions. Moreover, to address
the issue of range anxiety, the proposed approach con-
siders power distribution and transportation constraints.
PEVs can only be spatially scheduled within their max-
imum traveling distance.

2) In PEV charging power allocation, we perform a decen-
tralized optimal power flow (OPF) analysis to obtain an
optimal PEV power allocation policy. A distributed opti-
mization technique, i.e., proximal Jacobian alternating
direction multiplier method (PJADMM), decomposes
the global power flow optimization problem into mul-
tiple subproblems, thereby distributing the computation
load into distribution nodes. Each node attains the opti-
mal power flow with limited local parameter exchange
among EVCSs.

3) For the scenario in which the PEV information for
the offline optimization period is limited, we identify
the range anxiety constraint in PEV spatial scheduling
from historical PEV charging profile by kernel density
estimation method. Extensive simulations, developed in
VISSIM [22], are presented to validate the effective-
ness of our proposed approach in a realistic suburban
scenario.

Fig. 1. (a) The system model of the PEV charging management network.
(b) A 10-node sub-grid power distribution system. (c) The transportation
network topology.

The remainder of the paper is organized as follows. The
system model of the proposed work is given in Section II.
The problem of PEV management is formulated in Section III.
The optimal PEV power allocation scheme is developed
in Section IV. The PEV charging parameter estimation method
is discussed in Section V. Simulation results are provided in
Sections VI, followed by concluding remarks in Section VII.

II. SYSTEM MODEL

The system model of a PEV charging management network
is shown in Fig. 1(a). There are three layers in the pro-
posed model: the power distribution layer, the transportation
layer, and the communication layer. Section II-B and II-C
will focus on introducing the power distribution layer and
transportation layer, respectively. For the communication layer,
each EVCS has an on-site roadside unit for exchanging the
charging information with PEVs on the road through Vehicle-
to-Infrastructure (V2I) communications [16]. The information
exchange between a EVCS and its on-site roadside unit can
be supported by IEC 61850 standard [23], [24]. A traffic
coordinator monitors the number of PEV charging requests
at all EVCSs and coordinates the spatial shifting of PEV
units among EVCSs through wired communication links
with EVCSs. EVCSs can also communicate with each other
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TABLE I

SUMMARY OF NOTATIONS

to exchange information for PEV power allocation through
wired communication links. The summary of notations is given
in Table I.

A. PEV Charging and EVCS Model

There are two types of vehicles on the road: PEVs and gaso-
line vehicles. Before a PEV with charging demand entering an
EVCS, the PEV sends a charging request to the nearest EVCS.
Denote the set of EVCSs as G. PEVs which send charging
request on the road are referred to as PEV requesters, and
the EVCS receiving the request from PEV e is referred to as
the “local” EVCS of PEV e in the remainder of the paper. Let
Vh,t denote the set of PEV requesters local to EVCS h in time
slot t, and Vh,t ∩ Vk,t = ∅, for ∀h, k ∈ G and h �= k. Each
request contains the PEV’s charging information, including
its current state of charge, i.e., SoCe, the minimum required
state of charge, i.e., SoCmin

e , the battery capacity Be, and the
maximum detouring range for charging Fe. The current state
of charge of PEV, i.e., SoCe, follows SoCe ∈ [SoCmin

e , 1].
The distance between a PEV requester and its local EVCS is
assumed to be under the maximum traveling range of PEVs.

The transportation coordinator collects the PEV requesters’
information and provides the spatial shifting plan among
EVCSs according to the power allocation result. Some PEV
requesters can be scheduled to be charged at another EVCS
within their maximum detouring range for charging, i.e., Fe,
and their maximum traveling range based on the remaining
battery energy.

Once PEV e is plugged into an EVCS, due to the limited
service capacity of the power distribution system, the charging

process may be extended or interrupted to avoid the demand
peak [25]. Temporal scheduling is applied in this step to
allocate the charging power across time slots. Let Eobj be the
objective PEV charging energy. For simplicity, we assume that
Eobj is identical for all PEV requesters. The minimum number
of time slots for fully charging a PEV without interruption
can be calculated by EVCSs, which is denoted by Tc. It holds
that Tc =

⌈
Eobj/(Pc�)

⌉
, where Pc represents the maximum

charging power, and � represents the time length of a time
slot. The expected PEV parking time in a charging station is
denoted by T̄ , where T̄ ≥ Tc. Temporal scheduling flexibility
exists if T̄ > Tc. A PEV should be fully charged within
T̄ time slots after it is plugged into an EVCS.

B. Power Grid Model

The 10-node sub-grid power distribution network is pre-
sented in Fig. 1(c), where node 0 is the point of common
coupling (PCC), and nodes 1 to 9 connect to power loads.
There is one EVCS connected to each node except node 0.
To simplify notations, an element of G represents either a
node or an EVCS located at that node. Let z̄h,k be the
impedance between adjacent nodes h and k. We assume that
power loads in each phase are balanced in the three-phase
system having a tree structure [11], [26]. Thus, there is no
loop in the topology of the power grid, and the single-phase
power flow is analyzed.

We assume that the power demand for any time slot in the
analysis time window T can be predicted [9]–[11], [16]. For
each node, there are two types of power loads connecting to the
grid: the PEV load at EVCSs, which will be managed by the
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proposed charging strategy, and other power loads excluding
the PEV load. For the PEV load, all PEVs connect to the
power grid by DC connectors. Accordingly, only active power
is allocated for the PEV load, which is a variable denoted
as Hh,t for h ∈ G at t ∈ T . For other loads, the active and
reactive power excluding PEV load at node h in time slot t
are denoted by Ph,t and Qh,t, respectively. The grid has to
satisfy power demand on Ph,t and Qh,t and considers those
demand as parameters in the power allocation. At each node
except node 0, the overall active power from loads connected
to node h cannot be greater than active power upper bound
P̄h,t, i.e., Ph,t + Hh,t ≤ P̄h,t, assuming Ph,t ≤ P̄h,t. For
node 0, we denote the active and reactive power drawing from
PCC in time slot t as P0,t and Q0,t, respectively. The term
S̄0,t denotes the upper bound of the apparent power draw from
PCC in time t. Thus, it holds that P 2

0,t + Q2
0,t ≤ S̄2

0,t, ∀t.
Let vh,t and ih,t denote the complex line-to-ground voltage

and the current injected into node h ∈ G ∪ {0} at the t-
th time slot, respectively. A voltage drop constraint restricts
the voltage magnitude at each node: with the increasing load
injection, the voltage magnitude for all nodes cannot be less
than vmin. At node h, the relations between apparent power,
voltage, and current are represented as following non-linear
equations:{

vh,ti
∗
h,t = Ph,t + Hh,t + iQh,t , if h ∈ G,

vh,ti
∗
h,t = P0,t + iQ0,t , if h = 0.

(1)

Furthermore, from Ohm’s law, we have i(t) = Ȳv(t), where
i(t) = [i0,t, . . . , i|G|,t]T and v(t) = [v0,t, . . . , v|G|,t]T . The
symmetric admittance matrix Ȳ is defined as:⎧⎪⎨

⎪⎩
ȳh,h = −

∑
k∈CG

h
z̄−1

h,k,

ȳh,k = ȳk,h = z̄−1
h,k, ∀k ∈ CG

h ,

ȳh,k = ȳk,h = 0, ∀k /∈ CG
h ∪ h,

(2)

where CG
h represents the set of nodes which connect to node h

directly in the grid topology. The term ȳh,k represents the
admittance between nodes h and k, which composes admit-
tance matrix Ȳ. For the tractability of considered relations,
we rewrite equations in (1) in a linear model as in [26], [27].
Firstly, we define the admittance matrix only related to node h
as:

Ȳh = 1h(1h)T Ȳ, (3)

where 1h represents the vector in which only the h-th element
is 1, and all other elements are 0. Furthermore, we define the
voltage magnitude matrix in time slot t, V(t), as the outer-
product matrix of voltage v(t), where V(t) = v(t)v(t)H . Thus,
the diagonal elements of V(t) are the square of voltage mag-
nitude for all nodes. After applying Ohm’s Law, there exists
a linear relation between the voltage magnitude matrix V(t)
and power as shown in following equations:

Tr (1h(1h)T V(t)) = |vh,t|2 (4a)

Re(Tr (ȲhV(t))) = Ph,t + Hh,t (4b)

Im(Tr (ȲhV(t))) = Qh,t (4c)

As proved in [26], we reformulate Eqs. (4b) and (4c) in the
form of hermitian matrices:

Tr (ΨP,hV(t))=Ph,t+Hh,t; Tr (ΨQ,hV(t))=Qh,t, (5)

where hermitian matrices ΨP,h and ΨQ,h are defined as:

ΨP,h =
1
2
(Ȳh + (Ȳh)H); ΨQ,h =

i

2
(Ȳh − (Ȳh)H). (6)

Equation (5) establishes a linear relationship between PEV
power Hh,t and the voltage magnitude matrix V(t).

C. Transportation Graphic Model

Let a directed graph GTN = (G, E) represent the trans-
portation network, as shown in Fig. 1(b), where G denotes the
set of charging stations, and E denotes the set of edges. The
directed link (h, k) represents the path from node h to node k.
The term dh,k represents the length of the link (h, k). In the
considered spatial scheduling, some PEV requesters local to
EVCS h may be scheduled to be charged at another EVCS.
Denote the number of PEV requesters to be shifted along the
link (h, k) in time slot t as yh,k,t.

When the distance among EVCSs cannot be negligible,
the range anxiety constraints should be highlighted, which is
referred to as the range anxiety (RA) scenario. Firstly, in the
RA scenario, the length of all links in set E is under a distance
threshold, θmax, defined by the transportation coordinator.
The threshold represents the maximum distance between two
charging stations which can shift their PEV requesters to
each other. If the distance between two EVCSs is longer than
the threshold, no PEV requester will be shifted between the
two EVCSs, and the corresponding link is not included in
set E . For EVCS h, set CT

h represents the set of EVCSs con-
nected directly to h in graph GTN , i.e., dh,k ≤ θmax, ∀k ∈ CT

h .
In addition, PEV requesters can be shifted to another EVCS
only if the distance to the EVCS is under their maximum
traveling range. The spatial shifting for PEV requester e is
constrained by two factors: the maximum detouring range
for charging determined by the PEV’s user, i.e., Fe, and the
traveling range according to the remaining battery capacity.
The maximum traveling range for PEV e can be formulated
as the following equation:

De = min{Fe, [(SoCe − SoCmin
e )Be]/(pcon

e )}, (7)

where De denotes the maximum traveling distance of PEV
requester e. The parameter pcon

e represents the battery con-
sumption rate with the unit of kWh/km. The parameter Fe

depends on the willingness of the PEV driver for spatial
shifting. When PEVs request to be charged at a charging
station on the half of their route, their Fe will be relatively
high. Otherwise, when PEVs consider the local charging
station as their destination, they may set a low Fe to avoid
spatial shifting. In EVCS h, the set of PEV requesters that can
be shift to an EVCS k ∈ CT

h is denoted by set Rh,k,t, where
Rh,k,t ⊆ Vh,t. The maximum traveling range of all PEVs in
Rh,k,t should be over the link length between EVCS h and k,
i.e., De ≥ dh,k. Moreover, for k1, k2 ∈ CT

h , Rh,k1,t ⊆ Rh,k2,t

if dh,k1 > dh,k2 . To ensure the spatial shifting of PEV
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Fig. 2. An illustration for Eq. (8).

requesters under their range anxiety constraint, it holds that
yh,k,t ≤ |Rh,k,t|.

III. PROBLEM FORMULATION

The objective of the PEV power allocation problem is to
maximize the overall PEV charging energy for the PEV charg-
ing management network over |T | time slots while weighing
the cost of both spatial and temporal PEV demand scheduling.
We conduct OPF analysis to prevent overloading caused by a
large number of PEV loads plugged into the power distribution
system.

To reduce the cost due to spatial demand scheduling,
we minimize the difference between the charging power for
PEV requesters flowing out from and into EVCS h in the same
time slot t due to spatial scheduling. The power difference is
denoted by Δh,t, where

Δh,t =

(∑
k∈G

yh,k,t −
∑
k∈G

yk,h,t

)
Pc.

If Δh,t > 0, EVCS h serves as a PEV charging source
node to transfer PEV power to other EVCSs. If Δh,t < 0,
EVCS h serves as a charging sink node which requires
the PEV transferred into it. Note that

∑
h∈G

∑
k∈G yh,k,t =∑

h∈G
∑

k∈G yk,h,t. Therefore, for all EVCSs in the network,
a zero-sum constraint should be satisfied, i.e.,

∑
h∈G Δh,t = 0.

The constraint ensures that all PEVs are scheduled to be
charged by one of EVCSs in the network. No PEV is shifted
out of the considered network, and no PEV from outside is
shifted into the network.

To analyze the cost of the temporal PEV power shifting,
we first formulate the overall PEV charging demand that is
available to be allocated at EVCS h in slot t as follows:

Eh,t(Δh)=
t∑

t′=1

min{t−t′+1, Tc}�(|Vh,t′ |Pc−Δh,t′), (8)

where |Vh,t′ |Pc represents the maximum charging power for
the PEV requester arrived at EVCS h in slot t′. The term Δh

represents the set {Δh,t, ∀t}. The term min{t− t′ + 1, Tc} is
the maximum number of time slots in which EVCS may have
used to charge a PEV arrived in slot t′. To explain Eq. (8),
an example is provided in Fig. 2. Since the charging power is
limited by the upper bound Pc, satisfying the charging demand
requires at least Tc time slots. The whole demand of PEV 1
is available to be scheduled since the charging process is
possible to be finished before slot t by the maximum charging
rate. However, for PEV 2, only a part of charging demand
can be satisfied by slot t even if the PEV is charged by the

maximum charging rate. It can be seen that
∑t

t′=1 min{t −
t′ +1, Tc}�(|Vh,t′ |Pc −Δh,t′) represents the overall charging
demand, which is available to be scheduled, at EVCS h by
time slot t. We further formulate the overall PEV charging
demand that has to be satisfied at EVCS h in slot t as follows:

Ēh,t(Δh) =

⎧⎪⎪⎨
⎪⎪⎩

t−T̄∑
t′=1

Tc�(|Vh,t′ |Pc − Δh,t′), if t > T̄

0, if t ≤ T̄

(9)

The cost of the temporal PEV power shifting is represented
as follows:

Ctem(Δ, H) =
∑
h∈G

∑
t∈T

[ t∑
t′=1

Hh,t′ − Eh,t(Δh)/�
]2

. (10)

The cost Ctem(Δ, H) depicts the difference between two
energy items, i.e., the overall allocated PEV energy and the
overall PEV energy demand at all EVCSs received so far,
normalized by the length of a time slot.

Without considering the range anxiety constraint, the power
allocation optimization problem can be formulated as follows:

max
H,Δ,V

∑
h∈G

∑
t∈T

Hh,t − α‖Δ‖2
2 − βCtem(Δ, H) (11a)

s.t.
t∑

t′=1

Hh,t′ ∈ [Ēh,t(Δh)/�, Eh,t(Δh)/�], ∀h, t,

(11b)∑
h∈G

Δh,t = 0, ∀t (11c)

Tr (ΨP,hV(t)) = Ph,t + Hh,t, ∀h, t (11d)

Tr (ΨQ,hV(t)) = Qh,t, ∀h, t (11e)

Tr (1h(1h)T V(t)) ∈ [v2
min, v2

max], ∀h, t (11f)

P 2
0,t + Q2

0,t ≤ S̄2
0,t (11g)

Hh,t ∈ [0, P̄h,t − Ph,t], ∀h, t (11h)

V(t) � 0, ∀t (11i)

rank[V(t)] = 1.∀t (11j)

The optimization problem (11) presents the overall charging
service capacity maximization, which is defined as the overall
PEV charging energy offered by EVCSs subtracting the cost
of spatial and temporal charging demand scheduling. The non-
negative parameter α and β are the factors for the cost of spa-
tial and temporal shifting, respectively. Constraint (11b) shows
that the allocated PEV energy at node h cannot be higher
than the available PEV power demand arrived in past slots.
Consequently, the solution of problem (11) will not allocate
the PEV power for the PEV demand that has not arrived yet.
Also, the PEVs’ charging demand should be satisfied within
the expected parking period, i.e., T̄ . Constraint (11c) suggests
that the sum of power flowing among EVCSs should be zero.
Power flow constraints in OPF analysis are represented in
constraints (11d)-(11j). Main optimization variables include
the PEV power allocation result H, the shifting power of
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PEV requesters among EVCSs Δ, and the voltage magnitude
matrix V.

Problem (11) is a non-convex problem due to con-
straint (11j). The SDP relaxation technique is applied to drop
the rank constraint (11j) such that problem (11) becomes a
convex problem and can be solved by a standard interior-point
solver [26], [28]. However, the relaxation results in a rank
conundrum on the optimality of the results provided by the
convexified problem. Several studies investigated the dual gap
between the rank-constrained problem and the relaxed problem
under the tree network topology [29]–[31]. It is proved that,
in a balanced tree power network, as the one considered
here, under the assumption that the phase angle differences
across a line are controllable and satisfying certain constraints,
the global optimality of the rank-constrained problem can
be achieved by optimizing the relaxed problem if the power
allocation problem is feasible (Theorem 1, [32]).

Remark 1: For the RA scenario, due to the range anxiety
limitation, the following upper bound constraint exists for node
h receiving the PEV power from all k ∈ CT

h :

−
∑

h∈Xx

Δh,t ≤
(∣∣ ⋃

h∈Xx

k∈CT
h

Rk,h,t

∣∣− ∣∣ ⋃
h,k∈Xx

Rk,h,t

∣∣)Pc, (12)

where set Xx denotes the x-th combination of elements in
set G.
The right side of constraint (12) represents the maximum PEV
power which can flow into the set of nodes in Xx under
the range anxiety constraint. There are

∑
k∈G

(|G|
k

)
number

of sets Xx among |G| nodes. To simplify the notation, let Tx,t

represent the negative of the inequality (12)’s left side. Define
Tt = [T1,t; . . . ; T�

k∈G (|G|
k ),t

], and Δt = [Δ1,t; . . . ; Δ|G|,t].
The inequality (12) can be reformulated as follows:

CΔt ≥ Tt, (13)

where C is a
(∑

k∈G
(|G|

k

)
×|G|

)
matrix. The element Cx,h is

one if h ∈ Xx, otherwise Cx,h is zero. From constraint (13),
we see the limitation of the PEV maximum traveling range
introduces several constraints in the power allocation phase.
The power grid needs the knowledge on PEV requesters,
such as Tt, to achieve the accurate power allocation results.
However, if the number of PEV requesters is high or the
distance among EVCSs is short enough, the range anxiety
constraint has less influence on the power allocation phase.

Consider the graph GTN . Let S represent a subset of G, and
S̄ = G\S. Then, we have the following conclusion:

Lemma 1: If the number of PEVs being able to travel from
S to S̄ is

∑
h∈S |Vh,t| for any S �= G, the range anxiety

constraint (13) can be neglected in the power allocation
problem.

Proof: Considering the condition in Lemma 1, if S̄ =
{k}, the maximum number of PEVs can travel to node k
is

∑
h∈S\{k} |Vh,t|. All PEVs from all other nodes can be

shifted to node k, such that range anxiety constraints are
inactive. Following the above condition, when S̄ has more
nodes, the number of PEV requesters which can be shifted
into nodes in S̄ is the number of all PEV requesters in its
complement set S. Constraint (13) is always satisfied except

the case when S = G, which is represented by constraint (11c).
Under the condition in Lemma 1, no PEV information from the
transportation coordinator is required in the power allocation
phase. �

IV. DECENTRALIZED OPTIMIZATION

IN PEV POWER ALLOCATION

The relaxed power allocation problem (11) is an SDP
optimization problem. The classic interior-point method for
solving the proposed problem can be time-consuming, espe-
cially with a large number of nodes, time slots, and constraints.
In addition, in the centralized approach, a central controller
should be deployed to gather a vast volume of local parameters
for power allocation optimization, such as the information of
all PEV requesters for all time slots. Therefore, it is impractical
to manage all detailed parameters by a controller when the
scale of the power grid is large. Therefore, we introduce a
decentralized approach to solve the PEV power allocation
problem. PJADMM is a powerful distributed optimization
tool, which decomposes the complicated centralized problem
into multiple subproblems, and those subproblems can be
determined with local solvers in parallel. Compared with
conventional ADMM, PJADMM combines the proximal term
τ
2 ||xi−xt

i||2 in the primal problem to guarantee strict convexity
with multiple constraints, and results could converge under
much milder conditions [33].

Problem (11) is fully separable except constraints related to
V(t) and Δh,t. To split those constraints, we define several
new local and global variables. Local variables are solved
by nodes, and global variables are shared among nodes. For
constraint (11i), we introduce two variables, i.e. V̂h(t) and
Wh(t). The variable V̂h(t) is the global variable containing
the voltage magnitude information on node h and its adjacent
nodes in the grid topology, which is the sub-matrix of V(t)
for node h. For example, for node 2 in Fig. 1(c), the variable
V̂2(t) is:

V̂2(t) =

⎡
⎢⎢⎣
v1,tv

∗
1,t v1,tv

∗
2,t v1,tv

∗
5,t v1,tv

∗
7,t

v2,tv
∗
1,t v2,tv

∗
2,t v2,tv

∗
5,t v2,tv

∗
7,t

v5,tv
∗
1,t v5,tv

∗
2,t v5,tv

∗
5,t v5,tv

∗
7,t

v7,tv
∗
1,t v7,tv

∗
2,t v7,tv

∗
5,t v7,tv

∗
7,t

⎤
⎥⎥⎦

The variable Wh(t) is the corresponding voltage magni-
tude matrix solved by node h locally. Moreover, denote
the mean of local variables {Δh,t, ∀h} as Δ̄t, i.e., Δ̄t =
(1/|G|)

∑
h∈G Δh,t. The corresponding constraint (11c) can

be transformed to compute local Δh,t so that the average,
Δ̄t, is zero. For the RA scenario, we consider a constraint set
CR, where CR = {Δt ∈ R

|G||CΔt ≥ Tt}. After introducing
above variables, the optimization problem (11) is rewritten as
follows:

max
H,Δ,W

∑
h∈G

∑
t∈T

Hh,t − α‖Δ‖2
2 − βCtem(Δ, H) (14a)

s.t. Δ̄t = 0, ∀t (14b)

Tr (ΨP,hWh(t)) = Ph,t + Hh,t, ∀h, t (14c)

Tr (ΨQ,hWh(t)) = Qh,t, ∀h, t (14d)

Tr (1h(1h)T Wh(t)) ∈ [v2
min, v2

max], ∀h, t (14e)
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Wh(t) � 0, ∀h, t (14f)

Re{Wh(t)} = Re{V̂h(t)}, ∀h, t (14g)

Im{Wh(t)} = Im{V̂h(t)}, ∀h, t (14h)

(11b), (11g), (11h),
(14b), for the RA scenario.

The partial quadratically-augmented Lagrangian of
problem (14) is shown in Eq. (15):

Γ(H,Δ, W, z, u)

= −
∑
h∈G

∑
t∈T

Hh,t + α‖Δ‖2
2 + βCtem(Δ, H)

+
∑
h∈G

∑
t∈T

{
u1,h,t[

t∑
t′=1

Hh,t′ − Eh,t(Δh)/� − z1,h,t]

+
ρ1

2
[

t∑
t′=1

Hh,t′ − Eh,t(Δh)/� − z1,h,t]2
}

+
∑
h∈G

∑
t∈T

{
u2,h,t[

t∑
t′=1

Hh,t′ − Ēh,t(Δh)/� − z2,h,t]

+
ρ2

2
[

t∑
t′=1

Hh,t′ − Ēh,t(Δh)/� − z2,h,t]2
}

+
∑
h∈G

∑
t∈T

{
u3,h,t(Hh,t − z3,h,t) +

ρ3

2
(Hh,t − z3,h,t

+u3,h,t)2
}

+
∑
t∈T

{
u4,tΔ̄t +

ρ4

2
(Δ̄t)2

}

+
∑
h∈G

∑
t∈T

{
u5,h,t[Tr (ΨP,hWh(t)) − Ph,t − Hh,t]

+
ρ5

2
[Tr (ΨP,hWh(t)) − Ph,t − Hh,t]2

}
+
∑
h∈G

∑
t∈T

Tr
[
uT

6,h,t(Re{Wh(t)} − Re{V̂h(t)})
]

+
ρ6

2

∑
h∈G

∑
t∈T

‖Re{Wh(t)} − Re{V̂h(t)}‖2
F

+
∑
h∈G

∑
t∈T

Tr
[
uT

7,h,t(Im{Wh(t)} − Im{V̂h(t)})
]

+
ρ7

2

∑
h∈G

∑
t∈T

‖Im{Wh(t)} − Im{V̂h(t)}‖2
F

+
∑
t∈T

ρR

{
uT

8,t(CΔt − z8,t) +
ρ8

2
‖CΔt − z8,t‖2

2

}
.

(15)

The variables {(u1, u2), u3, u4, u5, u6, u7, u8} are the penalty
term transformed by dual variables associated with con-
straints (11b), (11h), (14b), (14c), (14g), (14h), and (13),
respectively. The auxiliary variables {(z1, z2), z3, z8} illustrate
inequality constraints in (11b), (11h), and (13), respectively.
Parameters {ρ1, . . . , ρ8} are positive constants. The indicator
ρR is one for the RA scenario, and ρR is zero for the free
traveling scenario, in which range anxiety is not considered.

In order to reduce the computation scale of the
SDP problem, we decompose problem (14) into multiple
subproblems by PJADMM and determine each variable by an
individual subproblem at the node level in an iterative manner.

The subproblem for solving PEV charging power allocation,
i.e., Hh,t, is organized in the following problem:

min
{Hh,t,∀t}∑

t∈T

{
− Hh,t + β

[ t∑
t′=1

Hh,t′ − Eh,t(Δ
(s−1)
h )/�

]2

+(u(s−1)
1,h,t + u

(s−1)
2,h,t )(

t∑
t′=1

Hh,t′) +
ρ1

2
[

t∑
t′=1

Hh,t′

−Eh,t(Δ
(s−1)
h )/� − z

(s−1)
1,h,t ]2 +

ρ2

2
[

t∑
t′=1

Hh,t′

−Ēh,t(Δ
(s−1)
h )/� − z

(s−1)
2,h,t ]2 + u

(s−1)
3,h,t Hh,t

+
ρ3

2
(Hh,t − z

(s−1)
3,h,t + u

(s−1)
3,h,t )2 − u

(s−1)
5,h,t Hh,t

+
ρ5

2
[Tr (ΨP,hW(s−1)

h (t)) − Ph,t − Hh,t]2

+
τ

2
(Hh,t − H

(s−1)
h,t )2

}
, (16)

where x(s−1) is the result of the variable x obtained by
iteration s − 1, and the constant terms are omitted. The
subproblem for calculating the power difference, i.e., Δh,t,
is organized in the following problem:

min
{Δh,t,∀t}

∑
t∈T

{
αΔh,t

2 + β
[ t∑

t′=1

H
(s−1)
h,t′ − Eh,t(Δh)/�

]2

−u
(s−1)
1,h,t [Eh,t(Δh)/�] +

ρ1

2
[

t∑
t′=1

H
(s−1)
h,t′

−Eh,t(Δh)/� − z
(s−1)
1,h,t ]2 − u

(s−1)
2,h,t [Ēh,t(Δh)/�]

+
ρ2

2
[

t∑
t′=1

H
(s−1)
h,t′ − Ēh,t(Δh)/� − z

(s−1)
2,h,t ]2

+u
(s−1)
4,t Δh,t +

ρ4

2
(Δh,t − Δ(s−1)

h,t + Δ̄(s−1)
t )2

+ρR

{
(u(s−1)

8,t )T [C(:, h)Δh,t/|G|] +
ρ8

2
‖CΔ(s−1)

t

/|G| + C(:, h)(Δh,t − Δ(s−1)
h,t ) − z(s−1)

8,t /|G|‖2
2

}
+

τ

2
(Δh,t − Δ(s−1)

h,t )2
}
. (17)

The subproblem for determining the voltage magnitude matrix,
i.e., Wh(t), is organized in the following problem:

min
{Wh(t)�0

,∀t}

∑
t∈T

{
u

(s−1)
5,h,t (Tr (ΨP,hWh(t)))

+
ρ5

2
[Tr (ΨP,hWh(t)) − Ph,t − H

(s−1)
h,t ]2

+ Tr
{
(u(s−1)

6,h,t )T (Re{Wh(t)} − Re{V̂h(t)(s−1)})
}

+
ρ6

2
‖Re{Wh(t)} − Re{V̂h(t)(s−1)}‖2

F

+ Tr
{
(u(s−1)

7,h,t )T (Im{Wh(t)} − Im{V̂h(t)(s−1)})
}

+
ρ7

2
‖Im{Wh(t)} − Im{V̂h(t)(s−1)}‖2

F

+
τv

2
‖Wh(t) − Wh(t)(s−1)‖2

F

}
s.t. (11g), (14d), (14e). (18)
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The decomposition process is provided in Appendix. For
each subproblem, we add the proximal term to ensure the
convergence for the multi-constraint problem [33], where
τ and τv are positive parameters. The full PJADMM algorithm
is illustrated in Algorithm 1. The corresponding dual and
auxiliary variables updates for solving the subproblems are
also presented in Algorithm 1.

Lemma 2: If the initial value of dual variables u0
4 and

u0
8 are unified among all nodes, the two dual variables are

not required to be shared among nodes in the PJADMM
algorithm though they contain the information of all nodes
in the considered network.

Proof: When computing u(s−1)
4 , the following information

are required: {Δ̄(s−1)
t , ∀t} and u(s−2)

4 . Since Δh,t is updated
and broadcasted at the beginning of each iteration, u4 can be
updated at each node individually by the historical value of u4.
Likewise, u8 can be updated individually in a similar way. �

In our power allocation algorithm, the optimum result can be
achieved in a distributed manner by sharing only two variables:
Δh,t among all nodes and Wh(t) among adjacent nodes in the
grid topology. In Algorithm 1, firstly, two global variables,
Δh,t and V̂h(t), are calculated by the two variables, Δh,t and
Wh(t), shared among nodes in Step (1). Step (1b) computes
the global matrix for node h, V̂h(t). Each element in the global
matrix V̂h(t) is the average of elements with the same voltage
information in local variables Wk(t). Set Oi∗,j∗ is a subset
containing node h and the adjacent nodes of node h. Node
k is in set Oi∗,j∗ only if its local matrix, Wk(t), has the
element (i′, j′) representing the same voltage information with
the element (i∗, j∗) in local matrix Wh(t) corresponding to
global matrix V(t). Steps (2)-(4) solve subproblems in parallel.
Local variables and dual variables are computed by individual
nodes iteratively until the stop criterion is satisfied.

In the proposed algorithm, local parameters and variables,
such as active power demand Ph,t and the PEV power alloca-
tion result Hh,t, are not required to be passed among distrib-
ution nodes. Furthermore, the SDP optimization suffers from
high time complexity. In the current SDP solvers, interior-point
methods have been adopted. The time complexity of solving
SDP problem (14) in the centralized manner is estimated
as O(T |G|4.5) or worse [34]. In the decentralized approach,
problem (14) is converted into several linear optimization
problems, i.e., problem (16) and problem (17), and one
SDP problem with fewer variables and constraints, i.e., prob-
lem (18). The subproblems are solved by each charging station
distributively. The time complexity in solving the decomposed
SDP problem can be estimated as O(T |CG

h |4.5) for a charging
station, and each charging station solves the subproblem in
parallel. The computation scale in problem solving is reduced
significantly, especially when the number of nodes in the
network is large.

V. PARAMETER ESTIMATION FOR PEV REQUESTERS

In our algorithm, all PEV charging information for the
optimization period T is considered to be available. However,
due to limited communication distance of V2I communications
and charging demand uncertainty, it can be difficult for EVCSs
to obtain the exact charging information of PEV requesters

Algorithm 1 Proximal Jacobian ADMM Algorithm for Power
Allocation
1: Iteration s = 1. Initialize variables (H,Δ, W, z, u)0 =

(0, 0, 0, 0, 0), and Γ(H,Δ, W, z, u)0 = 0.
2: for Each bus h = 1 : N do

(1) Update Global Variables
(1a) Update Δ̄(s−1)

t = 1
|G|

∑
h∈G Δ(s−1)

h,t , ∀t.

(1b) V̂h(t)(s−1)
[i∗,j∗] = 1

|Oi∗,j∗ |
∑

k∈Oi∗,j∗
Wk(t)(s−1)

[i∗,j∗],

Oi∗,j∗ ⊆ CG
h ∪ h, ∀t

(2) Update Auxiliary Variables for the Past Iteration
(2a) z

(s−1)
1,h,t = ΠR−{

∑t
t′=1 H

(s−1)
h,t′ −Eh,t(Δ

(s−1)
h )/�+

u
(s−2)
1,h,t /ρ1}, ∀t

(2b) z
(s−1)
2,h,t = ΠR+{

∑t
t′=1 H

(s−1)
h,t′ −Ēh,t(Δ

(s−1)
h )/�+

u
(s−2)
2,h,t /ρ2}, ∀t

(2c) z
(s−1)
3,h,t = ΠC1{H

(s−1)
h,t + u

(s−2)
3,h,t /ρ3}, where C1 =

[0, P̄h,t − Ph,t], ∀t

(2d) z(s−1)
8,t = ΠC2{CΔ(s−1)

t +u(s−2)
8,t /ρ8}, where C2 =

[Tt, 0], ∀t
(3) Update Dual Variables for the Past Iteration
(3a) u

(s−1)
1,h,t = ρ1(

∑t
t′=1 H

(s−1)
h,t′ − Eh,t(Δ

(s−1)
h )/� −

z
(s−1)
1,h,t ) + u

(s−2)
1,h,t , ∀t

(3b) u
(s−1)
2,h,t = ρ2(

∑t
t′=1 H

(s−1)
h,t′ − Ēh,t(Δ

(s−1)
h )/� −

z
(s−1)
2,h,t ) + u

(s−2)
2,h,t , ∀t

(3c) u
(s−1)
3,h,t = ρ3(H

(s−1)
h,t − z

(s−1)
3,h,t ) + u

(s−2)
3,h,t , ∀t

(3d) u
(s−1)
4,t = ρ4Δ̄

(s−1)
t + u

(s−2)
4,t , ∀t

(3e) u
(s−1)
5,h,t = ρ5[Tr (ΨP,hWh(t)(s−1)) − Ph,t −

H
(s−1)
h,t ] + u

(s−2)
5,h,t , ∀t

(3f) u
(s−1)
6,h,t = ρ6(Re{Wh(t)(s−1)}−Re{V̂h(t)(s−1)})+

u
(s−2)
6,h,t , ∀t

(3g) u
(s−1)
7,h,t = ρ7(Im{Wh(t)(s−1)} −

Im{V̂h(t)(s−1)}) + u
(s−2)
7,h,t , ∀t

(3h) u(s−1)
8,t = ρ8(CΔ(s−1)

t −z(s−1)
8,t )+u(s−2)

8,t , if ρR = 1.
(4) Update primal variables by solving (16)-(18)

3: end for
4: Nodes exchange variables Δ(s)

h,t and Wh(t)(s).
5: Find Γs by Eq. (15), and update s = s + 1.
6: Repeat 2-5 until either |Γ(s) − Γ(s−1)|2 ≤ ξ, or s reaches

the maximum iteration value.

arriving in the future. Therefore, we discuss parameter esti-
mation for PEV requesters in this section.

There are two main parameters related to PEVs that EVCSs
need to obtain in the optimization process: Vh,t and Rh,t.
The size of set Vh,t, i.e., the number of PEV requesters
local to h arriving in slot t, can be modelled by a Poisson
distribution [12], [21], [35], [36]. However, the distribution
to illustrate the range anxiety of the PEV requesters, repre-
sented by Rh,k,t, has not been well investigated. Depends on
the EVCS location, the types of PEVs being served at the
EVCS may vary. For example, EVCSs located in rural areas
are more likely to serve PEVs with high battery capacities,
such as electric trucks. Such PEVs have a higher chance to
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possess enough remaining energy to travel to another EVCS.
In contrast, EVCSs located at an urban area may more likely
to serve PEVs with low battery capacities, such as private
PEVs for commuting, which has lower flexibility for spatial
coordination. Therefore, to estimate the spatial coordinating
ability for PEV requesters, we adopt a non-parametric density
estimation method, i.e., Gaussian kernel density estimation,
to determine the distribution of PEV requesters’ maximum
traveling distance for spatial shifting among EVCSs. The his-
torical PEV charging profile, including the maximum traveling
distance De and the arrival time, is collected by individual
EVCS. By excavating the relation between the arrival time
and the maximum traveling distance De in various EVCSs,
we could find the probability that the PEV requester arriving
in a particular time slot at an EVCS can be shifted to another
specific EVCS. Then, the size of set Rh,k,t can be obtained
by the estimated probability.

Denote the average PEV arrival rate at EVCS h in time
slot t as λh,t. Consider that the distribution of the number
of PEV entering an EVCS is independent on the charging
properties of PEVs. Before estimating the distribution of the
maximum traveling distances of PEV requesters, the EVCS
needs to gather enough samples on the charging profile
of the PEVs requesters request to the EVCS in the past.
The historical charging profile of those PEVs e′ is denoted
by se′ = [st

e′ , sl
e′ ], where st

e′ represents the arriving time
instant of PEV e′, and sl

e′ represents the maximum travelling
distance of PEV e′. The set of PEV requesters arrived in
the past is denoted by I and is collected to estimate the
distribution of the maximum traveling distance for the PEV
arrived in a particular time instant, where the probability
density function for the PEV arriving in time instant ṫ with
the maximum traveling distance of l is denoted as f(ṫ, l).

In order to compute f(ṫ, l), we consider the uniform kernel
case at first. Consider a small region R which is a rectangle
area with side length of σt and σl. Then, the number of
samples falling within the region is counted by following
function:

C(st
e′ , sl

e′ ; R) =

⎧⎨
⎩1, if max{ ||s

t
e′ − ṫ||
σt

,
||sl

e′ − l||
σl

} ≤ 1
2

0, otherwise,

(19)

where (ṫ, l) is the central point of area R. Thus, for a large N ,
the general expression for non-parametric density estimation
for the uniform kernel is [37]

f̂(ṫ, l) =
1

|I|σtσl

∑
e′∈I

C(st
e′ , sl

e′ ; R). (20)

The term f̂(ṫ, l) is the estimated distribution, which represents
the likeliness of a sample falling into the rectangle window.
Moreover, to smooth the shape of the kernel and develop
a continuous probability distribution function, we further
improve the uniform kernel into a smooth Gaussian kernel.
The estimated distribution f̂(ṫ, l) can be formulated as follows:

f̂(ṫ, l) =
1

|I|√σtσl

∑
e′∈I

1
2π

e
−
�

(st
e′−ṫ)2

2σt
+

(sl
e′−l)2

2σl

�
. (21)

In (21), σt and σl represent the bandwidth of the Gaussian
kernel rather than the side length of the uniform kernel.
To improve the estimation quality, the proper bandwidth is
required to be selected to minimize the error between the
estimated density and the true density. The bandwidth selection
is critical since it determines the shape of the corresponding
estimator. A sharp estimator with low bandwidth would result
in high variance on density estimation. On the other hand,
an overly smooth estimator with high bandwidth would reduce
the accuracy of estimation. In this work, we adopt the maxi-
mum likelihood cross-validation method [37] to determine the
bandwidth σt and σl as follows:

[σt, σl] = argmax

{
1
|I|

∑
e′∈I

log f̂−e′(st
e′ , sl

e′)

}
, (22)

where f̂−e′(ṫ, l) is the estimated distribution without consid-
ering user e. Let the term ph,k,t denote the probability of the
case in which the PEV requester arriving at station h in time
slot t can be shifted to station k. By the above probability
density function of the PEV requesters’ maximum traveling
distance, we can have

ph,k,t =
∫ (t+1)�

ṫ=t�

∫ ∞

l=dh,k

f̂(ṫ, l) dt dl. (23)

Then the average number of PEV requesters, which is local
to h and can be shifted to k in slot t, can be formulated as
follows:

γh,k,t = ph,k,tλh,t. (24)

During the optimization process, the size of sets Vh,t and
Rh,k,t can be estimated by λh,t and γh,k,t, respectively.

VI. SIMULATION RESULTS

A. Parameter Settings

A five-node network and a ten-node network are shown
in Fig. 3(a) and 3(b), respectively. When implemented in
a grid with a tree topology, the proposed approach can
guarantee the global optimality [29]–[31]. The solid line in
the figures represents the power connection. For the five-node
network, the dashed line represents the bi-directed transporta-
tion connection. For the ten-node network, the bi-directed
transportation connection is shown as Fig. 3(c), which is a
real transportation network topology in Waterloo, ON, Canada.
The parameter settings are given in Table II. We consider three
cases in the simulation: free traveling, RA, and greedy case.
For the first two cases, PEV charging energy is allocated by
the proposed strategy. For the greedy case, the maximum PEV
charging energy is allocated according to the upper bound P̄h,t

without any spatial shifting scheduling.
We implement the PEV charging power allocation approach

in the five-node scenario to evaluate the charging capacity
improvement. In the transportation layer, suppose node 1 to 3
have 10 PEV requesters for a time slot at each node, and we
vary the number of PEV requesters at node 4 from 5 to 50 to
test the charging service capacity in the power distribution
system. Parameters α and β are 0.1 and 0, respectively.
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TABLE II

SIMULATION PARAMETERS

TABLE III

TIME-VARIANT TRAFFIC INPUT RATE FOR TYPE 1 TO TYPE 3 TRAFFIC (UNIT: VEH/HOUR)

Fig. 3. (a) The five-node network topology. (b) The ten-node network
topology. (c) A snap shot of the simulation region with signing the simulated
roads in yellow.

For the free-traveling case, the PEV can be shifted to any
node without considering the range anxiety. For the RA case,
since the distances between non-adjacent EVCSs are over the
threshold θmax, we consider that all PEVs can only travel to
adjacent EVCSs of their local EVCS.

In the ten-node network scenario, line impedances have the
same setting in [26]. We consider power allocation for a whole
day starting at 8:00. The number of the time slots T is 48,

i.e., � = 30 min. The power profile excluding PEV loads in
a day is adopted from [38], where nodes are classified into
residential nodes (nodes 4, 6-9), retail nodes (nodes 3, 5),
and industrial nodes (nodes 1, 2). We consider two base load
patterns. In pattern A, there are 250 residential/retail/industrial
units in the corresponding nodes. In pattern B, there are
300 residential, 120 retail, and 50 industrial units in the cor-
responding nodes. To estimate the PEV information, we sim-
ulate the PEV traffic with VISSIM in an 8km×10km region.
The vehicle input points and EVCS locations are indicated
in Fig. 3(c). Each node is connecting a corresponding num-
bered EVCS. The distance among nine EVCSs is measured
from the real simulation region from Google map. We consider
that four kinds of vehicles: bus, truck, private vehicle for
long distance commuting (LD), and private vehicle for short
distance commuting (SD), compose three types of input traffic
as given in Table III. The time-variant traffic input rate of
the three traffic types for a day is also given in Table III.
Among all vehicles, the PEV penetration rate is in 5%. The
battery capacity, i.e., Be, for the corresponding four kinds of
PEVs are [200, 120, 110, 80] kWh, and the traveling energy
consumption rate, i.e., pcon

e , are [0.2, 0.2, 0.16, 0.16] KWh/km.
The cost rate parameter η is 50. The PEV state of charge
follows a distribution made by an exponential distribution
with mean 1/μ = 40% under the condition that 20% ≤
SoCe ≤ 100%. Consider 50% of PEVs enter the EVCS
when the vehicles are passing by. Since the range anxiety of
PEV is considered in this part, only RA and greedy case are
investigated.

B. Power Allocation for the Four-Node Network

The minimum voltage magnitude with the various number
of PEV requesters at node 4 is shown in Fig. 4(a). The voltage
drop requirement in our approach is not violating the require-
ment with the increasing PEV charging requests, while the
greedy case cannot maintain the voltage drop constraint when
the number of PEV requesters is higher than 10 at node 4.
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Fig. 4. (a) The minimum voltage magnitude with the various number of
PEV requesters at node 4. (b) Overall PEV demand satisfaction percentage.

Correspondingly, to measure the portion of the allocated
PEV demand, we define a satisfaction rate (SR) in slot t as
follows:

SRt =
∑

h∈G
∑t

t′=1 Hh,t′∑
h∈G

∑t
t′=1 min{t − t′ + 1, Tc}|Vh,t′|Pc

, (25)

which represents the ratio between the allocated PEV power
and PEV power demand in the past slots for whole network.
When the satisfaction percentage in slot t is equal to one,
all PEV charging demand arrived by slot t has been sat-
isfied. The results of PEV demand satisfaction percentage
are shown in Fig. 4(b), in which the constraint P̄h,t is also
considered. Complying power distribution system constraints,
our approach can allocate more charging demand and thereby
improve service capacity significantly compared with the
greedy case in which the maximum number of PEV requesters
allowed at node 4 is 10 as mentioned above. When the con-
straint P̄h,t is high enough, for the RA scenario, our approach
can fully satisfy the power demand when the number of PEV
requesters is 20 at node 4. For the free traveling case, our
approach can serve more PEVs since PEVs at node 4 can travel
to node 1 and 3 directly without range anxiety limitations,
while for RA case, the maximum number of PEVs flowing into
node 1 and 3 is 10 due to the transporting range limitation.
When the constraint P̄h,t is decreased, fewer PEVs can be
charged for all EVCS, especially for the free traveling case.
At that time, the power allocation upper bound is the primary
constraint to limit the PEV scheduling rather than the traveling
range limitation. However, the proposed scheme still improves

Fig. 5. The convergence performance in terms of the stop criterion for the
RA case.

Fig. 6. (a) Historical PEV profile at EVCS 1. (b) The estimated distribution
of PEV requesters’ maximum traveling range at EVCS 1. (c) Historical PEV
profile at EVCS 5. (d) The estimated distribution of PEV requesters’ maximum
traveling range at EVCS 5.

the charging capacity significantly compared with the greedy
case. Moreover, the convergence performance of Algorithm 1
is shown in Fig. 5. When the iteration number around 800, for
all cases, the value of stop criterion is under 10−4.

C. Parameter Estimation for the Ten-Node Network

The transportation parameters are obtained by the data
gathered from VISSIM. The historical profile of PEV max-
imum traveling range and the corresponding estimated dis-
tribution are shown in Fig. 6. The profile of PEVs arriving
in four days is collected by EVCSs individually. The pro-
files of PEV requesters arriving EVCS 1 and 5 are shown
in figures 6(a) and 6(c), respectively. The corresponding
distribution estimation results, generated by kernel density
estimation technique, are shown in figures 6(b) and 6(d). Since
EVCS 1 is close to the Type 3 vehicle input point, the vehicles
with high maximum traveling range, such as electric trucks,
would have higher likeliness to enter EVCS 1 compared with
EVCS 5, which is also reflected in the estimated distribu-
tion profile. In the estimated distribution, PEV requesters in
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Fig. 7. (a) The correlation between the probability result {ph,k,t,∀h, k} in
slot 1 and 2. (b) The correlation between the probability result {ph,k,t,∀h, k}
in slot 1 and 25.

Fig. 8. Estimation error between kernel estimation method and the mean
value methods.

EVCS 1 have a higher probability having long maximum
traveling distance than PEV requesters in EVCS 5, especially
at night.

The parameter estimation performance is shown
in figures 7 and 8. We compare the kernel density estimation
performance with the mean value method where the
probability is obtained from the average number of PEVs,
which can be shifted to another specific EVCS, divided
by the overall PEV number. The scattered points in Fig. 7
represent the correlation of the estimated {ph,k,t, ∀h, k ∈ G}
in two time slots. As shown in Fig. 7(a), between the two
consecutive slots, in which PEV’s charging profile should
be similar, the estimated probability between two slots are
inclined to be identical, i.e., ph,k,1 = ph,k,2, by our estimation
method. However, the mean value method has higher variance
on estimation between two consecutive slots. The correlation
of estimated probability in slot 1 and slot 25 is shown
in Fig. 7(b). The probability correlation is decreased due to
the far time distance. Moreover, we explore PEV profile for
two more days and compare the estimation error between the
estimated spatial shifting probability and the real probability
obtained from the six days. The mean square error for all
stations is shown in Fig. 8. The result from the kernel density
estimation method shows the lower error compared with the
mean value method in all EVCSs.

Fig. 9. Overall PEV demand satisfaction percentage with various penalty
factor settings with (a) base load pattern A; (b) base load pattern B.

D. Power Allocation for the Ten-Node Network

The power allocation results for the ten-node network
are provided in the subsection. We utilize the data set and
PEV estimation results in Section VI-C. To reduce the simu-
lation time, the subproblem (18) is calculated in a centralized
manner.

The overall PEV demand satisfaction percentage among
time slots is shown in Fig. 9, in which the bar graph represents
the active power excluding PEV loads, i.e., base active power,
in the distribution system. Our approach allocates less PEV
power to avoid system overloading when the base active
power is high and defers the PEV unscheduled demand to
non-peak hours. With a lower spatial scheduling penalty α,
the satisfaction percentage is increased since more PEV power
is allocated to nodes near PCC for reducing voltage drop
on the transmission line. Similarly, a high power allocation
upper bound for a node in a time slot, i.e., a high P̄h,k value,
can also allow sufficient flexibility on PEV power allocation.
Compared with greedy scheme, our proposed approach ensures
that voltage drop is constrained. When the power allocation
constraint is loose, i.e., P̄h,k = 2 p.u., although the greedy
scheme can always satisfy the PEV power allocation, it cannot
ensure voltage drop under the constraint, as shown in Fig. 10.
Moreover, when the power allocation constraint is tight, i.e.,
P̄h,k = 0.7 p.u., by the end of the day, our proposed scheme
still can ensure that all PEV demand is satisfied, i.e., the sat-
isfaction percentage is one, while the greedy case cannot.
PEV power allocation results for base load profile with
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Fig. 10. The minimum voltage magnitude for the whole system in selected time slots with (a) base load pattern A; (b) base load pattern B.

Fig. 11. The power profiles with and without scheduling (a) for the whole 10-node network; (b) for node 2; and (c) for node 4, where the base load follows
pattern B, P̄h,t = 0.7 p.u., α = 0.01, and β = 0.5.

pattern B are shown in Fig. 11. The overall power alloca-
tion for the whole network, node 2, and node 4 are shown
in figures 11(a), 11(b), and 11(c), respectively. As shown
in Fig. 11(a), our proposed approach schedules the PEV energy
to fill the power valley in non-peak hours and shave the power
peak in peak hours by temporal shifting, such that the overall
power load can be balanced to avoid overloading. As shown
in Fig. 10(b), from 18:00 to 20:00, if all PEV power is allo-
cated as much as possible based on the upper bound of power
allocation in charging stations, i.e., greedy scheme, the voltage
drop requirement cannot be guaranteed. To maintain voltage
drop above the lower bound, our approach allocates less PEV
power at that voltage-drop-violated period instead of allocating
PEV power to fill the upper bound greedily. Furthermore,
as shown in Fig. 11(c), PEV charging demand is too high
to be fully accommodated by node 4; thus, a part of PEV
demand needs to be shifted out, which can be observed from
the gap between overall power allocation with and without
scheduling. By contrast, as shown in Fig. 11(b), node 2 has
relatively low PEV demand; thus, the node accepts the PEVs
shifted from other nodes to increase the charging capacity
for the whole system. It can be observed from the increased
allocated energy in the node after scheduling. Note that all
PEV demand can be fully scheduled and satisfied by the end of
the day by our approach, as shown in Fig. 9(b). Compared with
the case without scheduling, by spatio-temporal scheduling,
we maximize the PEV energy allocated in the system without

overloading the grid. The voltage drop requirement can also
be guaranteed.

VII. CONCLUSION

In this paper, we have studied the problem of PEV charging
power allocation among EVCSs. Based on constraints imposed
by the existing power distribution system and the transporta-
tion network, the maximum service capacity for PEV charging
has been achieved considering the power flow optimality
and PEV range anxiety. A decentralized power allocation
algorithm has been proposed to reduce time-complexity and
communication overhead of power flow optimization for large-
scale PEV charging. The proposed approach can be adopted
by power utilities to coordinate a large number of PEVs
charging in a power distribution system with multiple EVCSs.
For the future work, the impact of PEV scheduling on the
transportation system will be considered.

APPENDIX: DECOMPOSITION PROCESS OF (15)

The augmented Lagrange equation shown in (15) can be
fully decomposed to |G| sub-equations except the following
two terms with Δ:

u4,tΔ̄t + ρRuT
8,t(CΔt − z8,t), (26)

and quadratic terms are ignored. To decompose the first
term of (26), each node can calculate its own local variable,
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Δh,t, with the condition that Δh,t is in set C1 and C2, where

C1 = {Δh,t|Δ1,t + · · · + Δ|G|,t = 0}, (27a)

C2 = {Δh,t|C(:, 1)Δ1,t + · · · + C(:, |G|)Δ|G|,t ≥ Tt}.
(27b)

Thus, each node h has the following sub-equation:

u
(s−1)
4,t (Δh,t − Δ(s−1)

h,t + Δ̄(s−1)
t ) + ρR(u(s−1)

8,t )T

{CΔ(s−1)
t

|G| + C(:, h)(Δh,t − Δ(s−1)
h,t ) −

z(s−1)
8,t

|G| } (28)

To validate the equivalence between (26) and (28), we sum all
sub-equations (28) for all |G| terms as follows:

u
(s−1)
4,t (

∑
h

Δh,t −
∑

h

Δ(s−1)
h,t + |G|Δ̄(s−1)

t ) + ρR(u(s−1)
8,t )T

{CΔ(s−1)
t +

∑
h

C(:, h)(Δt − Δ(s−1)
t ) − z(s−1)

8,t }

= u
(s−1)
4,t Δ̄t + ρR(u(s−1)

8,t )T (CΔt − z(s−1)
8,t ). (29)

At this point, problem (11) is fully decomposable.
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