
Journal of Parallel and Distributed Computing 135 (2020) 156–168

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Privbus: A privacy-enhanced crowdsourced bus service via fog
computing✩

Yuanyuan He a,b,d, Jianbing Ni e, Ben Niu b,∗, Fenghua Li b,c, Xuemin (Sherman) Shen d

a School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
b Institute of Information Engineering, Chinese Academy of Sciences, China
c School of Cyber Security, University of Chinese Academy of Sciences, China
d Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
e Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada

a r t i c l e i n f o

Article history:
Received 29 April 2019
Received in revised form 18 August 2019
Accepted 17 September 2019
Available online 28 September 2019

Keywords:
Privacy preservation
Crowdsourced bus service
Fog computing
Data clustering

a b s t r a c t

Crowdsourced bus service provides the customized bus for a group of users with similar itineraries
by designing the route based on the users’ trip plans. With crowdsourced bus service, the users with
similar trips can enjoy the customized bus route efficiently and inexpensively. However, serious privacy
concerns (e.g., the exposure of users’ current and future locations) have become a major barrier. To
protect users’ itineraries, we propose Privbus, a privacy-enhanced crowdsourced bus service without
hampering the functionality of bus route planning. Specifically, Privbus improves the performance of
clustering itineraries due to the assistance of fogs. Then, Privbus executes the fog-assisted density
peaks clustering operations on ciphertexts of users’ travel plans to protect the users’ trips. By doing
so, the clustering operation is removed from users’ smart devices to fog nodes, so as to enable the
users to be offline after they submit their travel plans. According to the clustering results, Privbus
uses a route planning method to optimize the bus routes. The optimization reduces the time cost on
travel of users, while guaranteeing the good profit and the wide coverage of crowdsourced bus service.
Finally, through the performance evaluation and extensive experiments, we demonstrate that Privbus
has the advantage of low computational and communication overhead, while providing high security
and precision guarantees.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Crowdsourced Bus Service (CBS) customizes a bus route for
each group of users with similar itineraries after analyzing the
trip requests crowdsourced from users. Since CBS can improve
the vehicle occupancy rate and provide relatively fast trips in
crowded cities compared with public buses, it has been widely
expected as a green and efficient way to commute and travel in
metropolises. A number of people have changed the way to get
to work or school due to various CBS applications, such as Bridj1,

✩ Part of this research work was presented in the 16th International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(IEEE WiOpt 2018) .
∗ Corresponding author.

E-mail addresses: yuanyuan_cse@hust.edu.cn (Y. He),
jianbing.ni@queensu.ca (J. Ni), niuben@iie.ac.cn (B. Niu), lifenghua@iie.ac.cn
(F. Li), sshen@uwaterloo.ca (X. Shen).
1 https://www.bridj.com

Jiewo2, GoOpti3 and Bus Pooling4. It is reported that Jiewo has
offered more than 200 routes in Beijing and served more than
20,000 passengers per day; among them, 30% of whom previously
drive to work or travel5.

Unfortunately, the privacy concerns about users’ personal in-
formation have arisen with the popularity of CBS. As the personal
itineraries are closely related to user behavior including the loca-
tion and time of the event [18,35], such exposure poses threats
to the user’s sensitive information, such as home address, work-
place, financial situation, personal preference and even personal
safety6. According to reports, more than 200,000 users deleted
their Uber accounts in August 2017, since Uber had released 2

2 http://www.jiewo.com/
3 https://www.goopti.com/en/
4 http://www.bus-pooling.com/
5 http://www.scmp.com/news/china/society/article/1934853/far-madding-

crowd-cui-ruis-chinese-bus-sharing-app-offers-beijing
6 http://www.bbc.com/news/world-europe-38948281 https://toronto.

ctvnews.ca/privacy-commissioner-opens-formal-investigation-into-uber-data-
breach-1.3716688

https://doi.org/10.1016/j.jpdc.2019.09.007
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.09.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.09.007&domain=pdf
mailto:yuanyuan_cse@hust.edu.cn
mailto:jianbing.ni@queensu.ca
mailto:niuben@iie.ac.cn
mailto:lifenghua@iie.ac.cn
mailto:sshen@uwaterloo.ca
https://www.bridj.com
http://www.jiewo.com/
https://www.goopti.com/en/
http://www.bus-pooling.com/
http://www.scmp.com/news/china/society/article/1934853/far-madding-crowd-cui-ruis-chinese-bus-sharing-app-offers-beijing
http://www.scmp.com/news/china/society/article/1934853/far-madding-crowd-cui-ruis-chinese-bus-sharing-app-offers-beijing
http://www.bbc.com/news/world-europe-38948281
https://toronto.ctvnews.ca/privacy-commissioner-opens-formal-investigation-into-uber-data-breach-1.3716688
https://toronto.ctvnews.ca/privacy-commissioner-opens-formal-investigation-into-uber-data-breach-1.3716688
https://toronto.ctvnews.ca/privacy-commissioner-opens-formal-investigation-into-uber-data-breach-1.3716688
https://doi.org/10.1016/j.jpdc.2019.09.007

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 157

billion pieces of trip data collected from people in more than
450 cities7 to promote the platform, Uber Movement. Therefore,
serious privacy concerns have become a major barrier against the
further growth of CBS.

While the privacy of itineraries gains great importance, CBS
requires the use of detailed trip information, including users’
ID, source locations, destination locations and expected arrival
time [17,18,27]. These trip requests are essential for trip clus-
tering and bus route planning in the process of offering CBSs.
If users’ itineraries are completely hidden, performing clustering
computation for designing bus routes is infeasible [10]. Therefore,
the major technical challenge is how to enable privacy-preserving
trip clustering for CBSs while preserving sensitive information
about users’ trips [7,15,25].

The existing Privacy-Preserving Clustering (PPC) schemes are
based on either randomization or cryptography techniques. The
former [1,16,29] protects sensitive data by adding noise, which is
computationally efficient, but the extra noise reduces clustering
quality in most randomization-based schemes, resulting in inac-
curate cluster centers and improper bus routes. The latter [2,33,
37] can achieve the relatively strong privacy preservation without
sacrificing clustering quality. Nevertheless, applying these PPC
approaches to CBS has several limitations: (1) Users need to
execute encryption and decryption operations in each iteration
to guarantee privacy and clustering quality in most methods,
which put heavy computational and communication overhead on
the users’ resource-constrained mobile devices. (2) Users’ trips
have the characteristic of positive spatial auto-correlation [12]
in a manner of spatial statistics, which is conductive to quickly
identify the geographically proximate users. Unfortunately, it is
difficult to make the positive spatial auto-correlation character-
istic work when the trips are encrypted. (3) The service provider
has enough motivations to merge some clusters into a bus route,
since it is able to increase profit by using fewer buses to carry
more passengers, whereas a route of this type is usually long,
resulting in the conflict between the length of routes and the user
demand of fast bus trips.

To address these issues, we introduce fog computing [26,28]
into CBSs. Fog nodes are deployed between the users’ terminal
devices and CBS server, and have the ability to provide data
storage and network computing services. Thus, each fog node
can collect encrypted trip plans from all users in its service
region [36], and then performs density peaks (DP) trip clus-
tering on the crowdsourced ciphertexts [38,39] instead of the
users. This makes it feasible to reduce the computing and com-
munication cost on the users’ smart devices and even support
the offline users. Furthermore, even though the trip information
is encrypted, the positive spatial auto-correlation characteris-
tic [12] of crowdsourced trips works for improving the perfor-
mance of implementing DP trip clustering [34] without losing
the clustering quality due to the data locality property of fog
nodes. Fog nodes are only allowed to access the encrypted trips,
since fog nodes are not fully trusted. Therefore, in this paper,
we propose Privbus to provide the privacy-preserving CBS in
the fog-assisted architecture, including fog-assisted DP cluster-
ing, privacy-preserving trip clustering and bus route planning.
Specifically, the main contributions of our paper are threefold:
•We propose the fog-assisted DP clustering mechanism, which

enhances the performance of implementing DP clustering with-
out losing clustering quality due to the data locality property
of fog nodes. Given n trips in CBS system, compared with O(n2)
distances in the original DP clustering, only O(nin) distance values

7 https://futurism.com/uber-releases-a-staggering-2-billion-trips-worth-of-
traffic-data/

need to be calculated, where ni ≪ n holds and ni denotes the
number of users in a fog node’s service region.
• We design a novel privacy-preserving trip clustering mech-

anism to perform the fog-assisted DP clustering with privacy
protection techniques. In addition to protect each user’s sensi-
tive trip, the mechanism assigns the calculation task of privacy-
preserving clustering to fog nodes instead of users. Thus the
mechanism reduces the computing cost on the users’ smart de-
vices, and even allows the users to be offline after submitting
their trip requests.
• We present an approach of route planning based on the

clustering outcome, which customizes and optimizes bus routes
for the users. In order to increase the service provider’s profit
and extend access to CBS, CBS server optimizes the customized
bus routes by merging some clusters into a bus route, subject to
the user demands of walking distance to bus stops, acceptable
waiting time, expected arrival time and fast bus trips.

The remainder of this paper is organized as follows. In
Section 2, we present the system model and privacy model, and
identify the design goals. In Section 3, we review the prelim-
inaries. Then, we propose Privbus and discuss its security in
Section 3.3, followed by the performance evaluation in Section 4.
Finally, we review the related works in Section 5 and draw the
conclusion in Section 6.

2. Preliminaries

In this section, we present the system model and privacy
model, and identify our design goals for Privbus.

2.1. System model

CBS system consists of three entities: a server, users with
terminal devices, and fog nodes, as depicted in Fig. 1.

CBS server is a platform to provide CBS for a metropolitan,
which has strong computational capability and sufficient storage
space. CBS server cooperates with fog nodes to gather similar
trips in a cluster without learning the detailed trips. Based on
the clustering result, CBS server designs routes for providing
on-demand bus trips and optimizes bus routes to increase its
profit and the service coverage on the premise of satisfying user
demand. As shown in Fig. 1, CBS server recommends route 1
to users, since 3 clusters (a0 → a1, b0 → b1 and c0 → c1)
are merged into route 1, which enables a bus to serve more
passengers.

The individual users buy the bus tickets from CBS server.
Users’ trip requests hide information about their trips and the
adjacent fog nodes that cover their dc-length neighbors. After
submitting a trip request to a nearby fog node, each user is
allowed to be offline until she downloads the result of CBS and
pays for the ticket. Thus, users’ mobile devices with the limited
resources can save resource to accomplish other important tasks.

Fog nodes can be cellular base stations, WiFi access points or
femtocell routers [23], having computational capability and stor-
age space, which are deployed at the edge of the Internet. Each
fog node can serve users holding mobile devices within the scope
of the area it covers. In the fog-assisted architecture, fog nodes
crowdsource users’ trip requests, exchange the crowdsourced
data with adjacent fog nodes, and then perform DP clustering
with CBS server. Fog nodes are able to improve the performance
of clustering calculation without losing clustering quality and
users’ privacy.

https://futurism.com/uber-releases-a-staggering-2-billion-trips-worth-of-traffic-data/
https://futurism.com/uber-releases-a-staggering-2-billion-trips-worth-of-traffic-data/

158 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

Fig. 1. Crowdsourced Bus Service (CBS).

2.2. Privacy model

CBS server is assumed to follow the agreements between it
and users, such as privacy policy, which usually requires CBS
server to keep users’ trip data private. However, it is impossible
to fully trust the service provider, since CBS server has a strong
incentive to infer detailed information about users’ trips and even
capture personal information hidden in the intermediate values
and the final results. Hence, CBS server is honest-but-curious in
our work. The fog nodes are honest-but-curious as well. They
follow the protocol honestly, but are interested in individual
users’ detailed trips for business benefits. Besides, CBS server does
not actively collude with fog nodes, since they are business driven
entities from different companies in realistic scenarios [31], and
the collusion would impact their reputation and give others the
witness of their misbehaviors.

Individuals honestly submit their real trip requests. If users
report fake trip requests, the customized bus routes would be
imprecise and it would be a waste of money to buy these bus
tickets.

The global eavesdroppers are curious about the target users’
privacy and try to infer their itineraries through the analysis of
all collected messages.

2.3. Design goal

Our design goal is to provide CBS with the protection of users’
trip information under the aforementioned system model and
privacy model. To be specific, the goal of Privbus can be divided
into two folds:
• Privacy Preservation. Users’ sensitive trips should be en-

crypted before being submitted to fog nodes for privacy preser-
vation. CBS server and fog nodes are required to perform trip
clustering and bus route planning without learning detailed trips.
Privbus protects users’ trips and bus schedules against global
eavesdroppers as well. When Privbus ends, CBS server only learns
bus schedules, and the fog nodes cannot learn anything about
users’ trips. Meanwhile, each user only has information about her
own departure time, pick-up and drop-off bus stops.
• Functions. Firstly, Privbus should improve the performance

of implementing trip clustering without sacrificing clustering
quality. Furthermore, Privbus saves online traffic for users by
removing the clustering computation from users’ smart devices
to fog nodes. Finally, Privbus optimizes the routes of customized
buses on the premise of satisfying user demand to increase the
service provider’s profit and improve the coverage of CBS.

2.4. Technologies used in privbus

In this section, we review the Paillier-based cryptosystem [21]
and the DP clustering algorithm [34], which are used to design
Privbus.

2.4.1. The paillier-based cryptosystem
The Paillier cryptosystem with threshold decryption (PCTD)

cryptosystem follows the idea in [11] and separates the private
key into different shares [21] to support threshold decryption,
consisting of the following algorithms:
1⃝ Key Generation, KeyGen(κ). An entity chooses two κ bit primes
p0, p1, computes N = p0p1, λ = lcm(p0 − 1, p1 − 1) and defines
function L(x) = (x−1)

N . Then, it chooses a generator g ∈ Z∗
N2 [9] of

order (p0 − 1)(q0 − 1)/2. The public key is pk = (N, g) and the
corresponding private key is sk = λ.
2⃝ Encryption, E(m, pk). Let m ∈ ZN be a plaintext and r ∈ ZN
be a random number. The ciphertext C can be generated as C =
E(m, pk) = gmrN modN2

= (1+mN)rNmodN2.
3⃝ Decryption, D(C, sk). Given the ciphertext C and the corre-
sponding private key sk, due to gcd(λ,N) = 1, the plaintext can
be derived as m = D(C, sk) = L(Cλ modN2)λ−1 modN .
4⃝ Private key splitting, KeyS(sk). The private key sk = λ can be
randomly separated into k different shares. In particular, when
k = 2, the partially private keys are denoted as sk(s) = λs, s = 1, 2,
where both λ1+λ2 = 0mod λ and λ1+λ2 = 1modN2 hold [22].
5⃝ Partial decryption, Dsk(s) (C). The ciphertext C can be partially
decrypted with the partially private key sk(s) as Dsk(s) (C) = C sk(s)

=

(1+mNλs)rλsNmodN2.
6⃝ Threshold decryption, DT (C). Given Dsk(s) (C) (s = 1, 2), the orig-
inal message can be obtained bym = DT (C) = L(Dsk(1) (C)Dsk(2) (C)).

For any ma,mb, r ′ ∈ ZN under the same pk, we have:

E(ma, pk)E(mb, pk) = E(ma +mb, pk)modN2, (1)
[E(ma, pk)]mb = E(mamb, pk)modN2, (2)
E(ma, pk)r ′N = E(ma, pk)modN2, (3)
[E(ma, pk)]N−1 = E(−ma, pk)modN2. (4)

The PCTD has been proven to be semantically secure assum-
ing the intractability of the Partially Discrete Logarithm (PDL)
problem [21,22].

2.4.2. Density peaks (DP) clustering algorithm
The DP algorithm [34] is based on two observations. Firstly,

any cluster center should be surrounded by neighboring points
with lower local densities. Secondly, each cluster center is far
away from other points with high local densities. Thus, DP algo-
rithm [34] defines two metrics, ρi and δi, to quantify the local

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 159

density of a data point i and the minimum distance from any
other points with high densities to the data point i. These two
metrics are used to locate density peaks that are indeed the
cluster centers.

Given a data point i, the local density ρi and the distance δi of
the point are computed as:

ρi = Σjχ (di,j − dc), χ (x) =
{
1 if x < 0,
0 otherwise,

δi = minj:ρj>ρi (di,j),
(5)

where dc is the cutoff distance. In other words, ρi is equal to
the number of data points within cutoff distance dc . Suppose
j′ = argminj:ρj>ρi (di,j), the point i is assigned to the point j′
which means the upslope point of the point i. If point i has the
highest density among all data points, the point is called the
absolute density peak and the corresponding parameter δi is set
as δi = maxj(di,j). As the parameter values γi = ρiδi [8,34]
of cluster centers are much higher than that of other points,
the cluster centers can be distinguished from other points. After
selecting cluster centers, we can assign the remaining points to
the corresponding cluster centers straightforwardly according to
their upslope points.

3. Proposed privbus

In this section, we propose Privbus for the purpose of provid-
ing privacy-preserving CBS and discuss its security.

3.1. Overview

Privbus is organized as follows: initialization, fog-assisted DP
clustering, privacy-preserving trip clustering, and bus route plan-
ning. Table 1 shows the notations throughout the paper.

In order to realize Privbus, additive homomorphic technique
appears to be a suitable solution for our system. Additive ho-
momorphic encryption schemes, such as the Paillier cryptosys-
tem [30], Bresson cryptosystem [5] and BGN cryptosystem [4],
allow other parties to perform some additive calculations over the
ciphertext. Compared with Bresson’s scheme, Paillier’s scheme
is more efficient in terms of bandwidth and decryption proce-
dure [5,30]. BGN cryptosystem only supports limited number of
additive homomorphic operations [4]. Thus we utilize PCTD [21]
which is based on Paillier cryptosystem as the building block of
Privbus. Meanwhile, it is important to ensure that the outsourced
encrypted data cannot be manipulated to compromise the privacy
of users by fog nodes or the server. The PCTD [21] follows the
idea in [11] and separates the private key into 2 different shares
to support (2, 2) threshold decryption.

In initialization, Privbus is bootstrapped by using the key
generation algorithm of the PCTD cryptosystem for all entities.
The cutoff distance dc is defined for DP clustering. The public
parameters of bus route optimization include η, βk, α and µ. Users
(ui,j, i = 1, . . . ,m, j = 1, . . . , ni) create tuples ({tri,j}

(m,ni)
(i,j)=(1,1)) to

denote their trip requests.
In fog-assisted DP clustering, fog nodes partition the set of all

users into many disjoint subsets according to the data locality
property and execute comparison operations inside each parti-
tion, hence the number of comparison operations for DP cluster-
ing is reduced. Meanwhile, to guarantee the clustering quality,
each user creates a set of fog nodes that are neighbors of the
user’s source location, called the neighboring fog node set. Since
such neighboring fog node sets can make comparison operations
self-contained within each fog node’s crowdsourced dataset, the
correctness of indicator (ρ, δ) calculation is guaranteed.

Privacy-preserving trip clustering is to perform the fog-assisted
DP clustering with privacy-preserving techniques. As shown in

Fig. 2, this privacy-preserving mechanism of trip clustering in-
cludes the following 7 steps.

(a) Each user ui,j hides trip tri,j and its neighboring fog node
set Fi,j in her trip request Bi,j, and then submits it to fog node fi.

(b) After crowdsourcing trip requests in its service region,
the fog node preprocesses these requests to collect more fresh
encrypted trips from its d0-length neighbors outside its service
region, for the purpose of maintaining the clustering quality.
Then, each fog node refreshes all encrypted trips and forwards
them to CBS server.

(c) CBS server adds random messages to these encrypted trips,
partially decrypts them and sends to the fog node.

(d) The fog node obtains noise-added trips by running DT (·)
algorithm with its partially private key, and then uses them to
calculate a set of ciphertexts of the distance values (B(i)

4) between
any noise-added trip in Ui and another one in Ui ∪ U ′i .

(e) After receiving the ciphertext, CBS server removes noises
hidden in the encrypted distances by utilizing additive homomor-
phism property of the PCTD cryptosystem.

(f) CBS server further uses a randomization rule supporting
comparison on any two encrypted distances and outputs B(i)

6 .
Thus, fog node fi calculates ρi,j by directly comparing the ran-
domized distances after decrypting ciphertext B(i)

6 and obtaining
randomized distances.

(g) CBS server and fog node finally run DP-based Trip Clus-
tering Algorithm (Algorithm 1) together to obtain cluster centers
and the member sets belonging to these clusters.

According to the clustering result, CBS server cooperates with
fog nodes to provide the customized bus routes for users, and
further optimizes these routes on the purpose to increase the
service provider’s profit and the service coverage. Each user’s
ticket information is encrypted under the user’s public key, and
then is sent to the corresponding fog node. When users are online,
they download and decrypt it to obtain bus information. If users
accept the bus routes, they could pay for the ticket and enjoy the
trip provided by CBS.

3.2. The detailed privbus

(1) Initialization.
Given the security parameter κ , the Key Generation Center

(KGC) generates a public–private key pair of the PCTD cryp-
tosystem by running the algorithm (pk, sk) ← KeyGen(κ). The
private key sk is randomly separated into two partially private
keys m times by using KeyS(sk), denoted as sk(1,i) and sk(2,i), i =
1, 2, . . . ,m, where sk(1,i) is the partially private key of fog node
fi and sk(2,i) is that of CBS server. The KGC also runs KeyGen(κ) to
generate a public–private key pair of any fog node fi ∈ F and that
of each user ui,j, denoted as (pki, ski) and (pki,j, ski,j), respectively.

The server sets the public parameters dc = (d0, d0, t0) and η.
dc indicates the cutoff distance used in the subsection of DP-based
trip clustering. d0 and t0 denote the maximum values of any user’s
reasonable walking distance and waiting time, e.g., d0 = 500 m
and t0 = 12 min, respectively. η refers to the upper bound of the
ratio of traveling miles of bus trips provided by Privbus to that
of taxi trips, e.g., η = 1.5. η is used to avoid long traveling miles
brought by merging clusters into a route.

The fog node set is denoted by F = {fi}mi=1. The locations of fog
nodes are public information. The coverage radius of a fog node
generally ranges from 500m to 3km [23]. The fog node fi serves
users holding mobile devices within the scope of cell it covers,
who are denoted as Ui = {ui,j}

ni
j=1.

The set U = ∪m
i=1Ui includes all users in CBS system. User ui,j

sets bus trip tri,j = (si,j, di,j, ti,j), where si,j = (sx,i,j, sy,i,j) and di,j =
(dx,i,j, dy,i,j) denote the coordinates of the source and destination
points, respectively, and ti,j refers to the expected arrival time.

160 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

Table 1
Notations.
Notations Descriptions

κ The security parameter
Z∗
N2 , ZN The cyclic multiplicative groups of N2 and N in PCTD

fi A fog node fi ∈ F = {fi}mi=1
ui,j The pseudonym of a user within fi ’s service region
pki,j, ski,j The ui,j ’s public and private key pair
pki, ski The fi ’s public and private key pair
pk, sk The system’s public and private key pair
sk(s,i) The sk is separated into different sharing, s = 1, 2
tri,j ui,j ’s trip, tri,j = (si,j, di,j, ti,j), denoting source, destination and the expected arrival time
dc , dc , d′c The cutoff distance, its squared value and the randomized (dc)2
d(tri,j, trτ ,ς) The distance vector between two trips
d(·, ·), d′(·, ·) A squared distance vector and randomized d(·, ·)
ρ
(j)
i , δi,j , γi,j The local density of tri,j , the minimum distance from others with higher density to tri,j , and

γi,j = ρ
(j)
i δi,j

Fi,j The ui,j ’s neighboring fog node set
Bi,j The ui,j ’s bus trip request
B(i)
2 The crowdsourced trip requests from users inside and outside the fi ’s coverage, B(i)

2 = Ui ∪ U ′i
σ

(i)
i,j The noise added in the ciphertext of tri,j

B(i)
3 The ciphertexts of the noise-added trips in B(i)

2
B(i)
4 The ciphertexts of the distances between randomized trips in B(i)

3
B(i)
5 The ciphertexts of the distances in B(i)

4 after removing the noise
C (0)
i,j,τ ,ς , The fresh encrypted distance d(tri,j, trτ ,ς)

B(i)
6 The ciphertexts of d′c and d′(·, ·) from fi

ck The kth cluster center ck = trik,jk , k = 1, 2, . . . , K
Γk All trips belonging to the cluster ck , |Γk|= Lk
△Kp−p The clusters served by point–point buses
b′k , b

′
·,· The results of point–point bus and optimized shuttle bus services

βk, α, µ The ticket price per seat, the cost per unit distance per seat and the fixed cost for running a bus
Rm A direct path on the bus routing graph, Rm ∈ R
R∗ The result of routes optimization for CBS
e(a, b) A direct edge on a path in R
pla The passenger load of e(a, b)
p The maximum passenger load of a bus

Fig. 2. Information Flow of Privbus.

For briefness, the range of each component is mapped into a set
of integers.
(2) Fog-assisted DP Clustering.

In this subsection, we combine DP clustering and fog comput-
ing to improve the performance of implementing DP clustering
without the clustering quality loss.

The DP clustering algorithm needs to compute ⌈ |U |(|U |−1)2 ⌉ dis-
tances for the computation of the local density ρ and the distance

δ defined in Eq. (5). The computational cost is quadratic with
respect to the total number of users |U | =

∑m
i=1 |Ui|. In order to

improve the performance of clustering computation, we use the
data locality property of the fog node to partition the set of all
users U into m disjoint subsets {Ui}

m
i=1. If a user’s source location

is located in a fog node fj’s service region, the user is within
the partition Ui = {ui,j}

ni
j=1. If fi only calculates the distances

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 161

Fig. 3. Users’ neighboring fog node sets: (a) Users inside the service area of fog node fi; (b) Users outside the service area of fog node fi .

between users’ trips inside Ui, the computational cost would be
significantly reduced.

However, the calculation of ρ and δ fails to be self-contained
within a partition generated by a fog node, since some users’ dc-
length neighbors are usually not in the corresponding partition.
As shown in Fig. 2(a), when sources of users ui,1, ui,3 and ui,4 are
located near the border line of fi, a large number of their dc-length
neighbors are located outside fi’s service area. If only these dc-
length neighbors inside Ui are counted, the users’ local density
values (ρi,1, ρi,3 and ρi,4) would be incorrect.

To guarantee the correctness of ρ and δ in fog-assisted DP
clustering, ui,j should create a neighboring fog node set, denoted
as Fi,j = {fi, fli,j , l = 1, 2, . . . , df − 1}. The adjacent fog nodes
in Fi,j cover users whose source and ui,j’s source are d0-length
neighbors. According to the general distribution of fog nodes
presented in Fig. 2(a), the range of df is [1, 4]. The neighboring
fog node sets help guarantee the correctness of implementing DP
clustering according to the following analysis:

The Correctness of ρ. As shown in Fig. 2(a), users ui,1, ui,3
and ui,4 create their neighboring fog node sets Fi,1 = {fi, fτ4},
Fi,3 = {fi, fτ1 , fτ6 , fτ7} and Fi,4 = {fi, fτ5 , fτ6}, respectively. If each
user hides the information about her neighboring fog node set in
her trip request, fi would enable these neighboring fog nodes to
obtain the user’s fresh encrypted trips. Meanwhile, users uτ4,ς4 ,
uτ5,ς5 and uτ7,ς7 create Fτ4,ς4 = {fτ4 , fi}, Fτ5,ς5 = {fτ5 , fτ4 , fτ6 , fi}
and Fτ7,ς7 = {fτ7 , fτ1 , fi}, respectively, as shown in Fig. 2(b). Thus, fi
obtains the ciphertext of trτ4,ς4 , trτ5,ς5 and trτ7,ς7 under the public
key pk. In this way, for each ui,j ∈ Ui, fi is able to crowdsource
the ciphertexts of all d0-length neighbors of the user’s source
location si,j. Besides, if two users’ trips are dc-length neighbors,
their source locations would be d0-length neighbors according to
dc = (d0, d0, t0). Thus, all of ui,j’s dc-length neighbors are included
in the crowdsourced dataset on fi. That makes it self-contained to
the calculation of ρ, hence the correctness of ρ is guaranteed.

The Correctness of δ. When a user’s δ value is less than dc , the
user’s upslope point would be found from her dc-length neigh-
bors. In this case, the parameter δ can be calculated correctly
by ranking ρ values, since the correctness of ρ is guaranteed.
When a user’s δ is larger than dc , the user definitely has the
highest local density among all of her dc-length neighbors. This is
because the radius of a cluster should not be larger than dc , where
dc = {d0, d0, t0} refers to the upper bound of any user’s walking
distance and that of waiting time in our scenario. In that way,
the user should be its own upslope point and a cluster center.

Fig. 4. Request generation.

Hence, δ is self-contained in the crowdsourced trip dataset stored
on each fog node.

Therefore, the correctness of the indicator (ρ, δ) calculation
is guaranteed in fog-assisted DP clustering due to the users’
neighboring fog node sets. In other words, the correctness of
implementing DP clustering is guaranteed.
(3) Privacy-preserving Trip Clustering.

In this subsection, the fog-assisted DP clustering is performed
with privacy preserving techniques.
(a) Request Submitting. As shown in Fig. 4, the user ui,j generates
bus trip request Bi,j by encrypting trip tri,j, random r (3)i,j and
r (3)i,j ∥ h(r (3)i,j) under the public key pk, pki and pkli,j (fli,j ∈ Fi,j),
respectively. After submitting trip request Bi,j to fi, ui,j can be
offline and wait the bus ticket.
(b) Request Exchange of Fog Nodes. This step is to further
crowdsource the fresh encrypted trips outside the fog node’s
service region, which would make it self-contained to calcu-
late local density ρ. It includes operations RanC(Bi,j, ski) and
Fresh(C (3)

i,j , C (4)
i,j , skli) as presented in Fig. 5.

In RanC(Bi,j, ski), fi decrypts ciphertext C (2)
i,j ∈ Bi,j to obtain

secret random integer r (3)i,j and calculates C (4)
i,j = g r(3)i,j C (1)

i,j . Then
ciphertext {pki, C

(3)
i,j , C (4)

i,j } is sent to adjacent fog nodes.
fli,j denotes one of fi’s adjacent fog nodes. In Fresh

(C (3)
i,j , C (4)

i,j , skli,j), if at least one equation m′′l,i,j = h(m′l,i,j) holds in

range l ∈ [1, df − 1], fli,j can remove g r(3)i,j from C (4)
i,j to obtain ui,j’s

fresh ciphertext C (1)
i,j and refresh it according to Eq. (3). Mean-

while, fi executes Fresh(·) to obtain some users’ fresh encrypted
trips, whose source locations are d0-length neighbors of fi’s users
and inside the adjacent fog nodes’ service regions.

162 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

Fig. 5. Fog node-to-fog node interaction.

fi divides the crowdsourced dataset into two disjoint subsets

Ui = {(ui,j, pki,j, C
(1)
i,j)}

ni
j=1,U

′

i = {(ul,j′ , pkl,j′ , C
(1)
l,j′)}l̸=i

for users inside and outside fi’s service region, respectively. The
fog node sends B(i)

2 = {Ui,U ′i } to CBS server.
(c) Randomization. For each user uτ ,ς ∈ Ui ∪ U ′i in fi, CBS
server chooses random values σ (i)

τ ,ς ∈ (ZN)5 and employs additive
homomorphism encryption to calculate

C i
τ ,ς = E(trτ ,ς + σ (i)

τ ,ς , pk) =C (1)
τ ,ςE(σ

(i)
τ ,ς , pk).

Then CBS server sends B(i)
3 =

{C i
τ ,ς ,Dsk(2,i) (C i

τ ,ς)}uτ ,ς∈Ui∪U ′i
to fi, where Dsk(2,i) (C i

τ ,ς) is obtained by
using the partially decryption algorithm.
(d) Distance Calculation. The Euclidean distance d(·) is used to
measure the distance between tri,j (ui,j ∈ Ui) and trτ ,ς (uτ ,ς ∈

Ui ∪ U ′i /{ui,j}), i.e.,

d(tri,j, trτ ,ς) = (d(si,j, sτ ,ς), d(di,j, dτ ,ς), d(ti,j, tτ ,ς)). (6)

For easy reading, we use squared Euclidean distance value d(·, ·)
instead of distance d(·, ·).

fi partially decrypts C i
τ ,ς with its partially private key sk(1,i) and

uses DT (·) to obtain the randomized trip m(i)
τ ,ς = trτ ,ς+σ (i)

τ ,ς . Then,
fi calculates the squared distance d(m(i)

i,j ,m
(i)
τ ,ς) and encrypts it

with the public key pk to obtain the ciphertext of the randomized
distance

C (i)
i,j,τ ,ς ← E(d(m(i)

i,j ,m
(i)
τ ,ς), pk).

fi sends B
(i)
4 = {C

(i)
i,j,τ ,ς |ui,j ∈ Ui, uτ ,ς ∈ Ui ∪ U ′i /{ui,j}} to CBS server.

(e) Randomness Removal. This step is to remove random noise
hidden in the ciphertext B(i)

4 .
Since

d(tri,j, trτ ,ς)− d(m(i)
i,j ,m

(i)
τ ,ς)

=− 2(σ (i)
τ ,ς − σ

(i)
i,j)(trτ ,ς − tri,j)− d(σ (i)

i,j , σ
(i)
τ ,ς),

(7)

the server calculates ±σ
(i)
i,j,τ ,ς = ±2(σ

(i)
τ ,ς − σ

(i)
i,j) and

C ′i,j,τ ,ς ←E(d(σ (i)
i,j , σ

(i)
τ ,ς), pk),

C0
i,j,τ ,ς =C

(i)
i,j,τ ,ς (C

(1)
i,j)

σ
(i)
i,j,τ ,ς (C (1)

τ ,ς)
−σ

(i)
i,j,τ ,ς C ′i,j,τ ,ς ,

where C0
i,j,τ ,ς is equal to the encrypted d(tri,j, trτ ,ς).

(f) Distance Comparison. This step is to support comparison on
any two encrypted distances without learning the true values.

For three arbitrary integers r , r ′ and r ′′ such that r > r ′ > r ′′ ⩾
0, inequality 0 < r ′−r ′′

r < 1 holds. Hence, the inequality

d′ < d′′ ⇔ d′ +
r ′ − r ′′

r
< d′′ ⇔ rd′ + r ′ < rd′′ + r ′′ (8)

holds, if d′ and d′′ are integers. Similarly, if r > r ′1, r
′

2 ⩾ 0,
−1 <

r ′1−r
′
2

r < 1 holds. Hence, for integers d1 and d2, we have

rd1 + r ′1 < rd2 + r ′2 ⇔ d1 < d2 +
r ′2 − r ′1

r
⇒ d1 ⩽ d2. (9)

For 3-tuple d(tri,j, trτ ,ς), CBS server randomly chooses secret
parameters ri,j > r ′i,j,τ ,ς > r ′′i,j,τ ,ς ∈ (ZN)3 and sets

d′c = ri,jdc + r ′′i,j,τ ,ς , d′(tri,j, trτ ,ς) = ri,jd(tri,j, trτ ,ς)+ r ′i,j,τ ,ς .

According to Eqs. (8) and (9), we have

d′(tri,j, trτ ,ς) < d′c ⇔ d(tri,j, trτ ,ς) < dc, (10)

d′(tri,j, trτ ,ς) < d′(tri,j, trτ ′,ς ′)⇒ d(tri,j, trτ ,ς) ⩽ d(tri,j, trτ ′,ς ′). (11)

Thus CBS server encrypts d′(tri,j, trτ ,ς) and d′c by calculating

C ′i,j,τ ,ς ←E(d′(tri,j, trτ ,ς), pk) = (C0
i,j,τ ,ς)

ri,j,τ ,ς E(r ′i,j,τ ,ς , pk),

C ′′i,j,τ ,ς ←E(d′c, pk).

The server sends B(i)
6 to fi, where

B(i)
6 = {Dsk(2,i) (C

′

i,j,τ ,ς),Dsk(2,i) (C
′′

i,j,τ ,ς)|ui,j ∈ Ui, uτ ,ς ∈ Ui ∪ U ′i /{ui,j}}.

(g) Trip Clustering. fi runs lines 1–9 (Algorithm 1) to obtain the
user ui,j’s local density and his upslope trip trl0,j0 . After receiving
the user’s local density and ciphertexts of the upslope trip, CBS
server then runs lines 10–14 (Algorithm 1) to calculate the user’s
distance δi,j and the parameter γi,j. Finally, CBS server selects
the cluster center ck = trik,jk according to the parameter γi,j
and obtains the corresponding member set Γk, |Γk| = Lk, k =
1, 2, . . . , K on lines 15–20 (Algorithm 1). tri,j ∈ Γk means that
the trip tri,j belongs to the kth cluster. The distance between a
trip and its cluster center is required to be less than the cutoff
distance value dc .
(4) Bus Route Planning.

In this phrase, CBS server and fog nodes provide the cus-
tomized bus routes for CBS according to the trip clustering re-
sult, and further optimize the bus routes with the objective of
maximizing its profit.

The source locations and destination locations of all cluster
centers are potential bus stops, forming a set C = {slk , dlk}

K
k=1.

Bus stops candidates in C serve as vertices of a graph. The weight
of an edge from a to b in C refers to the driving miles from a
to b, denoted as d(a, b). Lk denotes the passenger load on the trip
from source point slk to destination point dlk . CBS server plans bus
routes on the graph and arranges buses to pick users up.
(a) Customized Bus Routes. CBS server customizes bus routes to
serve users in the clusters such that △Kp−p = {k|Lk ≥ p, k =
1, . . . , K }, where p is the maximum number of passengers a bus
can carry. The source point and destination point of every cluster
center {ck}k∈△Kp−p can be the candidates of bus stops. CBS server
arranges bk = ⌈

Lk
p ⌉ buses for bknc members, who are chosen from

the kth cluster (k ∈ △Lp−p) in chronological or random order.
To be specific, CBS server communicates with fog nodes

{fik}k∈△Kp−p and requires information of these cluster centers, i.e.,
{C (1)

ik,jk
,Dsk(1,i) (C

(1)
ik,jk

)}k∈△Kp−p . Then, CBS server decrypts it and ob-
tains each ck = trik,jk = DT (C

(1)
ik,jk

). For each k ∈ △Kp−p, CBS server
further estimates the route length dk = d(sik,jk , dik,jk) and the
departure time t0ik,jk to ensure that the selected users can arrive at
dik,jk before the expected arriving time tik,jk . CBS server encrypts
the bus ticket b′k = (sik,jk , dik,jk , t

0
ik,jk

) under each purchaser’s

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 163

Algorithm 1 DP-Based Trip Clustering Algorithm

Input: The public–private key pair (pk, sk), cutoff distance dc ,
all received ciphertexts for comparison {B(i)

6 }fi∈F ;
Output: Cluster Uk and cluster center ck, k = 1, 2, . . . , K ;

Fog node fi works as:
1: for each user pair(ui,j, uτ ,ς) do
2: d′(tri,j, trτ ,ς) = DT (C ′i,j,τ ,ς), d′c = DT (C ′′i,j,τ ,ς);
3: χ (d(tri,j, trτ ,ς) − dc) = χ (d′(tri,j, trτ ,ς), d′c); % Count the

number of the user’s dc-length neighbors based on Eq. (10)

4: ρi,j =
∑

uτ ,ς∈Ui∪U ′i /{ui,j}
χ (d(tri,j, trτ ,ς) − dc); % ui,j’s local

density
5: end for
6: for each user ui,j do
7: ul0,j0 = arg(minuτ ,ς∈∆{d′(tri,j, trτ ,ς)}),

∆ = {uτ ,ς ∈ Ui ∪ U ′i /{ui,j} : ρτ ,ς > ρi,j}; % Pick the upslope
trip trl0,j0 of trip tri,j according to Eq. (11)

8: Send {C0
i,j,l0,j0

,Dsk(2,i) (C
0
i,j,l0,j0

), ρi,j} to CBS server;
9: end for

CBS server works as:
10: for each user ui,j do
11: d(tri,j, trl0,j0) = DT (C0

i,j,l0,j0
); % Recover the distance value

12: δi,j = d(tri,j, trl0,j0) = d(tri,j, trl0,j0)
1
2 ; % ui,j’s distance

13: γi,j = ρi,j × δi,j
14: end for

Selects clustering centers {ck = trik,jk }
K
k=1 according to γi,j,

15: Γ0 = U, k = 1;
16: while Γ0 ̸= φ do
17: ck = trik,jk = arg(maxui,j∈Γ0γi,j); % Center of the k-th cluster
18: set Γk = {ui,j|χ (d(tri,j, ck)− dc) = 1}; % Trips belong to the k-th

cluster center
19: Γ0 = Γ0 − Γk, k = k+ 1 ;
20: end while

public key and sends it to fog node fik . The purchaser receives
it from fik and decrypts it with her private key to obtain the bus
information b′k.

With the customized bus routes, the users can get fast bus
trips with no intermediate bus stops. CBS server can gain profit∑

k∈△Kp−p [(βk − αdk)p− µ]bk from CBS, where βk, α and µ de-
note the ticket price per seat, the cost per unit distance per seat,
and the fixed cost of running a bus, respectively.
(b) Optimized Bus Routes. As a CBS provider, CBS server has a
strong incentive to optimize bus routes and maximize its profit.

Assuming clusters are served by some bus routes in R. The
route Rm ∈ R is a direct path on the bus routing graph:

Rm = {(sik,jk , p
o
sik,jk

, pfsik,jk
, t0sik,jk

) . . . ,

(dik,jk , p
o
dik,jk

, pfdik,jk
, t0dik,jk

), . . .

(dik′ ,jk′ , p
o
dik′ ,jk′

, pfdik′ ,jk′
, t0dik′ ,jk′

)}.

A bus route should 1⃝ start with the source point of any cluster
center and end with the destination point of any cluster center;
2⃝ visit the source point of any cluster center before arriving
at the corresponding destination point; 3⃝ include both source
points and destination points of some cluster centers.

Any two neighboring vertices in the route Rm form an edge,
i.e., e(a, b), a, b ∈ Rm. The weight of the edge e(a, b) is d(a, b),
so the length of route Rm is expressed by

∑
e(a,b)∈Rm d(a, b). The

numbers of passengers getting on and off the bus at location a
are denoted as poa and pfa, respectively. The passenger load of edge
e(a, b) is pla. t

0
a denotes that the bus leaves the location a at the

time t0a . The routes optimization problem can be formulated as
the following system of equations:

max
∑
Rm∈R

[

∑
e(a,b)∈Rm

(βdapoRm,a − αpd(a, b))− µ]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pla ⩽ p,
∑

Rm∈R poa ⩽ La,
t0dia,ja
− σ ⩽ tia,ja ,

Rm.d(sia,ja , dia,ja) ⩽ ηd(a),
d(a, b) ⩽ d(a, dia′ ,ja′), d(b, sia′ ,ja′) ⩽ d(a, sia′ ,ja′),
for∀Rm ∈ R,∀a′, a, b ∈ C, and
∀Rm.arg(sia′ ,ja′) ⩽ Rm.arg(sia,ja) < Rm.arg(dia′ ,ja′).

(12)

The first constraint ensures no overcrowding at each edge and
limits the number of passengers getting on the bus at all sources;
the second constraint requires the bus to arrive at each desti-
nation location before the corresponding expected arrival time,
where σ (σ = 5) denotes the average value of bus dwell time; the
third constraint uses the public parameter η (η = 1.5) to avoid
the long mileage brought by merging many clusters into a route,
where Rm.d(sia,ja , dia,ja) represents the traveling distance from
sia,ja to dia,ja in the route Rm ; the fourth constraint forces the bus
to get closer to the destination location of a cluster center during
choosing the next bus stop; the last constraint ensures that all
bus routes are directed paths on the graph, where Rm.arg(sia′ ,ja′)
denotes the serial number of the point sia′ ,ja′ in the route Rm.

CBS server uses a greedy approach to solve the above routes
optimization subject to the constraints of user demands in
Eq. (12), and obtains the result R∗ ⊂ R. The source and desti-
nation locations of any cluster center ck∗m in the route R∗m ∈ R∗

are the pick-up and drop-off locations of passengers who belong
to ck∗m , respectively. CBS server estimates the driving time of each
route and arranges buses to serve the users. Then, uik∗m

,jk∗m
obtains

her bus ticket result b′ik∗m ,jk∗m
, including her pick-up location, drop-

off location, departure time and arrival time, the same way a user
gets the result in (a). If the users accept the recommendation of
bus tickets, they could enjoy a relatively fast and cheap bus trip.
Compared with the customized bus routes in (a), the optimized
bus routes increase the service provider’s profit and improve its
service coverage.

3.3. Security remarks

We discuss the security of Privbus and demonstrate that it
achieves the goal of privacy preservation.

For any user ui,j, CBS server learns her fresh encrypted trip
C (1)
i,j ← E(tri,j, pk) and executes either modular multiplication or

modular exponentiation on these ciphertexts. The private key is
separated into two different shares and CBS server only obtains a
partially private key [21]. Owning to the semantic security of the
PCTD cryptosystem [22], the server cannot learn trip information
hidden in these ciphertexts without knowing another partially
private key which belongs to a fog node. For the purpose of
customizing bus routes, CBS server is allowed to learn coordinates
of each cluster center ck, the local density ρk and the minimum
distance δk from the kth cluster center to any other points with
higher density. Since each fog node is able to randomize cipher-
texts before sending to CBS server, CBS server cannot link the
encrypted trip or bus schedule to a specific user.

Each fog node only holds its own partially private key [21],
which cannot decrypt the crowdsourced ciphertexts without CBS
server’s partially private key. Given the user pair ui,j ∈ Ui, uτ ,ς ∈

Ui ∪ U ′i /{ui,j}, fi can gather information about their trips tri,j and
trτ ,ς shown in Eq. (13). From the perspective of the fog node,
there are 29 unknown parameters in Eq. (13), consisting of 3
multivariate quadratic equations and 13 multivariate one power

164 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

Table 2
Complexity analysis.
Schemes Privbus NFog XHYCZ [37]

Entity A user Fog node fi CBS server A user Server A user Server

Offline exp1 O(df) – – O(1) – – –
Comp. exp2 O(1) – – O(1) – – –

mul2 O(df) – – O(1) – – –
h O(df) – – – – – –

exp1 – O(n2
i) O(nin) O(n) O(n2) O(IK) –

Online exp2 – O(n2
i) O(nin) O(n) O(n2) – O(IK)

Comp. mul1 – – – – – O(IK) O(IK 2)
mul2 – O(n2

i) O(nin) O(n) O(n2) O(IK (s− 1)) O(IK (n− 1))
h – O(nidf) – – – – –

Comm. Users – O(ni) – O(n) O(n2) O(IK (s− 1)/s) O(IK 2n)
trans (× Fog node fi O(df) O(nidf) O(n2

i) – – – –
2048 bits) Server – O(n2

i) – O(n) – O(IK) –

equations. Therefore, it is difficult for the fog node to identify
their detailed trip information, i.e., tri,j, trτ ,ς , d(tri,j, trτ ,ς).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(i)
i,j = tri,j + σ

(i)
i,j ,

m(i)
τ ,ς = trτ ,ς + σ (i)

τ ,ς ,

ri,jdc + r ′′i,j,τ ,ς = d′c

d′(tri,j, trτ ,ς) = ri,jd(tri,j, trτ ,ς)+ r ′i,j,τ ,ς

ui,j ∈ Ui, uτ ,ς ∈ Ui ∪ U ′i /{ui,j},

tri,j, trτ ,ς ̸= ck, k = 1, 2, . . . , K

(13)

The global eavesdroppers are only allowed to capture the
information (including trips, random vectors, randomized trips,
randomized distance values, and users’ bus stops) encrypted in
the PCTD cryptosystem. Therefore, the privacy of users’ trips
would not be exposed to the global eavesdroppers due to the
semantic security of the PCTD cryptosystem [21,22].

Since the proposed fog-assistant approach does not need users
to participate in the processes of trip clustering and route planing
after users submit their trip requests, each user only can learn
her own pick-up location, drop-off location, departure time and
arrival time.

In conclusion, Privbus achieves our privacy-preserving goal.

4. Performance evaluation

In this section, we evaluate the performance of Privbus in
the aspects of computation complexity, clustering quality and
crowdsourced bus results. We implement Privbus on a DELL R720
server (Xeon E5-2690, 2.9 GHz, 32 GB RAM, OS Ubuntu 14.04.),
several Nexus 5 smartphones (2.3 GHz CPU, 2G RAM, 16G ROM,
Android 6.0 system, Bluetooth v4.0) and laptops (Intel Core-i7-
4710MQ CPU, 4 GB RAM, Ubuntu 14.04.3 64bit OS). The laptops
work as fog nodes in our simulations. We assume that N and g
are of 1024 and 160 bits for the sufficient semantic security of
the PCTD cryptosystem [21,22]. Under this assumption, a public
key (N, g) is of 1184 bits, a ciphertext is of 2 log2 N =2048 bits.

In the subsection of complexity analysis, the computation cost
and communication overhead of Privbus are evaluated using a
custom simulator built in C. We collect 15,000 rides from the traf-
fic network in New York8 for the simulation. The cutoff distance
is dc = (d0, d0, t0) = (500, 500, 6). The radius of each fog node’s
coverage is set to 1 km.

In the subsection of clustering quality, we run the DP-based
trip clustering algorithm in Privbus and the privacy-preserving

8 https://github.com/toddwschneider/nyc-taxi-data

method based on k-means clustering in XHYCZ [37] on a small
sized dataset S4,9 including 5000 instances from 15 clusters. The
clustering quality of these approaches is evaluated by precision
and recall. Precision and recall [40] are defined as precision(C) =
|TP|/(|TP|+|FP|) and recall(C) = |TP|/(|TP|+|FN|), where C is the
clustering result. TP, FP and FN denote true positive, false positive
and false negative probability, respectively.

In the subsection of crowdsourced bus results, we run trip
clustering operation in Privbus on the collected commuting rides
and obtain 1430 clusters. Then we choose 10 random clusters
which consist of long and popular commuting rides for the simu-
lations of route planning. Parameters used in the simulations are
set to be α = 0.001, p = 70, µ = 200, η = 1.5, cen(l) = Cl,

β(l) =
{
10, d(l) <= 10 km,

10−3d(l), d(l) > 10 km.

4.1. Complexity analysis

Table 2 shows the comparison result of Privbus, NFog and
XHYCZ [37] in the aspect of computational complexity, where n
and K are the number of users and clusters, respectively. NFog
represents a basic Privbus version without fog nodes, where all
operations executed on fog nodes in Privbus are run on their
users’ smart devices in NFog. XHYCZ [37] is a privacy-preserving
method based on k-means clustering.

The computational cost is measured by counting the number
of time-consuming cryptographic operation. Assume that h, mul1,
mul2, exp1 and exp2 represent a keyed hash function of SHA-1, a
1024 bit modular multiplication, a 2048- bit modular multiplica-
tion, a 1024 bit modular exponentiation and a 2048- bit modular
exponentiation, respectively. The online part starts with sending
trip requests to the fog nodes and ends with receiving the en-
crypted bus-sharing result. The communication cost is evaluated
by computing bits transmitted between entities. In XHYCZ [37], I
represents the number of iterations to achieve convergence and
s denotes that the encrypted bus trip request is divided into s
components during transmission. In Privbus, since a fog node can
be a cellular base station and is generally adjacent to a = 6
fog nodes, the size of user ui,j’s neighboring fog node set can be
|Fi,j| = df = 4. The number of users served by fog node fi is ni.

To perform k-means clustering, XHYCZ [37] requires I itera-
tions and allocates a large number of exp1 and mul2 operations
to every user in each iteration, hence the user’s terminal device
should provide large computational and bandwidth resources. As
a result, the users need to stay online all the time in XHYCZ [37].
Privbus supports offline users after they submit encrypted trip
requests to fog nodes, whereas users should execute many oper-
ations online in NFog and XHYCZ [37]. Hence, Privbus is friendly

9 http://cs.joensuu.fi/sipu/datasets/

https://github.com/toddwschneider/nyc-taxi-data
http://cs.joensuu.fi/sipu/datasets/

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 165

Fig. 6. (a) The execution time of schemes; (b) The execution time of schemes on the user side, on the smartphones and the server.

to resource-constraint mobile terminals due to the assistance of
fog nodes.

To make trip clustering computation self-contained within
each fog node’s partition, any fog node fi collects bus trip requests
of its users’ dc-length neighbors from adjacent fog nodes and
sets U ′i for these neighbors’ requests. We assume the sum of all
U ′i ’s size is

∑m
i=1 |U

′

i | =
∑m

i=1 ωi = ω. In a manner of spatial
statistics, the total size ω can be evaluated as ω =

∑m
i=1 ωi ≈

(π (1000+500)2

π10002
−1)

∑m
i=1 ni = 1.25n, where d0 = 500m or 1000m is

the radius of a fog node’s service region. Hence, the computation
complexity of Privbus on a fog node side and CBS server side
can be denoted as O(max(n2

i , niwi)) ∼ O(n2
i), O(max(nin, niw)) ∼

O(nin) in Table 2, respectively. Compared with ⌈n(n − 1)/2⌉ ∼
O(n2) distances in original DP clustering, only O(nin) distance
values should be calculated for n users in Privbus. Therefore, fog-
assisted DP clustering improves the performance of initial DP
clustering due to the assistance of fog nodes.

We choose 10 random subsets from the collected 15,000 trips.
The size of these subsets varies from 500 to 5000. Fig. 6(a) illus-
trates that the execution time of Privbus, NFog and XHYCZ [37]
increases with the increasing size of user set. Since CBS server has
strong computational capability and sufficient storage space, the
execution time on a user’ resource-limited device has big impact
on that of the whole schemes. As shown in Fig. 6(b), Privbus has
the lowest execution time on the user side, because users only
need to submit and download message once. Meanwhile, the time
spent on the user side remains stable in Privbus and XHYCZ [37].
NFog and XHYCZ require users to stay online and execute many
operations, resulting in much more execution time on the user
side, as presented in Fig. 7.

4.2. Clustering quality

The clustering results of Privbus and XHYCZ [37] are shown
in Fig. 8. Table 3 further compares their precisions and recalls in
detail. There are 15 clusters in the ground truth shown in Fig. 8(a).
Fig. 8(b) presents that XHYCZ [37] fails to identify clusters which
are close to each other, leading to low precision and recall of
clusters in the overlapping areas, e.g., cluster 9 and cluster 11
as shown in Table 3. Although the k-means clustering algorithm
correctly identifies 14 clusters in XHYCZ [37], it makes mistakes
with cluster 9, which just achieves 3.24% and 2.08% in aspects of
precision and recall, respectively. Fog-assisted DP used in Privbus
correctly identifies all the 15 clusters which have a lot of overlap,
hence Privbus performs better than XHYCZ [37] on the clustering
quality.

Fig. 7. The computational and communicational cost on the user side.

Table 3
Evaluation of the Clustering Results.
Schemes k-Means, XHYCZ DP, Privbus

Cluster Precision % Recall % Precision % Recall %

C1 80.27 78.67 78.02 84
C2 92.24 33.86 82.67 78.48
C3 82.34 96.94 81.79 97.55
C4 85.44 82.50 87.96 82.19
C5 61.44 58.20 63.41 56.35
C6 88.46 92.28 88.92 91.67
C7 65.44 70.64 79.05 71.56
C8 85.27 80.95 86.16 81.55
C9 3.24 2.08 71.18 71.81
C10 82.20 97.97 87.27 97.67
C11 44.93 62.54 70.06 71.47
C12 67.12 70.57 72.97 69.43
C13 82.61 76.22 81.01 78.22
C14 80.39 94.86 86.91 94.86
C15 75.82 79.71 83.85 77.14

4.3. Crowdsourced bus results

The chosen 10 clusters are shown in Fig. 9(a). Fig. 9(b) shows
the distribution of source and destination locations when the red
rectangle area in Fig. 9(a) is zoomed in to the maximum. Based
on these clusters, we obtain 10 bus routes and 5 more optimized

166 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

Fig. 8. Clustering results of # for location dataset S4 (5000 instances, 2 dimensions, 15 clusters), (a) ground truth; (b) k-Means result, XHYCZ; (c) DP, privbus.

Fig. 9. (a) The chosen 10 clusters; (b) The distribution of source and destination locations in the red rectangle area.

Table 4
Bus routes for point–point bus service.
Route DT Profit TM (km) PL

C1 8:10 1351.5 10.32 210
C2 7:45 3328.8 20.79 210
C3 7:30 2100.3 19.84 140
C4 8:10 893.5 10.27 140
C5 8:00 911.7 10.41 140
C6 7:50 1127.2 21.07 70
C7 7:50 1124.5 21.02 70
C8 8:05 686.2 14.07 70
C9 7:40 1038.2 19.65 70
C10 8:15 456.0 10.41 70

Table 5
Bus Routes For Optimized Shuttle Bus Service.
Route DT Profit PL

R∗1 : C3.s, C5.s, C3.d, C5.d C3 7:10, C5 7:58 846.3 70
R∗2 : C6s, C4.s, C4.d, C6.d C6 7:30, C4 7:32 909.0 70
R∗3 : C7.s, C9.s, C5.s, C9.d, C7 7:08, C9 7:12, 1042.4 70C5.d, C7.d C5 8:00
R∗4 : C8.s, C4.s, C8.d, C4.d C8 7:05, C4 7:35 442.9 70
R∗5 : C10.d, C4.d, C10.d, C4.d C10 8:00, C4 8:05 217.0 25

routes as shown in Tables 4 and 5, respectively, where DT, TM
and PL denote departure time, traveling miles and passenger load,
respectively.

Table 4 illustrates that the customized bus routes are prof-
itable with the full passenger load and the long traveling miles.
C10 gains the lowest profit as it has the least passenger load and
the shortest path. The coverage of this service reaches to 77.52%
if the full passenger load is guaranteed.

When the bus routes are optimized with the objective of
maximizing the service provider’s profit, the full passenger load
could not be ensured all the time. As shown in Table 5, R∗5 gains

Table 6
Comparison of Traveling Miles.
Cluster TM in Rm (km) TM in R∗m (km)

C1 10.32 (R1) –
C2 20.79 (R2) –
C3 19.84 (R3) 24.68 (R∗1)
C4 10.27 (R4) 10.27 (R∗2), 10.47 (R∗5), 20.35 (R∗4)
C5 10.41 (R5) 10.42 (R∗3),10.54 (R∗1)
C6 21.07 (R6) 26.00(R∗2)
C7 21.02 (R7) 26.88 (R∗3)
C8 14.07 (R8) 16.12 (R∗4)
C9 19.65 (R9) 25.22 (R∗3)
C10 10.41 (R10) 11.06 (R∗5)

the lowest profit as it has the long path with the most vacant
seats, while R∗1 and R∗2 serve 2 clusters with full passenger load,
resulting in high profit. Thus, the bus routes with full passenger
load and short traveling miles are usually efficient. After the route
optimization, the number of users can be served increases by 305,
and the whole coverage of CBS rises from 77.52% to 88.39%. We
compare the expected traveling miles of bus trips provided by
two types (Rm.d(Cl), d(Cl)) in Table 6. The ratio of them is less
than 1.5, hence Privbus satisfies the user demand of a fast bus
trip.

To deploy Privbus in CBS applications, such as Bridj, Jiewo,
and Bus Pooling, fog nodes should be deployed between the
users’ terminal devices and CBS server. Fog nodes can be base
stations, WiFi access points or femtocell routers [23] in the real
world. Besides, the encryption and decryption procedures of PCTD
Cryptosystem should be executed on each entity in the CBS sys-
tem. Every party will have less runtime with a smaller N which
implies a narrower plaintext range, resulting in a lower level of
security. Thus it is necessary to choose an appropriate N to strike
a balance between computational overhead and security level

Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168 167

in a real-world implementation. Finally, further optimization is
expected to reduce the online computation time in practice, as
our simulations use the publicly available C implementation of
Paillier cryptosystem10 without any optimization.

5. Related works

The existing privacy-preserving clustering schemes can be
mainly divided into two categories [2,3]: randomization-based
[1,16,29] and cryptography-based solutions [33,37–39]. Agrawal
and Srikant [1] firstly proposed a PPC scheme over a dataset
by adding random noises. İnan et al. [16] developed an im-
proved data-perturbation method to perform privacy-preserving
clustering over horizontally partitioned data, in which the com-
munication cost is high due to the frequent interactions be-
tween distributed entities. To improve the efficiency of PPC, Haar
wavelet transform and scaling data perturbation [13] were used
to protect the underlying numerical attribute values subjected
to clustering analysis. Oliveira et al. [29] further focused on bal-
ancing the trade-off between privacy and clustering quality, and
proposed a geometric transformation-based method, which dis-
torts data and enables the partition and hierarchical clustering.
However, randomization-based PPC methods usually fail to guar-
antee the clustering accuracy [3], since clustering is carried out
on the tailored data. Meanwhile, secure multi-party computation
and homomorphic encryption [32] were utilized to protect users’
privacy during data clustering. Secure multi-party computation
technique was used to address the arbitrarily-partitioned PPC
problem under partially truthful two-party and multi-party mod-
els [6,19,24]. The computational cost is high in most of these
methods, hence they are only applicable to small datasets. In
order to facilitate the clustering of a large dataset, researchers
built many privacy-preserving and outsourced mechanisms on
clouds [33,37–39] by combining homomorphic encryption tech-
nique and k-means clustering algorithm. Since interactive com-
putations are carried out on the user side in the process of
k-means clustering, most of these schemes [20,33,37] need online
users. PPHOCFS [41] removes iteration calculation and improves
clustering quality by using DP clustering, but it also fails to
support offline users, as users should encrypt and decrypt the
intermediate values on their terminal devices.

Different from the existing works, our preliminary work [14]
proposed a Privacy-preserving rIde Clustering (PIC) scheme, which
removes iterative calculation and allows users to stay offline after
submitting their trip requests. In this paper, we further propose
Privbus to provide a privacy-enhanced CBS. Privbus enhances the
performance of implementing privacy-preserving DP clustering
without sacrificing clustering quality and hampering the func-
tions of PIC due to the data locality property of fog nodes. Besides,
Privbus optimizes routes on the premise of satisfying the user
demand for the purpose of increasing the profit and the coverage
of CBS.

6. Conclusions

In this paper, we proposed Privbus, a privacy-enhanced crowd-
sourced bus service, to improve the performance of clustering
calculation and maintain its clustering quality without exposing
the individual travel plans of users. Privbus can perform the fog-
assisted DP clustering efficiently with privacy preservation, while
reducing computation cost on users’ smart devices to save online
traffic for users. In addition to the customized bus routes, Privbus
can further optimize routes to maximize CBS provider’s profit on
the premise of satisfying the user demands, including the users’

10 https://github.com/skgrush/GMP-Paillier-Crypto

acceptable walking distance to bus stops, acceptable waiting time,
expected arrival time and fast bus trips. We demonstrated that
Privbus reaches the desirable security and privacy goals, and
shown the low computational and communication overhead of
Privbus. For the future work, we will make the privacy-preserving
approaches for CBS work in dynamic scenarios.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.09.007.

Acknowledgments

This work is supported by the grants from the National Key
Research and Development Program of China (2017YFB0802203),
the National Natural Science Foundation of China (61672515,
U1836203) and the Youth Innovation Promotion Association, Chi-
nese Academy of Sciences, China(2018196).

References

[1] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: Proc. of ACM
SIGMOD, 2000, pp. 439–450.

[2] A. Alabdulatif, I. Khalil, M. Reynolds, H. Kumarage, Privacy-preserving data
clustering in cloud computing based on fully homomorphic encryption, in:
Proc. of PACIS, 2017, pp. 289–301.

[3] V. Baby, N. Chanda, Privacy-preserving distributed data mining techniques:
A survey, Int. J. Comput. Appl. 143 (10) (2016) 37–41.

[4] D. Boneh, E.-J. Goh, K. Nissim, Evaluating 2-DNF formulas on cipher-
texts, in: Proc. of the Second International Conference on Theory of
Cryptography, 2005, pp. 325–341.

[5] E. Bresson, D. Catalano, D. Pointcheval, A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications., in:
Proc. of ASIACRYPT, 2003, pp. 37–54.

[6] P. Bunn, R. Ostrovsky, Secure two-party k-means clustering, in: Proc. of
ACM CCS, 2007, pp. 486–497.

[7] Z. Chen, H.T. Shen, X. Zhou, Discovering popular routes from trajectories,
in: Proc. of IEEE ICDE, 2011, pp. 900–911.

[8] Y. Chen, P. Zhao, P. Li, K. Zhang, J. Zhang, Finding communities by their
centers, Sci. Rep. 6 (2016) 24017:1–8.

[9] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption, in: Proc. of ACM
EUROCRYPT, 2002, pp. 45–64.

[10] Z. Cui, B. Sun, G. Wang, Y. Xue, J. Chen, A novel oriented cuckoo search
algorithm to improve dv-hop performance for cyber–physical systems, J.
Parallel Distrib. Comput. 103 (2017) 42–52.

[11] P.A. Fouque, D. Pointcheval, Threshold cryptosystems secure against
chosen-ciphertext attacks, in: Proc. of ACM ASIACRYPT, 2001,
pp. 351–368.

[12] E. Groff, D. Weisburd, N.A. Morris, Where the action is at places: examining
spatio-temporal patterns of juvenile crime at places using trajectory
analysis and GIS, in: D. Weisburd, W. Bernasco, G.J. Bruinsma (Eds.), Putting
Crime in Its Place: Units of Analysis in Geographic Criminology, Springer
New York, New York, NY, 2009, pp. 61–86.

[13] S. Hajian, M.A. Azgomi, A privacy preserving clustering technique using
Haar wavelet transform and scaling data perturbation, in: Proc. of IEEE
IIT, 2008, pp. 218–222.

[14] Y. He, J. Ni, B. Niu, F. Li, X. Shen, Privacy-preserving ride clustering for
customized-bus sharing: A fog-assisted approach, in: Proc. of WiOpt, 2018,
pp. 1–8.

[15] Z. Hong, Y. Chen, H.S. Mahmassani, S. Xu, Commuter ride-sharing using
topology-based vehicle trajectory clustering: Methodology, application and
impact evaluation, Transp. Res. C 85 (2017) 573–590.

[16] A. İnan, Y. Saygyn, E. Savas, A. Hintoglu, A. Levi, Privacy preserving
clustering on horizontally partitioned data, Data Knowl. Eng. 63 (3) (2007)
646–666.

[17] J.G. Lee, J. Han, K.Y. Whang, Trajectory clustering:a partition-and-group
framework, in: Proc. of ACM SIGMOD, 2007, pp. 593–604.

https://github.com/skgrush/GMP-Paillier-Crypto
https://doi.org/10.1016/j.jpdc.2019.09.007
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb3
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb3
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb3
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb8
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb8
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb8
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb10
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb10
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb10
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb10
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb10
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb12
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb16
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb16
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb16
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb16
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb16

168 Y. He, J. Ni, B. Niu et al. / Journal of Parallel and Distributed Computing 135 (2020) 156–168

[18] H. Li, Q. Chen, Z. Haojin, D. Ma, W. Hong, X. Shen, Privacy leakage via
de-anonymization and aggregation in heterogeneous social networks, IEEE
Trans. Dependable Secure Comput. (2019) 1–12.

[19] F. Li, Y. He, B. Niu, H. Li, Small-world: secure friend matching
over physical world and social networks, Inform. Sci. 387 (2017)
205–220.

[20] K.P. Lin, Privacy-preserving kernel k -means clustering outsourc-
ing with random transformation, Knowl. Inf. Syst. 49 (3) (2016)
885–908.

[21] X. Liu, K.K.R. Choo, R.H. Deng, R. Lu, J. Weng, Efficient and privacy-
preserving outsourced calculation of rational numbers, IEEE Trans.
Dependable Secure Comput. 15 (1) (2018) 27–39.

[22] X. Liu, R.H. Deng, K.K.R. Choo, J. Weng, An efficient privacy-preserving
outsourced calculation toolkit with multiple keys, IEEE Trans. Inf. Forensics
Secur. 11 (11) (2016) 2401–2414.

[23] T.H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, L. Sun, Fog computing: Focusing
on mobile users at the edge, Comput. Sci. (2015) 1–7.

[24] H. Miyajima, N. Shigei, H. Miyajima, Y. Miyanishi, S. Kitagami, N. Shi-
ratori, New privacy preserving clustering methods for secure multiparty
computation, Artif. Intell. Res. 6 (1) (2016) 27–36.

[25] J. Ni, X. Lin, X. Shen, Towards privacy-preserving valet parking in
autonomous driving era, IEEE Trans. Veh. Technol. 68 (2) (2019)
2893–2905.

[26] J. Ni, K. Zhang, X. Lin, X. Shen, Securing fog computing for Internet of
Things applications: challenges and solutions, IEEE Commun. Surv. Tutor.
20 (1) (2017) 601–628.

[27] J. Ni, K. Zhang, Q. Xia, X. Lin, X. Shen, Enabling strong privacy preservation
and accurate task allocation for mobile crowdsensing, IEEE Trans. Mob.
Comput. (2019) 1–16.

[28] J. Ni, K. Zhang, Y. Yu, X. Lin, X. Shen, Providing task allocation and secure
deduplication for mobile crowdsensing via fog computing, IEEE Trans.
Dependable Secure Comput. (2019) 1–13.

[29] S.R.M. Oliveira, O.R. Zaane, E.I. Agropecuaria, Privacy preserving clustering
by data transformation, J. Inf. Data Manag. 1 (1) (2010) 37–51.

[30] P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in: Proc. of EUROCRYPT, 1999, pp. 223–238.

[31] A. Peter, E. Tews, S. Katzenbeisser, Efficiently outsourcing multiparty
computation under multiple keys, IEEE Trans. Inf. Forensics Secur. 8 (12)
(2013) 2046–2058.

[32] B. Pinkas, Cryptographic techniques for privacy-preserving data mining,
ACM SIGKDD 4 (2) (2002) 12–19.

[33] F.Y. Rao, B.K. Samanthula, E. Bertino, X. Yi, D. Liu, Privacy-preserving and
outsourced multi-user K-Means clustering, in: Proc. of Collaboration and
Internet Computing, 2016, pp. 80–89.

[34] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,
Science 344 (6191) (2014) 1492–1496.

[35] Y. Tian, M.M. Kaleemullah, M.A. Rodhaan, B. Song, A. Al-Dhelaan, T. Ma,
A privacy preserving location service for cloud-of-things system, J. Parallel
Distrib. Comput. 123 (2019) 215–222.

[36] M. Tiwary, D. Puthal, K.S. Sahoo, B. Sahoo, L.T. Yang, Response time
optimization for cloudlets in Mobile Edge Computing, J. Parallel Distrib.
Comput. 119 (2018) 81–91.

[37] K. Xing, C. Hu, J. Yu, X. Cheng, F. Zhang, Mutual privacy preserving k-means
clustering in social participatory sensing, IEEE Trans. Ind. Inf. 13 (4) (2017)
2066–2076.

[38] Y. Zhang, R. Deng, X. Liu, Z. Dong, Outsourcing service fair payment based
on blockchain and its applications in cloud computing, IEEE Trans. Serv.
Comput. PP (2018) 1–18.

[39] Y. Zhang, R. Deng, D. Zheng, J. Li, J. Cao, Efficient and robust certificateless
signature for data crowdsensing in cloud-assisted industrial IoT, IEEE Trans.
Ind. Inf. PP (2019) 1–9.

[40] K. Zhang, X. Liang, R. Lu, K. Yang, X. Shen, Exploiting mobile so-
cial behaviors for Sybil detection, in: Proc. of IEEE INFOCOM, 2015,
pp. 271–279.

[41] Q. Zhang, H. Zhong, L.T. Yang, Z. Chen, F. Bu, PPHOCFS: Privacy preserving
high-order CFS algorithm on the cloud for clustering multimedia data, ACM
Trans. Multimed. Comput. Commun. Appl. 12 (4s) (2016) 66:1–15.

Yuanyuan He is currently an assistant professor at the
School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, China.
She received the Ph.D. degree in Computer System
Architecture from Institute of Information Engineer-
ing, Chinese Academy of Sciencesthe, Beijing, China,
in 2019, and received the B.S. degree and the M.S.
degree in Computational Mathmatics from Chongqing
University, Chongqing, China, in 2006 and 2009, respec-
tively. She a visiting scholar in University of Waterloo,
Waterloo, ON, Canada, from 2016-2018. Her current

research interests include wireless network security, privacy computing, fog
computing and Internet of Things.

Jianbing Ni is currently an assistant professor in the
Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Canada. He received his
Ph.D. degree in Electrical and Computer Engineer-
ing from University of Waterloo, Waterloo, Canada,
in 2018, and received the B.E. degree and the M.S.
degree from the University of Electronic Science and
Technology of China, Chengdu, China, in 2011 and
2014, respectively. His research interests are applied
cryptography and network security, with current focus
on cloud computing, smart grid, mobile crowdsensing

and Internet of Things.

Ben Niu received his B.S. degree in Information Se-
curity, M.S. and Ph.D. degrees in Cryptography from
Xidian University in 2006, 2010 and 2014 respectively.
Currently, he is working as associate professor in
State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sci-
ences. He was a visiting scholar in Pennsylvania State
University from 2011 to 2013. His current research
interests include wireless network security and privacy
preservation.

Fenghua Li received his B.S. degree in Computer Soft-
ware, M.S. and Ph.D. degrees in Computer Systems
Architecture from Xidian University in 1987, 1990 and
2009 respectively. Currently, he is working as professor
and doctoral supervisor in Institute of Information
Engineering, Chinese Academy of Sciences. He is also
a doctoral supervisor in Xidian University, and Univer-
sity of Science and Technology of China. His current
research interests include network security, system
security, privacy preservation and trusted computing.

Xuemin (Sherman) Shen received the Ph.D. degree
in electrical engineering from Rutgers University, New
Brunswick, NJ, USA, in 1990. He is currently a Uni-
versity Professor with the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada. His research focuses on re-
source management in interconnected wireless/wired
networks, wireless network security, social networks,
smart grid, and vehicular ad hoc and sensor networks.
He is a registered Professional Engineer of Ontario,
Canada, an Engineering Institute of Canada Fellow, a

Canadian Academy of Engineering Fellow, a Royal Society of Canada Fellow,
and a Distinguished Lecturer of the IEEE Vehicular Technology Society and
Communications Society. Dr. Shen received the R.A. Fessenden Award in 2019
from IEEE, Canada, the James Evans Avant Garde Award in 2018 from the
IEEE Vehicular Technology Society, the Joseph LoCicero Award in 2015 and the
Education Award in 2017 from the IEEE Communications Society. He has also
received the Excellent Graduate Supervision Award in 2006 and the Outstanding
Performance Award 5 times from the University of Waterloo and the Premier’s
Research Excellence Award (PREA) in 2003 from the Province of Ontario, Canada.
He served as the Technical Program Committee Chair/Co-Chair for the IEEE
Globecom’16, the IEEE Infocom’14, the IEEE VTC’10 Fall, the IEEE Globecom’07,
the Symposia Chair for the IEEE ICC’10, the Tutorial Chair for the IEEE VTC’11
Spring, the Chair for the IEEE Communications Society Technical Committee on
Wireless Communications, and P2P Communications and Networking. He is the
Editor-in-Chief of the IEEE INTERNET OF THINGS JOURNAL and the Vice President
on Publications of the IEEE Communications Society.

http://refhub.elsevier.com/S0743-7315(19)30328-4/sb18
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb18
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb18
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb18
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb18
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb19
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb19
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb19
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb19
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb19
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb20
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb20
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb20
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb20
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb20
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb21
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb21
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb21
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb21
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb21
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb22
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb22
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb22
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb22
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb22
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb23
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb23
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb23
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb24
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb24
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb24
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb24
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb24
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb26
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb26
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb26
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb26
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb26
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb29
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb29
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb29
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb32
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb32
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb32
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb34
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb34
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb34
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb36
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb36
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb36
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb36
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb36
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb37
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb37
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb37
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb37
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb37
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb38
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb38
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb38
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb38
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb38
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb39
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb39
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb39
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb39
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb39
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb41
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb41
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb41
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb41
http://refhub.elsevier.com/S0743-7315(19)30328-4/sb41

	Privbus: A privacy-enhanced crowdsourced bus service via fog computing
	Introduction
	Preliminaries
	System model
	Privacy model
	Design goal
	Technologies used in privbus
	The paillier-based cryptosystem
	Density peaks (DP) clustering algorithm

	Proposed privbus
	Overview
	The detailed privbus
	Security remarks

	Performance evaluation
	Complexity analysis
	Clustering quality
	Crowdsourced bus results

	Related works
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

