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Abstract—In the second part of this two-part paper, we extend
the study of dynamic caching via state transition field (STF)
to the case of time-varying content popularity. The objective of
this part is to investigate the impact of time-varying content
popularity on the STF and how such impact accumulates to affect
the performance of a replacement scheme. Unlike the case in the
first part, the STF is no longer static over time, and we introduce
instantaneous STF to model it. Moreover, we demonstrate that
many metrics, such as instantaneous state caching probability
and average cache hit probability over an arbitrary sequence
of requests, can be found using the instantaneous STF. As a
steady state may not exist under time-varying content popularity,
we characterize the performance of replacement schemes based
on how the instantaneous STF of a replacement scheme after
a content request impacts on its cache hit probability at the
next request. From this characterization, insights regarding the
relations between the pattern of change in the content popularity,
the knowledge of content popularity exploited by the replacement
schemes, and the effectiveness of these schemes under time-
varying popularity are revealed. In the simulations, different
patterns of time-varying popularity, including the shot noise
model, are experimented. The effectiveness of example replace-
ment schemes under time-varying popularity is demonstrated,
and the numerical results support the observations from the
analytic results.

Index Terms—cache replacement policy, content popularity,
shot noise model, temporal locality, online caching, mobile edge
caching.

I. INTRODUCTION

Driven by the upsurge in the number of user devices and
their demand for multimedia services, the role of caching
in improving the content delivery performance of wireless
networks becomes prominent [1] - [3]. Accordingly, the mod-
eling and analysis of caching have gained tremendous research
attention [4]- [7]. While the independence reference model
(IRM) is the de facto model for content requests, it has
been argued that the IRM may not be sufficiently accurate in
practice since temporal correlation of content requests can be
too important to neglect [8]. As a result, one particular topic,
i.e., online caching with time-varying content popularity, has
attracted great research interest lately [9], [10].

The above-mentioned temporal correlation of content re-
quests is sometimes referred to as ‘temporal locality’, which
suggests that a recently requested content is likely to be
requested again in the near future. Temporal locality, however,
has been shown to emerge from the temporal correlation
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of requests, the content popularity, or both [11]. Therefore,
temporal locality exists even with IRM, and time-varying
content popularity complicates the locality by introducing
the temporal correlation. As a result, the study of online
caching in the case of time-varying content popularity can be
very challenging [9]. Existing research on caching with time-
varying content popularity can be roughly categorized into two
groups: the first group of works aims to analyze or model
temporal locality, and the second group targets at proposing
caching solutions to cope with it.

Some early works on analyzing temporal locality focused on
understanding its sources and developing metrics to measure
it, e.g., [12]. In a recent work, Zhou et al. investigated
the change of popularity over time in the video-on-demand
services [13]. While the above studies tend to be experiment-
based, mathematical models for characterizing temporal lo-
cality can be found in a few works. An inter-reference gap
model was developed in [14], which focused on describing
temporal locality based on the gaps between successive re-
quests. Traverso et al. proposed a shot noise model [15], which
represents the requests for a content with an inhomogeneous
Poisson process, and later applied it on the analysis of video-
on-demand traffic [16]. Other approaches to integrate temporal
locality into the analysis of caching also exist, most of which
modeled the request for each content as a (semi-)Markov-
modulated process or a renewal process [17], [18].

By comparison, a larger number of works can be found in
the second group, which proposes caching solutions to cope
with temporal locality. Such solutions generally require the
prediction of locality or the learning of content popularity. A
cache replacement scheme based on predicting the interval be-
tween requests was proposed in [19] and shown to be effective
in increasing cache hits. Li et al. developed a popularity-driven
cache replacement scheme which learns the content popularity
in an online fashion and makes replacement decisions based
on the popularity forecast [20]. Zhang et al. proposed a model-
free reinforcement learning algorithm for cache replacement
based on a linear content popularity prediction model [21].
The above works can be labeled as online caching based
on learning/prediction since decisions for cache update are
made after every content request. Another type of solutions
is proactive caching based on prediction, which can handle
time-varying content popularity assuming that cached contents
are updated with a sufficiently high frequency. Sadeghi et al.
exploited reinforcement learning to track content popularity
in an online fashion and developed a Q-learning based algo-
rithm for content placement [22]. Applegate et al. formulated
content placement as an optimization problem and, through
estimating content popularity, proposed strategies to update
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cache contents to track time-varying content popularity [23].
Bharath et al. characterized the performance of caching with
non-stationary content popularity from a learning-theoretic
perspective and proposed a cache update policy based on the
estimation of content popularity [24].

Evidently, understanding the impact of time-varying content
popularity on the performance of caching is important for the
analysis and design of cache replacement schemes. However,
analysis regarding the impact of time-varying popularity on the
performance of replacement schemes is limited in the existing
literature. The state transition field (STF) that we proposed in
[25] can be used for such analysis. However, with time-varying
content popularity, the STF is no longer a static field but a
dynamically varying field, and, consequently, a steady state
may not exist. The objective of the second part of this two-
part paper is to investigate the impact of time-varying content
popularity on the STF and, as a result, the performance of
replacement schemes.

The contributions of the second part are the followings.
First, we extend the concept of STF from the first part of

this two-part paper [25] and introduce instantaneous STF to
characterize replacement schemes in the case of time-varying
content popularity. It is shown that many metrics, such as
instantaneous state caching probability (SCP) at an arbitrary
instant and average cache hit probability over an arbitrary
sequence of requests, can be found based on instantaneous
STF. The results demonstrate the importance of instantaneous
STF in modeling and analyzing replacement schemes with
time-varying content popularity.

Second, as steady states may not exist, we characterize
performance of a replacement scheme by analyzing the differ-
ence in instantaneous cache hit probability with and without
applying that scheme after a content request. The result reveals
insights regarding the relation between the change pattern
in content popularity and the effectiveness of replacement
schemes. We illustrate the results in the vector space of
SCPs and relate them to the knowledge of content popularity
exploited by replacement schemes.

Third, we demonstrate instantaneous STF and average cache
hit ratio under time-varying popularity with extensive simu-
lations using example schemes. For instantaneous STF, we
illustrate its relation with instantaneous content popularity and
instantaneous cache hit probability. For average cache hit ratio,
we adopt different models of time-varying content popularity,
including the shot noise model, and compare the performance
of the example schemes. The results verify the observations
from analysis and provide guidelines for designing replace-
ment schemes under time-varying content popularity.

II. SYSTEM MODEL UNDER TIME-VARYING CONTENT
POPULARITY

For the sake of presentation clarity, we reintroduce some
formulations from the first part of this two-part paper in Sec-
tions II and III. The basic system model follows from the basic
model in the first part [25]. As the content popularity becomes
time-varying, the symbols used here can be categorized into
three groups based on their dependence on the time instant of
content request or replacement:

G-1: independent in both [25] and this paper;
G-2: independent in [25] but dependent in this paper;
G-3: dependent in [25] and temporal locality introduces further

dependence on the time instant in this paper;
A superscript (·)(n) is added on symbols in groups G-2 and G-
3 to denote the time instant related to the nth content request
or replacement.

A. Request-independent Symbols

Cache State Vector/Matrix: the cache state vector sk for
state k and the cache state matrix Cs = [s1, . . . , sNs

], where
Ns is the number of cache states.

Neighboring States: the set of neighbors Hk and the set of
content-l neighbors Hk,l of state k, for any k and any l /∈ Ck,
where Ck is the set of cached contents in state k.

The above symbols are in group G-1.

B. Request-dependent Symbols

Content Request Probabilities: the probability of content l
being requested at request instant n, denoted by υ(n)

l , and the
overall content popularity at the nth content request, denoted
by υ(n). The content request probabilities are in symbol group
G-2.

Instantaneous Cache Hit Probability: the instantaneous
cache hit probability at the (n + 1)th request, denoted by
γ(n+1) is given by:

γ(n+1) =
(
υ(n+1)

)T

λ(n), (1)

where ·T represents transpose, and λ(n) is the content caching
probability (CCP) vector after the nth round of request and
replacement. It can be seen that γ(n+1) is in symbol group
G-3. Note that, in a practical network, there can be different
metrics for content delivery, e.g., latency. However, the cache
hit probability is an underlying factor which other metrics
are dependent on. Consequently, improving the cache hit
probability can improve the performance under other metrics.
For example, if the cache hit probability at an edge server
increases, then the need for retrieving contents from the
cloud, and thus the average content delivery latency, reduces.
Therefore, our study centers around the cache hit probability.

Station Transition Matrices: The conditional state transition
matrix and the state transition matrix are generally time
dependent and thus denoted by Θ

(n)
l and Θ(n), respectively,

under time-varying content popularity. However, the situation
is complicated by the possible choices of various replacement
schemes and will be analyzed in details in Section III.

It is worth noting that the relation between state and content
caching probabilities from the first part of this two-part paper
[25], i.e.,

λ(n) = Csη
(n), (2)

still applies in the second part, where η(n) is the SCP vector
after the nth round of request and replacement. The above
equation can be rewritten as:

η(n) = CT
s

(
CsC

T
s

)−1
λ(n) + n

(n)
C , (3)
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where n
(n)
C can be any vector in the null space of Cs that

renders η(n) a valid probability vector, i.e., η(n) � 0,η(n) �
1, and 1Tη(n) = 1. Therefore, the value of n

(n)
C is dependent

on the value of λ(n).
The content and state caching probabilities λ(n) and η(n)

belong to group G-3 and will be analyzed in details in
Section IV.

III. GENERAL REPLACEMENT MODEL AND SPECIFIC
CASES

In this section, the state transition probability matrix of
the general replacement model is formulated, followed by the
study of the four example replacement schemes introduced in
the first part of this two-part paper, i.e., random replacement
(RR), replace less popular (LP), replace the least popular
(TLP), and least-recently-used (LRU) [25]. Based on the
state transition probability matrices, the instantaneous STF is
defined at the end of this section.

A. General Replacement Model

Similar to the case in the first part, the state transition
probability matrix in the general model can be written as:

Θ(n) =
∑
l∈C

υ
(n)
l Θ

(n)
l . (4)

where C is the set of all contents, and the conditional cache
state transition probability matrix given that content l /∈ Ck is
requested, i.e., Θ

(n)
l , is given by:

Θ
(n)
l (m, k)=


1, if k = m and l ∈ Ck,
1− ∑

m∈Hk,l
φl,e(k,m),k, if k = m and l /∈ Ck,

φl,e(k,m),k, if m ∈ Hk,l,
0, otherwise,

(5)

where φl,q,k denotes the probability of replacing content q
with content l given that the cache is at state k and content
l is requested. Unlike the case with time-invariant content
popularity, the conditional cache state transition probability
matrix Θ

(n)
l can be implicitly request-dependent as a result

of φl,q,k being request-dependent. Consider the situation when
e(k,m) = q and content q is less popular at instant n but more
popular at instant n′ compared to content l, i.e., υ(n)

q < υ
(n)
l

and υ
(n′)
q > υ

(n′)
l . Consequently, φl,q,k can be different at

instants n and n′ if LRU, LP, or TLP is used, and thus
Θ

(n)
l (m, k) can be different from Θ

(n′)
l (m, k). Using LRU as

an example, the probability of content q being the LRU content
can be different at instants n and n′. Therefore, Θ

(n)
l (m, k)

is implicitly request-dependent although the request index ·(n)

does not appear in the right-hand side of eq. (5).

B. RR

It is straightforward to see that the conditional cache state
transition probability matrix Θl(m, k) in the case of RR
is request-independent and remains the same as that in the

first part. The overall state transition probability matrix ΘRR,
however, becomes dependent on (n) through υ(n):

Θ
(n)
RR(m, k) =


1− Lφ ∑

l/∈Ck
υ

(n)
l , if k = m,

φυ
(n)
e(m,k), if m ∈ Hk,

0, otherwise,

(6)

where φ ∈ (0, 1/L] represents the conditional replacement
probability that any specified cached content is replaced given
that the requested content is not in the cache.

C. LP

In LP, an existing content may be replaced by the new
content after the nth request if the new content is more likely
to be requested at the (n+1)th request. The case of LP can be
complicated as it involves the prediction of content popularity.
Denote the prediction of content popularity at the (n + 1)th
request as υ̃(n+1). Sort the states in a non-decreasing order
based on the sum of predicted request probability of the cached
contents, i.e.,∑

q∈Cm
υ̃(n+1)
q ≥

∑
q∈Ck

υ̃(n+1)
q , if m ≥ k. (7)

The state transition probability matrix of LP is then given by:

Θ
(n)
LP (m, k)

=


∑
q∈Ck

υ
(n)
q +

∑
l∈C̃

k̄↓

υ
(n)
l +

∑
l∈C̃

k̄↑

υ
(n)
l (1−α), if m = k,

αυ
(n)
e(m,k)φ

(n)
e(m,k),e(k,m),k, if m > k and m ∈ Hk,

0, otherwise,
(8)

in which α is the parameter for controlling the replacement
probability,

φ
(n)
l,q,k =

υ̃
(n+1)
l − υ̃(n+1)

q∑
{t|t∈Ck,υ̃(n+1)

t <υ̃
(n+1)
l }

(υ̃
(n+1)
l − υ̃(n+1)

t )
, (9)

and

C̃k̄↓ =

{
l | l /∈ Ck, υ̃(n+1)

l ≤ min
t∈Ck
{υ̃(n+1)
t }

}
, (10a)

C̃k̄↑ =

{
l | l /∈ Ck, υ̃(n+1)

l ≥ min
t∈Ck
{υ̃(n+1)
t }

}
. (10b)

Note that the prediction υ̃(n+1) is not necessarily updated
for each content request, and, as a result, υ̃(n+1) can be a
constant for a number of requests. The above state transition
probability matrix applies regardless of what the predicted
popularity stands for (i.e., the prediction can be for the next
request or for a time period over multiple requests, etc.).

D. TLP

In TLP, an existing content is replaced after the nth request
if it is both: i) the least likely to be requested among the
cached content at the (n+ 1)th request; and ii) less likely to
be requested at the (n + 1)th request compared to the new
content at the nth request. Sort the states in a non-decreasing
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order based on the sum of predicted request probability of the
cached contents. The state transition probability matrix of TLP
is given by:

Θ
(n)
TLP(m, k)

=


∑
q∈Ck

υ
(n)
q +

∑
l∈C̃

k̄↓

υ
(n)
l +

∑
l∈C̃

k̄↑

υ
(n)
l (1−φl,q†(k),k), if m = k,

υe(m,k)φ
(n)

e(m,k),q†(k),k
, if m > k and k ∈ Hm,q†(k),

0, otherwise.
(11)

where φ
(n)

l,q†(k),k
is the conditional probability of replacing

q†(k) with l in state k, and

q†(k) = argmin
t∈Ck

{υ̃(n+1)
t }. (12)

Note that q†(k) changes over time although the superscript ·(n)

is neglected here for simplicity of denotations. The value of
φ

(n)

e(m,k),q†(k),k
, where m > k and k ∈ Hm,q†(k), can be either

1 or υ̃(n+1)
e(m,k)− υ̃

(n+1)

q†(k)
, referred to TLP-A (always replace) and

TLP-P (probabilistically replace), respectively.
Similar to the case in the first part, Θ

(n)
LP and Θ

(n)
TLP are

both lower-triangular matrices.
The relation among the content popularity, the prediction,

and the SCP, all of which are time varying, can be very
complicated. As our focus is on understanding the impact
of replacement schemes on the time-varying SCP instead of
predicting content popularity, the prediction in the case of LP
and TLP will be assumed to be accurate in this work. Same
as in the first part, LP and TLP, unlike RR and LRU, are
not practical replacement schemes but considered here just
for analyzing the impact of content popularity information on
the STF of replacement schemes.

E. LRU

To fit the LRU into the general cache state transition model,
the conditional probability that a specific cached content is
the LRU given the current cache state needs to be found. In
order to find this conditional probability, the following result
is obtained.

Lemma 1: The joint probability that: i) the current state is
k; ii) content q? ∈ Ck is the LRU content at the nth request;
and iii) the most recent request for q? is the (n−w)th request,
denoted by ρ(n)(q?, w, k), can be found by:

ρ(n)(q?, w, k) =

Uw∑
u=1

L−1∏
i=1

∏
t∈T (k,i,u,q̄?)

υ
(t)
k(i,q̄?). (13)

where k(i, q̄?), i ∈ {1, . . . , L − 1} represents the ith cached
content in state k that is not content q?, Uw represents the
number of all possible ways for ordering and allocating w−1
requests to L − 1 contents while guaranteeing at least one
request for each content, and T (k, i, u, q̄?) represents the set
of requests allocated to content k(i, q̄?) in the uth out of the
Uw allocations.

Proof : See Section A in Appendix.

Given the joint probability in Lemma 1, the conditional
probability that content q? ∈ Ck is the LRU content given
that the current state is k can be found as follows 1:

ρ(n)(q?|k) =

∞∑
w=L

ρ(n)(q?, w, k)

∞∑
w=L

∑
q∈Ck

ρ(n)(q, w, k)
. (14)

Note that the above probability is the general case for the
probability ρLRU

e(k,m)|k from the first part of this two-part paper.
Using the above conditional probability, the conditional

state transition probability matrix Θl can be given by:

Θ
(n)
l,LRU(m, k) =


1, if l ∈ Ck and k = m,
ρ(n)(e(k,m)|k), if m = Hk,l,
0, otherwise.

(15)

The overall state transition probability matrix ΘLRU is given
by:

Θ
(n)
LRU(m, k) =


∑
l∈Ck

υ
(n)
l , if k = m,

υ
(n)
e(m,k)ρ

(n)(e(k,m)|k), if m ∈ Hk,
0, otherwise.

(16)

IV. INSTANTANEOUS CCP AND STF
Based on the state transition probability matrix, this section

analyzes the transition of the instantaneous CCP and formu-
lates the instantaneous STF.

A. Instantaneous CCP

Based on the relation between the content and the state
caching probabilities in eq. (2), the resulting CCP vector after
the nth request and replacement is given by:

λ(n) = Csη
(n) = Cs

∑
l∈C

υ
(n)
l Θ

(n)
l η(n−1). (17)

Using eq. (3), it follows that:

λ(n) =

(
Cs

∑
l∈C

υ
(n)
l Θ

(n)
l CT

s

(
CsC

T
s

)−1

)
λ(n−1)

+ Cs

∑
l∈C

υ
(n)
l Θ

(n)
l n

(n−1)
C . (18)

It can be seen that the mapping from λ(n−1) to λ(n) is
complicated. Specifically, unlike the mapping between two
consecutive SCP vectors, which can be simply written as
η(n) = Θ(n)η(n−1), the mapping between consecutive CCP
vectors cannot be written in a linear form due to the second
item in eq. (18), i.e., Cs

∑
l∈C υ

(n)
l Θ

(n)
l n

(n−1)
C . Moreover,

despite that eq. (18) seems to have an affine form, the mapping
from λ(n−1) to λ(n) is not affine either. This is implicitly
conveyed through the variable n

(n−1)
C since the value of

n
(n−1)
C depends on λ(n−1) and the dependence is nonlinear

as explained after eq. (3) in Section II.

1Here it is assumed that a sufficient number of requests have occurred, i.e.,
n → ∞.
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B. Instantaneous STF - The General Case

Under time-varying content popularity, the state transition
probability matrix is Θ(n) when the SCP is η(n−1). Therefore,
the STF at the instant of the nth request and the point η(n−1)

is given by:

u(n)(η(n−1)) = Θ(n)η(n−1) − η(n−1). (19)

The superscript (n) in u(n)(·) reflects the fact that the STF
is no longer static but time-varying as a result of the time-
varying content popularity. The direction and strength of the
instantaneous STF depend on both η, i.e., the location in
the state transition domain, and n, i.e., the request instant.
The value of the instantaneous STF u(n)(η(n−1)) represents
the change in the SCP after the nth round of request and
replacement. The effect of a replacement scheme on the
dynamic SCP over a sequence of requests can be decomposed
into the summation over the instantaneous STFs:

η(n+N−1) − η(n−1) =
N−1∑
t=0

(
η(n+t) − η(n+t−1)

)
=
N−1∑
t=0

u(n+t)(η(n+t−1)), (20)

for any n ≥ 1 and N ≥ 1.
Similarly, other metrics can also be studied through instan-

taneous STFs, e.g., the average cache hit probability.
Lemma 2: Using instantaneous STFs from the first till the

nth request, the average cache hit probability over the n
requests can be given by:

γavg =
1

n

n∑
t=2

(
υ(t)

)T

Cs

( t−2∑
t′=0

u(t′+1)

)
+ υT

avgCsη
(0),

(21)

in which u(t′+1) is the abbreviation for u(t′+1)(η(t′)), and

υavg =
1

n

n∑
t=1

υ(t) (22)

is the average content popularity over the n requests.
Proof: See Section B in Appendix.
Lemma 2 shows that the average cache hit probability over

an arbitrary number of requests, starting from any initial SCP
η(0), can be obtained from instantaneous STFs, instantaneous
content request probabilities, and the initial point η(0). The
inner summation over t′ in eq. (21) represents the effect of his-
torical requests and replacements on the instantaneous cache
hit probability at the tth request. The decomposition in eq. (20)
and the result in eq. (21) demonstrate the importance in
analyzing the instantaneous STF under different replacement
schemes. If the instantaneous content request probabilities
υ(t), t ∈ {1, . . . , n} can be obtained, the instantaneous STF of
a replacement scheme at any point in the state transition region
can be calculated using eqs. (4), (5), and (19). For evaluating
and comparing different cache replacement schemes, we can
substitute the specific STF of the replacement schemes for
u(1), . . . ,u(t−1) in eq. (21).

The instantaneous STF can be decomposed. Define the lth
component of u(n)(η(n−1)) as:

u
(n)
l = Θ

(n)
l η(n−1) − η(n−1). (23)

It can be seen that:

u(n)(η(n−1)) =Θ(n)η(n−1) − η(n−1)

=
∑
l∈C

υ
(n)
l

(
Θlη

(n−1) − η(n−1)
)

=
∑
l∈C

υ
(n)
l u

(n)
l . (24)

C. The Case of RR, LP, TLP, and LRU

When a specific replacement scheme is considered, u
(n)
l can

be found based on its conditional state transition probability
matrix Θ

(n)
l using (23).

For the case of RR, the mth element of u
(n)
l is given by:

um,l,RR =

{
φ

∑
{k|m∈Hk,l}

ηk, if l ∈ Cm,

−Lφηm, otherwise.
(25)

The mth element of u
(n)
l for LP is given by:

u
(n)
m,l,LP

=


∑

k∈G(n)
m,l

η
(n−1)
k φ

(n)
l,e(k,m),k, if l ∈ Cm,

−η(n−1)
m , if l /∈ Cm and min

q∈Cm
{υ̃(n+1)
q } < υ̃

(n+1)
l ,

0, otherwise,
(26)

where

G(n)
m,l = {k|m ∈ Hk,l, υ̃(n+1)

e(k,m) < υ̃
(n+1)
l }, (27)

representing the set of states which include state m in their
content-l neighbors and cache a less popular content compared
to state m according to the predicted popularity for the (n+
1)th request.

Similarly, the mth element of u
(n)
l for TLP is given by:

u
(n)
m,l,TLP

=



∑
k∈Ĝ(n)

m,l

φ
(n)

e(m,k),q†(k),k
η

(n−1)
k , if l ∈ Cm,

−φ(n)

e(m,k),q†(k),k
η

(n−1)
m ,

if l /∈ Cm and min
q∈Cm

{υ̃(n+1)
q } < υ̃

(n+1)
l ,

0, otherwise,
(28)

where

Ĝ(n)
m,l = {k|m ∈ Hk,l, υ̃(n+1)

e(k,m) = min
q∈Ck
{υ̃(n+1)
q } < υ̃

(n+1)
l },

(29)

representing the set of states which include state m in their
content-l neighbors and cache a content less popular than
any content cached by state m according to the predicted
popularity for the (n+ 1)th request.
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For the case of LRU, the mth element of u
(n)
l is given by:

u
(n)
m,l,LRU

=


∑

k∈Gm,l
ρ(n)(e(k,m)|k)η

(n−1)
k , if l ∈ Cm

−η(n−1)
m , otherwise

(30)

where

Gm,l = {k|m ∈ Hk,l}. (31)

In the next section, we study the instantaneous STF of
the considered replacement schemes and its impact on their
instantaneous cache hit probability.

V. IMPACT OF STF ON INSTANTANEOUS CACHE HIT
PROBABILITY

When the content popularity varies over time, a replacement
scheme may not lead to any steady state. As a result, the
analysis of steady states and rate of convergence does not
apply. Instead, the impact of a replacement scheme on the
instantaneous cache hit probability at the next request is
investigated.

A. The General Case

A replacement after the nth request affects the cache hit
probability at the (n+ 1)th request. Consider the time instant
right after the nth request and replacement so that u(n)(·) is
the current STF and the (n+1)th request is the next request in
future. The effect of a replacement scheme can be conveyed
through the difference between the cache hit probability at the
(n + 1)th request with and without a replacement (based on
the chosen scheme) after the nth request. This difference is
given by:

d(n+1)
γ =

(
υ(n+1)

)T

Cs

(
η(n) − η(n−1)

)
=
(
υ(n+1)

)T

Csu
(n)(η(n−1)). (32)

The above result shows that, the cache hit ratio at the (n +
1)th request depends on the content popularity at the (n +
1)th request, i.e., υ(n+1), the STF at the nth request, i.e.,
u(n)(·), and the SCP at the (n − 1)th request, i.e., η(n−1).
Among these three factors, η(n−1) reflects the accumulative
effect of the previous n−1 rounds of request and replacement,
u(n)(·) represents the current STF, and υ(n+1) represents the
content popularity at the next request in future. The result in
eq. (32) shows the complication due to time-varying content
popularity: υ(n+1) and u(n)(·) in eq. (32) would reduce to
υ and u(·), respectively, if the content popularity becomes
time-invariant.

Some general observations can be made:
1) Define z(n+1) = CT

s υ
(n+1). Then z(n+1) is the state

cache hit probability vector at the (n + 1)th request.
Depending on η(n−1), υ(n), and Θ(n), η(n+1) may fall
at any point in the areas S1 in Fig. 1. The replacement
after the nth request improves the instantaneous cache
hit probability at the (n+1)th request if the replacement
drives the SCP into the area S2 shown in Fig. 1.

B

A

z(n+1)

B : (υ(n+1))TCs(η − η(n−1)) = 0

z(n+1) : CT
s υ

(n+1)

A : 1Tη = 1

S2 S1

η(n−1)

Fig. 1: Illustration of the relation between instantaneous cache
hit probability, η(n), and υ(n+1). Area S1 is the area that
η(n+1) may fall in, i.e., the intersection of hyperplane A and
the subspace η(n+1) � 0. If η(n+1) falls in area S2, then
(z(n+1))Tη(n+1) ≥ (z(n+1))Tη(n).

2) d
(n+1)
γ is small, regardless of υ(n+1), when η(n−1) is

close to the steady state corresponding to υ(n) (i.e., the
steady state if the content popularity is constant and
remains equal to υ(n)).

3) In the trivial case when υ(n+1) approaches 1/Nc · 1,
where Nc is the number of contents, the hyperplane
(υ(n+1))TCs(η − η(n)) = 0 coincides with the hyper-
plane 1Tη = 1. In such case, d(n+1)

γ becomes zero for
any replacement scheme.

The effect of a replacement scheme on d
(n+1)
γ can be

conveyed through the set of content-specific instantaneous STF
{u(n)

l } using eq. (24).
Theorem 1: The d

(n+1)
γ in eq.(32) can be equivalently

rewritten as:

d(n+1)
γ =

∑
l∈C

(υ
(n)
l − ῡl)c(n+1)

l , (33)

where

c
(n+1)
l =

(
υ(n+1)

)T

Csu
(n)
l , (34)

and {ῡl}l∈C represents the content popularity under which
η(n−1) would be the steady state.

Proof : See Section C in Appendix.
Based on eq. (33) and eq. (34), the factors that determine

d
(n+1)
γ are: {υ(n+1)

l }, {υ(n)
l }, {ῡl}, and u

(n)
l . The factor {ῡl}

depends on the historical content requests till the (n − 1)th
request, u

(n)
l depends on η(n), and both {ῡl} and u

(n)
l depend

on the replacement scheme. The term υ
(n)
l − ῡl reflects the

deviation in the request probability for content l from its
‘steady’ request probability, which manifests the influence of
historical requests. The term c

(n+1)
l represents the change in

the cache hit probability at the (n + 1)th request, using the
corresponding replacement scheme, when the current SCP is
η(n−1) and content l is requested at the nth request.

Using Theorem 1, a more detailed investigation could be
conducted for a specific content popularity model (i.e., shot
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noise model [15]). Nevertheless, the study on specific content
popularity models is not the focus of this work. Section VI,
however, will cover numerical results on the performance of
replacement schemes under specific content popularity models.

B. Upper and Lower Bounds of d(n+1)
γ

The term Csu
(n)(η(n−1)) in d(n+1)

γ represents the change
in the content caching probabilities after the nth request under
the chosen replacement scheme. Sort the contents based on
their popularity at the instant of the nth request so that
υ

(n)
1 ≥ υ(n)

2 ≥ · · · ≥ υ(n)
Nc

. The upper-bound and lower-bound
of d(n+1)

γ can be found using the following result.
Theorem 2: The upper-bound and lower-bound of d(n+1)

γ ,
denoted as d̂(n+1)

γ and ď(n+1)
γ , respectively, for RR, LP, TLP,

and LRU are given by 2:

d̂(n+1)
γ =



Lφmax
l
{υ(n)
l }, RR

αmax
l
{υ(n)
l }, LP

max
l
{υ(n)
l }, TLP-A or LRU

max
l
{υ(n)
l }max

l
{υ̃(n+1)
l }, TLP-P

(35)

and

ď(n+1)
γ =


−φ, RR
−α, LP
−1, TLP-A or LRU

−
Nc∑
l=1

υ
(n)
l υ̃

(n+1)
l , TLP-P.

(36)

Proof : See Section D in Appendix.

C. Observations

The following observations can be made from the preceding
analysis of the relation between the instantaneous STF and the
difference in cache hit probability. 3

• From eq. (25), eq. (33), and eq. (34), it can be seen that
the parameter φ is only a scaling factor in d

(n+1)
γ in

the case of RR. Specifically, whether d(n+1)
γ is negative

or not is jointly decided by υ(n+1), υ(n), and η(n−1).
The parameter φ can scale d(n+1)

γ but does not have any
impact on its sign. This explains the result in [25] that
φ impacts on the convergence speed but not the steady
state under constant content popularity.

• Four cases of instantaneous STF u(n)(η(n−1)) and
z(n+1) are illustrated in Fig. 2a and Fig. 2b. In each
single replacement, both LP and TLP drive the SCP
η towards a direction that increases (z(n+1))Tη, i.e.,
(z(n+1))Tη(n+1) ≥ (z(n+1))Tη(n), where z(n+1) =
CT

s υ
(n+1). Therefore, only case 2 in Fig. 2a and case 3

in Fig. 2b are possible for LP and TLP while all four

2For the lower-bound of d
(n+1)
γ in the case of TLP-P, it is assumed that

the L least popular contents at the nth request remain least popular at the
(n+ 1)th request.

3Accurate prediction of content popularity is assumed for the case of LP
and TLP.

cases can occur for RR and LRU. Moreover, TLP drives
η towards the direction that increases (z(n+1))Tη the
fastest, which is a resemblance to the steepest gradient
in optimization. This explains the result in the first part
that TLP converges faster than LP under constant content
popularity.

• Under time-varying content popularity, LP and TLP may
not effectively trace the varying content popularity de-
pending on the pattern of variation. Specifically, if υ(n)

varies so that z(n) changes along a straight path over
time, as shown in Fig. 2c, then LP and TLP can still trace
the content popularity well, and TLP should outperform
LP. An example of such scenario is when popularity
concentrates so that the most popular contents become
even more popular over time.

• If υ(n) varies so that z(n) changes fast and randomly in
an area, as shown in Fig. 2d, then LP and TLP may not
trace the content popularity well, and TLP can perform
worse than LP. An example of such scenario is when
content popularity varies drastically over time so that the
most popular set of contents rapidly changes.

VI. NUMERICAL EXAMPLES

A. Instantaneous STF under Time-varying Content Popularity

Fig. 3 demonstrates the instantaneous STF under time-
varying content popularity and further illustrates Fig. 1 using
RR and LP as examples. Similar to the first part of this two-
part paper, we use 3-D STFs for illustrations.

Fig. 3a shows the case under RR. The content popularity at
the nth and (n+ 1)th requests are υ(n) = [0.46, 0.30, 0.24]T

and υ(n+1) = [0.4, 0.35, 0.25]T, respectively. The solid circle
with red filling shows where the steady state would be if
the content popularity were fixed and equal to υ(n). The
hollow circle shows where the stationary state would be if
the content popularity were fixed and equal to υ(n+1). The
black triangular area with solid edges represents the state
transition domain. The black arrows demonstrate the direction
and strength of the STF at the instant of the nth request and
the corresponding locations in the state transition domain. The
colored straight lines in the x-y plane show the contour of
the cache hit probability in the state transition domain. The
solid straight line from the origin (0, 0, 0) to the diamond
marker in the STF are specified by the vector Csυ

(n+1).
Denote the SCP vector η at the diamond marker as η̄(n). The
dashed triangle in blue represents the intersection of the plane
(υ(n+1))TCs(η−η̄(n)) = 0 with the 3 planes η1 = 0, η2 = 0,
and η3 = 0. The dotted line represents the intersection of the
plane (υ(n+1))TCs(η − η̄(n)) = 0 with the state transition
domain.

From Fig. 3a, the effect of the nth replacement, given the
replacement scheme of RR and the above change of content
popularity from υ(n) to υ(n+1), can be observed. Specifically,
given any SCP, i.e, a point in the state transition domain, if the
arrow representing the instantaneous STF at that point can be
scaled such that it crosses the dotted line from below to above,
the nth replacement yields a smaller cache hit probability
at the (n + 1)th request compared with no replacement. By
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η(n−1)

A

A : 1Tη = 1

z(n+1)

1©

2©

u(n)(η(n−1))

(a) u(n) and z(n+1) : cases 1 and 2.

η(n−1)

A

A : 1Tη = 1

z(n+1)

3©
4©

u(n)(η(n−1))

(b) u(n) and z(n+1): cases 3 and 4.

η(n−1)

AA : 1Tη = 1

z(n+1)

z(n+N)

u(n)(η(n−1)) [TLP]

u(n)(η(n−1)) [LP]

(c) z(n) changes along a straight path.

η(n−1)

AA : 1Tη = 1

z(n+1)

z(n+N)

u(n)(η(n−1)) [TLP]

u(n)(η(n−1)) [LP]

(d) z(n) changes randomly.

Fig. 2: Illustration of the relation between the replacement schemes, the instantaneous STF u(n)(η(n−1)), and the state cache
hit probability z(n+1).

contrast, if the arrow can be scaled such that it crosses the
dotted line from above to below, the nth replacement yields
a larger cache hit probability at the (n + 1)th request. If the
arrow is in parallel with the dotted line, the nth replacement
has no impact on the cache hit probability at the (n + 1)th
request.

Fig. 3b shows the first of two examples with LP. The
content popularity υ(n) and υ(n+1) are the same as in Fig. 3a.
In this example, the change in the content popularity is not
significant so that the state which caches the most popular
contents does not change. As a result, the stationary state if
the content popularity is fixed and equal to υ(n) and that if the
content popularity is fixed and equal to υ(n+1) are identical
and shown by a solid circle in the figure. The dashed triangle,
solid straight line, and dotted line illustrate the same objects
or variables as in Fig. 3a, respectively. The effect of the nth
replacement on the cache hit probability at the (n + 1)th
request at any SCP point in the state transition domain can be
observed from Fig. 3b following the same method described
in the preceding paragraph. In this example, the arrow at any
point (except the stationary point) can be scaled such that it
crosses the dotted line with the arrow head below the line. As

a result, a replacement after request n based on LP always
increases the cache hit probability at the (n + 1)th request
(except at η = [1, 0, 0]). This example corresponds to the
scenario of varying content popularity which drives z(n) along
a somewhat straight path, as shown in Fig. 2c.

Fig. 3c shows the second example with LP. The content
popularity υ(n) is the same as in Fig. 3a and Fig. 3b, while
υ(n+1) = [0.4, 0.25, 0.35]T. The solid and the hollow circles
show the stationary states in the cases when the content
popularity is fixed and equal to υ(n) and υ(n+1), respectively.
At any SCP point, if the arrow can be scaled such that it
crosses the dotted line from right to left, the nth replacement
yields a smaller cache hit probability at the (n+ 1)th request
compared with no replacement. By contrast, if the arrow can
be scaled such that it crosses the dotted line from left to right,
the nth replacement yields a larger cache hit probability at the
(n+1)th request. In this example, a replacement after request
n based on LP may either increase or decrease the cache hit
probability at the (n+1)th request. This example corresponds
to the scenario of varying content popularity which leads to a
randomly changing z(n), as shown in Fig. 2d.
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(a) RR.

(b) LP, example 1.

(c) LP, exapmle 2.

Fig. 3: Instantaneous STF and its impact on the instantaneous
cache hit probability at the next request.

B. Cache Hit Ratio under Time-varying Content Popularity

In the second set of examples, the cache hit ratio of the
considered cache replacement schemes under time-varying
content popularity is demonstrated.

First, the cache hit ratio is demonstrated when the time-
varying content popularity is generated using the shot noise
model [15]. Specifically, the request for content l follows a
time-inhomogeneous Poisson process with the instantaneous
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(a) Cache hit ratio versus tmax
0 .
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(b) Request instants for 40 out of 1000 contents when
tmax
0 = 250.
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(c) Request instants for 40 out of 1000 contents in one round
when tmax

0 = 2500.

Fig. 4: Cache hit ratio under shot noise model.

rate at time t given by:

yl(t) =

{
Albl exp−bl(t−tl,0), if t ≥ tl,0
0, otherwise

(37)

Accordingly, requests for content l start occurring from tl,0.
The parameter Al limits the maximum request rate of content
l. For content l, an allocation of Al over time is given by
an exponential distribution with rate parameter bl. It follows
that contents have different life-span and entrance time. The
entrance time tl,0 is uniformly generated in [0, tmax

0 ], and Al
is uniformly generated in [Amin

l , Amax
l ]. For RR, we test two

cases, φ = 0.9 and φ = 0.1. A larger φ results in more frequent
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content replacements and higher sensitivity to the changes in
the content popularity. Similarly, for LP, we test two cases,
i.e., α = 0.9 and α = 0.1.

In the first example with shot noise model, the number of
contents Nc is set to 1000 and the cache size L is set to 15.
A duration with 5000 seconds from t = 0 to t = 5000 is
considered. The parameters Amin

l and Amax
l are set to 10 and

1000, respectively. Fig. 4a shows the resulting cache hit ratio
of the considered replacement schemes versus tmax

0 . Each data
point in Fig. 4a is averaged over 200 rounds of simulations
for the considered 5000 seconds duration. For LP and TLP,
accurate prediction of content popularity is assumed. It can
be seen from the Fig. 4a that LP and TLP have a significant
advantage over RR and LRU when tmax

0 is small (i.e., tmax
0 ≤

1000). However, RR and LRU are much better than LP and
TLP when tmax

0 becomes large.
The content request time instants for 40 out of the 1000

contents 4 in the case when tmax
0 = 250 and tmax

0 = 2500
are plotted in Figs. 4b and 4c, respectively. Colors are used to
distinguish the requests for different contents. Each asterisk in
Figs. 4b and 4c represents a request, with its x and y coordi-
nates specifying the corresponding request time instant and the
content ID, respectively. It can be seen from Figs. 4b and 4c
that, when tmax

0 becomes large, the set of available contents
can vary significantly over time. This has two effects on
the cache hit ratio. On one hand, the cache hit ratio should
increase as the number of simultaneous available contents can
be smaller when tmax

0 is large. On the other hand, due to
the property of the instantaneous rate given by eq. (37), the
maximum instantaneous request rate of any content occurs
when the content just becomes available. If follows that the
varying set of available contents when tmax

0 is large can lead to
frequent and abrupt change of content popularity over time, as
illustrated in Fig. 2d and Fig. 3c. Since LP and TLP exploit
the content popularity information in a greedy manner (i.e.,
maximizing the cache hit ratio based on the current content
popularity information), the second effect can hinder the cache
hit ratio, and the combined impact of the above two effects
yields an almost steady cache hit ratio of LP and TLP in
Fig. 4a. By contrast, the cache hit ratio of RR and LRU
increases with tmax

0 as the result of the first effect while the
second effect has no significant impact as RR and LRU do not
rely on the instantaneous content popularity information.

In the second example with shot noise model, Nc is in-
creased from 1000 to 2000, and Amax

l and Amin
l are decreased

from 1000 to 200 and from 10 to 1, respectively. The average
content life-span also becomes shorter. Fig. 5a shows the
resulting cache hit ratio versus tmax

0 , while the request time
instants for 40 out of the 2000 contents when tmax

0 = 2500
is plotted in Fig. 5b. Comparing Fig. 5a with Fig. 4a, three
observations can be made. First, the cache hit ratio in Fig. 5a
becomes lower for all schemes when tmax

0 = 0, as a result
of Nc increasing to 2000. Second, the effect of φ and α on
the performance of RR and LP, respectively, becomes obvious
in Fig. 5a. This is because a larger φ or α allows for a
faster adaption to new content requests, which is important

4Specifically, the contents whose content ID is a multiple of 25 are selected.
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(b) Request instants for 40 out of 2000 contents in one round
when tmax

0 = 2500.

Fig. 5: Cache hit ratio under shot noise model, short life-span.

now that the number of requests for each content decreases
significantly. Third, RR and LRU begin to outperform LP and
TLP from a smaller tmax

0 in Fig. 5a compared to that in Fig. 4a,
and the performance gap between the two groups becomes
larger. This is because the combination of active contents
and their popularity varies even more rapidly compared with
the case in Fig. 4a, as a result of a larger Nc and shorter
content life span. The result in Fig. 5a shows that exploiting
the instantaneous content popularity information in a content
replacement scheme is not necessarily beneficial for increasing
the cache hit ratio even if such information is predicted
perfectly. This is because the usefulness of the instantaneous
content popularity information depends on how rapidly the
content popularity changes. This example corresponds to the
case illustrated in Fig. 2d.

Fig. 6 shows the cache hit ratio with a time-varying content
popularity model different from eq. (37). Specifically, the
request for content l follows a time-inhomogeneous Poisson
process with the instantaneous rate at time t given by:

yl(t) = Al
1√
2πσ

exp−
(t−tl,0)

2σ2 . (38)

The parameter tl,0 is no longer the entrance time of instant
l in eq. (38). However, tl,0 in both eq. (37) and eq. (38)
corresponds to the time instant of the peak instantaneous
request rate for content l. Similarly, tl,0 is uniformly generated
in [0, tmax

0 ], and Al is uniformly generated in [Amin
l , Amax

l ].
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(b) Request instants for 40 out of 1000 contents in one round
when tmax

0 = 2500.

Fig. 6: Cache hit ratio under time-inhomogeneous Poisson
process represented by eq. (38).

In this simulation, Nc is set to 1000 and the cache size
L is set to 15. A duration with 5000 seconds from t = 0
to t = 5000 is considered. The parameters Amin

l and Amax
l

are set to 1 and 50, respectively. Fig. 6a shows the resulting
cache hit ratio of the considered replacement schemes versus
tmax
0 , in which each data point is averaged over 200 rounds

of simulations. Accurate prediction of content popularity is
again assumed for LP and TLP. The request time instants for
40 out of the 1000 contents when tmax

0 = 2500 is plotted in
Fig. 6b. It can be seen that Fig. 6a shows a very different
result when compared with Fig. 4a or Fig. 5a. Specifically,
LP and TLP always perform better that RR and LRU in
Fig. 6a, and the performance gap between the two groups
increases with tmax

0 . This is because that, unlike the abrupt and
frequent variations introduced by eq. (37), the instantaneous
rate model in eq.(38) leads to smooth and graduate variations
in the content popularity. As a result, the instantaneous content
popularity at any instant can be close to the instantaneous con-
tent popularity for a number of subsequent requests. Therefore,
the greedy maximization of the cache hit ratio based on the
current content popularity information used by LP and TLP
can benefit the cache hit ratio for both the immediate next
request and also subsequent requests. Consequently, the LP
and TLP outperform RR and LRU due to the exploration of
the instantaneous content popularity information in such case.

This example corresponds to the case illustrated in Fig. 2c.

VII. CONCLUSION

We have extended the study of dynamic caching via STF to
the case of time-varying content popularity. In our analysis, we
have focused on developing the model and methodology with-
out assuming a specific pattern of change in content popularity.
The results have demonstrated the impact of varying popularity
on the STF and the performance of replacement schemes in the
general case. Further extensions can be conducted by incorpo-
rating a specific model of time-varying content popularity. In
our simulations, we have adopted different models of varying
popularity, and the numerical results have been shown to be
consistent with the observations from the analysis.

Through the two parts of this paper, we have provided a
novel perspective and developed methods for studying cache
replacement in the vector space of SCP using STF. It has
been demonstrated that the design of replacement schemes
is essentially the design of STF and that the knowledge of
content popularity is beneficial only if exploited properly,
depending on the pattern of change in the content popularity.
As there are many open issues, especially in the case of time-
varying content popularity, the results of this paper have been
developed in the effort of inspiring the analysis or design of
cache replacement schemes for various specific problems and
scenarios.

APPENDIX

A. Proof of Lemma 1

Suppose that the LRU content at the nth request is content
q?, and the most recent request for q? is the (n − w)th
request. It must hold that w ≥ L, and all requests from
(n − w + 1)th request to the (n − 1)th request must be for
contents l ∈ Ck\{q?}. Denote the Nc contents in l ∈ Ck\{q?}
as k(1, q̄?), . . . k(L − 1, q̄?). To allocate the total number of
w − 1 requests (i.e., from the (n − w + 1)th request to the
(n − 1)th request) to the L − 1 contents in l ∈ Ck\{q?},
there are Pw =

(
w−1
L−1

)
different different allocations, without

considering the order of requests, that guarantees at least one
request for each content. Denote the number of requests for
content k(i, q̄?) in the jth combination as T (k, i, j, q̄?), where
i ∈ {1, . . . , L− 1} and j ∈ {1, . . . , Pw}. It follows that:

L−1∑
1=1

T (k, i, j, q̄?) = w − 1,∀j. (39)

Then, considering the order of request, the number of different
ordered allocations are:

Uw =

Pw∑
j=1

L−1∏
i=1

(
w −1− ak,i,j,q̄?
T (k, i, j, q̄?)

)
. (40)

in which

ak,i,j,q̄? =


0, if i = 1
i−1∑
y=1

T (k, y, j, q̄?), if i ≥ 2.
(41)
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Denote the set of request instants for content k(i, q̄?) in
the uth ordered combination as T (k, i, u, q̄?), where i ∈
{1, . . . , L− 1} and u ∈ {1, . . . , Uw}. It follows that:

L−1⋃
i=1

T (k, i, u, q̄?) = {n− 1, . . . , n− w + 1}, ∀u. (42)

Accordingly, the joint probability that the current state is k,
content q? = e(k,m) ∈ Ck is the LRU content at the nth
request, and the most recent request for the LRU is the (n−
w)th request is given by eq. (13). �

B. Proof of Lemma 2

The average cache hit probability from the 1st till the nth
request is given by:

γavg =
1

n

n∑
t=1

(
υ(t)

)T

λ(t−1)

=
1

n

n∑
t=1

(
υ(t)

)T

Csη
(t−1). (43)

Using eq. (20) (and setting n = 1 and N = t− 1 in eq. (20)),
it holds that:

η(t−1) =
t−2∑
t′=0

u(t′+1)(η(t′)) + η(0) (44)

for any t ≥ 2. Substituting eq. (20) into eq. (43), it holds that:

γavg =
1

n

n∑
t=2

(
υ(t)

)T

Cs

( t−2∑
t′=0

u(t′+1)(η(t′)) + η(0)

)
+

1

n

(
υ(1)

)T

Csη
(0)

=
1

n

n∑
t=2

(
υ(t)

)T

Cs

( t−2∑
t′=0

u(t′+1)(η(t′))

)
+

1

n

n∑
t=1

(
υ(t)

)T

Csη
(0)

=
1

n

n∑
t=2

(
υ(t)

)T

Cs

( t−2∑
t′=0

u(t′+1)(η(t′))

)

+

(
1

n

n∑
t=1

υ(t)

)T

Csη
(0), (45)

which leads to eq. (21). �

C. Proof of Theorem 1

As ῡl is defined such that η(n−1) would be the steady state if
the content request probabilities were time-invariant and equal
to {ῡl}. It follows that:∑

l∈C
ῡlΘlη

(n−1) = η(n−1). (46)

Based on eq. (24) and eq. (46), it holds that:

η(n) − η(n−1) =
∑
l∈C

(
υ

(n)
l − ῡl

)
Θlη

(n−1)

=
∑
l∈C

(
υ

(n)
l − ῡl

)
(η(n−1) + u

(n)
l )

=
∑
l∈C

(
υ

(n)
l − ῡl

)
u

(n)
l , (47)

where the last equality uses the fact that
∑
l∈C

(
υ

(n)
l − ῡl

)
= 0.

Substituting the above equation into eq. (32) gives

d(n+1)
γ =

(
υ(n+1)

)T

Cs

∑
l∈C

(
υ

(n)
l − ῡl

)
u

(n)
l . (48)

Rearranging the above equation using eq. (34) leads to
eq. (33). �

D. Proof of Theorem 2

The proof is based on the equality d
(n+1)
γ =(

υ(n+1)
)T

Csu
(n) in eq. (32). The elements of the Nc × 1

vector Csu
(n) are the changes in the caching probabilities

of the Nc contents after the nth request and replacement. It
is straightforward to see that the upper and lower bounds of
d

(n+1)
γ are decided by the maximum and minimum elements

of Csu
(n), respectively.

Given that contents are sorted based on their popularity at
the nth request, the maximum element of Csu

(n) for all cases
but TLP-P corresponds to the case when content 1 is requested
while it is being cached with probability zero. Using eq. (24)
and eqs. (25) - (30), it can be seen that the maximum element
of Csu

(n) is Lφmax
l
{υ(n)
l }, αmax

l
{υ(n)
l }, max

l
{υ(n)
l }, and

max
l
{υ(n)
l } for RR, LP, TLP-A, and LRU, respectively. For

the case of TLP-P, it holds that

d̂(n+1)
γ ≤ max

l
{υ(n)
l } ·max

l
{υ̃(n+1)
l − υ̃(n+1)

Nc
}. (49)

For all cases but TLP-P, the minimum of Csu
(n) corre-

sponds to the following scenario: i). the state with the L least
popular contents is being cached with probability 1; and ii). a
content not in the cache is requested. The change in the SCP
of this state in the described scenario gives the minimum of
Csu

(n).
For RR, the change in the above SCP is given by

ď(n+1)
γ = −φ

Nc−L∑
l=1

υ
(n)
l ≥ −φ, (50)

where the inequality is based on the approximation that the
summation of request probabilities of all but the L least
popular contents should be close to 1.

For LP, the change is given by

ď(n+1)
γ = −α

Nc−L∑
l=1

υ
(n)
l

υ̃
(n+1)
l − υ̃(n+1)

Nc

Nc∑
q=Nc−L+1

(υ̃
(n+1)
l − υ̃(n+1)

q )

≥ −α
Nc−L∑
l=1

υ
(n)
l ≥ −α. (51)
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For both TLP-A and LRU, the state will change as long
as the requested content is not in the cache. Therefore, the
aforementioned change is given by

ď(n+1)
γ = −

Nc−L∑
l=1

υ
(n)
l ≥ −1. (52)

For TLP- P, assuming that the L least popular contents at
the nth request remain to be the least popular at the (n+ 1)th
request, the change is given by

ď(n+1)
γ = −

Nc−L∑
l=1

υ
(n)
l

(
υ̃

(n+1)
l − υ̃(n+1)

Nc

)
≥ −

Nc−L∑
l=1

υ
(n)
l υ̃

(n+1)
l ≥ −

Nc∑
l=1

υ
(n)
l υ̃

(n+1)
l . (53)

This completes the proof of Theorem 2. �
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