
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 12, DECEMBER 2019 12301

Short-Term Traffic Prediction Based on
DeepCluster in Large-Scale Road Networks

Lingyi Han , Student Member, IEEE, Kan Zheng , Senior Member, IEEE, Long Zhao , Member, IEEE,
Xianbin Wang , Fellow, IEEE, and Xuemin Shen, Fellow, IEEE

Abstract—Short-term traffic prediction (STTP) is one of the
most critical capabilities in Intelligent Transportation Systems
(ITS), which can be used to support driving decisions, alleviate
traffic congestion and improve transportation efficiency. However,
STTP of large-scale road networks remains challenging due to
the difficulties of effectively modeling the diverse traffic patterns
by high-dimensional time series. Therefore, this paper proposes
a framework that involves a deep clustering method for STTP in
large-scale road networks. The deep clustering method is employed
to supervise the representation learning in a visualized way from
the large unlabeled dataset. More specifically, to fully exploit the
traffic periodicity, the raw series is first divided into a number
of sub-series for triplet generation. The convolutional neural net-
works (CNNs) with triplet loss are utilized to extract the features
of shape by transforming the series into visual images. The shape-
based representations are then used to cluster road segments into
groups. Thereafter, a model sharing strategy is further proposed
to build recurrent NNs-based predictions through group-based
models (GBMs). GBM is built for a type of traffic patterns, instead
of one road segment exclusively or all road segments uniformly.
Our framework can not only significantly reduce the number of
prediction models, but also improve their generalization by virtue
of being trained on more diverse examples. Furthermore, the
proposed framework over a selected road network in Beijing is
evaluated. Experiment results show that the deep clustering method
can effectively cluster the road segments and GBM can achieve
comparable prediction accuracy against the IBM with less number
of prediction models.

Index Terms—Short-term traffic prediction, large-scale road
networks, deep representation learning, deep clustering.

I. INTRODUCTION

SHORT-TERM traffic prediction (STTP) techniques have
recently been studied for efficient route planning and traffic
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control in Intelligent Transportation Systems (ITS) [1]–[3]. The
main idea of STTP is to predict the road traffic state (i.e., flow,
speed and density) in the next five to thirty minutes by analyzing
historical traffic data [4]. Existing STTP studies mainly focused
on one road segment, or a small-scale road network that contains
only a few adjacent road segments. However, effective route
planning requires a global perspective based on the information
of the whole network [5]–[9]. The most existing STTP methods
are limited to a single scenario such as freeway, arterial and
corridor. They are difficult to be generalized to a heterogeneous
road network that involves several road segments of diverse
road functions. Besides, the development of ITSs within cities
increases the amount of traffic data in terms of time span and
granularity [10]. Therefore, making full use of tremendous traf-
fic data to improve accuracy of STTP in large-scale networks
becomes a challenge.

The existing STTP method of large-scale networks is either to
develop a specific prediction model with the high accuracy for
each road segment, termed as individual-based model (IBM),
or build a general prediction model with the high efficiency
for all road segments, termed as whole-based model (WBM).
Considering the multiplicity and heterogeneity of large-scale
networks, neither of the two models is appropriate for STTP in
large-scale networks due to the following reasons. On the one
hand, massive number of IBMs occupy lots of storage resources
in ITS. Besides, the number of training samples collected from
one segment is insufficient for developing a robust IBM due to
the easy trends towards overfitting. On the other hand, WBM
is not effective for modeling the whole network with different
types of traffic patterns. Moreover, the WBM is vulnerable to
the curse of dimensionality by taking historical data from all
segments as inputs. Therefore, both efficiency and accuracy
of the two models are not ideal for large-scale networks. To
overcome this difficulty, a feasible STTP method for large-scale
networks needs to be studied.

Generally, representation learning, a.k.a. dimension reduc-
tion, is used to transform the raw data into a good representation
that makes the subsequent learning easy. It plays an important
role in time series clustering, because time series are essentially
high-dimensional and susceptible to noise. Hence, clustering of
raw series is computationally expensive and distance measures
are highly sensitive to the distortions. Recently, deep learning
(DL) has witnessed many success in different related areas,
including computer vision, speech recognition and network-
ing [11]–[15], due to its theoretical function approximation
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properties [16], and feature learning capabilities [17]. To lever-
age these technological advancements, deep representation is
adopted in this paper for traffic series clustering.

In this paper, an STTP framework composed of a deep cluster-
ing method and several prediction models is proposed for large-
scale road networks. The proposed framework aims to achieve
a good tradeoff between the quantity of prediction models and
the prediction accuracy. The existing DL-based representation
learning methods in clustering are mostly designed for static
data. They may not suit for the traffic series data, which is higher
dimensional and more sensitive to noise than static data. In-
stead of directly applying the existing DL-based representation
learning methods, a novel shape-based representation learning
method is developed for road segments clustering. The deep
clustering method is self-driven and is capable of processing
a large number of high-dimensional traffic series data. After
clustering, by exploiting the diversity and similarity of traffic
patterns, a group-base model (GBM) is proposed for a type of
traffic patterns. The main technical contributions of the paper
are summarized as follows:
� A traffic series clustering method based on DL representa-

tion learning termed as DeepCluster, is developed. By fully
exploiting the periodicity of traffic data, a strategy is de-
signed to generate triplets1 from original unlabeled traffic
series. A triplet consists of three sub-series that two of them
have more similar profiles than others, which are then used
in turn to supervise the representation learning. Moreover,
the dimension of the series used for representation learning
is significantly reduced as compared to raw series.

� Unlike the existing hand-craft features, such as the
frequency transformation, wavelet transformation and
Shapelets, a pure data-driven representation learning
method is proposed to learn the shape-based features of
traffic series. More specifically, a rasterization strategy is
designed to transform the traffic series into traffic images in
a visualized way. The convolutional neural network (CNN)
with triplet loss is used for traffic series representation
learning. At last, the representations are used to cluster
the road network into K groups by clustering methods.

� Instead of modeling a road segment or all road segments,
the GBM is proposed for a type of traffic patterns. Based on
the idea of model sharing, all road segments in a group with
similar traffic profiles share one prediction model. Each
GBM is learned by aggregating all the training samples
from a group. Model sharing increases the number and the
diversity of the training samples, which is beneficial for
model generalization. Experiment results validate that the
GBM has stronger generalization ability than IBM. The
impact of input interval on prediction performance is also
analyzed by experiments.

The rest of paper is organized as follows. Section II reviews
the related works. In Section III, the data used throughout the
paper is described. Section IV formulates the STTP problem in
large-scale networks and introduces the proposed framework. In

1A triplet consists of two traffic series with the same positive tag and a traffic
series with a negative tag.

Section V, the DeepCluster method are detailed. The DeepPre-
diction is then proposed in Section VI. In Section VII, simulation
results of the proposed framework are given, before concluding
the paper in Section VIII.

II. RELATED WORKS

A. Time Series Representation Learning

A wide variety of methods had been developed for time series
representation learning in clustering [18]–[20], such as spec-
tral transformation [21], wavelets transformation [21], eigen-
value analysis techniques [22], piecewise linear approxima-
tion (PLA) [23], adaptive piecewise constant approximation
(APCA) [24], symbolic approximation (SAX) [25], piecewise
aggregate approximation (PAA) [26] and perceptually important
point (PIP) [27]. However, all these methods are based on
hand-craft features, which are designed to describe specific time
series patterns and heavily rely on the database.

A new trend of time series learning merges with artificial
neural networks (ANNs), especially DNNs based representation
learning in clustering, which are data-driven and capable of
learning a powerful representation from raw data through a
high-level and non-linear mapping. Therefore, some works have
used the deep representation learning to improve the perfor-
mance of clustering. C. Song et al. in [28] integrated K-means
algorithm into a stacked auto-encoder (SAE) by minimizing the
reconstruction error as well as the distance between data points
and corresponding clusters. It alternatively learned the represen-
tations and updated cluster centers. In [29], [30], the K-means
algorithm used the nonlinear representations that are learned by
DNNs for clustering. J. Xie et al. in [31] proposed a deep em-
bedded clustering method that simultaneously learned the rep-
resentations and cluster assignments. It defined a centroid-based
probability distribution and minimizing its Kullback-Leibler
(KL) divergence to an auxiliary target distribution. K. Tian et al.
in [32] improved the existing works by proposing a general
flexible framework that integrated traditional clustering methods
into different DNNs. The framework is optimized by alternating
direction of multiplier method (ADMM). However, the above
methods all worked with the static data that are simple and low
dimensional compared with time series data in general. On the
other hand, there is less research on the deep representation
learning of time series in clustering. Therefore, an efficient time
series representation learning algorithm dedicated for clustering
needs to be developed.

B. Short Term Traffic Prediction

There are numerous researches on single-point STTP [5], such
as autoregressive integrated moving average (ARIMA) family of
models, Kalman filters, support vector machine (SVM), traffic
flow theory-based simulation models, ANNs and recurrent NNs
(RNNs). Obviously, single-point models predict the future traffic
state for a target road segment only using its own historical data,
which ignores the relations between the target road segment
and adjacent segments. Consequently, some researches have
focused on predicting one or multiple segments by taking the
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Fig. 1. The network topology at Liuli Bridge, Beijing.

spatio-temporal interrelations among adjacent road segments
into account [33]–[37]. However, the above network-level STTP
methods belong to IBMs or WBMs, which restricted to small
regions that containing several adjacent road segments.

Recently, a few literatures begin to pay attention to the predic-
tions in large-scale networks. In [38], dynamic simulator based
on traffic flow theory was used for STTP in the network with
limited traffic data. [39]–[41] only predicted the traffic state
of the representative road subset to achieve the prediction for
a whole network by utilizing data compression technologies.
However, the performance of prediction was poor resulted from
compression and reconstruction errors. W. Min et al. in [42]
considered a road network consists of about 500 road segments.
However, they developed a custom model for the test area, which
is not practical. Z. Zhao et al. in [43] performed prediction for
each individual road segment with a two-dimensional long short
term memory (LSTM) network by considering spatio-temporal
correlations. A comparison with other representative forecast
models including ARIMA, SVM, basic RNN, etc. validates that
the proposed LSTM network can achieve a better performance.
Nevertheless, STTP through IBMs is hard to implement for
large-scale networks in practice. in [44], [45], DNNs such as
deep belief networks (DBNs) and CNNs are employed to im-
prove the performance of STTP. However, they only built one
model and expected it to fit for all segments without considering
the fact that the whole network is heterogeneous with different
types of segments. Therefore, these attempts are hard to be
implemented in large-scale networks with high accuracy.

III. THE DATA

The traffic data used throughout the paper is collected from
Beijing Liuli Bridge, the road network topology of which is
shown in Fig. 1. The network consists of about 1,000 road
segments with a diverse level of road functions including ex-
press way, arterial road, access road, side road, etc. The dataset
collected by Beijing Transportation Institute contains the traffic
speeds from September, 2017 to November, 2017 with five-
minute sampling interval. Hence, each road segment has totally
90 × 288 measured data, where 90 means the number of days

Fig. 2. Average traffic speeds of six road segments with five-minute time
interval from September, 2017 to November, 2017.

and 288 means the number of speed samples collected in each
day. The speed data is measured by vehicles such as taxis and
buses that are equipped with GPS.

IV. PROPOSED FRAMEWORK FOR STTP

A. Formulation of STTP Problem

Consider a large-scale road network Φ consists of
Nroad road segments, i.e., Φ = {x(r)}Nroad

r=1 , where x(r) =

[x
(r)
1 , x

(r)
2 , . . . , x

(r)
Nspeed

] represents the average speed series on

the rth segment. A sub-series of x(r) is denoted by

x
(r)
n:L:l = [x(r)

n , x
(r)
n+l, . . . , x

(r)
n+(L−1)l], (1)

where x
(r)
n:L:l is a set of L continuous measured values with

sampling intervals l from a time seriesx(r), that starts at position
n. x(r)

n:L:1 is abbreviated as x(r)
n:L for simplicity.

Let x̂n+Noutput
be the predicted speed value with predic-

tion horizon Noutput, given the corresponding Ninput historical
speed values up to time n. The goal of STTP is to construct a
mapping function f(·) between the historical speed values and
the future one, i.e.,

x̂n+Noutput
= f(xn−Ninput+1, xn−Ninput+2, . . . , xn)

= f(xn−Ninput+1:Ninput
). (2)

B. Proposed Framework

As stated above, neither IBMs nor WBMs is suitable for large-
scale networks, because they consist of not only a large number
of road segments, but also a variety of road segment types, as
shown in Fig. 2. To tackle this problem, a framework dedicated
for STTP in large-scale road networks is proposed in this paper.
The proposed framework clusters the road segments into several
groups, each of which has a typical traffic pattern. Within each
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Fig. 3. The block diagram of the proposed STTP framework.

Fig. 4. Architecture of LeNet-5 (Above the rectangles are the number of
channels and its size in parenthesis).

group, the traffic patterns of all road segments are highly similar.
Based on that, an STTP model is built for a type of the traffic
patterns within a group rather than a road segment or all road
segments.

The architecture of this framework is illustrated in Fig. 3.
It consists of two major components, i.e., DeepCluster and
DeepPrediction. The DeepCluster method is proposed for rep-
resentation learning and clustering of high-dimensional traffic
series from a unlabeled traffic dataset. Based on the clustering
results, the DeepPrediction method is developed for effective
STTP. The DeepCluster and DeepPrediction are detailedly given
in Section V and VI, respectively.

V. DEEPCLUSTER

In this section, the proposed DeepCluster method is described
in details. Before presenting the DeepCluster, the problem of
clustering in large-scale networks is formulated as follows.

Definition 1: Given a large-scale network Φ consists of
Nroad traffic series, i.e., Φ = {x(r)}Nroad

r=1 , the process of parti-
tioningΦ intoK groups {C(1),C(2), . . . ,C(K)} is called traffic
series clustering. In such a way that homogenous traffic series
are grouped together based on a certain similarity measure.

In contrast to the traditional extrinsic handcrafted features,
human can easily seize the intrinsic visual-based features, which
is why they can quickly distinguish different types of the time
series under the help of high abstraction ability. Moreover, com-
pared with raw time series, the intrinsic visual-based features
are much steadier and can be less affected by the distortions and
scale of samples. To overcome the issues of raw data-based or
handcraft-based clustering methods, deep representation learn-
ing is used for traffic series clustering.

The key advantage of CNNs is that the features are not
designed by handcrafting, but are learned from data using a
general-purpose learning procedure [17]. CNNs can process
any form of arrays, such as 1D series, 2D images and 3D
videos. Fig. 4 shows the architecture of a typical CNN, named
LeNet-5 [48], where two main types of layers different with

Fig. 5. Average traffic speeds of four road segments on different days of the
week from September, 2017 to November, 2017. (Five-minute time interval)

the regular ANNs are convolutional layers (C-layer in Fig. 4)
and subsampling layers (S-layer in Fig. 4). The convolutional
and subsampling operators make the representations more in-
variant to the distortion compared to the raw data. Besides, the
parameter sharing makes the CNNs capable of processing high-
dimensional inputs. The aforementioned characteristics inspire
us to adopt the CNNs for traffic series representation learning. In
this section, we explore an efficient deep CNN architecture, i.e.,
FaceNet [46], to learn a mapping from raw high-dimensional
traffic series to low-dimensional representations that are used
for clustering.

The DeepCluster includes triplet generation, inputs transfor-
mation, representation learning and clustering, which is given
below in details.

A. Triplet Generation

As can be seen in Fig. 5, the daily traffic patterns mostly
follow the same trend. The traffic daily similarity index defined
in [47] is calculated to investigate the traffic periodic pattern of
one day. The traffic daily similarity is defined as the normalized
gaps between each pair of measurements in two consecutive
days from one road segment. As stated in Section III, the traffic
speeds are collected every 5 minutes. Since one day has 288
time intervals, the traffic similarity SIM(r)

m in Segment r in time
interval m can be calculated by

SIM(r)
m =

|x(r)
m − x

(r)
m+288|

max1≤n≤Nspeed−288 |x(r)
n − x

(r)
n+288|

. (3)
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Fig. 6. The CDF of similarity (SIM(r)
m ) with real traffic speeds. The low

SIM
(r)
m near 0 indicates that the speed is almost the same with the speed at the

same daily time from consecutive day.

The small value indicates that the speed changes little with
respect to the speed at the same daily time from consecutive
day. Fig. 6 demonstrates the cumulative distribution function
(CDF) of SIM(r)

m over all road segments. It can be clearly
observed that more than 80% SIM(r)

n are smaller than 0.2,
which indicates that periodic pattern exists in traffic series on
most of the road segments. To fully exploit the traffic temporal
features of periodicity, we propose to generate triplets consist
of three traffic series that two of them are more similar than
others in profile. Given Nroad traffic series with period Nperiod

measured from Nroad road segments, the traffic series is split
into sub-series by periods, termed as periodic sub-series. Thus,
d = Nspeed/Nperiod periodic sub-series for each segment are
obtained,

{x(r)
1:Nperiod

,x
(r)
Nperiod+1:Nperiod

, . . . ,x
(r)
(d−1)Nperiod+1:Nperiod

},
(4)

here x
(r)
nNperiod+1:Nperiod

= [x
(r)
nNperiod+1, . . . , x

(r)
(n+1)Nperiod

] is
the (n+ 1)th ( 0 ≤ n ≤ d− 1) periodic sub-series in Segment
r. According to the traffic daily similarity, a triplet is made up by
randomly choosing two different periodic sub-series from one
Segment ri, and one sub-series from another Segment rj ,

{x(ri)
nNperiod+1:Nperiod

,x
(ri)
mNperiod+1:Nperiod

,x
(rj)
kNperiod+1:Nperiod

},
0 ≤ n,m, k ≤ d− 1, n �= m, ri �= rj . (5)

In a triplet, two sub-series from a segment are marked as positive
tags, while the other is marked as negative tag. The triplets are
then used to supervise the traffic series representation learning.
The employment of triplets can be regarded as a strong prior
belief imposed on the representations of traffic series. The prior
belief indicates that the traffic sub-series sampled from a road
segment should be clustered into a group in most cases.

B. Inputs Transformation

In order to extract the shape-based features, a rasterization
strategy is designed to visualize the traffic series into gray-scale

Fig. 7. The schematic diagram of the inputs transformation.

Fig. 8. The block diagram of representation learning.

images, as shown in Fig. 7. The transformed images can reveal
the features of shape well, such as bulge and sink. Let the series
x = [x1, x2, . . . , xN ] be standardized by min-max normaliza-
tion to keep values between 0 and 1. The N dimensional series
x is transformed to a N ×N dimensional matrix X with each
element being expanded to a N dimensional vectors,

X = [e255(p1), e
255(p2), . . . , e

255(pN )], (6)

wheree255(pn) is aN dimensional column vector corresponding
to the nth element xn of x. e255(pn) denotes a vector with the
pixel value of 255 at its pnth element standing for white and 0
standing for black elsewhere. The position pn can be calculated
by

pn = �Nxn�, pn ∈ {1, 2, . . . , N}, (7)

where �·� denotes the operator of rounding up. The transformed
images are shown in Fig. 8, which are used as inputs for represen-
tation learning. The sub-image corresponding to the sub-series
x
(r)
nNperiod+1:Nperiod

is denoted as X
(r)
n . Therefore, the triplet

becomes

{X(ri)
n ,X(ri)

m ,X
(rj)
k },

0 ≤ n,m, k ≤ d− 1, n �= m, ri �= rj . (8)

C. Representation Learning and Clustering

DNNs with triplet loss from [46] is employed to learn the
representations of traffic data from a traffic image space into a
feature space. The triplet loss encourages the representations of
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a pair of sub-images from one segment to be close to each other,
and those from different segments to be far away in the feature
space. Denoting f(X) as the representation of X , the triplet
loss is given by

||f(X(ri)
n )− f(X(ri)

m )||22 − ||f(X(ri)
n )− f(X

(rj)
k )||22,

∀{X(ri)
n ,X(ri)

m ,X
(rj)
k } ∈ Γ,

(9)

where Γ is the set of all possible triplets. The structure of DNNs
with triplet loss is shown in Fig. 8, where the outputs of the last
layer are the representations used for clustering. The represen-
tations are not only learned by the current sub-image, but also
other sub-images coming from a road segment. The dimension
of the representations is lower than the raw series. For example,
considering a traffic series with five-minute interval during 90
days. The length of whole series is 288 × 90, while the length
of daily sub-series is 288. If 32-dimensional representations are
used in clustering, the ratio of reduction in dimension is about
288×90−32

288×90 ≈ 99%. Subsequently, all the representations from
one road segment are averaged, and the averaged representations
are then clustered into k groups, i.e.,

C(k) = {x(r,k)}, 1 ≤ k ≤ K, 1 ≤ r ≤ Nroad, (10)

where K is much less than Nroad. C(k) denotes the kth group,
and x(r,k) represents that the rth road segment in the network
clustered into the kth group C(k).

VI. DEEPPREDICTION

Based on the clustering results, a DeepPrediction module in-
cluding of prediction input analysis and model sharing is further
developed for STTP in large-scale networks in this section. Some
definitions and statements are given first.

Definition 2: Given two functions g(1) : R → R and g(2) :
R → R, g(1) is homogeneous with g(2) if there exists a real
number α such that

g(1)(x) = g(2)(x+ α), ∀x ∈ R. (11)

Theorem 1: Let {(xi, y
(1)
i )}Ni=1 be N distinct successive

samples generated from a function g(1). Given a predic-
tion model f(·;w) with parameters w, build a map be-
tween historical values and the future value: y

(1)
N = f(y

(1)
1 ,

y
(1)
2 , . . . , y

(1)
N−1;w

(1)). Similarly, get N successive samples

{(xi + α, y
(2)
i )}Ni=1 from another function g(2) and build a map

y
(2)
N = f(y

(2)
1 , y

(2)
2 , . . . , y

(2)
N−1;w

(2)) with the same prediction
model. Then w(1) is equal to w(2) if g(1) is homogeneous with
g(2) at step α.

As described in Eq. 2, the prediction model only utilizes the
historical speed values, and Theorem 1 indicates that if two speed
curves are homogeneous, the prediction models are identical.
A prediction model that specific for a type of traffic patterns
instead of a road segment or all segments is proposed. Unlike
the regular ANNs, RNNs are capable of exhibiting the temporal
correlations of time series, which makes them applicable to tasks
such as language modeling, speech recognition and time series
forecasting. The key idea of RNNs is to imitate a sequential

Fig. 9. Architecture of a basic three-layer RNN.

Fig. 10. The ACF of the traffic speeds of a random segment from lag 1 to lag
20. The shaded area represents the 95% confidence intervals, which is used to
determine whether the autocorrelation coefficients is significantly different from
zero.

dynamic behavior with a chain-like structure that allows the
information to be passed from previous layer to the current one,
as illustrated in Fig. 9. In this paper, RNNs are used as prediction
models to capture the temporal correlations of traffic series.
The implementations of the DeepPrediction are elaborated as
follows.

A. Prediction Input Analysis

The parameters of inputs of prediction models, including
the time span and interval are analyzed in this section. Based
on the observations that the traffic data has the similar daily
patterns in Section V-A, the time span of prediction inputs is
set to be a day, to provide the enough historical information,
as well as avoid the information redundancy between days. In
order to further reduce redundancy within days, we investigate
the autocorrelation of traffic series. The autocorrelation function
(ACF) at lag i represents the correlations between measurements
which are i intervals apart. As shown in Fig. 10, the traffic
speeds on the consecutive intervals are linearly correlated, which
implies that feeding all measurements of a day to the prediction
model may result in information redundancy. The input interval
l used in the prediction model is calculated by

l = max
i≥1

{i : pi > p}, (12)
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where pi denotes the ACF at lag i, and p is the given
threshold that is determined by experiments. Hence, the in-
put seriesxn−Ninput+1:Ninput

becomesxn−Ninput+1:N ∗
input:l

. The
length of the input reduces from Ninput = Nperiod to N ∗

input =
�Nperiod/l�.

B. Model Sharing

Within each group, a prediction model termed as group-based
model (GBM) is trained for all road segments. The training
samples for each group are generated by

x(r,k) →< x
(r,k)
n−Ninput+1:N ∗

input:l
, x

(r,k)
n+Nouput

>,

x(r,k) ∈ C(k), (13)

where x
(r,k)
n−Ninput+1:N ∗

input:l
and x

(r,k)
n+Nouput

denote the input and
output of the prediction model, respectively. After that, the
samples within a group are aggravated to train a GBM f (k)(·)
for Group C(k),

x
(r,k)
n+Noutput

= f (k)(x
(r,k)
n−Ninput+1:N ∗

input:l
), x(r,k) ∈ C(k).

(14)
Then, the STTP model f(·) of the road network can be written
as

x
(r,k)
n+Noutput

= f(x
(r,k)
n−Ninput+1:N ∗

input:l
)

= f (k)(x
(r,k)
n−Ninput+1:N ∗

input:l
), k ∈ {1, 2, . . . ,K}.

(15)

The proposed DeepPrediction method has the following ad-
vantages:
� As compared to the IBMs, the number of prediction models

is significantly reduced.
� The increase of the number of training samples and the

decrease of the number of input dimensions can not only
improve the generalization of prediction models, but also
avoid the curse of dimensionality [49].

VII. PERFORMANCE EVALUATION

In this section, the proposed framework for the road network
mentioned in Section III is evaluated. The data used in our ex-
periments are introduced at first. Then, the experiment setup and
performance metrics are described. The prediction performances
over different metrics are finally analyzed.

A. Experiment Setup

The missing historical data adversely affect the performance
of traffic prediction [50]. Therefore, the missing ratio of each
road segment is calculated over the road network stated in
Section III. The missing ratio represents the percentage of miss-
ing data in a road segment during the sampling time span. On
the one hand, a prediction model is built for each road segment
to make a comparison with IBMs. On the other hand, too much
missing data influence the clustering results significantly, since
the road segments are clustered into groups by the traffic profiles.
By taking both the experimental complexity and data integrity

Fig. 11. Average traffic speeds of one random segment on weekdays versus
those at weekends with five-minute time interval from September, 2017 to
November, 2017.

into accounts, the road segments whose missing ratios are lower
than 90% are used for performance evaluations. The number of
eligible road segments is 27 in total.

In DeepCluster module, the traffic series is first split into 90
daily sub-series of length 288 for each segment. Fig. 11 shows
that the traffic patterns on weekdays are different from those at
weekends between six and ten o’clock in the morning, since most
people do not work at weekends (The circular region). Besides,
the National Day, i.e., from October 1 to October 8 in 2017, has
a great influence on traffic patterns. Fig. 12 shows that the traffic
patterns behave abnormally during these days. It is better to learn
the representations of traffic patterns of weekdays, weekends and
National Day separately and use them for clustering. However,
the number of daily sub-series on the weekends and holidays is
too small to learn the good representations of the traffic patterns.
As for the National Day, there are only eight daily sub-series for
a road segment. Even worse, the eight daily sub-series do not
follow the similar patterns and we need to learn a representation
for each day of the holiday. Therefore, we only consider the
workday in the data set and the proposed framework can be
directly extended to the cases with weekends or holidays. As
a result, 60 daily sub-series are chosen by deleting those at
weekends and during the National Day. Then, the sub-series
of size 1 × 288 is transferred into images of size 288 × 288. As
discussed in Section V, triplets are generated by the daily sub-
series from 27 road segments, which are used for representation
learning. The deep structure of FaceNet used in this paper is
the Inception_ResNet, the configuration of which is the same
with that in [46]. The averaged representations of the sub-series
from a road segment are then used for clustering by K-means
algorithm.

In DeepPrediction module, it is worth mentioning that there is
no limitation on the type of time series forecasting algorithms.
The state of the art RNN, i.e., LSTM [51] is used for experi-
mentations. As stated in Section VI-A, the time span of inputs is
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Fig. 12. Average traffic speeds of a random segment on weekdays with five-minute time interval from September, 2017 to November, 2017 versus those during
the National Day.

TABLE I
THE CONFIGURATIONS OF THE RELEVANT DNNS

aThe implications of the parameters given in this table are explained exactly in [46].
bThe inputs and outputs size are described in [rows× cols].

chosen to be a day. Then, the number of inputs fed to LSTM
is Ninput = �288/l�, which is determined by the following
experiments. The minimum prediction horizon is determined
by the sampling interval. In order to analyze the impacts of
prediction horizons on prediction performance, each LSTM is
set to have one output node, which predicts the next Noutputth
speed. The training samples belonging to the same group are
aggregated to train the LSTM, and then K LSTM GBMs are
used for STTP in the road networks.

Key parameters of the relevant DNNs are listed in Table I. If
not mentioned specifically, all prediction models are trained by
eighty percent of data while tested by the remaining data. 10-
fold cross-validation is adopted over training dataset. K-means

clustering method is implemented by the Scikit-learn package
in Python 3.6.5. The NNs are conducted with a NVIDIA p2000
GPU, TensorFlow r1.8, CUDA 9.0 and CuDNN 9.0. Moreover,
four performance metrics including of relative error (RE), mean
relative error (MRE), max mean relative error (MARE) and
minimum mean relative error (MIRE) are used for evaluation,
which are defined as

e
(r)
RE =

∣
∣
∣x

(r)
n+Noutput

− x̂
(r)
n+Noutput

∣
∣
∣

x
(r)
n+Noutput

, 1 ≤ r ≤ Nroad, (16)

e
(k)
MRE =

1
|C(k)|

∑

x(r,k)∈C(k)

e
(r,k)
RE , 1 ≤ k ≤ K, (17)

e
(k)
MARE = max

x(r,k)∈C(k)
{e(r,k)RE }, 1 ≤ k ≤ K, (18)

e
(k)
MIRE = min

x(r,k)∈C(k)
{e(r,k)RE }, 1 ≤ k ≤ K, (19)

where e
(r)
RE denotes the RE of the rth segment with x

(r)
t+Noutput

being the true speed and x̂
(r)
t+Noutput

being the prediction. Denot-

ing e(r,k)RE as the RE of the rth segment clustered into groupC(k).
|C(k)| is the number of road segments in kth group. Besides,
e
(k)
MRE, e

(k)
MARE and e

(k)
MIRE are MRE, MARE and MIRE of

Group k, respectively. The network-level MRE can be similarly
calculated by

eMRE =
1

Nroad

∑

x(r)∈Φ
e
(r)
RE. (20)

B. Road Segments Clustering

In order to better determine the number of clusters, four
different clustering criteria are selected, including of Dunn
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Fig. 13. Comparison of CHI, SC, DBI and DUI with respect to the number of
clusters.

TABLE II
THE PERFORMANCE UNDER DIFFERENT INPUT INTERVALS

Index (DUI) [52], Calinski-Harabasz index (CHI) [53], Davies-
Bouldin index (DBI) [54] and Silhouette coefficient (SC) [55].
The higher CHI, SC and DUI indicate the better number of
clusters, while the lower DBI indicates the better one. Fig. 13
evaluates each clustering criterion with respect to the number of
clusters. It can be clearly found that 3 is the optimal number of
clusters by comprehensively considering the four criteria.

All 27 road segments are clustered into 3 groups by DeepClus-
ter, as shown in Fig. 14. It can be found that the traffic series
in the same group are in general homogeneous with the other
series, which demonstrates the proposed DeepCluster’s ability
of extracting the shape-based features. For example, the traffic
speeds in Group 1 have a breakdown in traffic speed during the
evening peak period, followed by speed recovery. The traffic
speeds in Group 2 reach the bottom during the morning peak,
and start to swing at the middle speed back-and-forth. The traffic
speeds in Group 3 have some slight resemblances to those in
Group 1 during the evening peak period. However, they stabilize
at the middle speed after six o’clock in the morning.

C. Input Interval Confirmation

This section investigates the effect of input interval on the
prediction performance and determines the threshold p of the
ACF defined in Section VI. The LSTM is employed to predict
the next five-minute speed under different input intervals l over 3
random segments. From the performance listed in Table II, it can
be seen that the MRE of training increases with decreasing in l.
This is intuitive that small intervals can provide much historical

information. However, the improvements of training MRE are
insignificant when l ≤ 5. For example, the training MRE is
3.7% and 4.4% when l = 1 and l = 5, respectively. Besides,
the testing MRE at l = 1 is slightly larger than that at l = 5. The
reason is that the capacity of prediction model improves with
the decreasing interval, leading to overfitting. From this result,
the threshold is empirically set as 0.8. For all other simulations,
the input interval is set to be 5 corresponding to twenty-five
minutes and thus the length of inputs is �288/5� = 58.

D. STTP in Network

In this section, the STTP performances of the proposed GBMs
in the large-scale road network is analyzed. For comparison, one
WBM and 27 IBMs are built for 27 segments, respectively. All
prediction models are trained with the same configurations of
LSTM. The performances of WBM, IBM and GBM are listed
in Table III, where different prediction horizons Noutput are
considered.

From Table III, it is intuitively obvious that the MRE increases
with increasing prediction horizon. Among three prediction
models, the IBMs obtain the lowest training MRE, since larger
datasets are harder to fit [56]. However, GBMs can obtain lower
gaps between training MREs and testing MREs than those of
IBMs in all tests, since increasing the number and diversity of
the training samples can improve generalization capability of the
prediction model [49]. On the contrary, IBMs are constrained
by the problem of overfitting resulted from modeling the noise.
Fig. 15 evaluates the average prediction performances of the
network. The gaps between training MREs and testing MREs of
GBMs are close to be 0, while the ones of IBMs are around 2%,
which further indicates that GBMs have better generalization
capacity than IBMs.

As shown in Table III and Fig. 15, WBMs perform worst
among three prediction models in terms of MRE in all cases. For
the 5, 10 and 15-minute prediction results, the network training
MRE of WBMs declines by 2%, 3% and 5%, respectively,
compared to the network training MRE of IBMs. Moreover,
the testing MARE of WBMs reaches up to 15% at Noutput = 3.
Both network and group performances indicate that the WBMs
fail to model the diverse traffic patterns in large-scale networks.

From Table III, it can be observed that GBMs perform better
than IBMs in terms of testing MRE in a relatively simple task
of five-minute forecasting. The testing MREs of the GBMs and
IBMs are 4.12% and 5.05% for Group 1, 4.07% and 4.94% for
Group 2, 5.00% and 5.37% for Group 3, respectively. More-
over, GBMs achieve the lowest MIRE of 2.7% at Noutput = 1.
However, as the task becomes complex, the capacity of GBMs
becomes insufficient. For example, the testing MREs of GBMs
are around 1% more than those of IBMs when Noutput = 2,
while the testing MREs of GBMs are around 2% more than
those of IBMs when Noutput = 3.

As shown in Fig. 16, the GBMs can predict the trends of
traffic speeds well, but the prediction performance gets worse
with increasing prediction horizon. It can be seen that GBM of
5-minute forecasting can efficiently predict the sudden speed
changes, while GBM of 10 or 15 minutes forecasting has a
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Fig. 14. Average traffic speeds of the road segments on weekdays with five-minute time interval from September, 2017 to November, 2017 in different groups.
The thicker red lines represent the centers of the corresponding clusters.

TABLE III
THE GROUP PERFORMANCE OF THE PROPOSED FRAMEWORK

GBM: Group-based Model. IBM: Individual-based Model. WBM: Whole-based Model.

delayed reaction in rush hours (the dash area in Fig. 16), in
which the traffic speed switches sharply. During the evening
rush hour from around 4:30PM to 7:30PM, GBM predicts the
next 5-minute speed with a small error rate at the beginning
and the ending of congestion, while 10 or 15-minute predictions
delay (with respect to the true speed). This is because that the

observations made in the immediate past are usually a good
indication of the short-term future. The closer the inputs to the
predicted point are, the more information about the predicted
point the model has. Therefore, GBMs under all prediction
horizons can keep up with the trends of traffic speed well, when
the speed steadily changes. However, when the speed changes
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Fig. 15. Network MREs of GBM, WBM and IBM.

Fig. 16. The estimated speeds with different prediction horizons by GBMs
versus true speeds of a random road segment in Group 1 on November 31, 2017.

sharply and suddenly, the inputs for predicting the next 10 or
15 minutes speed have less indications of such changes than
those for predicting the next 5 minutes speed. In such case, the
prediction model cannot capture the speed changes at the very
beginning, but can adjust itself shortly after it takes the changed
speed into account.

The proposed framework is scalable that can be easily applied
for large-scale networks by significantly reducing the number
of prediction models. It can reach the compromise between
the number of prediction models and prediction performance.
Compared to the traditional 27 IBMs, the number of GBMs is
reduced by (27−3)

27 ≈ 88% with about 0.7% − 1.9% performance
degradation, in terms of network MRE, as shown in Fig. 15. In
conclusion, the prediction accuracy of the proposed framework
is comparable to that of customized IBMs, which validates its
ability for STTP in large-scale networks.

The prediction performance is validated over 27 road seg-
ments and may vary from the size of dataset. Besides, the

reduction in the amount of the prediction model depends much
on the similarity between road segments. If all road segments
follow similar patterns, the GBMs degenerate into the WBMs.
If each road segment belongs to a category of its own, the GBMs
become the IBMs.

VIII. CONCLUSION

The characteristics of the multiplicity and heterogeneity make
STTP in large-scale networks a challenging and important prob-
lem. By exploiting the periodicity of traffic patterns, a DL
framework for STTP in large-scale networks is proposed in this
paper. The key point of the framework is the combination of the
DeepCluster and the DeepPrediction, as well as the model shar-
ing strategy. The proposed framework is evaluated over a real
large-scale network of Liuli Bridge in Beijing and some insights
into generic DL models are obtained. Despite the prediction
performances of the GBMs are slightly worse than those of IBMs
in most tests, the GBMs have a better generalization ability. For
five-minute prediction, the GBM obtains 0.7% error lower than
IBM. The effect of input intervals on the prediction performance
is also discussed, which guides the framework to select the
effective input interval. Furthermore, only 3 prediction models
are used to achieve STTP in a network, while the traditional way
needs 27 prediction models.
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