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Pervasive data collected from e-healthcare devices possess significant medical value through data sharing

with professional healthcare service providers. However, health data sharing poses several security issues,

such as access control and privacy leakage, as well as faces critical challenges to obtain efficient data analysis

and services. In this article, we propose an efficient and privacy-preserving fog-assisted health data sharing

(PFHDS) scheme for e-healthcare systems. Specifically, we integrate the fog node to classify the shared data

into different categories according to disease risks for efficient health data analysis. Meanwhile, we design

an enhanced attribute-based encryption method through combination of a personal access policy on patients

and a professional access policy on the fog node for effective medical service provision. Furthermore, we

achieve significant encryption consumption reduction for patients by offloading a portion of the computa-

tion and storage burden from patients to the fog node. Security discussions show that PFHDS realizes data

confidentiality and fine-grained access control with collusion resistance. Performance evaluations demon-

strate cost-efficient encryption computation, storage and energy consumption.
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1 INTRODUCTION

The e-healthcare system has emerged as a promising healthcare paradigm for real-time health
data collection and health monitoring with the development of information and communication
technologies. Various categories of health data collected from heterogenous healthcare devices
(e.g., smart health watch and blood glucose meter) may reach about 12 ZBs by 2020 [18], bring-
ing a critical big data management issue. Since cloud computing can store and manage huge
volumes of data with its powerful storage resources and computing services, cloud-assisted e-
healthcare systems [45] (CAEHS) have been widely developed. In CAEHS, patients use pervasive
healthcare devices to collect health data, and then store these data on a remote cloud server, to
share with data users. Professional healthcare service providers access and analyze the shared
data to provide healthcare services, such as infection analysis, personal treatments, and clinical
diagnosis [41].

Privacy leakage and security threats may occur during data sharing in cloud-assisted e-
healthcare systems [10]. First, personal privacy might be disclosed during data sharing. For ex-
ample, employees in the third-party cloud company might obtain the health information and even
trade it for money in an illegal market. Second, unauthorized users might access the shared data
collected from patients. For example, some unscrupulous pharmaceutical companies might ana-
lyze the health data and obtain patients’ health status to spread advertisements and drug promo-
tions. Third, the shared health data may be tampered with during data transmission from data
collection to storage [28]. For instance, the blood glucose of patients may be altered when it is
delivered to healthcare centers, leading to incorrect healthcare treatments [13]. To protect the
shared data against privacy leakage, unauthorized data access, and data tampering, Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) [33, 42] is widely proposed for health data sharing,
because it can support multiple data accessing paradigms with data confidentiality preservation.
Patients define access policies to encrypt their shared data and send the ciphertext to the cloud
server. Data users access the shared data and decrypt the ciphertext only if their attributes satisfy
access policies.
However, existing data sharing schemes [31] still face several challenges in e-healthcare sys-

tems. Specifically, they can hardly enable effective healthcare service provision and efficient med-
ical analysis, as well as incur severe resource consumption for encryption in resource-limited e-
healthcare devices. First, existing access policy definition in health data sharing schemes cannot
guarantee effective healthcare service provision with privacy preservation simultaneously [23].
Patients may generally have their coarse preferences to define access policies according to their
experiences and interests. Nonetheless, considering the health data requires professional medi-
cal knowledge to understand, patients without sufficient healthcare background can hardly define
an appropriate access policy to guarantee privacy preservation and obtain healthcare services si-
multaneously. Unfortunately, privacy preservation and appropriate healthcare services contradict
with each other. If the access policy is defined with “strict” attributes for privacy preservation, the
shared data may not be accessible by appropriate healthcare service providers. If the access pol-
icy is defined with “loose” attributes, then the shared data can be accessible with more healthcare
service providers but may increase the privacy disclosure risks [36]. Here, “strict” access policy
means that the defined access policy requires relatively more attributes to satisfy than the “loose”
access policy. For example, Alice intends to share her health data for healthcare services with an
access policy of {top − three hospital , more than 20 years ′ workinд experience}. If Alice suffers
from cardiovascular disease risks, then cardiovascular professionals can be effective healthcare
service providers. However, other non-cardiovascular service providers satisfy the access policy
can also access her shared data, which may incur potential privacy leakage. Meanwhile, this kind
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of health data sharing schemes impair service providers to efficiently analyze various kinds of raw
data collected from heterogenous devices. Different from the clinical data that is highly targeted
to the specific disease diagnosis [17], the shared data of e-healthcare systems are aggregated and
mixed from different categories [46]. Service providers can hardly seek out the specific kind of
healthcare data for corresponding disease risk analysis, resulting in the medical benefits of col-
lected healthcare data being hardly to excavate [34]. For example, the shared ciphertext is mixed
with a small portion of ECG signals, muscle signals, calorie data, and blood glucose, which is stored
on the cloud server and can be accessed by healthcare service providers. All of the shared cipher-
text needs to be decrypted at first, among which the small portion of ECG signals could be learned
and analyzed for cardiovascular-related service provision [39]. Indeed, for cardiovascular profes-
sionals, resources are unnecessarily consumed for decryption and medical analysis efficiency is
severely affected. Additionally, the encryption computation and ciphertext storage of CP-ABE are
high resource demanding, which increases with the number of attributes in the access policy and
brings severe resource consumption for resource-limited e-healthcare devices [1, 3, 22]. If amount
of computation and storage resources are occupied for encryption, then e-healthcare devices may
not have sufficient resources for accurate health data monitoring [35]. The resulting high energy
consumption not only shortens the operation lifespan of e-healthcare devices but also releases
enormous heat to impact patients’ experience.
To address the above challenges, a novel privacy-preserving health data sharing framework is

required for effective service provision and data utilization with cost-efficient resource consump-
tion. Fog computing is a promising solution to assist data fusion, filtering, and analysis [24] in
e-healthcare systems, since it extends data computing from a cloud to the edge of a network [25]
and is more intelligent and powerful [5, 19] than e-healthcare devices. In our previous fog-assisted
data sharing scheme [29], the fog node is integrated to process and re-encrypt the shared data for
efficient medical analysis. Specifically, the scheme inherits both advantages from fog computing
for efficient data pre-processing and CP-ABE for privacy preservation. However, the following is-
sues still remain unaddressed. (1) How do we pre-process health data on the fog node for efficient
data utilization? (2) How can patients retrieve and decrypt their health data after the fog node
encrypts them? (3) How can we guarantee patient privacy when the shared data are re-encrypted
by the semi-trusted fog node? (4) How do we prevent unauthorized data access if the fog node
colludes with other entities for the shared plaintext?
In this article, we propose a privacy-preserving fog-assisted health data sharing (PFHDS) scheme

to enhance data utilization efficiency and support effective medical service provision with privacy-
preservation. First, patients encrypt their shared data with a personal access policy according
to their interests and experiences, and the ciphertext is sent to the fog node. For efficient data
utilization, the fog node classifies the collected health data into different categories of disease risks
based on naive Bayes classification. With regard to every category of disease risk, the fog node
defines specific attributes to encrypt the corresponding health items according to the healthcare
background. Finally, the new ciphertext is transmitted to the cloud storage, and service providers
can decrypt the ciphertext for effective healthcare service provision. To our best of knowledge,
PFHDS is the first health data sharing scheme to integrate fog computing exquisitely for assisting
the health data classification and data encryption in e-healthcare systems. Specifically, we list
contributions of PFHDS as follows.

• We construct a secure fog-assisted health data sharing framework. Through a personalized
access policy definition from patients, patients can retrieve their health data, and the shared
data can be protected from disclosure during data processing on the fog node.
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• We guarantee fine-grained access control with effective medical service provision. Through
encryption with specific attributes on intelligent fog node with medical background, the
shared data originally encrypted on patients can be accessed by authorized service providers
with effective medical service provision.

• We achieve efficient data utilization for various kinds of healthcare service providers. The
raw shared data are classified into different categories of disease risks, as well as corre-
sponding health items regarding to disease risks are encrypted with attributes of profes-
sional healthcare service providers. As a result, the health data can be efficiently accessed
and utilized, and hierarchical diagnosis and treatment can be achieved through efficient
data sharing.

• Security analysis shows that the proposed scheme preserves the privacy of patients’ health
data and guarantees authorized data access during health data sharing, as well as resists
collusions of fog node with other unauthorized entities. Furthermore, we conduct extensive
simulations to demonstrate that PFHDS can achieve effective healthcare service provision
and efficient data analysis with acceptable computational overhead.

The remainder of this article is organized as follows. Section 2 reviews the related works on
data sharing for e-healthcare systems, and Section 3 introduces preliminaries and notations. Then,
we present models and goals in Section 4. PFHDS details can be seen in Section 5. The security
discussions and performance evaluations are presented in Sections 6 and 7, respectively, followed
by a conclusion in Section 8.

2 RELATEDWORKS

Existing health data sharing schemes are widely proposed that focus on two aspects: privacy
preservation and efficiency.
Since health data are privacy sensitive, privacy preservation is critically researched in existing

data sharing schemes. Chen et al. [6] proposed cloudlet-based health data sharing, which utilized
Number Theory Research Unit (NTRU) to encrypt a user’s body data from wearable devices and
presented a trust model to help similar patients to communicate with each other about their dis-
eases. Tong et al. [30] integrated attribute-based encryption with threshold signing for providing
role-based access control with audibility to prevent potential misbehavior in e-healthcare systems.
Yang et al. [37] proposed a medical record sharing scheme for cloud computing based on the clas-
sification of the attributes for medical records, which used vertical partitions of a medical dataset
for different parts of medical data to achieve different privacy levels. Huang et al. [11] proposed
a fine-grained electronic health records sharing scheme via similarity-based recommendation ac-
celerated by Locality Sensitive Hashing in cloud-assisted e-healthcare systems. Yang et al. [38]
proposed a data sharing scheme to a certain group of people in cloud-based multimedia systems
to achieve privacy preservation in a particular time period. To solve the high computation chal-
lenge in secure data sharing, Li et al. [15] proposed to eliminate a majority of the computation
task by adding system public parameters besides moving partial encryption computation offline.
In addition, a public ciphertext test phase is performed before the decryption phase, which elimi-
nates most of computation overhead due to illegitimate ciphertexts. For the sake of data security,
a Chameleon hash function is used to generate an immediate ciphertext, which will be blinded
by the offline ciphertexts to obtain the final online ciphertexts. To preserve location privacy dur-
ing data sharing, Zhang et al. [44] proposed an enhanced privacy-preserving data sharing scheme
through caching and spatial-anonymity (CSKA) in continuous LBSs, which adopted multi-level
caching to reduce the risk of exposure of users’ information to untrusted LSPs. Shen et al. [27]
proposed a traceable group data sharing scheme by leveraging the key agreement and the group
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signature to support anonymous multiple users in public clouds. In this work, group members
can communicate anonymously with respect to the group signature, and the real identities of
members can be traced if necessary. However, a common conference key is derived based on the
key agreement to enable group members to share and store their data securely. Yin et al. [40]
proposed a privacy-enhanced data sharing scheme by allowing the data user to generate random
query trapdoor. Through leveraging bloom filter and bilinear pairing operation to construct secure
index for each data file, this proposed scheme can enable the cloud to perform data sharing with-
out obtaining any useful information. Kang et al. [12] exploited consortium blockchain and smart
contract technologies to achieve authorized data sharing in vehicular edge networks efficiently,
as well as proposed a reputation based data sharing scheme to ensure high-quality data sharing
among vehicles.
Efficiency in health data sharing is also widely concerned for the resource-limited e-healthcare

devices. Chu et al. [7] proposed a new public-key crypto system that produced constant-size ci-
phertexts for secure data sharing, which can realize efficient delegation of decryption rights for
any set of ciphertexts by aggregating secret keys into a single key. Wang et al. [31] proposed an
efficient hierarchy attribute-based encryption scheme in cloud computing, which integrated the
access tree with different security levels into one for various kinds of health files. Li et al. [16]
divided the users in PHR systems into multiple security domains, which can reduce key manage-
ment complexity for owners and users to achieve fine-grained and scalable data access control.
Liu et al. [21] proposed an online/offline attribute-based encryption health data sharing scheme to
reduce the encryption cost in mobile healthcare systems, which performed a majority of computa-
tion tasks on an offline phase, and an online phase can rapidly assemble the final ciphertext when
electronic health records are known. Some approaches also proposed hybrid clouds to offload the
encryption workload to a private cloud. Some propose private hybrid schemes. In Reference [8],
Dan et al. propose to store sensitive data on a private cloud and less sensitive data on a public cloud
to achieve storage elasticity as well as control over enterprise data. In Reference [14], Li et al. in-
troduce a private cloud as an interface between users and a public cloud, as well as to manage
private keys for users’ privileges in the private cloud.
In summary, existing data sharing schemes neglected effective healthcare service provision

and efficient data analysis, which are critical issues for valuable data utilization of health data
in e-healthcare systems. Benefited from fog computing promisingly applied into e-healthcare sys-
tems, we propose a novel efficient and privacy-preserving fog-assisted data sharing scheme in
e-healthcare systems.

3 PRELIMINARIES AND NOTATIONS

In this section, we briefly introduce some preliminaries on Shamir Secret Sharing, Bilinear maps
and Naive Bayes classifier, as well as some important notations frequently used throughout the
article in Table 1.

3.1 Shamir Secret Sharing

Shamir Secret Sharing scheme (t ,n) [26] divides a secret s into n pieces s1, . . . , sn , and satisfies the
following two conditions:

(1) Any t or more than t pieces of si make secret s easily computable;
(2) Any t − 1 or fewer than t pieces of si leave s completely undetermined (in the sense that

all its possible values are equally likely).

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 68. Publication date: October 2019.



68:6 W. Tang et al.

Table 1. Notations

H Abnormal health dataset
(x ,y) The yth node in the xth level of access tree
index(x , y) Unique value associated with node (x ,y)
parent (x,y ) Parent node of (x ,y)
q (x,y ) Polynomial for node (x ,y)
Di The ith disease risk
SIDi The ith health item indexes set related to Di

IDi The ith health item name
Pj The probability of disease risk D j happens
Pji The probability of abnormal health item IDi

happens under the condition of disease D j happens
Atr ee Personal access tree with root node A
Btr ee Professional access tree with root node B
DRi ith child of node B
Dec (x ,y) the decryption value of the node (x ,y)
... ...

Shamir Secret Sharing scheme consists of the following two parts:

• Secret sharing. Suppose a user has a secret s to share with n parties. The user chooses a
polynomial f (x ) with a degree k , i.e.,

f (x ) = akx
k + ak−1xk−1 + · · · + a1x + s, (1)

where a1, . . . ,ak are randomly chosen. The user generates si = f (i ) (i = 1, . . . ,n) and trans-
mits si to n parties.

• Secret retrieval. More than t parties with secrets si retrieve the secret s . First, for all the
index i in t parties, the Lagrange coefficient Δi, j (0) can be computed as follows:

Δi, j (0) =
t∏

j=1, j�i

−j
i − j . (2)

Second, a lagrange interpolation is used to calculate s from t pieces s1, . . . , st ,

s =
t∑

i=1

f (i )Δi, j (0). (3)

3.2 Bilinear Maps

The bilinear pairings namelyWeil pairing and Tate paring of algebraic curves are defined as a map
e : G1 ×G1 → GT , where G1 is a cyclic additive group generated by д, whose order is a prime p,
and GT is a cyclic multiplicative group of the same order q. Discrete logarithm problems (DLP) in
both G1 and GT are hard. Bilinear pairings have the following properties:

• Bilinearity: for any u,v ∈ G1, and a,b ∈ Zp , it has e (u
a ,vb ) = e (u,v )ab ;

• Non-degeneracy: e (д,д) � 1, 1 is the unit parameter in GT .
• Computability: for all u,v ∈ G1, there is an efficient algorithm to compute e (u,v ).

3.3 Naive Bayes Classification

Naive Bayes classification is used to classify the problem instance into one classifier based on the
joint probability. Given k classifiers (ci , . . . , ck ) and the problem instance X = (x1, . . . ,xn ) with
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Fig. 1. Fog-assisted health data sharing system model.

n features. Compute the probability of ci happens under the condition of X happens, which can
be termed as p (ci |X ). The corresponding classifier with maximum p (ci |X ) can be taken as the
predicted classifier.
According to Bayes’s theorem, P (ci |X ) = P (ci ,X )/P (X ). For every P (ci |X ), the values of feature

X is given, such that P (X ) is effectively constant. As a result, P (ci |X ) = P (ci ,X )/P (X ) is equivalent
to P (ci ,X ).

4 MODELS AND GOALS

In this section, we present the system model and the security model, as well as design goals.

4.1 System Model

The system consists of five entities: trusted authority, patients, fog node, cloud storage, and service
providers as shown in Figure 1.
Trusted authority initializes the system, provides registration service, generates system public

keys, system master keys, and secret keys for other entities.
Patients share the health data (e.g., heart rate and blood pressure), which can be collected by

e-healthcare devices or manually input by themselves. Patients encrypt their shared data and send
the ciphertext to a fog node.
fog node can be a health gateway or a router in physical proximity of patients. fog nodemasters

healthcare background and powerful computation capabilities. It pre-processes and re-encrypts
the shared ciphertext and then transmits the new ciphertext to a cloud storage.
Cloud storage is a remote third-party server that has powerful storage capabilities. It stores

and manages the shared ciphertext transmitted from the fog node.
Service providers can be doctors, researchers, insurance companies, and drug manufacturers.

Service providers use their attributes to access the shared ciphertext for learning health data and
providing healthcare services.

4.2 Security Model

In the system, the trusted authority is fully trusted by all other entities, and the transmission
channel among patients, fog node, and cloud storage is secure. The patient is trusted and aims
to prevent unauthorized entities from obtaining the shared plaintext. The fog node and the cloud
storage are honest-but-curious. The fog node provides data pre-processing services, and the cloud
performs data storage, but both of them are curious about the shared plaintext. We categorize the
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security threats into unauthorized data access and collusion attack as follows. (1) Unauthorized
data access. The unauthorized service providers may obtain the shared health data to spread
advertisements and drug promotions. (2) Collusion attack. The fog node, cloud storage, and
unauthorized service providers cannot learn the shared plaintext separately but they may collude
with each other and intend to learn the shared plaintext.

4.3 Design Goals

In this article, PFHDS should achieve the following security goals and performance goals:

• Security goals
(1) Data confidentiality. PFHDS aims to preserve data confidentiality for the patient. Dur-
ing the shared dataflows from the patient, through the fog node and cloud storage to the
service provider, the shared data should be kept confidential from all the unauthorized
entities.
(2) Patient-centric access control. PFHDS aims to enable patient-centric access control
with effective medical service provision. Meanwhile, PFHDS aims to enable the shared
data to be retrieved and decrypted by the patient, although it is re-encrypted by the fog
node and stored on the cloud storage.
(3) Collusion attack resistance. PFHDS aims to resist collusion from unauthorized entities
to obtain the shared plaintext, i.e., even the fog node, the cloud storage and service
providers that without enough attributes cooperate with each other, they cannot obtain
the shared data.

• Performance goals
(1) Effective medical service provision. PFHDS aims to enable the shared data to be ac-
cessed by the service provider who has specific medical knowledge to analyze it, such
that the patient may obtain effective medical services through data sharing.
(2) Data classification. PFHDS aims to classify the shared data collected from heteroge-
nous devices into categories in terms of disease risks, such that the shared data can be
utilized by different service providers efficiently and the medical value can be excavated
adequately.
(3) Cost-efficient encryption. PFHDS aims to reduce the encryption burden in terms of
computation, storage, and energy consumption on the patient with resource-limited e-
healthcare devices.

5 FOG-ASSISTED HEALTH DATA SHARING SCHEME

5.1 Scheme Overview

To efficiently share the collected data in e-healthcare systems for effective medical service pro-
vision and efficient data analysis with privacy preservation, we design the PFHDS scheme.
Figure 2 illustrates the overview of the proposed scheme. First, the shared data are collected from
e-healthcare devices (e.g., wearable devices and bio-sensors) or the patient’s manual inputs, and
the patient encrypts the shared data and then transmits the ciphertext to the fog node. Second, the
fog node pre-processes the health data and classifies the health data into categories after disease
risk analysis with naive Bayes classification, as well as indexes health items for different disease
risks. Third, the fog node re-encrypts the shared data with a new access policy according to dis-
ease risks and then transmits the ciphertext to the cloud storage. Finally, the service provider with
authorized attributes accesses the ciphertext and decrypts it.
PFHDS consists of the following algorithms: Setup, KeyGen, Encrypt, Pre-process, Re-encrypt, and

Decrypt.
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Fig. 2. Scheme overview of PFHDS.

• Setup (U , λ) → (PK ,MSK ). The trusted authority inputs universal attributes U and the se-
curity parameter λ, outputs the system public key PK and the system master keyMSK .

• KeyGen(PK ,MSK , S,GLIM ,GLIf ) → (SK , PKf , SKf ). The trusted authority inputs the sys-
tem public key PK , master key MSK , and attribute set S of the service provider, as well
as the geographical location information GLIM of the service provider and GLIf of the fog
node, and then outputs the secret key SK for the service provider, the public key PKf , and
the secret key SKf for the fog node.

• Encrypt (M ) → (CT ). The patient encrypts the shared data M by using the symmetric en-
cryption with a content key. Meanwhile, the patient defines a personal access policy accord-
ing to his or her experiences and interests to encrypt the content key with attribute-based
encryption and outputs the ciphertext CT .

• Pre-process (CT ) → (D, SID). The fog node inputs the shared ciphertext, computes proba-
bilities of disease risks according to the shared data, and outputs the top-k disease risks D
as well as it corresponding health item set SID.

• Re-encrypt (CT ) → (CT ′). The fog node defines a new access policy termed as a profes-
sional access policy τ according to top-k disease risks and re-encrypts the shared data with
access policy τ . Meanwhile, the fog node encrypts indexes of related health items with dif-
ferent attributes for different disease risks. The fog node outputs the new ciphertext CT ′
and transmits it to the cloud storage.

• DecryptNode (CT ′, S, PK , SK ) → (H ). The service provider with attributes that satisfy the
access policies defined by the fog node and the patient can use the public key PK and his
or her secret key SK to decrypt the ciphertext CT ′ and learn the shared plaintext H .
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5.2 Scheme Details

In this subsection, we construct the following five phases in PFHDS by using the above algorithms.

Phase 1 System initiation
The system initiation phase includes algorithms Setup and KeyGen. In this phase, the trusted

authority sets up the system and generates keys for the fog node and the service provider.
The trusted authority takes as input the attributesU in the system. It chooses two multiplicative

groupsG andGT of prime orderp and a bilinearmap e : G ×G → GT between them. A generator
д and u random group elements h1,h2, . . . ,hu ∈ G that are associated with universal attributesU
in the system. The set of attributes, i.e., h1, . . . ,hu are common for all providers but are not kept
secret by the trusted authority. They are associated with universal attributes in the system and are
elements of public keys. In addition, the trusted authority chooses random exponents α , a ∈ Zp .
The trusted authority outputs the public key PK and the system master keyMSK ,

PK = д,дa , e (д,д)α ,h1, . . . ,hu , (4)

MSK = дα . (5)

The trusted authority runs KeyGen algorithm to generate secret keys for the service provider.
The service provider sends his or her attributes set S (including private attributes and professional
attributes) to the trusted authority. The trusted authority takes the system master key MSK as
input, selects a random t ∈ Zp , and then computes the secret key SK using the public keys hx (x ∈
S ) that corresponding to the attributes for the service provider. Here, SK = (K ,Kx ), where x ∈ S ,

K = дαдat ,∀x ∈ S Kx = h
t
xд

t . (6)

The trusted authority generates the public key and the secret key for the fog node. After re-
ceiving the geographical location informationGLIf of the fog node, the trusted authority outputs
public key PKf as well as randomly chooses Vf ∈ G as the secret key SKf for the fog node. After
receiving the geographical location information GLIM of the patient, the trusted authority sends
the public key PKf of his or her nearest fog node to the patient,

PKf = Uf = e (Vf ,д), (7)

SKf = Vf . (8)

Phase 2 Data encryption with a personal access policy
The patient runs Encrypt algorithm, which consists of two operations Enc1 and Enc2. First, the

patient encrypts his or her shared datawith a content key by using Enc1. Second, the patient defines
a personal access policy according to his or her experiences and interests, as well as integrates the
attribute-based encryption to encrypt the content key of the shared data by using Enc2.

The collected data are termed as H ′ = {H ′1,H ′2, . . . ,H ′n }. For valuable data sharing, the patient
detects the abnormal health data. We consider that the patient stores a standard health item table
Sh = {Sh1, Sh2, . . . , Shn } as seen in Table 2(a). The collected data are compared with the standard
value, and the abnormal health item is generated as H = {ID1, ID2, . . . , IDm }.

The patient encrypts the shared health data M by performing symmetric encryption (i.e., DES,
AES) Enc1 with a content key ck and computes the ciphertext CM = Enc1(ck ) (M ). Here, the en-
crypted shared dataM includes the profile and the specific value of the shared data.
For fine-grained data sharing, ck is encrypted as the following Enc2 (PK , ck,τ0). The public key

PK , content key ck , and an developing access tree τ0 are taken as inputs. The patient selects a

random number s in Zp as the secret element for encryption. Then the patient computes Ĉ and C̃
as Equation (9),

Ĉ = ck e (д,д)αs , C̃ = дs . (9)
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Fig. 3. Access tree construction.

To integrate both the personal access policy and the professional access policy into one access
tree, the patient constructs a developing access tree τ0 as seen in Figure 3(a). In τ0, the root node
R masters the whole access policy and has two children nodes A and B, which are root nodes for
personal access policy Atr ee and professional access policy Btr ee , respectively. The Atr ee can be
specifically constructed by the patient.
The access tree is constructed by 2 parts: tree nodes and polynomials. Here, we use (x ,y) to

represent every node, x represents the node is in the xth level, and y represents the node is yth
node in xth level. To construct a tree structure rule, a polynomial q (x,y ) is selected for every non-
leaf node (x ,y). In an access tree τ0, the root node corresponds to the secret element s , other
non-leaf nodes corresponds to a threshold, and leaf nodes corresponds to the required attributes.
We hide the secret element s in the leaf nodes of the access tree. This process corresponds to the
secret sharing process of the Shamir’s secret sharing. We divide the value of every node to its
children nodes according to the Shamir’s secret sharing from top of the access tree to the bottom.
In this way, we hide s in the children nodes.
Beginning from the root node R, the patient sets qR (0) = s and chooses one point of

the polynomial qR to define it completely. For each non-root node (x ,y), it sets q (x,y ) (0) =
qparent (x,y ) (index (x ,y)), where index (x ,y) returns an unique value associated with node (x ,y)
and parent (x,y ) is the parent node of (x ,y). After the tree traversal of τ0, every node (x ,y) has
its own value of q (x,y ) (0), which is the secret element for this node. Specifically, the secret s is
distributed and hidden in all of the leaf nodes in the access tree.
For the following description, we term s1 = qA (0) and s2 = qB (0), i.e., s1 is the secret element for

Atr ee , and s2 is the secret element for Btr ee ).
Let YA be the set of leaf nodes in Atr ee . The patient computes CA(x,y ) and C

′
A(x,y )

for all nodes

(x ,y) in set YA as Equation (10),

CA(x,y ) = д
aq (x,y ) (0),C ′A(x,y ) = h

q (x,y ) (0)

(x,y )
. (10)

To securely construct Btr ee on the fog node, the patient selects a random ri ∈ Zp and encrypts
s2 with the system public key as well as the fog node’s public key as Equation (11),

Cs2 =
(
дri , s2U

ri
f

)
. (11)

Finally, the patient sends the encrypted shared data (CM , Ĉ, C̃,CA(x,y ),C
′
A(x,y )

,τ0,Cs2 ) to the fog

node.

Phase 3 Data pre-processinд
The fog node runs Pre-process algorithm, which takes the ciphertext transmitted from the pa-

tient as input, and outputs the pre-processing result disease risks S , as well as its corresponding
health item indexes set SID.
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Fig. 4. Top-k disease risks and related health item indexes. This example shows there are k disease risks

analyzed: D1 is related to (ID1, ID3, IDm ) health items; D2 is related to (ID2, IDm−1) health items; Dk is

related to (ID1, ID2, IDm−1) health items.

Table 2. Health Data Sheet

(a) Standard Health Value (b) Probability of Disease

Health item Value
Systolic pressure 90-140
Diastolic pressure 60-90
Heart rate 60-100
... ...

ID1 ... IDm

D1 P11 ... P1m

D2 P21 ... P2m

... ... ... ...

Dq Pq1 ... Pqm

We consider that the well-trained classification model computes relations between disease risks
and health items according to Reference [20] in Table 2(b), where Pji = P (IDi |D j ) represents the
probability that abnormal health item IDi happens under the condition of disease D j . The fog
node computes probabilities Pj of all disease risks based on naive Bayes classification [4] as seen
in Equation (12) using Table 2(b) and then sorts the probabilities to obtain top-k health disease
risks, as well as indexes the related health items for every disease risk.
The pre-processing of health data on fog node can be detailed as Algorithm 1. The health item

indexes set SIDi corresponding to disease risk Di can be seen in Figure 4:

Pj = P (D j |H )

= P (D j ,H )/P (H )

= P (D j ,H )*

= P (D j , ID1, . . . , IDm )

= P (D j )
m∏

i=1

P (IDi |D j )

= P (D j )
m∏

i=1

Pji . (12)

Phase 4 Re-encryption with a prof essional access policy
To enable effective medical service provision for the patient according to his or her disease risks,

the fog node runs Re-encrypt algorithm to re-encrypt the health data with a professional access
policy. Meanwhile, for efficient data analysis, the fog node encrypts the related health item indexes
for every disease risk.
After the top-k possible disease risks are analyzed, the fog node searches from its own stor-

age; if there are corresponding attributes that related to the possible disease risk, then the fog

*For every Pj , the values of feature H is given, such that P (H ) is constant and can be eliminated.
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ALGORITHM 1: Pre-processing Algorithm

Input: CH and Td
Output: Set D and set SID, where D = {D1,D2, . . . ,Dk } and SID = {SID1, SID2, . . . , SIDk },

and the corresponding SIDi is the health item indexes set related to Di (i is from 1 to
k)

1 D = null;

2 SID = null;

3 for i = 1 to q do

4 Compute the probability Pi of disease risk Di happens according to Equation (12);

5 Add (Pi , Di ) into a set P ;

6 end

7 Sort set P according to the probabilities Pi from the largest to the smallest;

8 for j = 1 to k do

9 Add the corresponding disease risk D j of the top-k probability Pj into the set D;

10 for t = 1 tom do

11 if IDt is related to disease risk D j then

12 Add health item IDt into the set SID j ;

13 end

14 end

15 end

16 Output set D and set SID;

node sets professional attributes as professional access policy. Otherwise, the fog node requires
cloud storage by providing the top-k possible diseases D j (j = 1 to j = k) name, and the cloud
storage returns the attributes that can provide effective health service for the specific disease
risk, and the fog node stores professional attributes. For example, if the computed top-2 pos-
sible disease risks are {diabetes,heart disease} and professional diabetes-related service can
be provided in HospitalA or HospitalC , then the fog node sets the professional attributes as
{Diabetes Doctor ,Hospital A or Hospital C} as the access policy for diabetes disease risk.
The fog node constructs Btr ee to complement the access tree τ from the developing access tree

τ0. In Btr ee , the root node B has k children nodes, where each node represents one possible disease
risk analyzed through pre-processing and masters the attributes that can provide corresponding
healthcare services. The leaf nodes of Btr ee are professional attributes. The threshold of node B is
1, which means the service provider with attributes that can deal with only one of the k disease
risks is able to satisfy Btr ee . The developed access tree τ can be seen as Figure 3(b).
The secret element of nodeB is s2, which should be sealed inBtr ee . The fog node decrypts cipher-

text Cs2 = (дri , s2U
ri
f
) to obtain the secret element s2. The decryption computation is as follows:

s2 =
s2U

ri
f

e (Vf ,дri )
, (13)

qB (0) = s2. (14)

Beginning from the root node B of Btr ee , the fog node sets qB (0) = s2 and chooses one point of
the polynomial qB to define it completely. For all the nodes (x ,y) except B in Btr ee , the fog node
sets q(x ,y) (0) = qparent (x,y ) (index (x ,y)). After the tree traversal for Btr ee from root to bottom,

every node (x ,y) has its own value of q (x,y ) (0), which is the secret element for this node. The root
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node B has k children nodes, and every node denotes one kind of disease risk. Let the ith child
of node B be the ith disease risk, termed node DRi . Specifically, nodes DR1, . . . ,DRk have their
values of qDRi (0) (where i is from 1 to k) as Equation (15),

qDRi (0) = qB (index o f DRi ). (15)

To efficiently share related health items for different categories of service providers, the fog

node encrypts the indexes of the health items. The fog node computesCi and Ĉi for every SIDi as
Equation (16), where i is from 1 to k ,

Ci = SIDie (д,д)
αqDRi (0), C̃i = д

qDRi (0) . (16)

Let YB be the set of leaf nodes in Btr ee . The fog node computesCB (x,y ) andC
′
B (x,y )

for all nodes

(x ,y) in set YB as Equation (17),

CB (x,y ) = д
aq (x,y ) (0),C ′B (x,y ) = h

q (x,y ) (0)

(x,y )
. (17)

Then, the secret element s2 of node B is sealed in CB (x ,y) and C
′
B (x,y )

in Btr ee . For simplicity,

sinceCA (x ,y) andCB (x ,y) have the same structure, we term themC (x,y ) . Meanwhile, sinceC ′
A(x,y )

and C ′
B (x,y )

have the same structure, we term them C ′
(x,y )

. As we can see, the secret element s for

encryption of the content keys is sealed in (C (x,y ),C
′
(x,y )
,τ ).

After re-encryption, the fog node computes a new ciphertext CT ′ = (CM , Ĉ, C̃,C (x,y ),C
′
(x,y )
,

Ĉi , C̃i ,τ ) (where i is from 1 to k) and sends CT ′ to the cloud storage.

Phase 5 Data access
In this phase, the service provider runs DecreyptNode algorithm and accesses the ciphertext.

The service provider can decrypt the shared ciphertext only when his or her attributes satisfy
the personal and professional access policies. Meanwhile, the service provider with attributes that

satisfy the access policy of disease risk Di can decrypt Ĉi and obtain the corresponding related
health item index set SIDi . When a service provider possesses an attribute corresponds to a leaf
node of the access tree, the service provider can decrypt the leaf node with his or her secret key.
When a non-leaf node of the access tree with sufficient (≥ threshold nodes) nodes that can be
decrypted, this node can be decrypted according to the retrieval process of Shamir’s secret sharing.
A service provider with attribute set S needs the public key PK and his or her secret key SK

to decrypt CT ′. Let DecryptNode (CT ′, S, SK , PK ) be the operation, and D (x,y ) be the decryption
result for every node (x ,y). To decrypt the ciphertext sealed in the access tree τ , a service provider
runs DecryptNode (CT ′, S, SK , PK ) from bottom to top manner. There are two cases to decrypt the
nodes in the access tree τ :
Case 1 : (x ,y) is a leaf node:
If the attribute att (x ,y) represented by node (x ,y) is � S , then DecryptNode (CT , S, SK , PK ,

(x ,y)) = null . Otherwise, the operation DecryptNode (CT , SK , PK , (x ,y)) is performed as Equa-
tion (18),

DecryptNode (CT , SK , PK , (x ,y))

=
e (C (x,y ),Kx )

e (C ′
(x,y )
,дa )

=
e (дaq (x,y ) (0),hxд

t )

e
(
h
q (x,y ) (0)

(x,y )
,дa
)

= e (д,д)atq (x,y ) (0) . (18)

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 68. Publication date: October 2019.



Efficient and Privacy-preserving Fog-assisted Health Data Sharing Scheme 68:15

Case 2 : (x ,y) is a non-leaf node:
A service provider runs DecryptNode (CT ′, S, SK , PK , (x ,y)) recursively. For all nodes z that are

children of (x ,y), it runs DecryptNode (CT ′, S, SK , PK , z) and stores the output as Decz . Let Z (x,y )

be an arbitrary s (x,y ) − sized children nodes set of node (x ,y), and s (x,y ) is the threshold of node
(x ,y). Since the decryption is run from bottom to top manner,Decz of children nodes z in setZ (x,y )

is computed before computing Dec (x,y ) .
For all nodes in Z (x,y ) , let i = index (z) and Sz = {index (z) : z ∈ Z (x,y ) }. According to the poly-

nomial structure rule,Decz can be written as Equation (19). q (x,y ) (0) can be computed by using the
Lagrange interpolation method as Equation (20), and Dec (x,y ) of the node (x ,y) can be computed
as Equation (21):

Decz = e (д,д)atqz (0)

= e (д,д)atq (x,y ) (i ), (19)

q (x,y ) (0) =
∑

q (x,y ) (i )Δi,Sz (0), (20)

Dec (x,y ) =
∏

z∈Z (x,y )

Dec
Δi,Sz (0)
z

=
∏

z∈Z (x,y )

e (д,д)atq (x,y ) (i )Δi,Sz (0)

= e (д,д)at
∑
q (x,y ) (i )Δi,Sz (0)

= e (д,д)atq (x,y ) (0) . (21)

After above operations, when a service provider with attributes that satisfy the personal access
policy Atr ee , the service provider can compute DecA as in Equation (22),

DecA = e (д,д)atqA (0)

= e (д,д)ats1 . (22)

Specifically, when there is a service provider with attributes that satisfy the access policy of
disease risk Di , the service provider can compute DecDRi as shown in Equation (23). The related
health item indexes set SIDi can be decrypted as in Equation (24),

DecDRi = e (д,д)atqDRi (0), (23)

SIDi =
ĈiDecDRi

e (k, C̃i )

=
SIDie (д,д)

qDRi (0)e (д,д)atDRi (0)

e (дαдat ,дDRi (0))
. (24)

When there is a service provider with attributes that satisfy the professional access policy Btr ee ,
the service provider can compute DecB as Equation (25),

DecB = e (д,д)atqB (0)

= e (д,д)ats2 . (25)

Here, we represent the index of node A as x1 and the index of node B as x2, which means s1 =
qR (x1) and s2 = qR (x2). According to the Lagrange interpolation, we can compute the encryption
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secret element s as Equation (26),

s = qR (x1)
−x2

x1 − x2 + qR (x2)
−x1

x2 − x1
= s1

−x2
x1 − x2 + s2

−x1
x2 − x1 . (26)

As seen in the access tree τ , the decryption for root node R requires the decryption for node A
and nodeB.When there is a service providerwith attributes that satisfy both personal access policy
Atr ee and professional access policy Btr ee , the service provider can computeDecR as Equation (27).
The content key ck can be decrypted with secret key k as Equation (28),

DecR = Dec
Δx1,x2 (0)

A
× DecΔx2,x1 (0)

B

= Dec
−x2
x1−x2
A

× Dec
−x1
x2−x1
B

= e (д,д)
at (s1

−x2
x1−x2 +s2

−x1
x2−x1 )

= e (д,д)ats , (27)

ck =
ĈDecR

e (k, C̃ )

=
cke (д,д)αse (д,д)ats

e (дαдat ,дs )
. (28)

Finally, the shared ciphertext CM can be decrypted with symmetric key ck to reveal shared
health plaintextM .
Specifically, the patient who selects the secret element s randomly can retrieve his or her own

shared data by using s and public key e (д,д)α directly as Equation (29),

ck =
Ĉ

e (д,д)αs
. (29)

From the above decryption process, we can see that if there is a service provider with attributes
that can satisfy both access policies defined by the patient and the fog node, then he or she can
obtain the shared plaintext. Specifically, if there is a service provider with attributes that satisfy the
access policy of disease riskDi , then he or she can obtain related health items to provide healthcare
analysis and services efficiently.

6 SECURITY DISCUSSIONS

In this section, we discuss the security properties of PFHDS. Specifically, we demonstrate that
PFHDS can achieve Data confidentiality, Patient-centric access control, and Collusion attack resis-

tance.
• Data confidentiality
The shared data are encrypted with a content key by using symmetric encryption. Meanwhile,

the patient encrypts the content key with a personal access policy for secure data sharing. The
fog node, cloud storage, and unauthorized service providers cannot decrypt the shared ciphertext
without decryption key and sufficient attributes, such that PFHDS can keep shared data confiden-
tial from the honest-but-curious fog node and the cloud storage. Furthermore, since the encrypted
data is transmitted through the secure channel from patients to the cloud storage through the fog
node, PFHDS resists data tampering from other unauthorized entities.
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• Patient-centric access control
We discuss patient-centric access control during health data sharing from the following two

aspects.
(1) The patient can decide his or her shared data to be accessed by the health serivce provider

according to his or her personal customization. The content key for the shared data is encrypted
with the access tree τ , which includes access tree Atr ee , which masters the personal access policy
constructed by the patient according to his or her experiences and interests. Only the service
provider with attributes that satisfyAtr ee has the probability to satisfy the access tree τ and obtain
the content key, such that the patient can decide his or her shared data to be accessed by the service
provider that satisfies his or her own specific requirements.

(2) The patient can retrieve and decrypt the shared data after data re-encryption by the fog
node. In PFHDS, since the secret element s for content key ck is selected randomly by patient

himself, the patient can directly use s and the system public key e (д,д)α to decrypt Ĉ and obtain
the content key according to Equation (24). As a result, although the shared data is re-encrypted
by the fog node, the patient can also retrieve his or her shared health data flexibly.
• Collusion attack resistance

PFHDS can resist the following collusions for obtaining the shared plaintext.
(1) Collusion between the fog node and the cloud storage. The shared data are kept confidential

from the fog node and the cloud storage separately. The fog node has the ability to decrypt the
secret element s2 of Btr ee , but it cannot learn the secret element s without attributes that satisfy the
personal access policy that is constructed in Atr ee . Cloud storage learns nothing from the shared
ciphertext CT ′. Even if the fog node and the cloud storage collude with each other, they cannot
learn the shared plaintext.
(2) Collusion between the fog node and the service provider. We consider two cases as follows.
Case 1: The service provider has no attributes to satisfy the personal access policy in Atr ee ,

i.e., he or she cannot compute DecA = e (д,д)ats1 according to Equation (22). As we can see in
Figure 3(b), the access tree τ is the combination of Atr ee and Btr ee . Only if the service provider
can compute bothDecA = e (д,д)ats1 andDecB = e (д,д)ats2 can it decryptDecR according to Equa-
tion (27), which is a significant step to compute the content key. According to Equation (13), the
fog node has the ability to decrypt the secret element s2 of Btr ee . In this case, the service provider
cannot compute DecA = e (д,д)ats1 ; we can absolutely demonstrate that the collusion of the fog
node and service provider cannot learn the shared plaintext in this case.
Case 2: The service provider has attributes that satisfy the personal access policy in Atr ee , i.e.,

he or she can computeDecA = e (д,д)ats1 according to Equation (22). The fog node can decrypt the
secret element s2 of Btr ee according to Equation (13) with its private key. However, the random
chosen exponent a in the system and the random chosen number t for the specific service provider
are only known by the authority and are not known by the service provider and the fog node. The
service provider cannot compute the secret element s1 ofAtr ee from DecA = e (д,д)ats1 , which can
be used with s2 to compute s according to Equation (26) and then compute the content key ck
according to Equation (29). Meanwhile, the fog node cannot compute DecB = e (д,д)ats2 from s2,
which can be used withDecA = e (д,д)ats1 to computeDecR = e (д,д)ats according to Equation (27)
and then compute the content key ck according to Equation (28). As a result, collusion of the fog
node and the service provider cannot obtain the shared data plaintext.
(3) Collusion among service providers. For this kind of collusion, we term the colluding service

providers as U1 and U2 (we consider two colluding service providers for simplicity). The attribute
set of service provider U1 is A1, and the attribute set of service provider U2 is A2. The random
secret element ofU1 is t1 in KeyGen algorithm run by the trusted authority, and the random secret
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element ofU2 is t2 inKeyGen algorithm run by the trusted authority. We can analyze this collusion
from two the following cases.
Case 1: The union set A1 ∪A2 does not satisfy the access policies. It is obvious that this case of

collusion cannot decrypt the ciphertext to learn the shared data plaintext.
Case 2: The union set A1 ∪A2 satisfies the access policies, but neither A1 nor A2 satisfies the

access policies. For the node (x ,y) that needs both attributes from A1 and attributes from A2 to
compute Dec (x,y ) , let set I be the children nodes of (x ,y) corresponding to the attributes from
A1; similarly, let set J be the children nodes of (x ,y) corresponding to the attributes from A2. For
simplicity of illustration, we consider there is only one node in set I and set J , and the node is I
and J , respectively. The decryption of node I is DecI = e (д,д)at1qI (0) and the decryption of node J
is Dec J = e (д,д)at2q J (0) . The index of node I is i and the index of node J is j.
According to Equation (27), the decryption Dec (x,y ) of node (x ,y) is computed as follows:

Dec (x,y ) = Dec
Δi, j (0)

I
× DecΔj,i (0)

J

= e (д,д)at1qI (0)Δi, j (0) × e (д,д)at2q J (0)Δj,i (0)
= e (д,д)a (t1q (x,y ) (i )Δi, j (0)+t2q (x,y ) (j )Δj,i (0)) . (30)

According to Lagrange interpolation, we can compute q (x,y ) (0) as follows:

q (x,y ) (0) = q (x,y ) (i )Δi, j (0) + q (x,y ) (j )Δj,i (0). (31)

Generally, since t1 and t2 are randomly generated by the trusted authority, and are not known

by the colluding service providers, we can analyze that Dec (x,y ) � e (д,д)at1q (x,y ) (0) and Dec (x,y )
� e (д,д)at2q (x,y ) (0) when t1 � t2. As a result, the colluding service providers cannot compute ck
according to Equation (28) with k1 = д

αдat1 or k2 = д
αдat2 in this case.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PFHDS in terms of computation cost, storage cost,
and the energy cost, which are computed on a 256-bit Bareto-Naehrig curve using version 0.3.1
of the RELIC library [2]. Since there are various kinds of e-healthcare devices equipped on the
patient, we evaluate PFHDS on two typical e-healthcare platforms: a mobile phone and a sensor,
respectively. The mobile phone has ARM Cortex-A9 CPU and 1 GB RAM, and the sensor has 32-
MHz ARM Cortex-A3, 256 KB flash, and 32 KB RAM. The fog node has Intel Core i5 CPU and a
RAM size of 4 GB. Times are measured in milliseconds (averaged over 10,000 iterations).
Let Ei (respectively,Mi ) denote an exponentiation (respectively, multiplication) in the group Gi .

The bilinear operations are the dominate cost, such that we ignore minor factors such as arithmetic
inZp . LGi

denotes the bit-length of the element in the groupGi .U denotes the number of universal
attributes. e denotes the paring time. P represents the number of attributes in the access policy that
can decrypt the shared data; P1 represents the number of attributes in the personal access policy;
and P2 represents the number of attributes in the professional access policy, where P = P1 + P2.

Let R = P1
P
be the percentage of personal access attributes in the whole access attributes. k denotes

the number of health data categories on the fog node. The attributes in performance evaluation
are selected from electronic health records and database field in Reference [9], which includes
professional and personal information of healthcare service providers as well as patients, such as
hospital, department, working years, age, city, and gender. These attributes are representative for
e-healthcare systems. Since every attribute i is mapped to a public keyhi in groupG before used in
the expensive computations, the evaluation performance of encryption is not related to the specific
attribute. The number of attributes involved in each instance of data encryption does not exceed
30 in most cases [32], such that we evaluate the performance with up to 30 attributes. We analyze
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Table 3. Comparisons between CP-ABE and PFHDS

CP-ABE PFHDS
Encryption time

on patient
(2P + 1)E1
+ET +MT

(2P1 + 3)E1
+ET + 2MT

Re-Encryption time
on fog node

− (2P2 + k )E1 + kET
+(k + 1)MT + e

Whole
encryption time

(2P + 1)E1
+ET +MT

(2P + 3 + k )E1
+(k + 1)ET
+(k + 3)MT + e

Storage
on patient

LGT

+(2P + 1)LG1

2LGT

+(2P1 + 2)LG1

Storage
on fog node

− (k + 1)LGT

+(2P + k + 2)LG1

the theoretical results of PFHDS and CP-ABE [33] in terms of the encryption time and the storage
cost as presented in Table 3, as well as demonstrate the performance from the computation cost,
storage cost, and energy consumption as follows.

7.1 Computation Cost

We compare the computation cost on the mobile phone and the sensor between CP-ABE [33] and
PFHDS, respectively, when the attribute percentage R = 1/2,R = 1/3, and R = 1/4 in Figure 5(a)
and Figure 5(b). For the fog node, since it is not integrated in CP-ABE, the encryption time on
the fog node of CP-ABE is 0; while the encryption time of PFHDS increases with the number of
attributes P2 for professional access policy Btr ee and the number of categories k . In Figure 5(c),
we set k = 5 (the shared data are classified into five categories on the fog node) and compare the
encryption time on the fog node when R = 1/2,R = 1/3, and R = 1/4. In Figure 5(d), we set P = 20
(there are 20 attributes in the the whole access policy τ ) and compare the encryption time on the
fog node when R = 1/2,R = 1/3, and R = 1/4.
As shown in both of Figure 5(a) and Figure 5(b), the encryption time on the mobile phone and

the sensor increases with the number of attrbutes. When the attribute percentage R decreases from
1/2 to 1/4, the encryption time consumed to encrypt the health data in PFHDS decreases succes-
sively. Meanwhile, the encryption time of PFHDS approximately equals R times of the encryption
time of CP-ABE at the same number of attributes. Specifically, from Figure 5(a) and Figure 5(b), we
can demonstrate that the encryption on sensor is more time-consuming than that on the mobile
phone. The data encryption on sensor with CP-ABE approaches 30s when there are 20 attributes
defined in the access policy, while PFHDS can only consumes 9s when R = 1/4 at the same at-
tribute number, which improves significantly to reduce the time latency. As shown in Figure 5(c),
the encryption time on the fog node increases with the number of attributes and increases when
R = 1/2 decreases to R = 1/4 since there are appropriately (1 − R) times of whole encryption is
offloaded from the patient to the fog node. As demonstrated in Figure 5(d), the encryption time on
the fog node also increases with categories of disease risks. When more disease risk categories are
classified by the fog node, the fog node needs more computational resources, which is reasonable
and acceptable sincemore efficient data utilization can be obtained by healthcare service providers.

7.2 Storage Cost

We evaluate the storage cost on the patient and the fog node, respectively. In Figure 6(a), we
illustrate the relation between the number of attributes and the storage cost of CP-ABE and PFHDS
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Fig. 5. Encryption between CP-ABE and PFHDS.

Fig. 6. Ciphertext storage between CP-ABE and PFHDS.

on the patient when R = 1/2,R = 1/3, and R = 1/4. For storage cost on the fog node, no ciphertext
storage is needed in CP-ABE due to the disengagement of a fog node. In Figure 6(b), we set k = 5
and illustrate the relation between the number of attributes and the storage cost in CP-ABE and
PFHDS. In Figure 6(c), we set P = 20 and illustrate the relation between categories of disease risks
and the storage cost.
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Fig. 7. Energy consumption between CP-ABE and PFHDS.

As shown in Figure 6(a), the storage cost on the patient increases with the number of attributes.
The encryption time of PFHDS is less than and approximately equals R times of the encryption
time in CP-ABE at the same number of attributes. Meanwhile, when the attribute percentage R de-
creases from 1/2 to 1/4, the storage cost to encrypt the health data consumed by PFHDS decreases
successively. As demonstrated from Figure 6(b), the storage cost on the fog node and the whole
storage cost on CP-ABE increases with the number of attributes. As seen in Figure 6(c), the fog
node needs more storage cost when more disease risk categories are classified in PFHDS, while
the whole storage cost in CP-ABE is stable when categories of disease risks increase. From both
Figure 6(b) and Figure 6(c), the storage cost on the fog node in PHFDS is more than the whole stor-
age cost on CP-ABE since the classified shared ciphertext requires extra storage resources, which
is reasonable and acceptable while efficient data utilization can be obtained by healthcare service
providers with health data classification.

7.3 Energy Consumption

Energy consumption is a major concern for encryption running on the patient that is equipped
with resource-limited e-healthcare devices. For evaluating energy consumption, we employ Pow-
erTutor to monitor energy consumption in PFHDS by using built-in battery voltage sensors and
knowledge of battery discharge behavior [43]. First, we run various encryption applications with
different attribute numbers in our evaluating mobile phone with ARM Cortex-A9 CPU and 1 GB
RAM. Second, we collect energy consumption data shown on PowerTutor. In Figure 7, we illus-
trate the relation between the number of attributes (x-coordinate) and the energy consumption
(y-coordinate) of CP-ABE and PFHDS on the mobile phone when R = 1/2,R = 1/3, and R = 1/4.
We can demonstrate that the energy consumpiton of PFHDS is less than and approximately equals
R times of the energy consumption of CP-ABE at the same number of attributes. Meanwhile, when
the attribute percentageR decreases from 1/2 to 1/4, the energy consumption consumed by PFHDS
decreases successively, since more encryption is offloaded from the patient to the fog node.

8 CONCLUSION

In this article, we have proposed PFHDS, which can achieve effective medical service provision
and efficient data utilization with cost-efficient resource consumption. First, PFHDS supports ef-
ficient health service provision for patients due to the professional access policy by the fog node.
Second, PFHDS enhances data analysis efficiency for service providers by classifying the health
data into categories and indexing related health items. Third, PFHDS preserves health data pri-
vacy and access control for patients during health data sharing even under the collusion of the fog
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node and other entities. Finally, PFHDS reduces the resource consumption on patients in terms of
encryption computation, ciphertext storage, and energy consumption. In our future work, we will
consider emergency conditions during data sharing and provide efficient access policy update and
revocation.
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