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Abstract

Beam alignment (BA) is to ensure the transmitter and receiver beams are accurately aligned to

establish a reliable communication link in millimeter-wave (mmwave) systems. Existing BA methods

search the entire beam space to identify the optimal transmit-receive beam pair, which incurs significant

BA latency on the order of seconds in the worst case. In this paper, we develop a learning algorithm

to reduce BA latency, namely Hierarchical Beam Alignment (HBA) algorithm. We first formulate the

BA problem as a stochastic multi-armed bandit problem with the objective to maximize the cumulative

received signal strength within a certain period. The proposed algorithm takes advantage of the cor-

relation structure among beams such that the information from nearby beams is extracted to identify

the optimal beam, instead of searching the entire beam space. Furthermore, the prior knowledge on

the channel fluctuation is incorporated in the proposed algorithm to further accelerate the BA process.

Theoretical analysis indicates that the proposed algorithm is asymptotically optimal. Extensive simulation

results demonstrate that the proposed algorithm can identify the optimal beam with a high probability

and reduce the BA latency from hundreds of milliseconds to a few milliseconds in the multipath channel,

as compared to the existing BA method in IEEE 802.11ad.

Index Terms – mmwave, beam alignment, correlation structure, prior knowledge, multi-armed bandit.

I. INTRODUCTION

The ever-increasing data traffic driven by various emerging data-hungry applications, such as

high-definition mobile video streaming, cordless virtual reality gaming and wireless fiber-to-home

access, has placed a growing strain on the creaking traditional cellular networks. Millimeter-wave

(mmwave) communication is envisioned as the most promising technology to accommodate the
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skyrocketing data traffic through harnessing multi-GHz bandwidths. Multiple standardization

efforts, such as IEEE 802.11ad [1], [2] and ongoing IEEE 802.11ay [3], [4], and large-scale

field-trials have paved the road for the commercialization of mmwave communications.

In mmwave communication systems, narrow directional beams are adopted at both the trans-

mitter and receiver to compensate for the huge attenuation loss. Since beams are narrow, the

communication is possible only when the transmitter and receiver beams are properly aligned

[5], as shown in Fig. 1. Beam alignment (BA) is such a process to identify the optimal transmit-

receive beam pair which attains the maximum received signal strength (RSS). Beam misalignment

can dramatically reduce the link budget and drop the throughput from multiple Gbps to a few

hundred Mbps [6]. As a key process in mmwave communications, BA is of significance to

achieve multi-gigabit wireless transmission. To identify the best beam pair, a naive exhaustive

search method scans all the combinations of the transmitter and receiver beams, which results in

significant BA latency. Yet, a low-latency BA process is imperative for practical mmwave systems

to accommodate real-time applications. Moreover, in mobile scenarios, user mobility changes

the beam direction and thus frequently invokes BA, which further exacerbates the latency. To

accelerate the beam search, IEEE 802.11ad protocol decouples the BA process into two steps.

Firstly, the transmitter starts with a quasi-omnidirectional beam and the receiver scans the beam

space for the best receiver beam. Secondly, the transmitter scans the beam space for the best

transmitter beam while keeping the receiver quasi-omnidirectional. Still, the existing BA method

in IEEE 802.11ad may take up to seconds with a large number of candidate beams [7]. To reduce

BA latency, can we identify the optimal beam without searching the entire beam space?

In the literature, there are some initial research efforts to address this challenge. Utilizing the

sparse characteristic of the mmwave channel, Marzi et al. developed a compressed sensing BA

method [8]. Some out-of-band information, e.g., the Wi-Fi signal, is exploited to identify the

optimal beam in [9]. These works perform BA with the assistance of excessive extra information

besides RSS. Surprisingly, a crucial feature, the correlation structure among beams, is ignored

in previous works. In fact, the RSS of nearby beams is similar which means nearby beams are

highly correlated. In this way, if a beam does not perform well, its nearby beams are highly

likely to perform worse either. The measurement of one beam not only reveals information about

itself, but also its nearby beams. Hence, the information from nearby beams can be learned to

identify the optimal beam without searching the entire beam space.

In this paper, we propose a fast BA algorithm, named Hierarchical Beam Alignment (HBA),



3

	

Fig. 1. A beam alignment example with 16 beams. The well-aligned transmitter and receiver beams are represented by solid
green beams.

by utilizing the correlation structure among beams and the prior knowledge on the channel

fluctuation. In the BA problem, fast BA means identifying the optimal beam with the minimum

latency. This problem boils down to sequentially selecting beams to maximize the cumulative

RSS within a certain period, which can be formulated as a stochastic multi-armed bandit (MAB)

problem. To solve this problem efficiently, two unique characteristics are incorporated in our

proposed algorithm. Firstly, theoretical analysis indicates that the correlation structure among

beams in the multipath channel can be characterized by a multimodal function. Utilizing this

correlation structure, the proposed algorithm intelligently narrows the search space to identify

the optimal beam. Secondly, incorporating the prior knowledge on the channel fluctuation to

appropriately accommodate reward uncertainty, the proposed algorithm avoids excessive explo-

ration and further accelerates the BA process. Theoretical analysis shows that the regret of HBA

is bounded and thus the proposed algorithm is asymptotically optimal. Extensive simulation

results demonstrate that HBA can identify the optimal beam with a high probability and reduce

the number of beam measurements in the multipath channel, even with coarse prior knowledge.

Particularly, the proposed algorithm reduces the BA latency by orders of magnitude as compared

to the BA method in IEEE 802.11ad.

Our contributions in this paper are summarized as follows.

• We formulate the BA problem as a stochastic MAB problem, in which the objective is to

sequentially select beams to maximize cumulative RSS within a certain period;

• We prove that the mean RSS function over the beam space follows a multimodality structure

in the multipath channel, which characterizes the correlation structure among nearby beams;
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• We propose a fast BA algorithm to accelerate beam search by exploiting the correlation

structure and the prior knowledge on the channel fluctuation;

• We derive a sublinear analytical upper bound on the cumulative regret, i.e., O(
√
T log T ),

indicating the proposed algorithm is asymptotically optimal.

The remainder of this paper is organized as follows. Section II reviews related works. The

system model and problem formulation are presented in Section III. Section IV proposes a fast

BA algorithm. Section V analyzes the regret performance of the proposed algorithm. Simulation

results are given in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

The BA problem in mmwave systems garners much attention recently. Zhou et al. elaborated

the challenges of the random access protocol in the BA process in dense networks [1]. In

addition, the authors developed possible solutions from the MAC perspective. Utilizing the sparse

characteristic that only a few paths exist in the mmwave channel, a compressed sensing solution

can align beams with a low beam measurement complexity of O(L logN), where L is the

number of channel paths and N is the number of beams [8]. The approach suits for mmwave

systems where the accurate phase information is available. In another line of research, Wang et

al. developed a fast-discovery multi-resolution beam search in [10], which probes the wide beam

first and continues to narrow beams until identifying the best beam. While feasible, the method

needs to adjust the beam resolution at every step. On the other hand, Xiao et al. proposed a

hierarchical codebook search method to efficiently identify the optimal beam by jointly utilizing

sub-array and deactivation techniques [11]. Moreover, they provide the closed-form expression of

the hierarchical codebook. Sun et al. further developed an orthogonal pilot based low-overhead

beam alignment method for the multiuser mmwave systems [12]. Another solution exploits some

out-of-band information, i.e., the Wi-Fi signal, to identify the optimal beam [9]. Similar works

extract spatial information from sub-6 GHz signals to assist BA as well as boost throughput

[13], [14]. Recent efforts leverage the multi-armed beams capability to improve BA performance.

Hassanieh et al. proposed a fast BA protocol through scanning multiple directions simultaneously

[7]. A similar method, which treats the problem of identifying the optimal beam as that of locating

the error in linear block codes, is developed to reduce BA complexity [15]. The works in [1],

[7]–[15] provide possible solutions for the BA problem in various scenarios. Different from prior

works, our work considers the correlation structure among nearby beams to assist BA process.
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MAB theory has been widely applied in wireless networks, such as power allocation in small

base stations [16] [17], content placement in edge caching [18], [19], task assignment in mobile

crowdsourcing [20] and mobility management in mobile edge computing [21]. Very recently, the

BA problem is studied based on MAB theory, which makes online decision to strike the balance

between exploitation and exploration. Gulati et al. applied the celebrated upper confidence bound

(UCB) algorithm in beam selection in traditional MIMO systems [22]. Sim et al. developed an

online beam selection algorithm in mmwave vehicular networks based on contextual bandit

theory [23]. This work learns information from real-time environment to enhance the throughput

of mmwave networks. A pioneering work in [6] exploits a unimodal structure among beams

to accelerate the BA process in static environments. This solution focuses on aligning beams

in the single-path channel. Another work developed a distributed BA search method based on

adversarial bandit theory [24]. These works provide highly relevant insights on the BA problem

in mmwave networks via bandit learning theory. However, they do not provide a method to

quickly and accurately align beams, especially in complicated multipath channels. Different

from existing works, we focus on leveraging the correlation structure and prior knowledge to

accelerate the BA process in the multipath channel with only RSS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Beam Alignment Model

As shown in Fig. 2, we consider a point-to-point mmwave system in a static environment,

where the transmitter is equipped with N antennas. Uniform linear arrays are assumed in both

the transmitter and receiver, and each antenna element is connected to a phase shifter to form

narrow directional beams [25]. In the BA process, the receiver keeps quasi-omnidirectional while

the transmitter scans the beam space to identify the best one. We consider the sparse clustered

channel model, i.e., Saleh-Valenzuela model [26]. Suppose that the channel consists of L paths:

one dominant line-of-sight (LOS) path and L− 1 non-line-of-sight (NLOS) paths, due to strong

reflections from the ground or side walls. The channel array response between the transmitter

and receiver can be represented as a mixture of sinusoids,

hn = g0e
j 2πd
λ
nϑ0 +

L−1∑
l=1

gle
j 2πd
λ
nϑl (1)
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Fig. 2. The point-to-point mmwave system.

where 0 ≤ n ≤ N − 1. Let d and λ denote the array element spacing and carrier wavelength,

respectively. Typically, d = λ/2. Let g0 and gl represent the channel gains of the LOS path and

the l-th NLOS path, respectively. Note that the channel gain of the NLOS path is around 10

dB weaker than that of the LOS path [27]. Let θ denote the physical angle of the channel. The

corresponding spatial angle of the channel is denoted by ϑ = cos θ. We vectorize the sinusoids

ej2πdnϑ/λ, 0 ≤ n ≤ N − 1 into a vector x(ϑ) ∈ CN×1. Thus, the channel vector is given by

h = g0x(ϑ0) +
L−1∑
l=1

glx(ϑl) ∈ CN×1. (2)

Since we consider a static environment, the channel vector keeps invariant during the BA process.

Let W = [w1,w2, ...,wN ] ∈ CN×N denote the unitary Discrete Fourier Transform (DFT)

matrix whose columns constitute the transmit beam space, given by

W =
1√
N

[x(ω1),x(ω2), ...,x(ωN)]. (3)

In (3), ωi = 2i−N
N

represents the spatial angle of the i-th beam [8]. According to the BA method

in IEEE 802.11ad, the transmitter scans all the beams in W, while the receiver beam keeps

omni-directional. The received signal vector is given by

y =
√
PhHW + n (4)

where n denotes the additive Gaussian white noise vector. Let NoW denote the mean noise

power, where W is the channel bandwidth and No is the noise power density.

The problem of identifying the optimal transmit beam boils down to identifying the element

with the maximum magnitude within y. Hence, to identify the optimal beam, the BA method

in IEEE 802.11ad protocol needs to measure the RSS of all the transmit beams, leading to a

high beam measurement complexity [7]. Searching the entire beam space incurs significant BA
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latency, especially when the beam space is large.

B. Problem Formulation

In this subsection, the BA problem is formulated as a stochastic MAB problem for stationary

environments. Consider a time slotted system with T time slots of equal duration. In time

slot t ∈ {1, 2, ..., T}, the transmitter selects a beam to transmit data. Let B = {b1, b2, ..., bN}

denote the set of candidate beams, which can be considered as arms in the bandit theory. At

the beginning of time slot t, the transmitter selects a beam denoted by bt ∈ B. At the end of

time slot t, the transmitter observes noisy RSS from the receiver, i.e., r (bt), which is considered

as a reward. Rigorously, the reward is a random variable due to the channel fluctuation, such

as shadow fading and the disturbance effect. For simplicity, we assume that the reward follows

a Gaussian distribution with a variance σ2. In other words, σ2 also represents the variance of

the channel fluctuation, which is utilized as prior knowledge in the following algorithm design.

Note that the proposed algorithm can also be applied to non-Gaussian distribution settings, as

validated in Section VI.

Let b1:t = {b1, b2, ..., bt} denote the sequentially selected beams up to time slot t. The set of

corresponding sequential rewards is represented by r1:t = {r(b1), r(b2), ..., r(bt)}. In the MAB

setting, a sequential beam selection policy is how the transmitter selects the next beam based

on previously selected beams b1:t and observed rewards r1:t. Let Π be the set of all possible

sequential beam selection policies. Our objective is to find a policy, π ∈ Π, that maximizes the

expected cumulative reward (RSS) within a given time horizon of T slots, i.e.,
∑T

t=1 r(b
t). This

objective conforms our target since a fast BA algorithm is to identify the optimal beam with the

minimum latency.

In the MAB theory, expected cumulative regret is commonly adopted to evaluate the perfor-

mance of a given policy, which denotes the expected cumulative difference between the reward

of the selected beam and the maximum reward achieved by the optimal beam. The expected

cumulative regret is defined as

Rπ(T ) = E

[
T∑
t=1

(
r(b?)− r(bt)

)]
= T · E [r (b?)]−

∑
bi∈B

Nπ
bi

(T )E [r (bi)] (5)

where b? represents the optimal beam and Nπ
bi

(T ) denotes the number of times that bi has been

selected up to time slot T . Hence, maximizing the cumulative reward is equivalent to minimizing
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the expected cumulative regret within T [6], which can be expressed as

P1 :min
π∈Π

Rπ(T )

s.t.
∑
bi∈B

Nπ
bi

(T ) ≤ T (6a)

Nπ
bi

(T ) ∈ Z,∀bi ∈ B. (6b)

The preceding MAB problem P1 can be solved by the celebrated UCB algorithm [28].

However, this problem has two characteristics that were not utilized in the UCB algorithm.

Firstly, since the RSS of nearby beams are highly correlated, the correlation information from

nearby beams can be utilized to select the next beam efficiently. Secondly, the prior knowledge

on the channel fluctuation reflects the information of environment, which can be exploited to

appropriately accommodate reward uncertainty such that the BA process can be further acceler-

ated. In the following, we will leverage these two characteristics to accelerate the convergence

speed, and hence reduce BA latency.

IV. FAST BEAM ALIGNMENT

In this section, we first analyze and validate that the mean reward (RSS) over the beam space

follows a multimodality structure, which characterizes the inherent correlation among beams.

Next, by exploiting the correlation structure and the prior knowledge, a fast BA algorithm is

proposed to identify the optimal beam.

A. Correlation Structure

Consider a cyclic undirected graph G = (B, E) whose vertices B stand for the beams. Let

(bi, bi+1) ∈ E denote the edge that connects neighboring beams bi and bi+1. In addition, (bN , b1) ∈

E indicates that the last beam bN and the first beam b1 are neighbors since their beam orientations

are close to each other. The unimodality structure is defined as follows.

Definition 1: (Unimodality) Let bi? denote the optimal beam in G. The unimodality structure

indicates that, ∀bi ∈ B, there exist a path, (bi, bi+1, ..., bi?), along which the mean reward is

strictly increasing.

In other words, the unimodality structure means that there is no local optimal beam over the

beam space. Next, we aim to show that the correlation structure among beams follows above
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unimodality structure. Consider the single-path channel, where g and ϑ represent the channel

gain and channel spatial angle of the path, respectively. With (4), the mean RSS is given by

E [r(bi)] = P
∣∣hHwi

∣∣2 +NoW

=
Pg2

N

∣∣xH(ϑ)x(ωi)
∣∣2 +NoW

=
Pg2

N

∣∣∣∣∣
N−1∑
n=0

ej
2πd
λ
n(ωi−ϑ)

∣∣∣∣∣
2

+NoW

=
Pg2

N
D (ωi − ϑ) +NoW,∀bi ∈ B

(7)

where

D(x) =
sin2(Nπdx/λ)

sin2(πdx/λ)
(8)

denotes the antenna directivity function, which depends on the angular misalignment x. Hence,

the mean RSS is a function of angular misalignment ωi − ϑ.

Theorem 1: In the single-path channel, the mean reward (RSS) over the beam space is a

unimodal function.

Proof 1: Proof is provided in Appendix A.

The linear combination of several unimodal functions is a multimodal function, which means

that there exist several local optimums.

Corollary 1: In the multipath channel, the mean reward (RSS) over the beam space is a

multimodal function. The dominant peak of the multimodal function is caused by the LOS path,

while other peaks are caused by NLOS paths.

Proof 2: Proof is provided in Appendix B.

For example, Fig. 3 shows the RSS function over the beam space in a two-path channel.

Even though the practical RSS is noisy due to the channel fluctuation, we observe that the mean

RSS function follows the multimodality structure. For a two-path mmwave channel, there exists

two peaks in the mean RSS function, where the dominant peak is due to the LOS path and

another smaller peak is due to the NLOS path. Furthermore, the multimodality structure has

been observed in many in-field measurements in mmwave systems, which further validates our

theoretical results.

Remark 1: Theoretical analysis indicates that the RSS depends on the angular misalignment.

As the angular misalignment of nearby beams is close, the RSS of nearby beams is similar such

that nearby beams are highly correlated.
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Fig. 3. The RSS function over the beam space in a two-path channel with 128 beams. The peak caused by the LOS link is
around 10 dB higher than that by the NLOS link.

Since the RSS function over the beam space is a multimodal function, the BA problem boils

down to identifying the optimal point of a multimodal function. In other words, our goal is to

find optimal point x? that maximizes multimodal reward function f(x), x ∈ X . To solve this

problem efficiently, the correlation structure of the reward function is leveraged. Specifically, the

correlation structure is exploited based on a dissimilarity function that captures the smoothness

of reward function [29].

Definition 2: Dissimilarity. For space X , a dissimilarity function for x1 ∈ X and x2 ∈ X is

defined as q(x1, x2) = w‖x1 − x2‖β , where w > 0, β > 0 and ‖ · ‖ denotes the Euclidean norm

function. Note that q(x, x) = 0 for x ∈ X .

The dissimilarity function is applied to characterize the discrepancy of two points in the reward

function. Normally, two nearby points in the function have similar rewards, which means the

dissimilarity between two nearby points is bounded. Such smoothness property of the reward

function is exploited in the following algorithm design to accelerate the BA process.

B. Prior Knowledge

In addition to the aforementioned correlation structure, some prior knowledge can be leveraged

to further speed up the BA process. As the reward is impacted by wireless environments, channel

fluctuation statistics reflects the underlying information of the wireless environments. Leveraging

the channel fluctuation statistics can appropriately accommodate the reward uncertainty such that

less exploration is required. Specifically, the variance of the channel fluctuation σ2 is assumed

to be known a priori to accelerate the BA process. In practice, the prior knowledge can be

obtained in the system initialization phase before the BA process is invoked. Practical mmwave

systems also collect the variance of channel fluctuation periodically. Besides, since the channel
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statistical information changes slowly in static environments, there is no need to frequently

collect the information. It is worth noting that the proposed algorithm works even with coarse

prior knowledge at the expense of slower convergence or lower beam detection accuracy, which

is presented in Section VI.

C. Hierarchical Beam Alignment (HBA) Algorithm

As discussed, the mean reward function exhibits the multimodality structure, and hence

we adapt and extend the hierarchical optimistic optimization (HOO) algorithm [29] to the

BA problem. Due to the lack of prior knowledge, HOO adopts a large confidence margin to

accommodate the reward uncertainty, which results in slow convergence. Similar to the well-

known Bayesian principles in [30], we leverage the prior knowledge to obtain an appropriate

confidence margin, which avoids unnecessary exploration and further accelerates convergence.

The proposed HBA algorithm is sketched in Algorithm 1. In the algorithm, Ber(0.5) represents

a Bernoulli distributed random variable with a parameter of 0.5, which means that the random

variable is equally likely to take values 0 and 1. In addition, leaf(T ) represents the leaf node

of tree T .

The proposed algorithm is designed based on the correlation structure among beams. If a beam

performs well, its nearby beams are highly likely to perform well too. Hence, the core idea is to

explore intensively around good beams while loosely in others. For this purpose, a search tree is

constructed, whose nodes are associated with search regions. A deeper node represents a smaller

search region, as an illustrative example shown in Fig. 4(a). The algorithm operates in discrete

time slots, and the binary tree is constructed in an incremental manner. At each time slot, a new

node is selected by a node selection process and added to the search tree. Once selected, the

beam located in the selected node is measured, and then the corresponding reward is observed.

Then, the attributes of the search tree are updated based on the newly observed reward. In this

way, the algorithm intelligently narrows the search region until the optimal beam is identified. It

is worth noting that selecting a new node means exploring the region associated to the node, and

the search tree explores the region based on previously selected beams and observed rewards.

Next, we elaborate the algorithm in detail. In the initialization phase, the beam space, B, is

mapped to a region X = [0, 1], which is uniformly partitioned by each beam. Similarly, the RSS

function, r(bi),∀bi ∈ B, is mapped to a normalized reward function, f(x), ∀x ∈ X , within [0, 1].

In the beginning, the search tree T only contains a root node (0, 1). The node in the tree is
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Algorithm 1: HBA algorithm
Input: ζ , ρ1, γ and σ2

Output: b?
1 Initialization: Set T = {(0, 1)}, Q2,1 = Q2,2 = +∞, xL = 0 and xH = 1;
2 for t=1,2,3... do
3 (h, j)← (0, 1), P ← {(h, j)};
4 � New node selection
5 while (h, i) ∈ Tt do

if Qh+1,2j−1 (t) > Qh+1,2j (t) then
(h, j)← (h+ 1, 2j − 1), update xL = xa;

else if Qh+1,2j−1 (t) < Qh+1,2j (t) then
(h, j)← (h+ 1, 2j), update xH = xa;

else
(h, j)← (h+ 1, 2j−Ber(0.5)), update the search region;

end if
P ← P ∪ {(h, j)};

6 end
7 (Ht, Jt)← (h, j); Tt+1 = Tt ∪ {(Ht, Jt)};
8 � Attributes update
9 Measure the beam located in the center CHt,Jt , and observe the reward rt;

10 ∀(h, j) ∈ P , update Nh,j (t) and Rh,j (t) with (9) and (10), respectively;
11 ∀(h, j) ∈ Tt, update Eh,j (t) with (11);
12 QH+1,2J−1 (t) = QH+1,2J (t) = +∞; T̂ = Tt;
13 for (h, j) ∈ T̂ do
14 (h, j)← leaf(T̂ ), update Qh,j (t) with (12), T̂ ← T̂ \ (h, j);
15 end
16 � Terminating condition

if xH − xL < ζ/N then
Terminate beam search and select current beam b?;

end if
17 end

represented by (h, j), where h denotes the depth from the root node and j, 1 ≤ j ≤ 2h denotes the

index at depth h. In addition, each node in the tree is associated with a region. Let Ch,j represent

the region of (h, j). Specifically, the root node represents the entire region, i.e., C0,1 = [0, 1].

Let (h+ 1, 2j−1) and (h+ 1, 2j) denote the left and the right child node of (h, j), respectively.

Two child nodes partition the region of their parent node. Consider Ch,j = [xL, xH ], the left

child node is associated with a region Ch+1,2j−1 = [xL, xa] and the right child node is associated

with a region Ch+1,2j = [xa, xH ], where xa = xL + (xH − xL) /2 is the middle point of Ch,j .

The HBA algorithm operates in a “zooming” manner, which intelligently narrows the search
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region via comparing the Q-values in the tree. The Q-value is designed based on the correlation

structure of the reward function and the prior knowledge. At time slot t, HBA consists of the

following three phases:

1. New node selection. In this phase, a new node will be selected. Let Tt denote the tree

at time t. At each time slot, starting from the root node, the Q-values of two child nodes are

compared until a new node (Ht, Jt) /∈ Tt is selected. Specifically, traversing the tree, the child

with a higher Q-value is chosen, otherwise breaking ties randomly (lines 5-6). The selected node

is added to the tree, i.e., Tt+1 = Tt ∪ {(Ht, Jt)}, and the path from the root node to the selected

node is stored in P .

2. Attributes update. In this phase, the attributes of all the nodes in the tree are updated. For

the selected node in the previous phase, a beam located in the center of CHt,Jt is measured and

then the corresponding reward rt is obtained. Based on the newly observed reward, for node

(h, j), Qh,j is updated by the following steps.

Firstly, as the new node is the descendant of all the nodes in path P , Nh,j (t), which represents

the number of times that (h, j) has been selected until time slot t, is updated by

Nh,j (t) = Nh,j (t− 1) + 1,∀(h, j) ∈ P . (9)

Secondly, Rh,j (t) represents the mean measured reward of (h, j) up to time slot t, which is

updated by

Rh,j (t) =
(Nh,j (t)− 1)Rh,j (t− 1) + rt

Nh,j (t)
,∀(h, j) ∈ P . (10)

Thirdly, for each node in the tree, the initial estimated maximum mean reward in region Ch,j ,

denoted by Eh,j (t), is updated by,

Eh,j (t) =

Rh,j (t) +
√

2σ2 log t
Nh,j(t)

+ ρ1γ
h, if Nh,j (t) > 0

+∞, otherwise
(11)

where
√

2σ2 log t
Nh,j(t)

is the confidence margin to accommodate for the uncertainty of rewards. As

aforementioned, we adopt the Bayesian principle to design the confidence margin by leveraging

the prior knowledge on the variance of channel fluctuation. In (11), ρ1γ
h accounts for the max-

imum variation of the mean reward function in region Ch,j , where ρ1 > 0 and γ ∈ (0, 1). This

term is obtained via the correlation structure in the reward function. The maximum dissimilarity
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within region Ch,j for the reward function is upper bounded by ρ1γ
h, i.e., max

x1,x2∈Ch,j
q(x1, x2) ≤

ρ1γ
h,∀x1, x2 ∈ X , which holds due to the bounded diameter assumption in Section V. The

values of ρ1 and γ are selected based on extensive simulation trials. For a binary tree case, γ is

typically set to 0.5 [29]. Note that E-values of all the unexplored nodes are set to infinity.

Finally, the estimated maximum mean reward in region Ch,j , Qh,j (t), should be recursively

updated through the following bound

Qh,j (t) =

min{Eh,j (t) ,max{Qh+1,2j−1 (t) , Qh+1,2j (t)}}, if Nh,j (t) > 0

+∞, otherwise
(12)

This bound depends on two terms. The first term, Eh,j (t), is an upper bound for Qh,j (t) due

to the definition of E-values. The second term, max{Qh+1,2j−1 (t) , Qh+1,2j (t)}, is another valid

upper bound of Qh,j (t). Since Ch,j = Ch+1,2j−1 ∪ Ch+1,2j−1, the maximum value between the

Q-values in two subsets is the upper bound of Q-value in the union set. Combining both terms

together, a tighter upper bound is obtained via taking the minimum value of these two bounds.

Note that Q-values should be updated from the leaf node of the tree because Q-values of child

nodes form the upper bound of their parent node (lines 12-15).

3. Terminating condition. As the tree is constructed over time, the search region gradually

narrows as the depth of the tree increases. When the search region is sufficiently small, i.e.,

xH − xL < ζ/N where 0 < ζ < 1, the BA process is terminated and the beam located in the

final region is selected as the optimal beam. The value of ζ should be carefully selected based

on extensive simulation trials. Noteworthily, a larger ζ value results in faster convergence while

lower beam detection accuracy.

Remark 2: A region attained a large Q-value represents that the potential maximum reward

in the region is high, which means that the optimal beam (the maximum reward) locates in this

region with a high probability. Hence, the HBA algorithm explores intensively in the regions

with high estimated maximum rewards (Q-values) while loosely in others. In this way, the HBA

algorithm is more efficient than the exhaustive search method, which accelerates the BA process.

Illustrative example: For better understanding of HBA, we provide two illustrative examples

in Fig. 4. Firstly, as shown in Fig. 4(a), HBA operates similar to a “zooming” process. At the

beginning, the search region is the entire region, which is uniformly partitioned by the beams.

As time goes by, the search region is adaptively partitioned, and the algorithm gradually zooms
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Fig. 4. Illustrative examples of the HBA algorithm. (a) The proposed algorithm operates in a “zooming” manner. (b) The region
that contains the dominant peak is explored intensively, while others are explored loosely.

to the region that contains the optimal beam. Secondly, sequentially selected beams in the BA

process are depicted in Fig. 4(b). The selected beams are divided into three batches according

to the timeline. The first batch beams locate randomly in the whole region. The second batch

beams get closer to the dominant peak. The last batch beams mainly focus around the optimal

beam. We observe that the proposed algorithm explores intensively in the regions that contain

good beams while loosely on the others.

D. Complexity Analysis

At time slot T , Tt contains T nodes as the tree increments by one node at each time slot. Hence,

the storage complexity of the proposed algorithm is linear, i.e., O(T ). In addition, the attributes

of all the nodes in the tree should be updated at each time slot, and hence the running time at

each time slot is also linear. As the algorithm runs T time slots, the computational complexity

of the HBA algorithm is a quadratic complexity O(T 2). With the terminating condition, the tree

is a finite tree and hence both storage complexity and computational complexity are bounded.

V. REGRET PERFORMANCE ANALYSIS

In this section, we analyze the upper bound on the cumulative regret for the proposed algo-

rithm. For the tractability of regret analysis, we have the following two assumptions.

Assumption 1: (Weak Lipschitz) For any x around the optimal x?, there exist constants

cH > 0 and α > 0 such that

f ? − f(x) ≤ cH‖x? − x‖α (13)
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where f ? = f(x?) represents the optimum of function f(·). This assumption indicates that the

reward function satisfies the week Lipschitz condition, which can avoid sharp valleys around

the optimal point that induces high regret. Furthermore, the weak Lipschitz condition is mild,

which only has the impact on the region in the vicinity of the optimal value. This assumption

is well justified in many practical applications [17].

Assumption 2:

1) (Bounded diameter) For a region, Ch,j , of depth h, the diameter of the region is defined

as D(Ch,j) = max
x,y∈Ch,j

q(x, y). The diameter of the region is upper bounded by ρ1γ
h for

constants ρ1 > 0 and 0 < γ < 1.

2) (Well-shaped region) For a region, Ch,j , of depth h, the region contains a ball with a

radius of ρ2γ
h which locates in the center of Ch,j .

The bounded diameter condition is to upper bound the maximum variation of f(x) within

the region Ch,j . In contrast, the well-shaped region condition is to lower bound the minimum

variation of f(x) within the region Ch,j . Note that any region in the reward function satisfies

the bounded diameter and well-shaped region conditions [29], which are utilized to bound the

cumulative regret in the following analysis.

Definition 3: ε-optimal. Let f ?h,j = max
x∈Ch,j

f(x) be the optimal reward in Ch,j . If f ?h,j > f ?−εh,j ,

Ch,j is the εh,j-optimal region.

For example, if εh,j = 0, Ch,j is the optimal region where optimal value x? locates. Otherwise,

if εh,j > 0, Ch,j is a sub-optimal region. Let εh,j represent the suboptimality of (h, j).

To obtain the regret bound, we first provide the following lemma.

Lemma 1: For any node (h, j) whose suboptimality is larger than ρ1γ
h, the expected number

of times that (h, j) has been visited until time slot T , is upper bounded by

E [Nh,j(T )] ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + c (14)

where c is a constant.

Proof 3: The detailed proof is given in Appendix C.

Remark 3: From Lemma 1, the number of times that a suboptimal node has been visited log-

arithmically increases with time, which implies the cumulative regret of the proposed algorithm

is sublinear. In addition, the number of times that a suboptimal node has been visited, depends

on the variance of the channel fluctuation. A larger variance of the channel fluctuation implies
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a more noisy wireless environment, which yields more exploration efforts to remove the reward

uncertainty.

Based on above lemma, an upper bound is obtained in the following.

Theorem 2: The upper bound on the cumulative regret of HBA is

Rπ (T ) = O
(√

T log T
)
. (15)

Proof 4: The detailed proof is given in Appendix D.

Remark 4: Theorem 2 indicates the expected cumulative regret of HBA is sublinear in the

time horizon T , i.e., lim
T→∞

Rπ(T )/T = 0. Since the per-slot regret diminishes over time, the

proposed algorithm is asymptotically optimal. Hence, the proposed algorithm converges to the

optimal beam over time. Moreover, for finite time horizon T , the regret bound characterizes the

convergence speed of the proposed algorithm.

VI. SIMULATION RESULTS

A. Simulation Setup

We simulate an IEEE 802.11ad system, operating at 60 GHz with a bandwidth of 2.16 GHz

[31]. Consider an outdoor scenario, such as university campus, where the transmission distance

between the transmitter and the receiver is set to 20 m unless otherwise specified. The average

effective isotropically radiated power (EIRP) Pe is fixed at 50 dBm1, which is consistent with

FCC regulations for 60 GHz unlicensed bands [32], [33]. Taking the directional antenna gain

into consideration, the transmit power is P = Pe− 10 log10N . For instance, the transmit powers

are set to around 32 dBm and 23 dBm for 64 and 512 antenna arrays, respectively. It is worth

noting that the mmwave channel is sparse, and hence we set the maximum number of channel

paths to 5, which consists of one dominant LOS path and four NLOS paths. For the LOS path,

the path loss is modeled as

PL(dB) = 32.5 + 20 log10(f) + 10ξ log10(d) + χ (16)

where f , ξ, d, and χ represent the carrier frequency, path loss exponent, transmission distance,

and shadow fading, respectively. The shadow fading follows N(0, σ2) where σ is set to 2 dB

[34]. Note that the channel fluctuation in the simulation is mainly caused by the shadow fading.

1For outdoor applications with the high antenna gain, the average EIRP limit is up to 82 dBm [32].
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Table I
SIMULATION PARAMETERS.

Parameter Value Parameter Value
Noise spectrum density (No) −174 dBm/Hz System bandwidth (W ) 2.16 GHz

Carrier frequency (f) 60 GHz Path loss exponent (ξ) 1.74
Shadowing fading variance (σ) 2 dB Signal range [−80,−20] dBm
SSW frame duration (TSSW ) 15.8 us Beacon interval duration (TBI) 100 ms

Number of beams (N) {8-512} EIRP (Pe) 50 dBm
Number of paths (L) {1-5} Algorithm parameters (ρ1, γ) (3, 0.5)

Terminating condition threshold (ζ) 0.1 Time horizon (T ) 1000 time slots
Extra NLOS path loss U(7, 13) dB Transmission distance (d) 20 m

In addition, according to practical in-field measurements, NLOS paths suffer around 10 dB more

path loss than the LOS path [27]. We assume that the extra NLOS path loss follows a uniform

distribution within [7, 13] dB. Furthermore, for the HBA algorithm, the RSS within [−80,−20]

dBm is mapped to a reward within [0, 1]. The algorithm parameters, ρ1, γ, and ζ are set to 3, 0.5,

and 0.1, respectively, based on extensive simulation trials. Important simulation parameters are

listed in Table I. We evaluate the performance via Monte-Carlo simulations. Simulation results

are averaged based on 50000 samples with different channel fading and locations. The proposed

HBA algorithm is compared to the following benchmarks:

• IEEE 802.11ad [2]: In this industrial method, one side (transmitter or receiver) scans the

beam space, while the other side keeps omni-directional.

• UCB [28]: The celebrated algorithm selects the beam without exploiting both correlation

structure and prior knowledge. The confidence margin is ηu
√

2 log t/Nbi(t), where the

learning rate ηu is set to 0.2 based on extensive simulation trials.

• Unimodal beam alignment (UBA) [6]: The algorithm exploits the unimodal structure

among beams to perform BA. Hence, it works in a “hill-climbing” manner, which selects

the best beam among the neighboring beams at each time slot.

• HOO [29]: The algorithm selects the beam by exploiting beam correlation, without the

prior knowledge. The confidence margin is ηh
√

2 log t/Nh,j(t) + c1γ
h. Here, the learning

rate ηh is set to 0.1, which is chosen based on extensive simulation trials.

B. Regret Performance

Figure 5(a) shows the cumulative regret performance in two-path channels. Several important

observations can be obtained from simulation results. First of all, HBA significantly outperforms
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Fig. 5. Cumulative regret performance in the multipath channel.

other benchmarks. A “bounded regret” behavior is observed, which complies with the theoretical

results in Theorem 2. In addition, HBA converges much faster than other benchmarks. Specifi-

cally, HBA only takes around 25 time slots to converge to the optimal beam. This is because HBA

exploits both correlation structure and prior information to accelerate the BA process, while other

benchmarks only exploit correlation structure or not. It is interesting to note that, as time goes

by, the UBA algorithm performs even worse than the BA method in IEEE 802.11ad which does

not exploit the correlation structure. The reason is that the UBA algorithm is designed based

on the unimodal structure among beams, while the reward function evolves to a multimodal

structure in the multipath channel. This model mismatch results in worse performance than not

exploiting the correlation structure at all.

We further evaluate the impact of the channel fluctuation distribution on the regret performance

in Fig. 5(b). To evaluate the dependency of the Gaussian distribution, the performance under

Gaussian distribution is compared to that under two well-adopted non-Gaussian distributions, i.e.,

uniform distribution and Rayleigh distribution. The performance under non-Gaussian settings is

very close to that under the Gaussian distribution, which means that the proposed algorithm can

be applied in various settings. Furthermore, the impact of the channel fluctuation variance (σ2)

is studied in Fig. 5(b). As expected, the cumulative regret increases as the variance increases,

because more exploration efforts are required in highly fluctuated channels.
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Fig. 6. Performance comparison with respect to the number of paths. Error bars show the 90 percentile performance.

C. Measurement Complexity and Beam Detection Accuracy

The regret performance only reflects the bounded fact of regret, not necessarily the actual

performance. Next, we evaluate the performance of HBA using following two metrics: the number

of measurements and beam detection accuracy.

We first evaluate the scalability of the proposed algorithm with the number of beams in single-

path scenarios, as shown in Fig. 6(a). It is evident that the proposed algorithm significantly

reduces the number of measurements as compared to the BA method in 802.11ad. For a small

number (N = 32) of beams, the proposed algorithm reduces the number of measurements by 2

times as compared to the 802.11ad benchmark. Furthermore, the proposed algorithm achieves

higher performance gains for larger numbers of beams. For instance, for a large number (N =

512) of beams, the proposed algorithm only needs around 40 measurements to identify the

optimal beam, which reduces the number of measurements by 12 times as compared to the

802.11ad benchmark. The reason is that, different from the BA method in 802.11ad that explores

all the beams, the proposed algorithm only needs to explore a few beams by leveraging the

correlation structure and the prior knowledge. The results validate that the proposed algorithm

is a scalable solution even with a large number of beams. In addition, we compare the HBA

algorithm with the UBA algorithm. It can be seen that the UBA algorithm performs better than

the HBA algorithm when the number of beams is small (N ≤ 32). However, when the number

of beams is large, HBA performs much better than UBA. Since UBA works in a “hill-climbing”

manner to find the optimal beam, the number of measurements required by UBA increases with

the number of beams due to a longer path to the optimal point. To avoid exceedingly high

BA latency, the BA performance for a large number of beams is crucial. Thus, the proposed
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Fig. 7. Performance comparison with respect to transmission distance in two-path channels.

algorithm is more effective than the UBA algorithm when the number of beams is large. Besides,

UBA does not work well in multipath scenarios, while the proposed algorithm does.

As shown in Fig. 6, we further study the performance in multipath channels. Due the inherent

sparse characteristics of the mmwave channel, the number of paths is selected from 1 to 5. Firstly,

the numbers of measurements in terms of the number of paths are compared in Fig. 6(b). It can

be seen that the number of measurements increases slightly as the number of paths increases. For

example, for a 128-beam case, the number of measurements in the five-path channel increases

by 15% as compared to that in the single-path channel. Secondly, beam detection accuracy

performance is presented in Fig. 6(c). The HBA algorithm detects the optimal beam with a high

probability, even in sophisticated multipath channels. Simulation results show that the beam

detection accuracy is higher than 97%, even in the worst case. In addition, the beam detection

accuracy slightly decreases as the number of paths increases. For a large number (N = 256) of

beams, the beam detection accuracy decreases from 99.6% in the single-path channel to 97.4%

in the five-path channel due to the sophisticated multipath channel.

Figure 7 shows the impact of the transmission distance on the performance. We first observe

that the number of measurements increases in terms of the transmission distance, as shown in

Fig. 7(a). Specifically, the number of measurements increases by 32% as distance increases from

5 meters to 50 meters for N = 128. Because the RSS is weaker for a longer distance such that

limited information can be extracted from nearby beams. Hence, the proposed algorithm needs

to explore more beams to identify the optimal beam for remote users. Even for remote users,

the proposed BA algorithm performs better than the 802.11ad benchmark. When the distance
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Fig. 8. Performance comparison with coarse prior knowledge in two-path channels.

increases to 50 meters, our algorithm needs about 44 measurements for N = 256, which still

reduces the number of measurements by 5.8 times as compared to the 802.11ad benchmark.

Finally, the beam detection accuracy is presented in Fig. 7(b). Even in the low SNR case, the

proposed algorithm can detect the optimal beam with a high probability.

For implementation consideration, Fig. 8 presents the performance of HBA under coarse prior

knowledge conditions. The metric of the coarse prior knowledge is defined as a ratio between

the estimated variance (σ2
e) and the accurate one, i.e., η = σ2

e/σ
2. Hence, the coarse prior

knowledge can be divided into two categories: the underestimated prior knowledge when η < 1

and the overestimated prior knowledge when η > 1. We can see from Fig. 8(a) that the number of

measurements increases as η increases from 0.25 to 4. Specifically, for a 256-beam case, the HBA

algorithm with the overestimated prior knowledge for η = 4 requires more beam measurements

as compared to that with accurate prior knowledge. Overestimating prior knowledge results

in a larger confidence margin to accommodate reward uncertainty, such that more exploration

efforts are needed and better beam detection accuracy can be achieved, as shown in Fig. 8(b).

In contrast, when prior knowledge is underestimated, the number of measurements is slightly

smaller than that with accurate prior knowledge, while the beam detection accuracy decreases

due to insufficient exploration efforts. More importantly, even with the coarse prior knowledge,

the proposed algorithm can substantially reduce the number of measurements as compared to

benchmarks, and achieve high beam detection accuracy. For a 256-beam case, even in the worst

case, the proposed algorithm reduces the number of measurements by 6 times in comparison

with the BA method in 802.11ad.
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Table II
BA LATENCY WITH DIFFERENT NUMBERS OF BEAMS IN MULTIPATH CHANNELS.

One user Four-user
N 802.11ad HBA 802.11ad HBA
16 0.51 ms 0.48 ms 1.26 ms 1.19 ms
32 1.01 ms 0.59 ms 2.53 ms 1.47 ms
64 2.02 ms 0.65 ms 103.03 ms 1.63 ms

128 4.04 ms 0.76 ms 304.04 ms 1.89 ms
256 106.07 ms 0.94 ms 706.07 ms 2.35 ms

D. BA Latency

Practical BA latency needs to take the 802.11ad protocol into consideration, which is different

from a simple product of the number of measurements and the duration of each measurement.

In the protocol, BA must be performed in the associated beamforming training (A-BFT) stage,

which contains 8 A-BFT slots, and each A-BFT slot contains 16 sector sweep (SSW) frames.

Each SSW frame can only provide one measurement for one beam and has a duration about

15.8 us [2], [35]. If the BA process cannot be finished in the A-BFT stage of the current beacon

interval (BI), this BA process has to wait for the A-BFT stage in the next BI, which increases

the BA latency for a whole BI duration. In the simulation, the duration of BI is set to 100 ms

[2]. In addition, since the HBA algorithm requires the feedback of RSS of the selected beam at

each round, the feedback latency should also be incorporated into the calculation of BA latency.

The duration of a feedback frame at each round is about 1 us in 802.11ad [36]. Taking the

above protocol and the feedback latency into consideration, BA latency is calculated based on

the average number of measurements. Table II presents the BA latency with different numbers of

beams in the two-path channel. As expected, the BA latency increases as the number of beams

increases. For the case with one user, the proposed algorithm reduces the BA latency significantly

as compared to the BA method in 802.11ad. In particular, for a large number (N = 256) of

beams, the BA latency drops from 106.07 ms to only 0.94 ms. This is because the BA process

with the proposed algorithm can be finished in one BI as a small number of measurements is

required to identify the optimal beam. Furthermore, a larger performance gain can be observed

in the four-user case. In contrast to the BA method in 802.11ad which incurs more than 700

ms latency for a 256-beam phase arrays, the proposed algorithm takes about 2.35 ms, which

corresponds to two orders of magnitude gain.
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VII. CONCLUSION

In this paper, we have investigated the BA problem in mmwave systems to find the optimal

beam pair. We have developed HBA, a learning algorithm which leverages the inherent correlation

structure among beams and the prior knowledge on the channel fluctuation to accelerate the BA

process. The proposed HBA algorithm can identify the optimal beam with a high probability

using a small number of beam measurements, even when the number of beams is large. HBA

can be applied to meet the demand of delay-sensitive Gbps applications, such as cordless virtual

reality gaming. Beyond the BA problem, the design principle of leveraging correlation structure

is useful in other optimization problems in wireless networks, such as power allocation and

interference mitigation. For our future works, it would be interesting to extend the proposed

algorithm to mobile scenarios, where the environment is highly dynamic and delay requirement

is more stringent. In such scenario, the main challenge lies in extracting information from the

real-time environment to speed up BA.

APPENDIX

A. Proof of Theorem 1

According to (7), the maximum RSS can be achieved with the minimum angular misalignment

denoted by, δ = ωi? − ϑ, where ωi? is the spatial angle for the optimal transmit beam. Hence,

D (ωi − ϑ) can be rewritten as

D (ωi − ϑ) = D

(
δ +

2(i− i?)
N

)
=

sin2(Nπdδ/λ)

sin2
(
πd
(
δ + 2(i−i?)

N

)
/λ
) , ∀bi ∈ B. (17)

From simple analysis in (17), D (ωi − ϑ) monotonically increases in [i◦, i?] and decreases in

[i?, i?+N
2

], where i◦ = i?−N
2

. Hence, the mean RSS function over the beam space increases along

path (bi◦ , bi◦+1, ..., bi?) and decreases along path (bi? , bi?+1, ..., bi◦−1), i.e., r(bi◦) < r(bi◦+1) <

... < r(bi?) > ... > r(bi◦−2) > r(bi◦−1). With the definition of the unimodality structure, the

mean RSS function is unimodal over the beam space in the single-path channel, and the theorem

statement follows.
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B. Proof of Corollary 1

Similar to (7), the mean RSS in the multipath channel is represented by

E [r(bi)] =
Pg2

0

N
D (ωi − ϑ0)︸ ︷︷ ︸

LOS component

+
L−1∑
l=1

Pg2
l

N
D (ωi − ϑl)︸ ︷︷ ︸

NLOS component

+NoW (18)

Above equation indicates that the aggregated RSS consists of a LOS component and several

NLOS components. For each individual path of the mmwave channel, the corresponding RSS

function is unimodal function based on Theorem 1. Hence, the RSS function in the multipath

channel is the aggregation of several unimodal functions, which can be considered as a mul-

timodal function. Specifically, L paths exist in the mmwave channel, which corresponds to L

peaks in the multimodal function. As the channel gain of the LOS path is significantly larger

than that of NLOS paths, i.e., g2
0 > g2

l . Hence, the dominant peak corresponds to the LOS path

while other peaks correspond to NLOS paths. Hence, the Corollary 1 is proved.

C. Proof of Lemma 1

For any integer m > 0, according to the definition, the average times that node (h, j) has

been visited up to time slot T , is given by

E [Nh,j(T )] = E

[
T∑
t=1

1(Ht,Jt)∈Ch,j

]

= E

[
T∑
t=1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)≤m}

]
+ E

[
T∑
t=1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)>m}

]

≤ m+ E

[
T∑

t=m+1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)>m}

]
= m+

T∑
t=m+1

P ((Ht, Jt) ∈ Ch,j, Nh,j(t) > m) .

(19)

where 1{·} is the indicator function and (Ht, Jt) ∈ Ch,j denotes the selected node (Ht, Jt) locates

within Ch,j . The first equality is because Nh,j(t) > m only occurs when t is larger than m.

We apply a case study to obtain an upper bound of E [Nh,j(T )]. Assume node (h, j) is selected

at time slot t. The path from root node (0, 1) to (h, j) is given by, P = {(0, 1), (1, j?1), ..., (k, j?k), (k+

1, jok+1), ..., (h, j)}, where k denotes the largest depth of the optimal node in the path. Be-

fore node (k, j?k), the optimal nodes are selected. For notation simplicity, we omit the time

slot t in Qk,j(t). After traversing node (k, j?k), a sub-optimal node (k + 1, jok+1) is selected

instead of the optimal node (k + 1, j?k+1) because the suboptimal node has a larger Q-value
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than the optimal node, i.e., Qk+1,jo ≥ Qk+1,j? . As Q-values increase along path P , we have

Qk+1,j? ≤ Qk+1,jok+1
≤, ...,≤ Qh,j . Note that Q-values are upper bounded by E-values according

to the definition, such that Qk+1,j? ≤ Eh,j . Further, event Qk+1,j? ≤ Eh,j can be interpreted as

the union of two events, {Qk+1,j? ≤ f ?} ∪ {Eh,j ≥ f ?}. Hence, the probability that (Ht, Jt)

locates within Ch,j is upper bounded by

P ((Ht, Jt) ∈ Ch,j) ≤ P (Qk+1,j? ≤ f ?) + P (Eh,j ≥ f ?) . (20)

With the definition of Q-value, the Q-value of a node is the minimum value among the E-value

of the node and Q-values of its child nodes. Hence, event {Qk+1,j? ≤ f ?} can be interpreted as

the union of two new events, {Ek+1,j? ≤ f ?}∪ {Qk+2,j?k+2
≤ f ?}. Since event {Qk+2,j?k+2

≤ f ?}

can be further recursively expanded as
t−1⋃

s=k+2

{Es,j?s ≤ f ?}, we have

P (Qk+1,j? ≤ f ?) ≤
t−1∑

s=k+1

P
(
Es,j?s ≤ f ?

)
. (21)

Substituting (21) and (20) into (19), (19) can be rewritten as

E [Nh,j(T )] ≤ m+
T∑

t=m+1

(
t−1∑

s=k+1

P (Es,j? (t) ≤ f ?) + P (Eh,j (t) ≥ f ?, Nh,j(t) > m)

)
. (22)

The following analysis is to bound the three terms in (22) separately.

Firstly, since m is an arbitrary integer, taking m as the smallest integer that satisfies the

condition m ≥ 8σ2 log T

(εh,j−c1γh)
2 . Hence m is bounded by

m ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1. (23)

Secondly, we aim to bound the first term P (Es,j? ≤ f ?). For the optimal nodes (h, j?),

according to the definition of E-values, Eh,j? = ∞ when Nh,j? = 0. Hence, event Eh,j? ≤ f ?



27

only occurs when Nh,j ≥ 1. As a result, P (Eh,j? ≤ f ?) can be rewritten as

P (Eh,j? ≤ f ?, Nh,j ≥ 1) = P

(
Rh,j? +

√
2σ2 log t

Nh,j?
+ ρ1γ

h ≤ f ?, Nh,j? ≥ 1

)
= P

((
f ? −Rh,j? − ρ1γ

h
)
Nh,j? ≥

√
2σ2Nh,j? log t, Nh,j? ≥ 1

)
(a)
= P

(
t∑

s=1

(
f ? − f(Xs) + ρ1γ

h
)
1(Ht,Jt)∈Ch,j?

+
t∑

s=1

(f(Xs)− Ys)1(Ht,Jt)∈Ch,j? ≥
√

2σ2Nh,j? log t, Nh,j? ≥ 1

)
(b)

≤ P

(
t∑

s=1

(f(Xs)− Ys)1(Ht,Jt)∈Ch,j? ≥
√

2σ2Nh,j? log t, Nh,j? ≥ 1

)

(c)
= P

Nh,j?∑
p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2Nh,j? log t, Nh,j? ≥ 1

 .

(24)

In (24), the first step follows from the definition of E-value in (11); (a) is obtained from the

definition of Nh,j? , where Xs,∀s = 1, 2, ..., t− 1 denotes the sequentially selected beams up to

time t−1 and the corresponding reward sequence is represented by Ys; (b) follows from the fact

that f ? − f(Xt)− ρ1γ
h < 0 holds for all the beams in the optimal region Ch,j?; (c) is because

the definition of a new beam selection sequence X̃p,∀p = 1, 2, 3, ... whose corresponding reward

sequence is Ỹp.

Let Tp = min{t : Nh,j(t) = p} represent the time sequence for the selected node in Ch,j . The

sequentially selected beams can be represented by a new sequence X̃p = XTp ,∀p = 1, 2, 3, ...,

and (24) can be further bounded by

P

Nh,j?
h∑

p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2Nh,j? log t, Nh,j?h
≥ 1


(a)

≤
t∑

s=1

P

(
s∑

p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2s log t

)
(b)

≤
t∑

s=1

exp

(
−4σ2s log t

sσ2

)
= t−3.

(25)

In (25), (a) can be acquired via the union bound that takes all possible values of Nh,j?h
; as

D̃p = Ỹp−f(X̃p) can be considered as martingale differences, (b) is obtained via the Hoeffding-

Azuma inequality [29]

P

(
k∑
p=1

D̃p ≥ t

)
≤ exp

(
− 2t2∑k

p=1 σ
2

)
. (26)
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Thirdly, for suboptimal nodes (h, j), the upper bound of P (Eh,j ≥ f ?, Nh,j > m) can be

obtained via a similar method of bounding P (Eh,j? ≤ f ?, Nh,j ≥ 1), such that

P (Eh,j ≥ f ?, Nh,j > m) = P

(
Rh,j +

√
2σ2 log t

Nh,j

+ ρ1γ
h ≥ f ?h,j + εh,j, Nh,j > m

)
(a)

≤ P
(
Rh,j ≥ f ?h,j +

εh,j − ρ1γ
h

2
, Nh,j > m

)
= P

((
Rh,j − f ?h,j

)
Nh,j ≥

εh,j − ρ1γ
h

2
Nh,j, Nh,j > m

)
= P

(
t∑

s=1

(
Ys − f ?h,j

)
1(Hs,Js)∈Ch,j ≥ Nh,j

εh,j − ρ1γ
h

2
, Nh,j > m

)

≤ P

(
t∑

s=1

(Ys − f(Xs))1(Hs,Js)∈Ch,j ≥ Nh,j
εh,j − ρ1γ

h

2
, Nh,j > m

)

(b)
= P

Nh,j∑
p=1

(
Ŷp − f(X̂p)

)
≥ Nh,j

εh,j − ρ1γ
h

2
, Nh,j > m



(27)

In (27), (a) due to the substitution of Nh,j(t) ≥ 8σ2 log t

(εh,j−ρ1γh)
2 where m ≥ 8σ2 log t

(εh,j−ρ1γh)
2 ; (b) is

obtained via a similar method as (24)(c), where a new beam sequence {X̂1, X̂2, ..., X̂p} is formed

to represent the sequentially selected beams in Ch,j . Next, (27) can be further bounded by

P

Nh,j∑
p=1

(
Ŷp − f(X̂p)

)
≥ Nh,j

εh,j − ρ1γ
h

2
, Nh,j > m


(a)

≤
t∑

k=m+1

P

(
k∑
p=1

(
Ŷp − f(X̂p)

)
≥ k(εh,j − ρ1γ

h)

2

)
(b)

≤
t∑

k=m+1

exp

(
−
k
(
εh,j − ρ1γ

h
)2

2σ2

)

≤ t exp

(
−
m
(
εh,j − ρ1γ

h
)2

2σ2

)
(c)

≤ t exp (−4 log T ) = tT−4

(28)

In (28), (a) is due to a similar union bound in (25)(a); (b) is obtained via the Hoeffding-Azuma

inequality; (c) is obtained via the substitution of m ≥ 8σ2 log T

(εh,j−ρ1γh)
2 .

Finally, substituting (23), (25) and (28) into (22), the upper bound is given by

E [Nh,j(T )] ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1 +

T∑
t=m+1

(
t−1∑
k+1

t−3 + tT−4

)

≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1 +

T∑
t=1

(
t−2 + T−3

)
≤ 8σ2 log T

(εh,j − ρ1γh)
2 + c

(29)
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where c is a constant. The last step is because
∑T

t=1 t
−2 is bounded. Hence, Lemma 1 is proved.

D. Proof of Theorem 2

All nodes with depth h can be divided into two subsets: Φh that denotes the set of all the

2ρ1γ
h-optimal nodes, and Ωh that denotes the set of nodes whose parents belong to Φh−1 while

itself does not belong to Φh. Let H ≥ 1 be an integer whose value is determined later. With

above definition, T can be divided into three subtrees: T1, T2 and T3. Let T1 contain ΦH and

its decedents. Let T2 include all the 2ρ1γ
h-optimal nodes at all the depths smaller than H ,

i.e., T2 =
H−1⋃
h=1

Φh. Let T3 include all the nodes in Ωh at all the depths smaller than H , i.e.,

T3 =
H⋃
h=1

Ωh. Hence the cumulative regret can be partitioned as

Rπ (T ) = E [Rπ (T1)] + E [Rπ (T2)] + E [Rπ (T3)] (30)

where

E [Rπ (Ti)] = E

[
T∑
t=1

(f ? − f (Xt))1{(Ht,Jt)∈Ti}

]
.

Next, the regret analysis follows the idea of bounding the regret on each subtree separately.

Step 1: Bounding the regret on T1. As each node in ΦH is 2ρ1γ
H-optimal, all the beams

located in ΦH are 4ρ1γ
H-optimal, i.e., f ?−f (Xt) ≤ 4ρ1γ

H , Xt ∈ ΦH . In addition, it is obvious

that the number of nodes in subtree T1 is smaller than the time horizon, i.e., |T1| ≤ T where | · |

represents the cardinality operator. Therefore, the regret on T1 is upper bounded by

E [Rπ (T1)] ≤ 4ρ1γ
HT. (31)

Step 2: Bounding the regret on T2. As T2 =
H−1⋃
h=1

Φh and each beam in Φh is 4ρ1γ
h-optimal,

the regret on T2 can be written as E [Rπ (T2)] ≤
∑H−1

h=1 4ρ1γ
h|Φh|. Based on the results in [29],

we have |Φh| ≤ c1

(
ρ2γ

h
)−κ where κ = 1

β
− 1

α
. Specifically, α and β are give in the weak

Lipschitz assumption and the dissimilarity function, respectively. The regret on T2 can be further

bounded by

E [Rπ (T2)] ≤
H−1∑
h=1

4ρ1γ
hc1

(
ρ2γ

h
)−κ

= 4ρ1c1ρ
−κ
2

H−1∑
h=0

γh(1−κ) ≤ 4ρ1c1ρ
−κ
2

1− γ1−κ . (32)

From (32), we can see that E [Rπ (T2)] is upper bounded by a constant as T2 is a finite tree.
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Step 3: Bounding the regret on T3. For each node in Ωh, its parents should be included by

Φh−1. Thus, all the beams in Ωh are 4ρ1γ
h−1-optimal and the cardinality of Ωh is smaller than

2|Φh−1|. Besides, with the results in Lemma 1, E [Nh,j(t)] = 8σ2 log t

(ρ1γh)
2 +c, for any 2ρ1γ

h−1-optimal

nodes. Thus, the regret on T3 is given by

E [Rπ (T3)] ≤
H∑
h=1

4ρ1γ
h−12|Φh−1|E [Nh,j(T )] ≤ 8ρ1c1ρ

−κ
2

H∑
h=1

γ(h−1)(1−κ)

(
8σ2 log T

(ρ1γh)
2 + c

)
.

(33)

Finally, substituting (31), (32) and (33) into (30), we have

Rπ (T ) ≤ 4ρ1γ
HT +

4ρ1c1ρ
−κ
2

1− γ1−κ + 8ρ1c1ρ
−κ
2

H∑
h=1

γ(h−1)(1−κ)

(
8σ2 log T

(ρ1γh)
2 + c

)
= O

(
γHT + log Tγ−H(1+κ)

)
= O

(
T
κ+1
κ+2 (log T )

1
κ+2

)
.

(34)

The last step is obtained from setting γH as the order of (T/log T )−1/(κ+2) [29]. If the smoothness

of the function is known, we can set α = β such that κ = 0 [29]. Hence, (34) can be rewritten

as O
(√

T log T
)
, and then the theorem is proved.
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