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Abstract— In vehicular sensor networks, vehicles can act as
mobile sensors to monitor the dynamic features of the physical
world such as traffic flow, air quality, and temperature. How-
ever, the conventional full-coverage sensing approach is neither
realizable nor cost-effective since the sensor-equipped vehicles
are unevenly distributed and the environmental data are spatio-
temporally correlated. To this end, we propose a cost-effective
urban environment sensing solution (CESense), that exploits the
sensing data correlations to improve the sensing accuracy and
efficiency. CESense gathers data only at some specific areas
of the whole sensing space and reliably infers the status of
unsensed areas. Particularly, CESense uses a probabilistic matrix
factorization model to reveal the latent features that impact the
environmental status. Then, an appropriate set of sensing areas
can be selected by fully taking advantage of these latent features
and the sensing resource distribution patterns. In addition, to be
adaptive to the dynamic environment, a checkpoint mechanism
is designed to supervise the data gathering progress. Extensive
experiments, which are based on the real taxicab mobility traces
and air quality data collected in Beijing city, demonstrate that
CESense can significantly improve the accuracy and efficiency of
vehicular sensing.

Index Terms— Vehicular sensor networks, urban sensing,
sensing quality, cost-effectiveness.

I. INTRODUCTION

URBAN sensing [1] employs remote sensors to gather
various information from urban space, such as traffic

flow, crowd density, air quality, and temperature. Although
static sensor networks have been widely deployed in cities
for urban sensing, their sensing coverage and granularity are
limited due to the sparsely installed sensor nodes. To this end,
mobile crowdsensing [2], [3] has emerged recently, which
empowers ordinary citizens to contribute data sensed from
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their mobile devices (e.g., smartphones, wearable devices,
and connected vehicles). Undoubtedly, connected vehicles
equipped with various sensors are the most appropriate devices
for mobile crowdsensing due to their high mobility, sufficient
energy, and powerful communication and computation capa-
bilities [4]. With the rising popularity of connected vehicles,
vehicular sensing will play an important role in smart city,
smart transportation system, and automated driving.

The connected vehicles are organized as a vehicular sensor
network (VSN) [5] when participating urban sensing. Com-
pared with existing urban sensing systems, VSNs can exploit
the high mobility of vehicles to provide wide-coverage and
fine-grained sensing services. Several vehicular sensing plat-
forms [6]–[11] have been designed to collect data generated in
urban space. In this paper, a VSN-based urban sensing system
is considered, which involves not only a set of sensor-equipped
vehicles, but also an urban sensing center and several sensing
task publishers. The task publishers are usually organizations
who need to monitor the status of specific urban areas,
such as traffic management center, meteorological center, and
environmental protection agency. The sensing center acts as
an intermediary between task publishers and sensor-equipped
vehicles, which shields the task publishers from the complexity
of sensing task management. It encapsulates the sensing func-
tion and provides sensing as a service. Specifically, the sensing
center recruits and incentivizes eligible vehicles to perform the
sensing tasks submitted by task publishers.

The vehicular sensor data are useful only if their quality
is acceptable [12]. The sensing center aims at ensuring the
overall quality of sensing service with the least cost/incentive.
Generally, the sensing center recruits a minimum set of
vehicles to fully cover the sensing space at the required level
of granularity. However, the full-coverage sensing is neither
realizable nor cost effective [13]. On one hand, the vehicles
constituting VSNs are usually taxicabs, buses, rental cars,
and some private cars. Their real-time trajectories are hardly
controllable, which causes the uneven distribution of sensing
resources over space and time. To analyze this phenomenon,
we use the taxicab trajectory dataset in Beijing and randomly
select some taxicabs as sensing resources. Fig. 1a and 1b
show the coverage of sensing resources during an off-peak
hour and a peak hour, respectively. There exist many vacant
areas that are unable to be covered by the sensing resources.
Furthermore, Fig. 1c and 1d show the CCDF (Complementary
Cumulative Distribution Function) of location vacancy rate and
time vacancy rate for different number of sensing resources.

1524-9050 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2552-333X
https://orcid.org/0000-0002-6549-8917
https://orcid.org/0000-0002-6720-9533


3236 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2019

Fig. 1. The distribution of sensing resources within the 4th Ring Road of
Beijing (about 19×18 km2). In (a) and (b), the trajectories of 50 sensor-
equipped vehicles are shown. In (c) and (d), the sensing space is partitioned
into disjoint sensing areas, where each sensing area is about 1 km2 and
each sensing cycle is 1 hour. Then, the location and time vacancy for
n = 30, 50, 100 sensor-equipped vehicles are shown, respectively.

For instance, when 50 sensor-equipped vehicles are recruited,
70% of the sensing cycles have a location vacancy rate greater
than 40%; meanwhile, 60% of the sensing areas have a
time vacancy rate larger than 40%. Therefore, it is almost
impossible to cover the whole sensing space in every sensing
cycle. On the other hand, there are usually spatiotemporal cor-
relations among sensing data. The areas with similar features
probably have similar trend of sensing data. Therefore, it is
not necessary to gather data at all areas in all sensing cycles.

If the spatiotemporal correlations among sensing data are
exploited, the sensing center can improve sensing quality
and reduce sensing cost significantly. Sensing center can
collect sensing data only at several selected areas during a
sensing cycle. As for the unsensed areas, their status can
be reliably inferred using the current as well as historical
collected data. To this end, we propose a cost-effective urban
environment sensing framework in Fig. 2. Specifically, when
the task publisher publishes a sensing task, the sensing center
decomposes the sensing task into several subtasks which are
scattered over the sensing space. Then the sensor-equipped
vehicles perform the subtasks and aggregate the sensed data
to the sensing center. The sensing center infers the data in the
unsensed areas and reports the complete and satisfactory sens-
ing results to the task publisher. In these procedures, the task
decomposition and missing data inference are technically
challenging. First of all, the missing data inference method
is the foundation of the framework. How to uncover and
utilize the spatiotemporal correlations among the sensing data
to achieve missing data inference is critical. Then, the selected
sensing areas have an immediate impact on the overall cost
of the sensing task. To be cost effective, the optimal set of
subtasks should lie in the areas that are informative enough
(i.e., the areas with “©” in Fig. 2). How to quantify the

informativeness of each area before obtaining the sensing data
in these areas is difficult. In addition, the subtasks will become
infeasible if no sensing resources exist in the corresponding
areas. How to determine the subtasks without knowing future
distribution of sensing resources is important. Furthermore,
it is hard to compromise the subtask optimality with the
feasibility to get a suboptimal solution (i.e., the areas with “∗”
in Fig. 2). To deal with these challenges, we propose a cost-
effective urban environment sensing solution called CESense.
CESense can be beneficial to various urban sensing scenarios,
provided that the sensing data are with intrinsic spatiotemporal
correlations. Our contributions are summarized as follows:
• The latent features of environmental status in both spatial

and temporal dimensions are revealed by the probabilistic
matrix factorization model. These latent features reflect
the spatiotemporal correlations among the sensing data
and are used to infer the data in the unsensed areas.

• The latent features are well utilized to quantify the infor-
mativeness of each sensing area. The distribution patterns
of sensor-equipped vehicles are analyzed and modeled.
A greedy algorithm is designed to select potential sensing
areas in a batch manner which balances the sensing cost
and subtask feasibility.

• The sensing accuracy and efficiency of CESense are
evaluated using the real taxicab mobility traces and air
quality data in Beijing.

The remainder of this paper is organized as follows.
Section II reviews related research works. The system model
and problem formulation are presented in Section III. The
cost-effective urban environment sensing solution CESense
is elaborated in Section IV. The performance of CESense
is evaluated in Section V. Finally, the work is concluded in
Section VI.

II. RELATED WORK

In early works [6]–[11], the sensor-equipped vehicles con-
tinuously gather data with certain time intervals or dis-
tance intervals. Then, the gathered data are aggregated
into cloud via Vehicle-to-Infrastructure (V2I) communica-
tions; or alternatively, directly shared with other vehicles
via Vehicle-to-Vehicle (V2V) or Device-to-Device (D2D)
communications [14]–[16]. However, the distribution of
sensor-equipped vehicles is uneven over space and time, which
usually leads to low quality, low efficiency, and high cost for
urban sensing in these vehicular sensing platforms.

A. Participants Selection
Several studies make use of participant selection method to

schedule the sensing resources. Hamid et al. [17] propose a
trajectory-based recruitment scheme which selects a minimum
set of vehicles to achieve a required level of coverage for
the sensing space. He et al. [18] take into account the con-
straints on sensing quality and the time budgets of participants
when allocating sensing tasks. However, these approaches
either assume that the future trajectories of participants are
known, or only consider the current locations of participants.
To overcome these shortcomings, He et al. [19] aim at optimiz-
ing both the spatial and temporal coverage using predictable
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Fig. 2. Framework of cost-effective urban environment sensing using VSN.

mobility of participants. In addition, Ji et al. [20] maximize the
spatial and temporal coverage without breaking the original
commuting plans of participants. However, the participants
selection method is applicable only when the sensing resources
are abundant. It cannot ensure sensing quality for the areas
where sensing resources are scarce.

B. Missing Data Inference

As sensor-equipped vehicles cannot cover all roads for all
time, a lot of spatiotemporal vacancies exist in the collected
sensing data. Such missing data problem significantly impedes
fine-grained urban sensing applications. The spatial and tem-
poral correlations among sensing data are the foundations
of existing missing data inference methods. Several statistic-
based methods can be used, such as mean imputation and
multiple imputation [21]. Additionally, there are many data-
driven methods. K -Nearest-Neighbor (KNN) [22] is a classic
method which estimates a missing value using the weighted
average of its K nearest neighbors. Matrix completion [23]
is a new technique to infer the empty entries in a low-
rank matrix. Several recent studies [24]–[27] have adopted
matrix completion to recover missing or corrupted sensing
data. STCDG [24] combines the low-rank and short-term
stability features in matrix completion. Kong et al. [25] further
combine the feature of spatial correlation in matrix completion.
Du et al. [27] exploit the intrinsic relationship between the
entropies of samples and the matrix completion error. Then
they propose a novel sampling rule based on this relationship
to improve the sensing accuracy. Machine learning is a com-
petitive approach to fill missing data. U-Air [28] uses a semi-
supervised learning method to infer the air quality of unsensed
areas, based on cross-domain data correlations. ST-MVL [29]
is a multi-view-based learning method to fill missing values
from both spatio-temporal and global-local perspectives.

C. Efficient Sensing Approaches

The spatiotemporal correlations among sensing data are also
exploited to improve sensing efficiency. Compressive sensing
theory [30] makes it possible to recover certain signals from
far fewer samples. Some studies [31]–[34] use compressive
sensing to collect urban data, which largely reduce commu-
nication cost while guaranteeing required sensing accuracy.
In [31], each vehicle computes the sparse representation of
its original sensing data and transmits the sparse data to an

aggregator for recovery. In [32], the vehicles are clustered
and the cluster heads are responsible for in-network data
compression. Wang et al. [33] design a compressive sensing
based monitoring method in a V2V opportunistic scenario.
Xu et al. [34] apply compressive sensing to efficiently gather
the data with multi-dimensional nature. Matrix completion,
as an extension of compressive sensing, has been used to
collect sensing data at required accuracy with reduced sensing
and communication cost [12], [35]–[37]. Our previous work
AC-Sense [12], utilizes the temporal uncertainty and the
spatial similarity of sensing data to adaptively assign sensing
tasks. In [35], Xie et al. propose an online data gathering
scheme in wireless sensor networks, which adaptively samples
different locations according to the environmental conditions.
CCS-TA [36] combines matrix completion, Bayesian infer-
ence, and active learning techniques to select a minimum
set of areas for sensing. Meng et al. [37] develop an inte-
grated framework which employs matrix factorization and
truth discovery to tackle the redundancy and sparsity problem.
However, these methods do not take the dynamic distribution
of sensing resources into consideration.

III. PROBLEM FORMULATION

In this section, some definitions used throughout the paper
are presented, and then a cost-effective urban sensing problem
is formulated.

Definition 1 (Sensing Task Requirements): Sensing task
requirements, which are proposed by a task publisher, indicate
targeted sensing space, spatiotemporal granularity, and the
accuracy of sensing results. To carry out fine-grained sensing,
the targeted sensing space is partitioned into disjoint and uni-
form grids/areas (as shown in Fig. 2). The spatial granularity
determines the scale of an area, while the temporal granularity
specifies the length of a sensing cycle.

Definition 2 (Environmental Data): Environmental data refer
to the status of sensing area, such as traffic flow, crowd density,
air quality, and temperature.

A sensing task aims at acquiring the environmental data
which meet its sensing task requirements. The cost-effective
sensing is based on the correlations among environmental data.
To explore and then utilize the correlations, we first define a
data structure to organize the environmental data.

Definition 3 (Environmental Matrix): Environmental matrix
is a matrix that holds environmental data within a specific
spatiotemporal scope.
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Fig. 3. An example of environmental matrix.

Fig. 4. Magnitude of singular values. (a) PM10 dataset. (b) NO2 dataset.

In this paper, X ∈ R
M×N is an environmental matrix

holding the environmental data for M areas in recent N
sensing cycles. Specifically, the i th row of X is the envi-
ronmental data sequence in area i , while the j th column of
X contains the environmental data of all areas in sensing
cycle j . X is a dynamic matrix similar to a sliding window
and its N th column always represents current sensing cycle.
As shown in Fig. 3, the dashed and solid rectangles are
two successive environmental matrices. The index (i, j) is
called a spatiotemporal cell (or cell for short). Denoting the
complete set of spatiotemporal cells as T = { (i, j) | 1 ≤
i ≤ M, 1 ≤ j ≤ N }. A small set S ⊆ T consists of
the spatiotemporal cells with sensed environmental data XS .
As for the spatiotemporal cells in T \ S, their environmental
data XT \S are inferred by a missing data completion method.

A special matrix X̃ ∈ R
M×N is used to hold the ground

truth of X. The vehicles are assumed to be equipped with high-
quality sensors, such that the environmental data gathered from
vehicles exactly reflect the ground-truth data (i.e., Xr = X̃r

for any spatiotemporal cell r ∈ S). Additionally, it is assumed
that one measurement for a spatiotemporal cell is sufficient to
obtain the true environmental data.

Once the environmental matrix has been constructed,
the spatiotemporal correlations among environmental data can
be explored. Singular value decomposition (SVD) is effective
to reveal the data correlations in a matrix. As a case study,
the SVD is computed for a PM10 dataset and a NO2 dataset,
respectively. The magnitude (ratio to the maximum) of singu-
lar values is shown in Fig. 4. It can be seen that most of the
energy (i.e, the Frobenius norm of the matrix) is constrained
by the first few principal components, which will lead the
environmental matrix to a low rank. The low-rank feature is the
result of spatiotemporal correlations among the environmental
data and provides a basis for missing data inference.

Sensing accuracy and sensing cost are the main concerns
of this paper. Sensing accuracy is specified in sensing task
requirements and quantified by sensing error.

Definition 4 (Sensing Error): For sensing cycle j , sensing
error is defined as the root-mean-square error (RMSE) between
the environmental data in the j th column of X and their
corresponding ground truth in X̃,

ε j =
√
√
√
√

1

M

M
∑

i=1

(Xi j − X̃i j )
2
. (1)

The sensing task requirements usually specify an upper
bound ε for ε j in each sensing cycle, i.e., ε j ≤ ε.

Definition 5 (Sensing Cost): Sensing cost is the incentive
provided by the sensing center to reward the sensing data
contribution from participants. Generally, the amount of incen-
tive is proportional to the effort made by the participants.
However, the incentive mechanism can be very complex,
especially when game theory based methods are used. For
illustration purpose, a simple incentive mechanism is assumed
in this paper: constant and pay-per-data incentive. Therefore,
the sensing cost is only related to the number of measurements
that the sensing center needs.

Based on these definitions, the cost-effective urban environ-
ment sensing problem is formulated as follows. Given a sens-
ing task and its requirements, the sensing center decomposes it
into a set of subtasks scattered over the spatiotemporal cells S.
With the help of a missing data inference method, the sensing
cost of these subtasks should be minimized while the sensing
accuracy is ensured,

min |S|, s.t. ε j ≤ ε, ∀ j ∈ {1, 2, . . . , N}. (2)

However, a subtask is valid only when sensing resources exist
in the corresponding spatiotemporal cell. As the validity of a
subtask is not known until its sensing cycle has finished, it is
necessary to balance the sensing cost and the probable validity
of subtasks,

min
M

∑

i=1

N
∑

j=1

Bij

Ri j
,

s.t. ε j ≤ ε, ∀ j ∈ {1, 2, . . . , N}, (3)

where Bij is the indicator function which is equal to 1 if
(i, j) ∈ S and is 0 otherwise, Rij is the probability that sensing
resources exist in the spatiotemporal cell (i, j). In other words,
the subtasks tend to be distributed in the areas that are
informative and are likely to have sensing resources.

IV. COST-EFFECTIVE URBAN ENVIRONMENT SENSING

In this section, our cost-effective urban environment sensing
solution is elaborated. First of all, the spatiotemporal corre-
lations among environmental data are exploited to infer the
missing data. Then, taking into account the distribution of
sensing resources, we design a method to assign subtasks to
appropriate spatiotemporal cells in a batch manner.
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A. Latent Features Revelation and Missing Data Inference
The time-varying environmental status of an area is deeply

influenced by a set of features. If these features are known,
the spatiotemporal correlations among environmental data can
be found out. The features are specific to the domain of
environmental data. For instance, the air quality of an area
is likely to be influenced by the land use and the function of
the area (e.g., residential or commercial areas, parks) as well
as the traffic patterns in the area [28]. In addition, the traffic
conditions in an area are probably influenced by the function
of the area, the road network structure and the road surface
conditions in the area. Generally, these features are not obvious
and it is difficult to know how these features affect the
environmental status. However, once the latent features and
their influence are revealed, they can be used to infer the
missing data in environmental matrix.

Matrix factorization is a commonly used technique to reveal
the latent features and to infer the missing data in the
environmental matrix. The environmental matrix X can be
approximately factorized into the product of an area feature
matrix U and a sensing cycle feature matrix V,

X ≈ UTV, (4)

where U ∈ R
D×M , V ∈ R

D×N , and D 	 min{M, N}.
Both areas and sensing cycles are mapped to a joint latent
feature space of dimensionality D. Here D is just the upper
bound instead of the exact number of features. A column
of U measures the extent to which the area possesses those
features. A column of V measures the extent of influence
the corresponding features have on the environmental status.
The matrix factorization can automatically reveal the latent
features and their respective influence on the environmental
status. Particularly, it’s not necessary to explain the meanings
of the features. In this paper, a probabilistic matrix factor-
ization (PMF) model [38] is applied on the environmental
matrix X,

p(X|U, V, σ 2) =
M
∏

i=1

N
∏

j=1

[

N (Xi j |UT
i V j , σ

2)
]Bi j

, (5)

p(U|α2) =
M
∏

i=1

N (Ui |0, α2I), (6)

p(V|β2) =
N

∏

j=1

N (V j |0, β2I), (7)

where N (x |μ, σ 2) denotes the Gaussian distribution with
mean μ and variance σ 2, 0 is a D × 1 zero vector and I is a
D×D order identity matrix. The PMF model can be efficiently
trained by using steepest descent to find point estimates
of model parameters and hyperparameters. Taking advantage
of the latent features, we can approximate the unsensed
entry (i, j) ∈ T \ S by Xi j ≈ UT

i V j .
The latent features reflect the spatiotemporal correlations

among environmental data. In this paper, the spatiotemporal
correlations in a single data source are considered. Specifically,
the areas with similar features tend to have similar changing
patterns of environmental status; and the sensing cycles with

similar features usually share similar status distribution across
the sensing areas. Furthermore, the correlation between two
spatiotemporal cells can be described using the latent fea-
tures. According to Equation (5), it is reasonable to consider
that the environmental data Xi j is drawn from a Gaussian
process (GP), where the area feature vector Ui and the sensing
cycle feature vector V j are associated covariates of Xi j . There-
fore, Xi j and Xi ′ j ′ are correlated only when Ui and V j are
similar to Ui ′ and V j ′ , respectively. The covariance function
of this GP can be defined by a Mercer kernel K(·, ·), and the
standard radial basis function (RBF) kernel is used,

K(Xi j , Xi ′ j ′)

= exp

(

−‖Ui − Ui ′ ‖22
2η2

1

)

· exp

(

−
∥
∥V j − V j ′

∥
∥

2
2

2η2
2

)

, (8)

where η1 and η2 are the bandwidth parameters of RBF, which
are set to be the median of pairwise distance between data
points (i.e., median trick). K(·, ·) is regarded as a measure
of the correlation between the environmental data in two
spatiotemporal cells.

B. Informative Sensing Areas Selection
With the spatiotemporal correlations among environmental

data, we can decompose the sensing task only to a small subset
of areas to reduce sensing cost while keeping required sensing
accuracy. As for the unsensed areas, their environmental data
can be approximated using the matrix factorization based on
the latent features. A straightforward strategy is to gather
sensing data from a random set of areas. Obviously, this
strategy supposes that the sensing data from different areas
contribute equally to the overall sensing accuracy. However,
the sensing areas may have a large impact on the sensing
accuracy. Intuitively, some particular sensing areas are more
informative/representative and the informativeness degree of
an area is time-varying. Constrained by the required sensing
accuracy, we can minimize sensing cost by selecting the most
informative set of sensing areas in each sensing cycle.

The matrix factorization can be considered a process of
reducing the amount of uncertainty in the unsensed data. The
entropy in information theory is widely adopted to quantify the
uncertainty. Here the marginal entropy H (XT \S) represents
the amount of uncertainty in the unsensed data, while the
conditional entropy H (XT \S |XS) measures the amount of
uncertainty remaining in the unsensed data after knowing the
sensed data. Then the mutual information I (XS ;XT \S) =
H (XT \S ) − H (XT \S |XS) is the amount of uncertainty in
the unsensed data which is removed by knowing the sensed
data. Therefore, the most informative sensing areas can most
significantly reduce the uncertainty about the unsensed areas,
i.e., maximizing I (XS ;XT \S ). In other words, the correlation
between the environmental data in XS and XT \S is maxi-
mized, while the intra-correlation among the environmental
data in XS is minimized.

As data gathering is a cycle-by-cycle process, only the
uncertainty in unsensed data of current sensing cycle is
concerned. Denoting the set of spatiotemporal cells in sens-
ing cycle j as T j and the set of sensed cells in sensing



3240 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2019

cycle j as S j , S j ⊆ T j . When a new sensing cycle begins,
the k most informative cells S∗N are selected from TN ,

S∗N = arg max
V⊆TN|V |=k

I (XS∪V ;XTN \V ), (9)

where I (XS∪V ;XTN \V ) is the mutual information between
the environmental data in cells S ∪ V and cells TN \ V , and
V is the possible sensing areas to be selected. Solving this
optimization problem is NP-complete, but it can be proved that
the mutual information is submodular [39], [40]. That is, for
all S ′ ⊆ S ⊆ T , S ′N ⊆ SN ⊆ TN , and r ∈ TN \ SN , it holds
that I (XS ′∪{r};XS̄ ′N

)− I (XS ′ ;XTN \S ′N ) ≥ I (XS∪{r};XS̄N
)−

I (XS ;XTN \SN ), where S̄N = TN \ (SN ∪ {r}) and S̄ ′N =
TN \ (S ′N ∪ {r}). It implies that adding r to a small cell set S ′
helps more than adding r to a large cell set S.

With the submodular property, an approximation algorithm
can be used to greedily select the candidate sensing areas.
A candidate r ∈ TN \ SN is found by maximizing the gain of
the mutual information,

I (XS∪{r};XS̄N
)− I (XS ;XTN \SN )

= [H (XS̄N
)− H (XS̄N

|XS∪{r})]
− [H (XS̄N∪{r})− H (XS̄N∪{r}|XS)]

= [H (XS̄N
)− H (XS∪S̄N∪{r})+ H (XS∪{r})]

− [H (XS̄N∪{r})− H (XS∪S̄N∪{r})+ H (XS)]
= H (Xr |XS)− H (Xr |XS̄N

). (10)

As the environmental data Xi j is drawn from a GP, p(Xr |XS)
is a Gaussian distribution whose conditional variance σ 2

r |S is
given by

σ 2
r |S = K(Xr , Xr )− CrSC−1

SSCSr , (11)

where CSS is the covariance matrix whose entry for s, s′ ∈ S
is K(Xs , Xs ′), CrS is the covariance vector whose entry for
s ∈ S is K(Xr , Xs), and CSr = CT

rS . Then the conditional
entropy of Xr given XS is calculated as

H (Xr |XS ) = 1

2
log(2πeσ 2

r |S )

= 1

2
log σ 2

r |S +
1

2
(log(2π)+ 1), (12)

and H (Xr |XS̄N
) can be calculated similarly. Thanks to the

latent features and the GP properties for the data in X, we can
calculate the mutual information without knowing the exact
data of the unsensed cells. To maximize the gain of the
mutual information in Equation (10), the next most informative
sensing area r can be selected by computing

max
r∈TN \SN

δr =
σ 2

r |S
σ 2

r |S̄N

= K(Xr , Xr )− CrSC−1
SSCSr

K(Xr , Xr )− CrS̄N
C−1
S̄N S̄N

CS̄N r

. (13)

It can be seen that the latent features are fully utilized
to calculate the conditional entropy and to select the most
informative sensing areas. The candidate cell selected using
Equation (13) is strongly correlated with the unsensed cells
and weakly correlated with the already sensed cells.

By iteratively computing Equation (13), the next k most
informative areas in a sensing cycle can be found, as shown

in Algorithm 1. First, the algorithm is initialized and PMF
is used to reveal the latent features in X (line 1, 2). Next,
the whole covariance matrix CAA is computed (line 3). Then,
the algorithm iteratively selects the unsensed area r with the
largest δr into the set of candidate sensing areas for current
sensing cycle (line 4-10). Specifically, the covariance matrices
for computing δr in line 6 are directly extracted from CAA.
Finally, the algorithm terminates when k areas have been
added to the set. It is worth noting that the algorithm is able
to compare the informativeness of sensing areas without really
knowing the sensing data. Therefore, the most informative
sensing areas are selected in a batch manner, which is prac-
tical and applicable in the highly dynamic vehicular sensing
scenario.

Algorithm 1 Selecting the Most Informative Sensing Areas
Input:

X ∈ R
M×N : environmental matrix.

k: the required number of sensing areas.
Output:

S∗N ⊆ TN \ SN : the next k most informative sensing areas
in sensing cycle N .

1: S∗N ← ∅

2: Use PMF to factorize X into U and V.
3: Compute CAA, where A = S ∪ (TN \ SN ).
4: while |S∗N | < k do
5: for all r ∈ TN \ (SN ∪ S∗N ) do

6: δr = K(Xr ,Xr )−CrBC−1
BBCBr

K(Xr ,Xr )−CrB̄N
C−1
B̄N B̄N

CB̄N r
,

where B = S∪S∗N and B̄N = TN \(SN ∪S∗N ∪{r}).
7: end for
8: r∗ ← arg maxr∈TN \(SN∪S∗N ) δr

9: S∗N ← S∗N ∪ {r∗}
10: end while

The complexity of Algorithm 1 is analyzed. Let |S| = m,
it takes O(m) operations to solve the PMF model using
steepest descent. The time complexity for computing the
whole covariance matrix CAA is O(m2). Computing each
δr requires O(m2) operations, but it only requires O(m)
operations to update each δr . Since only one cell is added
to B and removed from B̄N , δr can be updated by only
re-calculating the changed component. For the k iterations,
the first iteration requires O(Mm2) operations, and the remain-
ing k − 1 iterations requires O(kMm) operations. Therefore,
the overall complexity of Algorithm 1 is O(Mm2), which is
acceptable for the sensing center with powerful computing
resources and can be accelerated by parallel computing for
matrix multiplication.

C. Adapt Subtasks to Sensing Resource Distribution

As described above, the trajectories of sensor-equipped
vehicles are hardly controllable. If the sensing center just
waits for vehicles to travel through and sense at the areas
selected using Algorithm 1, some of the areas may never
gather sensing data as planned. Without an adequate number of
sensing data, the required sensing accuracy cannot be satisfied.
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Fig. 5. The CCDF of inter-arrival time of 50 sensor-equipped
vehicles in Beijing during peak hours (7:00-9:00 and 17:00-20:00),
mid-peak hours (9:00-17:00), and off-peak hours (0:00-6:00), respectively.
(a) Commercial area (Guomao). (b) Residential area (Anzhen).

Therefore, the validity of subtasks should be integrated into
the process of selecting the candidate sensing areas.

If the distribution patterns of sensing resources can be
discovered, the validity of subtasks can be well estimated. For
a specific area, the arrival process of vehicles is considered
to follow a Poisson process [41]–[43]. Under the assumption
that sensor-equipped vehicles are uniformly distributed among
vehicles on the road, the arrival of sensor-equipped vehicles
can be regarded as a thinned Poisson process, and we have
validated it by analyzing the real trajectory data in Beijing.
In Fig. 5, the inter-arrival time distribution of sensor-equipped
vehicles is shown and compared with the exponential distri-
bution. For different areas (i.e., commercial and residential
area) and different periods of a day (i.e., peak hours, mid-
peak hours, and off-peak hours), the Poisson arrival property
for the sensor-equipped vehicles is reasonable. Therefore,
this property can be utilized to select sensing areas which
compromise between cost-effectiveness and subtask feasibility.

Denoting the current arrival rates of sensor-equipped vehi-
cles in all M areas as L = {λ1, λ2, . . . , λM }. The probability
of sensor-equipped vehicles being available in area i for a time
period τ can be computed as

Ri (τ ) = 1− e−λiτ . (14)

In addition, as shown in Fig. 5, the arrival rate in an area varies
with time. For example, during peak and mid-peak hours,
there will be more sensor-equipped vehicles coming into the
sensing areas. Therefore, the arrival rate for each area should
be updated periodically. An exponentially weighted moving
average is used to update λi ,

λi ← ω · νi + (1− ω) · λi , (15)

where νi is the arrival rate in area i during the most recent
observing window, and ω is the weight of νi . The length of
the observing window is set to 1 hour, and ω is set to 0.6.

Since it is unknown in advance whether the candidate areas
can be sensed or not, the optimization problem in Equation (9)
is not applicable. Instead, by considering the distribution of
sensing resources, the expectation of the mutual information
is used,

S∗N = arg max
V ⊆TN�〈V〉�=k

E[I (XS∪V ;XTN \V )]

= arg max
V ⊆TN�〈V〉�=k

∑

W⊆2V
Pr(W) · I (XS∪W ;XTN \W), (16)

where E[·] is the expectation in terms of the probability that
sensing resources are available at candidate areas, 〈V〉 =
∑

(i,N)∈V Ri (t) is the expected value for the number of valid
subtasks in V , �·� is the floor function, k is the required number
of sensing areas, Pr(W) =∏

(i,N)∈W Ri (t) ·∏(i ′,N)∈V \W [1−
Ri ′ (t)] is the probability of successfully gathering data from
W and not from V \W , and t is the remaining time in current
sensing cycle. Then, the area which has the largest expected
gain of the mutual information can be selected greedily,

E[I (XS∪{r};XS̄N
)− I (XS ;XTN \SN )]

= Ri (t) · [H (Xr |XS)− H (Xr |XS̄N
)]

= Ri (t) · 1

2
log

σ 2
r |S

σ 2
r |S̄N

= 1

2
log δRi (t)

r , (17)

where r = (i, N) ∈ TN \ SN . As it is too costly to consider
the uncertainty from the previous selected candidate areas,
the areas in S are deemed to be determinate, and the check-
point mechanism in the next subsection will make this simpli-
fication acceptable by adjusting the candidate areas at suitable
time. Therefore, the optimization problem in Equation (13) is
evolved to

max
r=(i,N)∈TN \SN

δ+r = δRi (t)
r . (18)

Then, Algorithm 2 is proposed for selecting candidate sensing
areas which considers the distribution of sensing resources.

Algorithm 2 Selecting the Candidate Sensing Areas
Input:

X ∈ R
M×N : environmental matrix.

k: the required number of sensing areas.
L: sensing resources’ arrival rates.
t : the remaining time in the sensing cycle.

Output:
S∗N ⊆ TN \ SN : the candidate sensing areas in sensing
cycle N , where the expected value for the number of valid
subtasks is k.

1: S∗N ← ∅

2: Use PMF to factorize X into U and V.
3: Compute CAA, where A = S ∪ (TN \ SN ).
4: while 〈S∗N 〉 < k do
5: for all r = (i, N) ∈ TN \ (SN ∪ S∗N ) do

6: δ+r =
(

K(Xr ,Xr )−CrBC−1
BBCBr

K(Xr ,Xr )−CrB̄N
C−1
B̄N B̄N

CB̄N r

)Ri (t)

,

where B = S∪S∗N and B̄N = TN \(SN ∪S∗N ∪{r}).
7: end for
8: r∗ ← arg maxr∈TN \(SN∪S∗N ) δ+r
9: S∗N ← S∗N ∪ {r∗}

10: end while

Here the mutual information gain δr has been substituted
with the expected mutual information gain δ+r (line 6). In addi-
tion, the algorithm terminates when the expected value for
the number of valid subtasks (i.e., 〈S∗N 〉) becomes greater
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Fig. 6. Sensing error objective curve.

than or equal to k. Obviously, the overall time complexity is
also O(Mm2). The candidate areas selected using Algorithm 2
are not the most informative ones, but the areas that are
balanced between the informativeness and feasibility.

D. Determine the Number of Subtasks

Given a missing data inference method and a sensing areas
selection algorithm, the number of gathered sensing data
directly affects the sensing accuracy. To facilitate the sensing
areas selection, the required number of subtasks should be
determined at the very beginning of each sensing cycle. How-
ever, it is impossible to exactly determine the number when
the environmental data in the new sensing cycle are almost
unknown. Therefore, a rough number is used at beginning
and the number is adjusted during the data gathering proce-
dure. As the environmental data will not change severely in
successive sensing cycles, the number of subtasks in previous
sensing cycle is a good estimation of that in current sensing
cycle.

In addition, after gathering some data, the feature of current
sensing cycle becomes more clear. Thus the calculated most
informative sensing areas may need some revision. The sens-
ing center should supervise the data gathering process and
adjust the sensing strategy at the suitable time. The current
sensing error is the major indicator to determine whether it is
necessary to adjust the sensing strategy. Therefore, an objec-
tive curve is defined and used to supervise the data gathering
progress in a real-time way. Let 0 ≤ z ≤ 1 be the fraction of
time elapsed in a sensing cycle, then the objective curve g(z)
indicates the upper bound of sensing error in each timestamp.
When the current sensing error becomes larger than its upper
bound (i.e., ε > g(z)), the sensing center should increase
the number of subtasks and adjust candidate sensing areas.
According to the expected rate of data gathering, the objective
curve can be linear or fast start, as shown in Fig. 6. The linear
objective curve is defined as g(z) = (ε0 − ε)(1 − z) + ε,
which requires that the sensing error decreases to ε steadily.
The fast start objective curve is quadratic and defined as
g(z) = (ε0−ε)(1− z)2+ε, where the sensing error decreases
faster at beginning. ε0 is the initial sensing error in current
sensing cycle. In addition, several checkpoints are set and
the sensing progress is checked only at these checkpoints to
improve the solution efficiency.

However, in practice the ground-truth data of the area
without sensing data is not known, that is, Equation (1) cannot
be obtained to evaluate the sensing error. Therefore, the error is
evaluated approximately using original sensing data and their

corresponding inference results,

ε̂ j =
√
√
√
√

1

|S j |
∑

(i, j )∈S j

(Xi j − UT
i V j )

2
. (19)

Some empirical study results will be used in Section V to
show that ε̂ is a good approximation of ε. Additionally, when
l successive date gatherings satisfy ε̂ ≤ ε (i.e., stopping
condition), the sensing results are considered to meet the
requirement of sensing accuracy.

The cost-effective urban environment sensing solution is
summarized in Algorithm 3. First, the algorithm sets the
required number of subtasks according to the previous sensing
cycle (line 1). Next, k0 initial sensing data are gathered to
bootstrap the data gathering process (line 2). These initial
sensing data can solve the cold start problem for matrix
factorization. Since the feature of current sensing cycle is
not known, a heuristic strategy called most-hungry-area-first
is used to gather data from the areas with sensing resources.
Specifically, the most hungry area is the area that has not
acquired sensing data for the longest time. As a side benefit of
the most-hungry-area-first strategy, the probability of missing
an entire row of X is reduced. Then, the algorithm selects
the initial candidate sensing areas and sets the objective
curve (line 3, 4). After that, the sensing center gathers sensing
data from the candidate sensing areas S∗N until meeting the
stopping condition (line 5-13). Additionally, in periodical
checkpoints, when data gathering progress becomes slower
than expectation (i.e., ε̂N > g(z)), extra subtasks should
be added to S∗N to boost the data gathering. The number
of extra subtasks can be calculated as �k = v · ε̂N−g(z)

�ε̂N
,

where v is the number of data gathered between the latest
two checkpoints, and �ε̂N is the reduction of the sensing
error between the latest two checkpoints. Finally, the unsensed
data are inferred and the sensing resources’ arrival rates are
updated (line 14, 15).

V. PERFORMANCE EVALUATION

Extensive experiments have been performed for evaluating
the performance of our proposed cost-effective urban environ-
ment sensing solution. In the following, the experimental setup
is presented, and then the compared methods are introduced.
Finally, performance results are presented and discussed.

A. Experimental Setup
The experiments are driven by real taxicab mobility traces

and air quality data in Beijing. The taxicab traces contain
the GPS trajectory recorded by over 12,000 taxicabs in
November of 2012. The air quality data are obtained from the
U-Air project [28], [44] undertaken by Microsoft Research
in March of 2015. These two datasets are combined by
a time-shifted and space-aligned mapping. Moreover, some
taxicabs are considered to have the ability to sense air qual-
ity. Specifically, the concentrations of PM10 and NO2 are
separately measured in two sensing tasks and used in two
sets of experiments. As shown in Fig. 7, the sensing space
is a part within the 3rd Ring Road of Beijing, and stretches
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Algorithm 3 Cost-Effective Urban Environment Sensing
Input:

X ∈ R
M×N : environmental matrix.

L: sensing resources’ arrival rates.
Output:

Complete and satisfactory sensing results for the
N th column of X.

1: Set the expected number of subtasks k as that in previous
sensing cycle.

2: According to the current distribution of sensing resources,
gather k0 initial sensing data using the most-hungry-area-
first strategy.

3: Use Algorithm 2 to select candidate sensing areas S∗N .
4: Use Equation (19) to estimate the initial sensing error ε0

N ,
and set the objective curve g(z).

5: while Not meet the stopping condition do
6: Wait sensing data at cells S∗N .
7: if Checkpoint then
8: Calculate current ε̂N .
9: if ε̂N > g(z) then

10: Add �k areas, adjust S∗N with Algorithm 2.
11: end if
12: end if
13: end while
14: For the unsensed area (i, j) ∈ TN \ SN , Xi j ≈ UT

i V j .
15: Update L for next sensing cycle using Equation (15).

Fig. 7. Sensing space within the 3rd Ring Road of Beijing, which is
partitioned into 7×6 disjoint grids.

about 7 km from north to south and 6 km from west to east.
The area is divided into 42 (= 7 × 6) disjointed grids with
each grid about 1 km2. The air quality dataset holds one
PM10 and one NO2 record per hour for each grid. A complete
subset of the original air quality data for 14 successive days is
extract. In addition, 50 or 100 taxicabs are randomly selected
as vehicles that are equipped with sensors.

The environmental matrix X is of the size M = 42 and
N = 48 (= 24 × 2). The data from the first 2 days are used
to initialize the experiment; and the data from the remaining
12 days (i.e., 12 × 24 = 288 sensing cycles) are used to
show the performance. The upper bound of sensing error ε
is set to 10. In Algorithm 3, the stopping condition l is set
to 3, the number of initial sensing data k0 is set to 5, and the
checkpoint is performed every 10 minutes. The parameters in
PMF model are set based on a group of parameter test.

We perform a competitive study, comparing our CESense
solution with other alternative solutions that will be introduced

Fig. 8. The correlation between the estimated and actual error. (a) The PDF
of ε̂−ε. (b) The CDF of ε when ε̂ meets the requirement (i.e., ε̂ ≤ ε, ε = 10).

in following subsection. As there is no tightly-coupled rela-
tionship between the distribution of sensing resources and
the environmental status to be sensed, the experiments based
on the time-shifted and space-aligned datasets are convinc-
ing. Sensing accuracy and efficiency are performance metrics
for evaluation and comparison. A better urban environment
sensing solution is the one which meets the required sensing
accuracy with a fewer number of subtasks.

B. Compared Methods
Our cost-effective sensing solution is compared with three

other methods.
1) ST-Interp: The method assigns the same number of

subtasks in each sensing cycle. It simply gathers data once
an unsensed area is available to be sensed until reaching
the predefined number of subtasks. As for the missing data
inference, a spatiotemporal KNN algorithm with the inverse
distance weights is used. The algorithm assigns a weight to
each sensed data of the KST nearest cells according to their
inverse distance to the target cell. Then the missing data in

cell r is estimated as Xr ≈
∑

r′ d−1
rr′ Xr′

∑

r′ d−1
rr′

, where r ′ is from the

KST neighbours of r , and drr ′ is the Euclid distance between
r and r ′. KST is set to 20 in following experiments.

2) SVT: The method uses the same way with ST-Interp
to gather data. However, it infers the missing data with a
matrix completion algorithm called singular value threshold-
ing (SVT) [45], which minimizes the nuclear norm of the
environmental matrix. The parameters in SVT are determined
through a group of parameter test.

3) SiSense: It is a simplified version of CESense. SiSense
is almost the same with CESense except that it does not use
Algorithm 2 to select the candidate sensing areas. Instead,
SiSense considers all areas with the same informativeness and
selects those with largest Ri (t) as candidate sensing areas.

C. Experimental Results
First of all, to demonstrate that the estimated sensing error

defined in Equation (19) can be a substitute for the actual one
defined in Equation (1), their correlation is shown in Fig. 8.
The PDF (Probability Density Function) of the differences
between ε̂ and ε is shown in Fig. 8a. It can be found that,
for both PM10 and NO2 dataset, the differences have a
narrow distribution around 0, which implies great consistency
between ε̂ and ε. Moreover, the CDF (Cumulative Distribution
Function) of ε when ε̂ ≤ ε is shown in Fig. 8b. It can be seen
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Fig. 9. The performance of CESense using different objective curves, where
50 sensor-equipped vehicles are involved. (a) Box plots of sensing errors.
(b) Average sensing cost.

Fig. 10. Performance of different sensing solutions with 50 sensor-equipped
vehicles. (a) Sensing error, PM10. (b) Accumulative sensing cost, PM10.
(c) Sensing error, NO2. (d) Accumulative sensing cost, NO2.

that more than 93% and 97% of the sensing results meet the
requirement for PM10 and NO2 dataset, respectively, when
their estimated errors meet the requirement. Therefore, it is
reasonable to use ε̂ to supervise the progress of data gathering.

Two kinds of objective curves (i.e., linear and fast start)
have been designed to indicate the desired sensing progress.
Their influence on the overall performance of CESense is
shown in Fig. 9. The distribution of sensing errors with these
two objective curves are very similar for both PM10 and
NO2 dataset (Fig. 9a). Besides, these two objective curves
result in almost the same average sensing cost in unit sensing
cycle (Fig. 9b). As the type of objective curve has little impact
on the performance of CESense, only the quadratic curve is
used in the following experiments.

In Fig. 10, our CESense is compared with ST-Interp and
SVT method, where 50 sensor-equipped vehicles are involved.
In addition, ST-Interp and SVT are executed with different
number of subtasks in each sensing cycle, that is, 1/4, 1/3 and
1/2 of the total number of sensing areas. Fig. 10a and Fig. 10b
show the experimental results on PM10 dataset. CESense
can generate the results that 89% of the sensing cycles meet
the required sensing accuracy, the highest of all. Though the
sensing cost of CESense is just similar to the 1/4 sampling,
its sensing accuracy is even better than ST-Interp and SVT

Fig. 11. The performance gain introduced by the informative sensing areas
selection algorithm. (a) Sensing error, PM10. (b) Accumulative sensing cost,
PM10. (c) Sensing error, NO2. (d) Accumulative sensing cost, NO2.

method with 1/2 sampling. That is, as compared to ST-Interp
and SVT, CESense can reduce the sensing cost by half. The
experimental results on NO2 dataset are presented in Fig. 10c
and Fig. 10d. CESense also has advantages on NO2 dataset.
It provides the results that more than 96% of the sensing
cycles meet the requirement of sensing accuracy, the best of
all. Though the sensing cost of CESense is even lower than
1/4 sampling, its sensing accuracy is better than both ST-Interp
and SVT method with 1/3 sampling. In both PM10 and
NO2 dataset, it is worth noting that the CDF of sensing
errors for CESense is partly lower than ST-Interp and SVT
method when ε < ε. This phenomenon demonstrates the
high efficiency of CESense from another perspective, because
CESense never excessively pursues sensing accuracy and just
seeks to ensure the required accuracy. There are a few sensing
cycles that do not meet the sensing requirement. From the
previous discussion on Fig. 8b, it can be known that these
unsatisfactory results are mainly caused by the gap between
the estimated and actual errors. The insufficiency of sensing
resources is another reason for the unsatisfactory results.

To clarify the benefits introduced by the informative sensing
area selection algorithm, CESense is compared with SiSense
in Fig. 11. For the PM10 dataset with 50 sensor-equipped
vehicles, by assigning subtasks to the informative sensing
areas, the proportion of sensing cycles that meet requirement
increases from 0.83 to 0.89. When 100 sensor-equipped vehi-
cles are involved, the proportion is increased from 0.79 for
SiSense to 0.9 for CESense. The sensing costs for CESense
and SiSense are very similar. Therefore, the informative
sensing area selection algorithm plays an important role in
CESense. Specifically, the sensing accuracy of CESense is
improved when more sensing resources are available, while
the sensing cost does not have a significant change. This
happens for two reasons. First, it has the chance to select
more informative sensing areas when more sensing resources
are available. Moreover, the shortage of sensing resources in
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some sensing cycles is relieved. From the experimental results
on NO2 dataset, the similar phenomenon can be seen, and then
the same conclusion can be drawn.

VI. CONCLUSION

In this paper, we have proposed a cost-effective urban
environment sensing solution, which is applicable to the data
source with spatiotemporal correlations. To reduce sensing
cost while considering the dynamic distribution of sensing
resources, the proposed solution intelligently decomposes the
sensing task into subtasks and assigns the subtasks to the
areas of considerable informativeness. We have also designed a
checkpoint mechanism to supervise the progress of data gath-
ering. Extensive experimental results, based on real taxicab
mobility traces and air quality data in Beijing, have demon-
strated that our proposed solution improves sensing quality
while keeping low cost.

In the future, we will design a cost-effective urban environ-
ment sensing solution with the cooperation among participants.
The participants can exchange knowledge using vehicular
ad-hoc networks and collaboratively perform sensing tasks
assigned by the urban sensing center. This approach should
make the data gathering solution more adaptive to the dynamic
distribution of sensing resources.
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