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Abstract—This paper investigates the sensor selection problem
in time difference of arrival (TDOA) tracking scenario to find the
optimal sensor activation strategy for the upcoming time step. We
propose a multiobjective optimization framework to minimize two
conflicting objectives, i.e., tracking accuracy and quantity budget,
which are represented by the trace of the conditional posterior
Cramér Rao lower bound (CPCRLB) and the number of selected
sensors, respectively. Due to the reduced measurement dimension
and correlated noise caused by the common reference sensor (CRS),
sensor selection algorithms for the general nonlinear model in
existing literature cannot be applied to the TDOA tracking directly
as they mostly assume that each sensor produces an independent
measurement. Therefore, we introduce two Boolean vectors to
indicate the CRS and ordinary sensors respectively. The sensor
selection problem is then formulated as a multiobjective optimiza-
tion problem (MOP), which can be further transformed as a single
objective optimization problem (SOOP) using the linear weighted-
sum method. We prove that the SOOP satisfies the rules of dis-
crete monotonic optimization (DMO), and propose the polyblock
outer approximation (POA)-based algorithms to seek for a globally
optimal solution. For comparison, we introduce the conventional
semidefinite program (SDP)-based algorithm to solve the SOOP
with multi-step relaxation. Simulation results demonstrate that the
proposed POA-based algorithms can considerably outperform the
SDP-based ones in solving the optimization problem.

Index Terms—TDOA tracking, conditional posterior Cramér
Rao lower bound (CPCRLB), sensor selection, discrete monotonic
optimization (DMO).
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I. INTRODUCTION

SOURCE tracking is a fundamental issue of the wireless
sensor network (WSN) which consists of a large number of

spatially-distributed miniature sensors with sensing, processing,
storage and communication capabilities [1]–[5]. It has found
broad applications in many areas including vehicular surveil-
lance, autonomous driving, navigation, mobility management,
intelligent spectrum control, and industry automation [6]–[14].
Sensor network receives the radio signals emitted by the source
and extracts tracking parameters, such as angle of arrival (AOA),
time of arrival (TOA), time difference of arrival (TDOA), and
frequency difference of arrival (FDOA) [15], [16]. In this paper,
we focus on TDOA tracking.

A. Background

Accuracy of TDOA tracking is optimal if all the informative
sensors are involved for estimation. However, since these minia-
turized and battery-powered sensors always have limited com-
munication bandwidth and signal processing capabilities [17]–
[19], involving all sensors in tracking measurement and state
estimation may not be desirable. Thus, the issue of sensor
selection in TDOA tracking arises and focuses on finding the
best tradeoff between tracking accuracy and quantity budget,
the number of selected sensors participating in tracking.

Different with general nonlinear models, TDOA measurement
has some distinctive features due to the specific common refer-
ence sensor (CRS). First, all the TDOA measurements are related
to the CRS, and hence the dimension of the measurement vector
is less than the number of sensors. Existing papers [20]–[28]
hinge on the assumption that each sensor produces a measure-
ment, so only one Boolean selection vector is used to determine
the selection strategy. However, these algorithms may not select
the optimal sensor subset in TDOA scene unless the CRS is
given, since a single Boolean vector may not express the perfor-
mance for sensor subsets with different CRSs before selection.
Second, source movement affects the selection of CRS and
the quantity budget. It is impractical to assume that the CRS
is fixed in the entire TDOA tracking period. Besides, source
movement results in dynamic geometry and varying channel
conditions in different time steps, and therefore it may not be
practical to select sensors by giving a quantity budget constraint
or performance threshold in advance [23], [24]. Third, the CRS
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usually results in the correlated TDOA measurement noise. On
one hand, different with [27], [28], the contribution of each
informative sensor to the tracking performance cannot be added
directly in TDOA scenario. On the other hand, developing the
explicit relationship between the tracking accuracy for selected
sensors and the Boolean selection vector is not a trivial work.
To sum up, it is essential to design an enhanced sensor selection
strategy for TDOA tracking. This strategy can select the best
sensor subset under the correlated measurement noise and can
bring an optimal tradeoff between the tracking accuracy and
quantity budget.

B. Related Works

The sensor selection problem for the tracking system has
been investigated in [20]–[25]. Zuo et al. [20] proposed a sensor
selection strategy to select a sensor subset at every tracking snap-
shot by minimizing the one-step-ahead posterior Cramér-Rao
Lower Bound (PCRLB). However, the optimal sensor subset was
determined by the enumerative search method, which may not be
practical for a large-scale network. A heuristic sensor selection
algorithm was developed in [21] for the general linear system
based on convex optimization procedure to reduce computa-
tional complexity. Based on the convex optimization framework,
Shen et al. [22], [23] considered the multistage look-ahead
policy in the linear and nonlinear dynamic system to select the
optimal sensor subset for the next N time steps. This scheme
was achieved by minimizing the final or average estimation
error covariance. Liu et al. [24] extended the study of sensor
selection problems to the nonlinear tracking scenario when the
measurement noise was correlated. Furthermore, in [25], the
recursive Fisher information matrix (FIM) was regarded as the
optimization objective to find the optimal sensor schedule. A
different optimization problem was presented in [26] to select
as few sensors as possible in the premise of guaranteeing a
reliable estimation performance. However, the above-mentioned
papers hold an inherent assumption that each sensor produces
a measurement so that their algorithms may not be available
for selecting the CRS and ordinary sensors in TDOA tracking
simultaneously. Besides, these works focus on formulating the
optimization problem with a single objective and may be biased
as they focus on the importance of one of the metrics.

Recently, the multiobjective optimization problem (MOP) has
also been introduced into sensor selection to simultaneously
consider multiple conflicting objectives, i.e., estimation accu-
racy and energy budget. For example, Cao et al. [27] proposed a
multiobjective optimization framework for the sensor selection
problem in the uncertain wireless sensor network, where the
MOP was formulated to reveal the tradeoff between performance
gap and energy budget. Yang et al. [28] proposed a MOP
scheme for sensor selection in the general nonlinear scenario,
where the fundamental idea was adding the sparsity-promoting
penalty factor to the objective. However, the proposed algo-
rithms in [27], [28] are based on the assumption that each
sensor can determine one measurement and these measurements
are independent, while in TDOA scenario the assumption is
untenable.

C. Contributions & Organizations

This paper investigates the sensor selection strategy in the
nonlinear TDOA tracking scenario to determine the optimal
tradeoff between tracking accuracy and quantity budget. Specif-
ically, the sensor selection strategy is implemented at the current
time step k and aims to select the optimal sensor subset for the
upcoming time step k + 1 based on the TDOA measurements
up to the current time. First, to match each TDOA measurement,
two Boolean vectors are utilized to indicate the CRS and ordi-
nary sensors respectively. Second, by introducing an auxiliary
matrix decomposition, we present the closed-form expression
of the accuracy with respect to Boolean selection vectors under
correlated noises. Third, we formulate a fair and reasonable
MOP, which takes into account two conflicting metrics, i.e.,
tracking accuracy and quantity budget. The conditional PCRLB
(CPCRLB) [29] is adopted as the theoretic criterion for tracking
accuracy, while the number of selected sensors is regarded as
the quantity budget.

The MOP is transformed into a single objective optimization
problem (SOOP) by using the linear weighted-sum method [30].
We prove that the transformed SOOP satisfies the rules of
discrete monotonic optimization (DMO), and propose the poly-
block outer approximation (POA) algorithm to solve it. To make
it practical for implementation, two suboptimal algorithms,
namely POA-based accelerated cutting (POA-AC) algorithm
and POA-based monotonic cutting (POA-MC) algorithm, are
proposed. In addition, we apply the SDP with reweighted �1

norm (SDP-RN) algorithm [28] to TDOA tracking scenario.
Simulation results demonstrate that compared with the SDP
solution, POA-based algorithms can provide a more reasonable
and holistic sensor selection strategy.

The main contributions are summarized as follows.
� A nonconvex MOP is formulated to find the optimal trade-

off between tracking accuracy and quantity budget for the
next upcoming time step in TDOA tracking.

� Two Boolean vectors are introduced to indicate the se-
lection of CRS and other ordinary sensors so that the
objectives of MOP can be effectively represented.

� A tradeoff factor is added to transform the original MOP
into a mathematically tractable SOOP. The SOOP is further
transformed as the canonical form of DMO and is proved
to satisfy the basic rules of DMO.

� The POA algorithm is proposed to find the globally op-
timal solution, and two sub-optimal algorithms, namely
POA-AC and POA-MC, are developed for practical imple-
mentation. Besides, the SDP-RN algorithm with multi-step
relaxation is also introduced for the specific TDOA track-
ing and compared with the POA-based algorithms.

The remainder of the paper is organized as follows. Section II
presents the preliminaries, including the system model, sensor
selection criterion, and particle filter. The multiobjective opti-
mization problem for sensor selection is derived and analyzed
in Section III. In Section IV, sensor selection algorithms are
proposed. Simulation results are shown in Section V. Finally,
we summarize the main conclusions in Section VI.

Notations: Throughout this paper, the bold-faced lower-
case and uppercase letters stand for vectors and matrices,
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Fig. 1. TDOA tracking with wireless sensor network.

respectively. The label on the upper right of the letter represents
the time step, such as (·)k. �0 norm, �1 norm, and �2 norm
(Euclidean norm) are represented by ‖ · ‖0, ‖ · ‖1, and ‖ · ‖2

respectively. ∇ denotes the operation of the first-order partial
derivative. diag{x} represents a matrix with diagonal elements
as x. R denotes the set of real numbers, R+ is its non-negative
part, R∗

+ is the non-zero integer, and Rn
+ denotes the set of all

n× 1 vectors with non-negative real entries. Besides, x ≺ y
indicates that x is component-wise smaller than y.

II. PRELIMINARIES

A. System Model

We focus on the WSN employing TDOA tracking scheme,
shown in Fig. 1, in which a moving source needs to be tracked.
The sensor network consists of S spatially stationary sensors,
whose indices are collected in SWSN = {1, 2, . . . , S}. The
2-dimensional (2D) TDOA tracking scenario is considered for
more intuitive analysis. Specifically, the positions of sensors
are si = (xi, yi)

T , i = 1, 2, . . . , S, which are independent with
time. The state of moving source at time k is θk = [uk; u̇k]T ,
whereuk = [xk, yk]T , u̇k = [ẋk, ẏk]T are position and velocity
vectors, respectively.

The distance between sensor si and the source at time k is
given by Euclidean norm, i.e.,

rki = ‖uk − si‖2 =
√

(uk − si)T (uk − si). (1)

In the preliminaries, sensor s1 is regarded as the CRS. Thus, the
TDOA of a signal received by si and s1 at time k is

tki1 =
1
c
(rki − rk1 ) =

1
c

(‖uk − si‖2 − ‖uk − s1‖2
)

(2)

where c is the speed of the radio wave.
The state transition equation and the observation equation of

the TDOA tracking discrete-time dynamical system are

θk+1 = F k(θk) +wk, (3)

tk = Hk(θk) + vk, (4)

where θk+1 is the state vector at time k + 1, wk is the zero
mean Gaussian noise with covariance matrix Qk. In (4), tk

is the stacked TDOA measurement at time k and is given as
tk = (tk21, t

k
31, . . . , t

k
S1)

T , vk is the Gaussian measurement noise
with covariance matrix Rk, and Hk denotes the nonlinear
observation matrix. In addition, F k is the state transition matrix

from time k to k + 1, and is assumed to be linear function as

F k(θk) = F k · θk. (5)

The expression of Hk(θk) is

Hk(θk) =
1
c

⎛
⎜⎜⎜⎝

‖uk − s2‖2 − ‖uk − s1‖2
...

‖uk − sS‖2 − ‖uk − s1‖2

⎞
⎟⎟⎟⎠ . (6)

In this paper, Qk is assumed as a diagonal matrix which
means the noise of the position and velocity is not correlated.
In contrast, Rk is correlated since the TDOA measurements are
all related to the CRS [31], [32].

B. Sensor Selection Criterion for TDOA Tracking

If the states of source and TDOA measurements up to time k
are θ0:k and t1:k respectively, the MSE of the state vector θ0:k+1

is lower bounded by the CPCRLB as

E{[θ̃0:k+1
][θ̃

0:k+1
]T } ≥ J−1(θ0:k+1|t1:k), (7)

where θ̃
0:k+1

is the difference of state estimation θ̂
0:k+1

and the
true state θ0:k+1. The FIM J(θ0:k+1|t1:k), the inverse matrix
of the CPCRLB, provides all the information of the state from
time 0 to time k + 1. However, we only concern about the
conditional FIM J(θk+1|t1:k) for estimating θk+1 given the
available TDOA measurements from time 1 up to time k as t1:k,
which is the inverse matrix of 4 × 4 lower-right corner submatrix
of the matrix of J−1(θ0:k+1|t1:k).

To avoid complex mathematical operations for the large ma-
trix J(θ0:k+1|t1:k), Zuo et al. [29] gave a recursive method to
calculate it by introducing several auxiliary matrices, i.e.,

J(θk+1|t1:k) = Jk+1
H + Jk

F

= Jk+1
H +Bk

22−Bk
21(LA(θ

k|t1:k)+Bk
11)

−1Bk
12.
(8)

In [23], [24], Jk
F is regarded as the prior information related to

previous time steps, and Jk+1
H is called as the information gain

at time k + 1. Specifically, it has

Jk+1
H = Epc

k+1
{[∇θk+1Hk+1(θk+1)]

× (Rk+1)−1[∇θk+1Hk+1(θk+1)]T }, (9)

and

Jk
F = Bk

22 −Bk
21(LA(θ

k|t1:k) +Bk
11)

−1Bk
12, (10)

where

Bk
11 = Epc

k+1
{[∇θkF k(θk)](Qk)−1[∇θkF k(θk)]T }, (11)

Bk
12 = −Epc

k+1
{[∇θkF k(θk)](Qk)−1}, (12)

Bk
22 = (Qk)−1, (13)

pck+1 � p(θ0:k+1, tk+1|t1:k). (14)

The auxiliary matrixLA(θ
k|t1:k) in (10) also can be obtained

by recursive formula, which can be readily known from [29].
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Matrices Bk
11, Bk

12, and Bk
22 are related to ∇θkF k, which is

given by the linear state equation in (5) as

∇θkF k(θk) =
∂(F k · θk)

∂θk
= F k. (15)

We can obtain the detailed expression of ∇θk+1Hk+1(θk+1) in
(9) based on the nonlinear observation equation, given by

∇θk+1Hk+1(θk+1) =
∂Hk+1(θk+1)

∂θk+1
= Hk+1

θ

=
1
c

⎛
⎜⎜⎜⎝

(uk+1−s2)
T

rk+1
2

− (uk+1−s1)
T

rk+1
1

0 0

...
...

...
(uk+1−sS)T

rk+1
S

− (uk+1−s1)
T

rk+1
1

0 0

⎞
⎟⎟⎟⎠

T

,

(16)

where two rows of zeros represent the relationship between the
TDOA and the velocity of source. The covariance matrix of
TDOA noise at time k + 1 is given as

Rk+1 =

⎛
⎜⎜⎝
(σk+1

2 )2 + (σk+1
1 )2 · · · (σk+1

1 )2

...
. . .

...

(σk+1
1 )2 · · · (σk+1

S )2 + (σk+1
1 )2

⎞
⎟⎟⎠ ,

(17)
where {σk+1

i , i = 1, 2, . . . , S} is the standard deviation of the
TOA measurement noise of sensor i at time k + 1. Obviously,
Rk+1 is correlated since the TDOA measurements are dependent
with the CRS.

From the analysis above, Rk+1 and Hk+1
θ are directly related

to the assumed CRS s1. However, in TDOA tracking scenario,
the CRS can not be fixed and should be selected according to
the source movement as well as the instant geometry. Therefore,
formulating Hk+1

θ , related to the CRS and ordinary sensors, to
describe the tracking accuracy for selected sensors of the future
time step is essential for the sensor selection problem in TDOA
tracking.

If we consider the selection of the CRS at each time step in
TDOA tracking, some matrices in TOA scenario, such as Hk+1

and Rk+1, will be involved

Hk+1
θ =

1
c

⎛
⎜⎜⎜⎝

(uk+1−s1)

rk+1
1

· · · (uk+1 − sS)

rk+1
S

0 · · · 0

0 · · · 0

⎞
⎟⎟⎟⎠ , (18)

Rk+1 = diag
{
[(σk+1

1 )2, . . . , (σk+1
S )2]

}
. (19)

Since the observation equation (4) is based on TDOA measure-
ments, the involvement of auxiliary matrices in TOA tracking
is only to derive the expression of the optimization problem in
TDOA scenario, and TOA is not measured in our scenario. Note
that, different with the covariance matrix of TDOA measurement
noise Rk+1, the covariance matrix of TOA measurement noise
Rk+1 is a diagonal matrix due to the assumption that TOA is
generated by independent sensors.

C. Particle Filter

Particle filter is based on the recursive implementations of
Monte Carlo statistical signal processing [33]. In this paper,
particle filter is introduced for the sensor selection problem in
TDOA tracking scenario mainly for the following two roles:
1) evaluating the auxiliary matrices LA(θ

k|t1:k) at each time
step; 2) calculating the root mean-square error (RMSE) of the
nonlinear estimator to measure the tracking accuracy.

First, the auxiliary matrix LA(θ
k|t1:k) has the approximate

recursive formula presented in the Approximation 1 in [29] as

LA(θ
k|t1:k) ≈ Sk

22 − (Sk
12)

T [Sk
11 +LA(θ

k−1|t1:k−1)]−1Sk
12,

(20)
where Sk

11, Sk
12, and Sk

22 are related to the states θk−1,θk, and
the measurement tk. Due to the high-dimensional integration of
direct computation of these matrices, we can evaluate them by
the particle filter state estimation process as by-products [28],
[29]. In TDOA tracking model of (3) and (4), we will use particle
filter to estimate Sk

22 and Jk+1
H .

Second, particle filter is widely used for recursive Bayesian
filtering problems, especially in the nonlinear and non-Gaussian
model [33]. The posterior distribution can be approximately
calculated by a group of particles at each time step. Therefore,
in this paper, the source state at each time step is estimated
by particle filter using a sequence of measurements of selected
sensors in TDOA nonlinear tracking scenario.

III. MULTIOBJECTIVE OPTIMIZATION PROBLEM

FORMULATION AND ANALYSIS

This section formulates the MOP to find the sensor selection
strategy that can determine the optimal tradeoff between the
TDOA tracking accuracy and the energy budget for the upcom-
ing time step k + 1 given TDOA measurements up to time k
in discrete-time TDOA tracking. The sensor subset used for
tracking is determined by jointly minimizing two contradictory
objectives: tracking errors and quantity budget. Specifically, the
tracking accuracy is described by the CPCRLB, and the quantity
budget is denoted by the number of selected sensors without
specific prior constraint.

A. Problem Formulation

The mathematical description of the two-objective optimiza-
tion problem can be formulated as [27]

minimize
x

{f1(x), f2(x)} (21)

subject to a ≤ xi ≤ b, h(x) = 0, g(x) ≤ 0, (22)

where f1(x) is related to the CPCRLB at time k + 1 when the
TDOA measurements from time 0 to time k are available, and
f2(x) is related to the quantity budget at time k + 1. In this
paper, trace of CPCRLB trace((Jk+1)−1) is used to evaluate
the tracking accuracy for selected sensors.

In TDOA tracking scenario, the tracking accuracy of the
sensor subset at each time step is related to the CRS and other
ordinary sensors. Since the selected sensor indices are unknown,
expressing the accuracy metric CPCRLB for selected sensors
with a single Boolean vector is not a trivial task. Therefore,
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to select the CRS and ordinary sensors simultaneously, two
Boolean vectors are introduced

q = [q1, q2, . . . , qS ]
T , qi ∈ {0, 1}S , i = 1, 2, . . . , S, (23)

p = [p1, p2, . . . , pS ]
T , pj ∈ {0, 1}S , j = 1, 2, . . . , S, (24)

where S is the number of available sensors. In the case of no
confusion, the superscript of p and q here is omitted for brevity.
These two vectors are utilized to select respectively the CRS and
other ordinary sensors. Note that, qi indicates whether the ith
sensor is selected as the CRS and pj denotes whether the jth
sensor is selected as the ordinary sensor. Further, two matrices
Φp and Φq are introduced to describe the FIM and TDOA noise
covariance matrix for selected sensors. In particular, Φp is a
submatrix of diag(p) after all columns corresponding to the
unselected sensors are removed [25], and Φq = [q, q, . . . , q] is
an extension of q and its size is consistent with Φp. There are
some useful properties of p, q, Φp, and Φq presented in our
previous work [18], [34] and are briefly described as follows.

1) The products of two matrices:
Φp

TΦq = 0(K−1), ΦpΦq
T = pqT , Φp

TΦp =

I(K−1), ΦpΦp
T = diag{p}, ΦqΦq

T = (K −
1)diag{q},Φq

TΦq = 1(K−1)×111×(K−1), where K
is the number of selected sensors, I and 0 are the identity
matrix and zero matrix respectively, while the subscripts
of them represent their dimensions.

2) We have

(Φp +Φq)
TE(Φp +Φq)=(Φp −Φq)

TE(Φp −Φq),

where E can be any diagonal matrix. This property plays
an important role in the derivation of objective function.

Consequently, based on two Boolean vectors and their derived
matrices, the detailed mathematical description of the two-
objective optimization problem for the sensor selection strategy
in TDOA tracking scenario can be formulated as

(P1) minimize
pk+1,qk+1

{trace (Jk+1
sel )

−1,
∥∥pk+1 + qk+1

∥∥
0} (25)

subject to pk+1, qk+1 ∈ {0, 1}S , (26)

(pk+1)
T
qk+1 = 0, (27)

where the objective Jk+1
sel is the FIM for selected sensors in

TDOA tracking scenario at time k + 1 in the case that the TDOA
measurements up to time k are available, another objective
‖ · ‖0 is the �0 norm that represents the number of non-zero
elements, S is the number of sensors in the entire network, and
the last constraint means that Boolean vectors pk+1 and qk+1

are orthogonal. Specifically, Jk+1
sel is given

Jk+1
sel =

(
Hk+1

θ Φk+1
p − Hk+1

θ Φk+1
q

)

· ((Φk+1
p )T Rk+1Φk+1

p − (Φk+1
q )T Rk+1Φk+1

q

)−1

· (Hk+1
θ Φk+1

p − Hk+1
θ Φk+1

q

)T
+ Jk

F , (28)

where Jk
F is the prior information matrix defined in (10).

Φk+1
p can pick out the columns for the selected ordinary sen-

sors, and Φk+1
q selects the single column for the CRS and

expands it to a rank-one matrix. Hk+1
θ Φk+1

p − Hk+1
θ Φk+1

q

and (Φk+1
p )T Rk+1Φk+1

p − (Φk+1
q )T Rk+1Φk+1

q also contain
the corresponding results mapped from the selected sensors.

B. Problem Analysis

The sensor selection strategy focuses on finding the optimal
tradeoff between two contradictory objectives in (P1). We intro-
duce a linear weighted-sum cost function [28], [30] to reduce the
number of objectives, as shown in (P2). The objective consists
of two parts: the ratio of the CPCRLB gap to the CPCRLB of
position estimation for all sensors, and the ratio of the quantity
budget to the total number of sensors.

(P2) minimize
pk+1,qk+1

{
trace (Jk+1

sel )
−1 − trace (Jk+1

all )−1

trace (J́
k+1
all )−1

+ γ

∥∥pk+1 + qk+1
∥∥

0

S

}
(29)

subject to pk+1, qk+1 ∈ {0, 1}S (30)

(pk+1)
T
qk+1 = 0, (31)

where γ is the tradeoff factor between two contradictory objec-
tives, (Jk+1

all )−1 is the predicted CPCRLB based on all sensors.

trace(J́
k+1
all )−1 is the sum of the first two diagonal entries

of (Jk+1
all )−1 and represents the CPCRLB for source position

estimation where J́
k+1
all is similar with equivalent FIM (EFIM)

defined in [35]. The second part ‖pk+1+qk+1‖0

S denotes the nor-
malized quantity budget.

In (P2), the dependence of (Jk+1
sel )

−1 on pk+1 and qk+1 is
through Φk+1

p and Φk+1
q . It is not easy to represent the explicit

function of scalar-valued performance metric with respect to the
selection vector pk+1 and qk+1, especially with correlated mea-
surement noises. If two Boolean vectors are involved, with their
properties, we present the explicit relationship between FIM and
two Boolean vectors in our previous work [18], [34]. Besides,
in (P2), the Boolean constraint is non-convex and results in
an NP-hard optimization problem, which is computationally
intractable especially for the large sensor network. The typical
convex relaxation algorithms in [21], [24], [25], [28] focus on
relaxing the nonconvex objectives or the constraints. However,
the disadvantages of the convex relaxation operation are: 1) the
gap between the convex relaxation solution and the optimal
solution cannot be eliminated [21], 2) judging the fractional
vector is tricky because the amplitude is not sparse.

IV. SENSOR SELECTION ALGORITHMS

This section presents several sensor selection algorithms to
solve the nonconvex optimization problem (P2), including POA-
based algorithms and SDP-based solutions. First, we introduce
the fundamental definitions of DMO. Then, we transform (P2)
into the canonical form and prove that the transformed problem
satisfies the rules of DMO. Moreover, we propose the POA
algorithm for the seek of the globally optimal solution and give
two sub-optimal algorithms for practical implementation. At
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last, the conventional semidefinite program solution is involved
and adapted to solve (P2), and is used as a comparison to verify
our proposed POA-based algorithm.

A. Discrete Monotonic Optimization

As a widely-used global optimization technique, the mono-
tonic optimization has been used for solving numerous wireless
communications problems in [36]–[40]. We first introduce some
fundamental definitions of DMO.

Definition 1 (Box): Given any vectorb ∈ Rn
+, the hyper rect-

angle [0, b] = {x|0 
 x 
 b} is referred as a box with b.
Definition 2 (Polyblock): Given any finite set P with ele-

ments pi ⊂ Rn
+, the union of all the boxes [0,pi] is a polyblock

with vertex set P .
Definition 3 (Projection): Given any non-empty normal set

G ⊂ Rn
+ and vector z ∈ {Rn

+ \ G}, πg(z) is a projection of z
on G if πg(z) = λz with λ = max{α|αz ∈ G} and α ∈ R+.

Definition 4 (Canonical DMO): Given a box [a, b] ⊂ Rn
+

with a 
 b, a finite set S ⊂ Rs
+, s ≤ n, and incresing functions

f(x), g(x), h(x) on [a, b], an optimization problem

max {f(x)|g(x) 
 0 
 h(x), x ∈ [a, b], xi ∈ S} (32)

belongs to the class of DMO problems. Defining

G = {x ∈ [a, b]|g(x) 
 0}, (33)

H = {x ∈ [a, b]|h(x) � 0}, (34)

S = {x ∈ [a, b]|xi ∈ S}, (35)

the canonical form of DMO can be rewritten as

max {f(x)|x ∈ G ∩H ∩ S}. (36)

Definition 5 (Lower S-adjustment): Given any vector x ∈
[0, b], the lower S-adjustment x̃ satisfies

x̃i = max{ξ|ξ ∈ S ∪ {0}, ξ ≤ xi}, ∀i. (37)

B. The Canonical Form of DMO of (P2)

In (28), two Boolean vectors are indirectly related with Jk+1
sel

but through Φk+1
p and Φk+1

q . Based on Theorem 1 in [34], Jk+1
sel

attains an explicit form with respect to pk+1 and qk+1,

Jk+1
sel = Bk+1 −Dk+1

· ((Rk+1
o )−1 +Ck+1

)−1
(Dk+1)T + Jk

F , (38)

where Bk+1 = Dk+1(Hk+1
θ )T and Dk+1 = Hk+1

θ (Rk+1
o )−1.

Ck+1 is the dependence between Boolean vectors and Jk+1
sel ,

Ck+1 =
1

αk+1
diag{pk+1 + qk+1}

− 1
αk+1

(pk+1 + qk+1)(pk+1 + qk+1)T

‖pk+1 + qk+1‖1
, (39)

and Rk+1
o is decomposed by

Rk+1 = αk+1I + Rk+1
o , (40)

where Rk+1
o is a positive definite matrix, αk+1 is a scalar, and I

is an identity matrix.
It can be seen that pk+1 and qk+1 can express the tracking

performance for selected sensor through the matrix Ck+1, in-
cluding the selection of the CRS and other ordinary sensors.
After achieving this aim, we introduce a new Boolean vector
lk+1 to replace pk+1 + qk+1, and Ck+1 derives

Ck+1 =
1

αk+1

(
diag{lk+1} − lk+1(lk+1)T

‖lk+1‖1

)
. (41)

The involvement of lk+1 has two reasons. On one hand, the
number of unknown variables can be reduced. On the other hand,
it is convenient to prove that trace(Jk+1

sel )
−1 is monotonic with

respect to lk+1.
Remark 1: In (41), matrixCk+1 is related to a single Boolean

vector lk+1. This proves that the selection of CRS has no effect
on the lower bound of the localization accuracy at a given
time instant. However, a single Boolean vector cannot directly
express the FIM for selected sensors since the index of the CRS
cannot be determined in advance. Therefore, by introducing two
Boolean vectors, the accuracy metric for selected sensors can be
easily expressed, and then the formula in (38) can be finally
obtained by using the relationship between two Boolean vectors
and their derived matrices.

Substituting (41) into (38), (P2) can be transformed as

(P3) maximize
lk+1

{f(lk+1)− g(lk+1)} (42)

subject to lk+1 ∈ {0, 1}S (43)

where

f(lk+1) =
trace (Jk+1

all )−1 − trace (Jk+1
sel )

−1

trace (J́
k+1
all )−1

, (44)

g(lk+1) = γ

∥∥lk+1
∥∥

0

S
. (45)

Obviously, g(·) is an increasing function, while the proof that
f(·) is an increasing function can be found in Appendix A.

For every lk+1 ∈ [0, 1], we have g(lk+1) ≤ g(1) = γ.
Namely, there is an integer λk+1 ≥ 0 satisfied g(lk+1) +
γλk+1

S = g(1). Therefore, we have ‖lk+1‖0 + λk+1 = S, where
λk+1 is a discrete integer. We further define νk+1 =
{lk+1, λk+1}, and rewrite (P3) as

(P4) maximize
lk+1,λk+1

{F (νk+1)} (46)

subject to (lk+1, λk+1) ∈ {G ∩ S} (47)

where F (νk+1) = F (lk+1, λk+1) = f(lk+1) + γλk+1

S − γ is
the objective, G is a normal set and given by

G =

{
(l, λ)|0 ≤ λ ≤ S

γ
(g(1)− g(0)),

γλ

S
+ g(l) ≤ g(1)

}

=

{
(l, λ)|0 ≤ λ ≤ S,

γλ

S
+ g(l) ≤ γ

}
, (48)
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and

S =

{
(l, λ)|0 ≤ λ ≤ S

γ
(g(1)− g(0)), l ∈ {0, 1}S , λ ∈ R∗

+

}

=
{
(l, λ)|0 ≤ λ ≤ S, l ∈ {0, 1}S , λ ∈ R∗

+

}
. (49)

is the finite set with respect to lk+1 and λk+1.
Now, (P4) achieves the canonical form of DMO and we have

Proposition 1 to indicate that the objective function F (·) in
(P4) is monotonic with respect to the νk+1, which contains the
Boolean vector lk+1 and non-negative integer λk+1.

Proposition 1: Given two vectors ν̇k+1 = {l̇k+1
, λ̇k+1}, and

ν̊k+1 = {̊lk+1
, λ̊k+1}, ∃ν̇k+1

i > ν̊k+1
i , and other entries are

same, we have the objective functionF (νk+1) being monotonic,
i.e.,

F (ν̇k+1)− F (ν̊k+1) > 0. (50)

Proof: See Appendix A. �

C. Polyblock Outer Approximation (POA) Algorithm

From Proposition 1 and the feasible setG in (48), (P4) satisfies
the rules of DMO. Thus, POA algorithm is proposed to solve
it, and is summarized in Algorithm 1. The essential idea is to
generate a nested sequence of “polyblocks,” which is shrunk in
each iteration to enclose the feasible setG. During each iteration,
the maximum objective value can be obtained on the vertex set,
and the current polyblock is generated by removing improper
portions of the polyblock [37]–[39].

As shown by Algorithm 1, the POA algorithm is imple-
mented at each time step throughout the entire tracking pe-
riod. We will give a detailed description of the specific im-
plementation of the POA algorithm, which focuses on the
sensor selection at the upcoming time step with the available
TDOA measurements to current time. First, the initial poly-
block P(1) is formed as [0, 1]× [0, S] to enclose the whole
feasible set G. The vertex set of the polyblock P(1) is V(1),
which contains only one vertex (νk+1)(1) = (lk+1, λk+1)(1) =
{1, 1, . . . , 1, S} ∈ RS+1

+ . Second, the polyblock P(1) is shrunk
as a small polyblock P(2), which also encloses the feasible set
G. The reduction of the polyblock depends on three steps in
Algorithm 1: finding the optimal vertex in the current vertex
set (step 5), obtaining the projection of the optimal vertex
(step 6) and lower S-adjustment (step 7), and generating the
new vertexes of next polyblock (step 9). In step 5, the optimal
vertex (νk+1)(1) is selected by comparing the objective values
when substituting all the vertexes into the objective of (P4).
Followed by it, the projection of (νk+1)(1) on G is obtained by
the bisection search method [38] as πg(νk+1)(1), whose lower
S-adjustment is denoted by π̃g(νk+1)(1). In step 9, we need
find all the vertexes in the current vertex set that is component-
wise bigger than π̃g(νk+1)(1), and collect them into vertex
set V̌(1). The new vertex set V̇(1) is generated by (ν̇k+1)(1) =

(ν̌k+1)(1) − ((ν̌k+1)
(1)
i − π̃g(νk+1)(1))ei, where (ν̌k+1)(1) ∈

V̌(1), (ν̇k+1)(1) ∈ V̇(1), (ν̌k+1)
(1)
i is the ith entry of (ν̌k+1)(1),

and ei is the unit vector that the ith entry is non-zero [39].

Algorithm 1: POA Algorithm for (P4).

Input: The prior information about the source state at
time k = 0; The tradeoff factor γ.

1: For k = 1, 2, . . . ,m
2: Initialization: Let [0, 1]× [0, S] be a box enclosing G.

The initial polyblock P(1) is [0, 1]× [0, S], and the
vertex set V(1) contains one element (νk+1)(1) =
(lk+1, λk+1)(1) = {1, 1, . . . , 1, S} ∈ RS+1

+ . Set the
iteration index j = 0. The initial current best value is
CBV(0) = −∞.

3: Repeat
4: j = j + 1.
5: From the current vertex set V(j), select

(νk+1)(j) ∈ argmax{F (ν)|ν ∈ V(j)}.
6: Determine the projection of (νk+1)(j) on the upper

boundary of G, i.e., πg(νk+1)(j), by the bisection
search [37].

7: Calculate the lower S-adjustment of πg(νk+1)(j), and
use π̃g(νk+1)(j) to represent.

8: If F (π̃g(νk+1)(j)) ≥ CBV(j−1), let the current best
solution CBS(j) = π̃g(νk+1)(j) and
CBV(j) = F (CBS(j)). Otherwise,
CBS(j) = CBS(j−1) and CBV(j) = CBV(j−1).

9: Generate a smaller polyblock P(j+1) with vertex set
V(j+1), which is formed by
V(j+1) = {V(j) \ V̌(j) ∪ V̇(j)}, where
V̌(j) = {ν ∈ V(j)|ν � π̃g(νk+1)(j)}. The elements in
V̇(j) are (ν̇k+1)(j), which is obtained by

(ν̇k+1)(j) = (ν̌k+1)(j) − ((ν̌k+1)
(j)
i − π̃g(νk+1)

(j)
i )ei,

where (ν̌k+1)(j) ∈ V̌(j) and (ν̌k+1)
(j)
i is its ith entry.

10: Until V̌(j) = ∅.
11: Output The optimal Boolean selection vector

(lk+1)(j) is the first S entries of CBS(j).
12: End For

Therefore, the next polyblock P(2) is obtained with the vertex
set V(2), which is derived by V(2) = {V(1) \ V̌(1)} ∪ V̇(1). In
short,P(2) is generated by cutting off a set of cones with the ver-
tex as [V(2), [1, S]]. Similarly, after several iterations, the POA
algorithm can generates a nested sequence of polyblocks outer
approximating the feasible setG asP(1) ⊃ P(2) ⊃ · · · ⊃ G [37].
The POA algorithm ends when the vertex setV(j+1) = ∅, which
is equivalent to V̌(j) = ∅. In this case, the optimal vertex in the
current vertex set is very close to its projection on the boundary
of G and is the optimal solution for (P4).

The POA algorithm can achieve the globally optimal solution
of the sensor selection problem in a finite number of iterations
to solve the DMO-based sensor selection problem. However,
the required computational complexity may grow exponentially
with the number of vertexes in each iteration.

Remark 2: At time k, we need to approximately calculate
Hk+1

θ andJk+1
all . When the TDOA measurements tksel, generated

by the selected sensors at time k − 1, and previous particles
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Algorithm 2: POA-AC Algorithm for (P4).

1: Enumerate all the vertexes in vertex set V(j+1) into the
objective function F (·), and calculate
F (πg(νk+1)(j)).

2: V(j+1) = {ν ∈ V(j+1)|F (ν) ≥ F (πg(νk+1)(j)).

are inputted to the particle filter, the state estimation θ̂
k

can
be obtained according to current particles [27]. Then, the state
prediction at next time step θk+1

p can be calculated by θk+1
p =

F kθ̂
k

and (Hk+1
θ )p can be approximatively calculated

(Hk+1
θ )p =

1
c

⎛
⎜⎜⎜⎝

(uk+1
p − s1)

‖(uk+1
p − s1)‖2

· · · (uk+1
p − sS)

‖(uk+1
p − sS)‖2

0 · · · 0

0 · · · 0

⎞
⎟⎟⎟⎠ ,

(51)
where uk+1

p is the first two entries of θk+1
p .

D. Suboptimal Algorithms

In practice, it is desirable to utilize the POA algorithm in a
time-efficient manner. We propose two suboptimal algorithms,
namely the POA-based accelerated cutting (POA-AC) algorithm
and the POA-based monotonic cutting (POA-MC) algorithm,
to derive a locally optimal solution to (P4). From step 9 in
Algorithm 1, V̌(j) is generated by comparing the current vertexes
in V(j) with the lower S-adjustment π̃g(νk+1)(j). However,
since the first S entries of π̃g(νk+1)(j) always be 0 before the
end of iterations, most vertexes in V(j) are added into V̌(j).
This operation ensures global optimization, but it dramatically
increases the complexity of the POA algorithm. Hence, the
purpose of these two suboptimal algorithms aims to reduce the
number of vertexes in each iteration.

The POA-AC algorithm focuses on removing some subop-
timal vertexes by comparing the objective values of current
vertexes withF (πg(νk+1)(j)), which is obtained by substituting
the projection into the objective function. Although the original
objective function is about Boolean variables, we can substitute
the fractional vector πg(νk+1) into F (·) directly due to the ele-
gant formation (41). There is no need to prove the monotonicity
ofF (·)with respect to continuous variable, butF (πg(νk+1)(j))
can be regarded as a threshold to reduce a large number of
vertexes. The POA-AC algorithm follows all the same steps of
Algorithm 1 except that, adding more steps after step 9, which
are given in Algorithm 2.

The POA-MC algorithm cuts the outer polyblock along with
the optimal vertex in each iteration. Namely, other vertexes are
discarded if one vertex is selected as the optimal vertex in each
iteration. For instance, when we get the optimal vertex (νk+1)(j)

at jth iteration, other vertexes will be deleted, and the vertex set
in next iteration V(j+1) is generated by π̃g(νk+1)(j), which is
the lower S-adjustment of the projection of the optimal vertex
(νk+1)(j). The main procedure is changing the generation of
V̌(k) in step 9 in Algorithm 1 and is shown in Algorithm 3,

Algorithm 3: POA-MC Algorithm for (P4).

1: V̌(j) = {ν ∈ V|ν � πg(νk+1)(j)}.

Algorithm 4: SDP Solution for (P2).

Input: The prior information about the source state at
time k = 0; The tradeoff factor γ.

1: For k = 1, 2, . . . ,m
2: Initialization: The prior information matrix Jk

F is
recursively calculated, the matrix Hk+1

θ and Jk+1
all are

approximately calculated.
3: Solve (P6) and obtain the fractional ṗk+1 and q̇k+1;
4: Get the suboptimal vector q̃k+1 by setting the index of

the maximal entry in q̇k+1 as ‘1,’ then
ṗk+1 = ṗk+1 − q̇k+1;

5: Get the suboptimal vector p̃k+1 by comparing with
mean of (ṗk+1 + q̇k+1), as AVG(ṗk+1 + q̇k+1).

6: Output p̃k+1 and q̃k+1, Boolean selection vectors for
the upcoming time step k + 1.

7: End For

where vertexes are compared with the projection of the optimal
vertex (νk+1)(j).

These two suboptimal algorithms converge to a locally
optimal solution and can considerably reduce the computa-
tional complexity. The theoretical analysis of the computa-
tional complexity of the POA-AC algorithm is challenging
because of the mathematical relationship between the threshold
F (πg(νk+1)(j)) and the current number of vertexes cannot
be given. As for the POA-MC algorithm, one of the S + 1
dimensions is manipulated during each iteration, thereby giving
that the final computational complexity is about O(S).

E. Semidefinite Program (SDP) Solution

The optimization problem (P2) also can be solved based on
convex relaxation. First, the Boolean constraint is relaxed by
[0, 1]S [21]. Second, the �0 norm is replaced by the �1 norm,
which is a well-known surrogate [26]. Third, the inner product
is ignored and considered when judging solved fractional vector
to Boolean. Then, we have

(P5)minimize
pk+1,qk+1

{
trace (Jk+1

sel )
−1 − trace (Jk+1

all )−1

trace (J́
k+1
all )−1

+ γ

∥∥pk+1 + qk+1
∥∥

1

S

}
(52)

subject to 0 ≤ pk+1
j ≤ 1, j = 1, 2, . . . , S, (53)

0 ≤ qk+1
i ≤ 1, i = 1, 2, . . . , S, (54)

where �1 norm ‖pk+1 + qk+1‖1 =
∑S

i=1 |pk+1
i + qk+1

i | =
1T (pk+1 + qk+1) is obviously a convex constraint. According
to the expression of Jk+1

sel in (28), we introduce three auxiliary



12368 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 12, DECEMBER 2019

matrices Zk+1, V k+1, W k+1 to satisfy

B −D
(
R−1

o +C
)−1

DT + Jk
F � Z−1, (55)

V −D
(
R−1

o +C
)−1

DT � 0, (56)

W = R−1
o +C, (57)

where B and D are defined below (38). Using Schur comple-
ment, (55)–(57) are transformed into the linear matrix inequali-
ties (LMIs) shown in (58) at the bottom of this page, where the
superscript (·)k+1 in (55)–(58) is omitted for simplicity. Then,
we obtain

(P6) minimize

{
trace(Zk+1)− trace (Jk+1

all )−1

trace (J́
k+1
all )−1

+ γ

∥∥pk+1 + qk+1
∥∥

1

S

}

subject to LMIs in (58),

(53) and (54), (59)

where unknown variables in (P6) are pk+1, qk+1, Zk+1, V k+1,
andW k+1, (Jk+1

all )−1 is the CPCRLB when all the sensors tackle
with tracking and can be approximately calculated based on

Remark 2. It is obvious that Jk+1
all and J́

k+1
all are independent

with the sensor selection.
The SDP solution of the optimization problem (P2) is summa-

rized in Algorithm 4. Besides, an iterative SDP with reweighted
�1 norm (SDP-RN) algorithm was proposed in [28] to enhance
the sparsity of the SDP solution. The key idea is to add an
additional weight to the quantity budget, i.e.,

trace (Zk+1 − (Jk+1
all )−1)

trace (J́
k+1
all )−1

+ γκ(n)

∥∥pk+1 + qk+1
∥∥

1

S
, (60)

where κ
(n)
i = 1/‖pi + qi‖1 if pi + qi �= 0, otherwise, κ(n)

i =
∞, and n is the number of the reweighted iterations. The
additional weights can force small elements in pk+1 and
qk+1 to zero, thus it is beneficial for judging them to
Boolean.

The interior-point method [21] can be utilized to efficiently
approach the SDP (P6), and requires some iterations with the
rough computational complexity O(S3), while the complexity
of SDP-RN algorithm will increase to O(nS3). There are some
well-known toolboxes for the implementation of the interior-
point methods, such as CVX [26]. As a particular case that the
prior quantity budget constraint is given, such as K, a SOOP
can be formulated and can be regarded as another transfor-
mation of the MOP (P2) by the ε-constraints method [30].
The solution of the SOOP can be obtained by the SDP with
prior budget constraint (SDP-PBC) algorithm [34], which can

Fig. 2. Sensor networks, source trajectory, and tracking estimation of different
algorithms.

only obtain a fixed number of sensors. Hence, it is impossible
to dynamically balance the number budget and the tracking
accuracy.

V. SIMULATION RESULTS

In this section, we show the utility of the proposed sensor
selection algorithms in TDOA tracking scenario with simula-
tion results. Our simulation platform is with CPU Xeon 4116,
2.10 GHz, RAM 64.0 GBytes, and MATLAB R2016a. We focus
on the tradeoff between tracking accuracy and quantity budget
at the upcoming time step k + 1 when the TDOA measurements
are available up to time k. Particle filter is utilized to estimate
the state of the source at each time step. Based on the previous
analysis in Section II and Remark 2, at time k, a set of parti-
cles is used to approximately calculate matrices LA(θ

k|t1:k),
Hk+1

θ , and Jk+1
all for the implementation of sensor selection

algorithms.
Specifically, the sensor network consists of S = 16 sensors,

which are deployed on four sides of a 200 × 200 m2 square
region, shown in Fig. 2. At the initial time step, the source is
located at (50,−80)T with instantaneous velocity as (10, 10)T ,
and the prior distribution of the source state is assumed to
be Gaussian with covariance diag{[1, 1, 0.01, 0.01]}. The state
equation follows a white noise acceleration model [28], i.e.,

F k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
sin(Ωτ)

Ω
−1 − cos(Ωτ)

Ω

0 1
1 − cos(Ωτ)

Ω

sin(Ωτ)

Ω

0 0 cos(Ωτ) −sin(Ωτ)

0 0 sin(Ωτ) cos(Ωτ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (61)

[
B − V + Jk

F I

I Z

]
� 0,

[
V D

DT W

]
� 0,

[
1
αdiag(p+ q) + R−1

o −W 1√
α
(p+ q)

1√
α
(p+ q)T ‖p+ q‖1

]
� 0 (58)
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Fig. 3. Comparison of objective values.

Qk = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ 3

3
0

τ 2

2
0

0
τ 3

3
0

τ 2

2
τ 2

2
0 τ 0

0
τ 2

2
0 τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (62)

where Ω, τ , and � denote the turn rate, the time interval between
adjacent sensor measurement samples, and the process noise
parameter, respectively. We set Ω = 0.17, τ = 1, � = 0.01, and
the tracking period is 20τ . The covariance matrix of TOA noises
R at each time step is generated based on source-sensor distance
in the instant localization geometry. For example, we assume
σk+1
i ∝ ξ/c · rk+1

i , where rk+1
i is the distance between sensor

i and the source at time k + 1, ξ/c and ξ denote TOA noise
strength and range of arrival (ROA) noise strength respectively.

A. Comprehensive Comparison

Fig. 2 shows the TDOA tracking scenario, true source trajec-
tory, and tracking estimation trajectories of different algorithms
with twenty Monte Carlo trials. ROA noise strength ξ = 0 dB
and the tradeoff factor γ = 0.2. We choose n = 10 reweighted
iterations while performing the SDP-RN algorithm. We also give
the performance of random selection (RS) method as a compar-
ison. The prior budget constraint in the SDP-PBC algorithm and
RS method is K = 3, which is the minimum number of sensors
to locate a source in 2D scenario. The POA-AC, POA-MC, and
SDP-RN can be executed directly for sensor selection without
the prior budget constraint. From the partial figure in Fig. 2, the
SDP-RN, POA-AC, and POA-MC algorithms perform well than
the SDP-PBC and RS method.

We further compare the tracking accuracy and the aver-
age quantity budget of different algorithms throughout the en-
tire tracking period. The Monte Carlo method with Nm =
500 trials is used to obtain the RMSE and average quantity
budget. The RMSE at time k is calculated by RMSE(θk) =√∑

Nm
‖θ̂k−θk∗ ‖2

2/Nm, where θk
∗ is the true state of the source

at time k. The average quantity budget at time k is given by

Fig. 4. Comparison of RMSE.

Fig. 5. Comparison of average quantity budget.

Fig. 6. Comparison of average computational time.

∑
Nm

Lk/Nm, where Lk is the quantity budget at time k in
each trial. Fig. 3 shows the average objective function values
for (P2) of SDP-RN, POA-AC, and POA-MC algorithms. It
is obvious that POA-based algorithms obtain smaller objective
function value, which denotes a better tradeoff between multiple
objectives. Fig. 4 and Fig. 5 show the comparison of RMSE
and the average quantity budget of different sensor selection
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Fig. 7. Comparison of POA-MC and SDP-RN with different network size.

algorithms. We have the following observations. First, the mul-
tiobjective optimization framework provides a tradeoff between
accuracy and quantity budget to dynamically determine the
number of sensors selected at each time step. SDP-PBC and RS
algorithms can only select a fixed number of sensors (K = 3 in
the simulation) due to the quantity budget constraint, so tracking
performance cannot be guaranteed. Second, when the tradeoff
factor γ = 0.2, the proposed POA-AC and POA-MC have better
RMSE performance than the SDP-RN algorithm, and the other
two algorithms have poor performance and are unstable due to
the fixed quantity constraint. Third, POA-AC algorithm tends to
select more sensors due to the presence of the accuracy threshold
in Algorithm 2. By contrast, POA-MC and SDP-RN algorithms
select fewer sensors. Fourth, for the SDP-RN algorithm at time
stepk= 6, the average quantity budget is reduced to three and the
objective value is extremely large due to the following reason:
sensors 6, 7, and 8 are comparatively close to the source so that
their corresponding elements in fractional ṗ and q̇ are sparse
relatively to AVG(ṗ+ q̇). Overall, the proposed POA-based
algorithms perform well compared with the SDP-RN in solving
MOP (P2) and tend to select more sensors to ensure the tracking
accuracy.

Notice that the information for tracking at each time step
is related to the current geometry. Thus, with multiobjective
optimization framework, the quantity budget is influenced by
distances and angles of the source from the sensors, and may
not be closely dependent with time steps [20], [24], [27], [28].

B. Impact of Network Size

From our analysis in Section IV, the number of sensors in
the network determines the computational complexity. Thus, we
investigate the impact of network size in terms of computational
time, RMSE, and average quantity budget. We take out odd-
index sensors in Fig. 2 to form a new network withS= 8 sensors.
The source trajectory, ROA noise strength, and the tradeoff factor
are same with that of Section V.A. Fig. 6 presents the average
computational time of POA-MC and SDP-RN algorithms for the
entire tracking period. We can obtain the following conclusions.
First, POA-MC algorithm has less computational time than
the SDP-RN algorithm, and consumed time at each time step
remains at around 0.1 s when S = 8 and around 0.3 s when S =

16. However, for SDP-RN with n = 10, the consumed time at
each time step remains at around 5 s when S = 8 and around 6 s
when S = 16. Even if the number of reweighted iteration n= 1,
the consumed time at each time, around 0.5 s when S = 16, is
larger than that of POA-MC. Second, this figure illustrates that
the number of sensors in the network has a significant impact on
computational time.

In addition, when the network size S equals to 8 and 16
respectively, Fig. 7(a) and Fig. 7(b) show the comparison of
RMSE and the average quantity budget of different sensor
selection algorithms throughout the entire tracking period. Due
to the limited space in Fig. 7(b), the legend (line type and color) in
Fig. 7(b) is identical to those in Fig. 7(a). From these two figures,
we can obtain that both SDP-RN and POA-MC algorithms tend
to select more informative sensors to improve tracking accuracy
in a larger network.

C. Performance Evaluations With Different Noise Strength

In this subsection, we consider the influence of ROA noise
strength on sensor selection in TDOA tracking. When the ROA
noise strength ξ equals to −5 dB and 5 dB respectively, the
RMSE and average quantity budget of POA-MC and SDP-RN
algorithms are compared in Fig. 8. Simulations demonstrate that
the RMSE of POA-MC and SDP-RN algorithms will deteriorate
as the ROA noise strength increases, except the first four time
steps influenced by the initial particles. Besides, a similar result
is obtained that the POA-MC algorithm tends to select more
sensors to ensure the tracking accuracy.

D. Discussions With Different Tradeoff Factor

The performance comparison of POA-MC and SDP-RN al-
gorithms is shown in Fig. 9 in which the tradeoff factor γ is
set as 0.2 and 2 respectively. As known, the tradeoff factor
can balance the relationship between the tracking accuracy and
quantity budget throughout the tracking period. We have the
following observations. First, POA-MC selects more sensors
and provides better RMSE performance than that of SDP-RN
algorithm. Besides, when the tradeoff factor γ becomes larger,
the quantity budget at each moment is reduced, which also leads
to a decline in tracking accuracy.
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Fig. 8. Comparison of POA-MC and SDP-RN with different ROA noise strength.

Fig. 9. Comparison of POA-MC and SDP-RN with different tradeoff factor.

E. Multiple Sources Scenario

In this part, we consider a practical multiple sources tracking
scenario. The objective function in optimization problem (P2)
should be adjusted as

Ns∑
i=1

[
trace (Jk+1

sel )
−1 − trace (Jk+1

all )−1

trace (J́
k+1
all )−1

]

i

+ γ

∥∥lk+1
∥∥

0

S
,

(63)

where Ns is the number of sources, lk+1 = pk+1 + qk+1, and
[·]i is the metric to describe tracking accuracy of ith source.
To this end, the proposed POA-based algorithms are further
developed and improved to be applicable to the multiple sources
scenario. Next, POA-MC and SDP-RN algorithms are used to
achieve some insightful conclusions.

We study a simple yet representative scenario with two
sources and multiple sensors, as shown in Fig. 10. Both sources
start moving from the lower right corner of the area, where the
trajectory of source 1 is a straight line and the trajectory of source
2 is a curve. ROA noise strength ξ = 0 dB and power of ROA
noise σ2

i is related to the distance. When the tradeoff factor γ =
2 and 5, sensor selection solution at time steps k = 1, 10, and
18 are shown in Fig. 11, where y-axis denotes the value of the
fractional vector solved by the SDP-RN algorithm and Boolean
vector determined by the POA-MC algorithm. We can obtain the
following observations. First, from Fig. 11(a)(c)(d)(f), when k
= 1 and 18, both two sources are located near the corner of the

Fig. 10. Sensor network and trajectories of multiple sources.

area. Thus, in these two time steps, some sensors closest to both
sources are selected due to their low noise power. Second, when
k = 10, the two sources are separated from each other, one is at
the center of the area and is equidistant approximately from all
sensors, and the other is slightly closer to the sensors at a corner.
Although both two algorithms tend to select surrounding sensors
spatially distributed, sensors with indices 7, 8, 10, and 11 are
selected aggregately in a small neighborhood around source 2.
Third, in Fig. 11(e), when γ increases and the number of selected
sensors becomes less, the POA-MC and SDP-RN algorithms still
select two corner sensors close to one of the sources under the
premise of ensuring the overall accuracy.
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Fig. 11. Selected sensor indices comparison of POA-MC and SDP-RN algorithms in multiple sources scenario.

VI. CONCLUSION

This paper has investigated the sensor selection problem for
TDOA tracking in WSN, aiming to find the best tradeoff between
tracking accuracy and quantity budget for the upcoming time
step. Without knowing the prior quantity budget constraint of
selected sensors, we have formulated the MOP under the con-
sideration of characteristics of TDOA tracking, and transformed
it into a SOOP. Compared with the conventional SDP-based
solution with multi-step relaxation, we have pointed out that the
transformed SOOP satisfies the rules of DMO, and have pro-
posed POA-based algorithms for the seek of global optimization.
Simulations have been provided to show the effectiveness of
our approaches, as well as the impact of network size, tradeoff
factor, and ROA noise strength on the performance of sensor
selection. We also provide the simulation results in multiple
sources scenario. These sensor selection algorithms and the
insights obtained from the simulations are beneficial for the
design and allocation of wireless sensor network.

In the future work, we will investigate the sensor selection,
placement, and movement strategy for the upcoming period in
TDOA and FDOA tracking scenario.

APPENDIX A
PROOF OF PROPOSITION 1

From F (lk+1, λk+1) = f(lk+1) + γλk+1

S − γ, since γ and S
are scalars greater than 0, the monotonicity of the F (·) with
respect to λk+1 is obvious. Hence, the monotonicity of F (·)
with respect to lk+1 is equivalent to that of f(·). To simplify the
process, the superscript of the letter is omitted hereafter.

Compared with l̊, an extra sensor is selected in l̇. We define
the difference between l̇ and l̊ as l̂ = l̇− l̊, and the �1 norm of
l̊ is replaced by v. From (41), we have

Ċ − C̊ =
1
α

(
diag{l̂}+ l̊̊l

T

v
− l̇l̇

T

v + 1

)

=
1

αv(v + 1)

(̊
l− vl̂

) (̊
l− vl̂

)T

= c1k1k
T
1 , (64)

where c1 = 1/(αv(v + 1)) and k1 = l̊− vl̂. The scalar c1 is
larger than 0 because both v and α are larger than 0. We further
define Ẇ = (Ro)

−1 + Ċ and W̊ = (Ro)
−1 + C̊. Since the

FIM matrix Jsel in (38) is semidefinite, from the Schur comple-
ment of FIM, we have matrices Ẇ and W̊ to be semidefinite.
Then, the inverse matrix of Ẇ can be derived according to the
matrix inversion lemma [25],

Ẇ
−1

=
(
W̊ + ck1k

T
1

)−1

= W̊
−1 − c1W̊

−1
k1

[
1 + c1k

T
1 W̊

−1
k1

]−1
kT

1 W̊
−1

= W̊
−1 − c2k2k

T
2 , (65)

where c2 = c1/(1 + c1k1
TW̊

−1
k1) and k2 = W̊

−1
k1. Since

Ẇ is semidefinite and c1 > 0, we have c2 > 0 following from
the Schur complement of (65). From (38), when the Boolean
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vectors are l̇ and l̊ respectively, the difference of FIMs is

J̇sel − J̊sel = D
(
W̊

−1 − Ẇ
−1
)
DT = c2k3k

T
3 . (66)

where k3 = Dk2. We use the matrix inversion lemma again and
obtain

J̇
−1
sel =

[
J̊sel + c2k3k

T
3

]−1
= J̊

−1
sel −

c2J̊
−1
selk3k

T
2 J̊

−1
sel

1 + c2kT
3 J̊

−1
selk3

.

(67)

Consequently, we have

F (l̇, λ)− F (̊l, λ) = trace(J̊
−1
sel − J̇

−1
sel)

=
c2k

T
3 J̊

−2
selk3

1 + c2kT
3 J̊

−1
selk3

> 0. (68)
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