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Abstract—Driven by the growing popularity of mobile applications, mobile cloud computing has been envisioned as a promising approach to enhance
computation capability of mobile devices and reduce the energy consumptions. In this paper, we investigate the problem of multi-user computation
offloading for mobile cloud computing under dynamic environment, wherein mobile users become active or inactive dynamically, and the wireless
channels for mobile users to offload computation vary randomly. As mobile users are self-interested and selfish in offloading computation tasks to the
mobile cloud, we formulate the mobile users’ offloading decision process under dynamic environment as a stochastic game. We prove that the
formulated stochastic game is equivalent to a weighted potential game which has at least one Nash Equilibrium (NE). We quantify the efficiency of the
NE, and further propose a multi-agent stochastic learning algorithm to reach the NE with a guaranteed convergence rate (which is also analytically
derived). Finally, we conduct simulations to validate the effectiveness of the proposed algorithm and evaluate its performance under dynamic
environment.

Index Terms—Mobile cloud computing, multi-user computation offloading, dynamic environment, stochastic game, multi-agent stochastic learning.
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1 INTRODUCTION

W ITH the proliferation of smart wireless devices and mobile
internet services, more and more mobile applications such

as interactive gaming, face recognition, and augmented reality
have emerged and drawn increasing interests [2]. These sophisti-
cated applications usually require significant amounts of computa-
tion resources and energy consumptions, which, however, cannot
be directly afforded by most mobile devices due to their limited
computation resources and battery capacities [3], [4]. Therefore,
mobile cloud computing, which enables mobile devices to offload
their computation tasks to the resource-rich cloud infrastructures
(such as Amazon EC2, Microsoft Azure, and Google App Engine)
via wireless links, has been envisioned as a promising approach to
address this challenge issue [5]. In cloud infrastructure, each mo-
bile device is associated with a system-level cloud clone running a
virtual machine that executes mobile applications on behalf of the
mobile device [6].

Offloading mobile users’ computation tasks to the mobile cloud
infrastructure usually involves considerable communication bur-
dens between the cloud and mobile devices, which thus necessitate
a careful design of multi-user computation offloading strategy
to improve wireless access efficiency [7]. A motivating example
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is as follows. When many mobile devices aggressively offload
their computation tasks to a mobile cloud over the same wireless
channel, they may generate severe co-channel interference to each
other. Such a severe interference leads to lower offloading rates
(i.e., mobile users’ achievable data rates for sending computation
tasks to the mobile cloud over the wireless link) and higher energy
consumptions for mobile devices, which consequently compromise
the benefit of offloading computation tasks. Therefore, it is very
important to achieve an efficient computation offloading coordina-
tion when many mobile devices compete for a limited number of
wireless channels to offload computation tasks to the mobile cloud
infrastructure.

Game theory is a widely adopted mathematical tool to model
and analyze complicated decision-making processes among a
group of rational decision-makers of conflicting objectives [8], [9],
[10], [11], [12]. Since different mobile devices are usually owned
by different users, it is natural to adopt game theory to analyze
the computation offloading process for multiple mobile users
who exploit a common set of wireless channels to offload their
computation tasks. Specifically, each user is modeled as a rational
game player that observes and reacts to other users’ offloading
strategies in the best response manner. Such an interactive decision
process is expected to reach an equilibrium point (also referred to
as Nash Equilibrium, NE), at which no individual user will change
its offloading strategy unilaterally. Moreover, by leveraging the
intelligence of mobile users, game theory is useful for designing
decentralized mechanisms with low complexity, which help to
ease the heavy controlling and signaling overhead of complex
centralized management [10].

However, applying game theory to model the multi-user com-
putation offloading process should carefully deal with the complex
real network environment. Specifically, mobile users may become
active or inactive1 dynamically, and wireless channels are also

1. A mobile user is active if it has a computation task to be executed, while
a mobile user is inactive (or silent) if it does not have a computation task to be
executed.
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time-varying. To capture the dynamics of network environment,
in this paper, we adopt a novel stochastic game-theoretic approach
to analyze the users’ computation offloading decision-making pro-
cess under dynamic conditions, and then propose a multi-agent
stochastic learning algorithm to reach the NE of the stochastic
game. The main contributions of this paper are summarized as
follows:

• We formulate a stochastic game to model and analyze the
multi-user computation offloading problem under dynamic
environment, wherein both mobile users’ activeness and
wireless channel gains are time-varying. To show the ex-
istence of NE in the formulated stochastic game, we prove
its equivalence to a weighted potential game which has at
least one NE. Moreover, we analyze the performance bound
of the NE in terms of the system cost and the number of
mobile users who can benefit from cloud computing.

• To reach the NE of the formulated stochastic game, we
propose a multi-agent stochastic learning algorithm for the
multi-user computation offloading under dynamic environ-
ment. The proposed algorithm runs in a fully distributed
manner without any information exchange, i.e., each user
independently adjusts its offloading strategy based on its
received action-reward instead of knowing other users’
detailed offloading-strategies.

• As an important technical contribution in this paper, we
theoretically derive the convergence rate of the multi-agent
stochastic learning algorithm. It is technically challenging
to prove the convergence property of the designed learning
algorithms with multi-user interactions under dynamic en-
vironment, and our study here is the first one successfully
addressing this issue.

The rest of this paper is organized as follows. In Section II, we
give a brief review of the related works. In Section III, our system
model is introduced. In Section IV, we propose a stochastic game
to investigate the problem of dynamic computation offloading. In
Section V, the performance of the NE of the game is analyzed. In
Section VI, we propose a multi-agent stochastic learning algorithm
to find the NE under dynamic environment. Section VII presents
simulation results and discussions. Conclusions are drawn in Sec-
tion VIII.

2 RELATED WORK

In the literature, many existing works have studied the computa-
tion offloading problem from the perspective of a single mobile
user. Rudenko et al. [17] used experimental results to show that
computation offloading can save significant energy. In [18], the
authors designed an adaptive timeout scheme for computation
offloading to improve the energy savings on mobile devices. Wen
et al. [6] proposed an optimization scheme for energy-efficient
application execution on the cloud-assisted mobile application
platform. Huertacanepa and Lee [19] proposed an adaptive ap-
plication offloading mechanism based on both the current system
conditions and the execution history of applications. By invoking
the Lyapunov optimization, [20] and [21] studied the dynamic
computation offloading policies for minimizing CPU and network
energy consumption under real network environment. In [22], the
authors modeled the unstable network as an alternating renewal
process and proposed an offloading decision model for mobile
cloud application.

Only a few works have discussed the computation offloading
problem in the multi-user case. Yang et al. [23] proposed a genetic
algorithm to solve the partition problem of wireless network

Mobile Users

Wireless Access PointMobile Cloud

Fiber Link

Inactive

Active

Fig. 1. An illustration of the system model (a group of mobile users offload
computation tasks to a mobile cloud via a set of available wireless channels.
Each mobile user could dynamically change its activeness, and the wireless
channels are time-varying).

bandwidth among multiple users, which achieves high throughput
of processing the streaming data. In [3], the authors devised a
low-complexity heuristic method to perform energy-efficient task
offloading for multiuser mobile cloud computing, while satisfying
the delay requirements. Sardellitti et al. [4] proposed an iterative
algorithm to perform the joint optimization of radio and com-
putational resources for multi-cell mobile-edge computing, under
latency and power budget constraints.

The above studies all belonged to the centralized computation
offloading mechanisms which did not consider the interactions
among multiple self-organizing users when they independently
chose their computation offloading strategies. [10], [11], [12], [13],
[14], [15], [16] modeled mobile users as self-interested game players
and proposed decentralized mechanisms to solve the multi-user
computation offloading problems. These previous studies mainly
focused on the computation offloading problems under relatively
static environment. However, in real network environment, due
to dynamic mobile users’ activeness and time-varying wireless
channels, the utility of each player is dynamically varying, and
thus the equilibrium solution of the static game model may never
be reached. In this paper, we study the multi-user computation
offloading problem with consideration of the dynamics of users’
behaviors and time-varying channels, and adopt the theory of
stochastic game that accounts for all the possible states of the
dynamic process to successfully solve the problem.

The task of achieving NE solutions of the stochastic game in the
distributed and dynamic environment is challenging. Most existing
algorithms, such as the best (or better) response [24], fictitious
play [25], spatial adaptive play [26], and no-regret learning [27]
require enormous information exchanges for users’ strategy updat-
ing and require the environment to be unchanged until reaching
convergence of the algorithms. For the distributed and dynamic
environment, some efficient algorithms have been proposed by
invoking the stochastic learning automata (SLA) [28], [29], [30].
Specifically, the convergence of SLA-based algorithms to NE has
been established for coordination games [28] and exact potential
games [29], [30]. In this paper, we show the formulated stochastic
game is equivalent to a weighted potential game, and then prove
the convergence of the designed multi-agent stochastic learning
algorithm to the NE of the weighted potential game. Moreover, to
the best of our knowledge, our work is the first to establish the
convergence rate of the SLA-based algorithm in the distributed
and dynamic environment.

3 SYSTEM MODEL

As shown in Figure 1, we consider a group of mobile users
N = {1, 2, . . . , N}, where each user i may have a computationally
intensive task Ti to be completed. There exists a wireless access
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TABLE 1
Summation of Used Notations

Notations Description Notations Description
N set of mobile users u0

i payoff function for static game G0,Λ

M set of wireless channels ui payoff function for static game G1,Λ

si user i’s offloading strategy ūi payoff function for stochastic game G2

θi user i’s active probability A set of active users
pi user i’s transmit power sA strategy profile of all active users
gi,o instantaneous channel gain sA\{i} strategy profile of all active users excluding i
ḡi,o expected channel gain s strategy profile of all users
Ri user i’s data rate s−i strategy profile of all users excluding i
Ii user i’s received interference wi user i’s strategy selection probability vector
V clo
i cloud computing cost b learning step-size of the proposed algorithm

V loc
i local computing cost rti user i’s action-reward at time t

point (AP) through which the mobile users can offload their
computation tasks to the cloud center deployed by the telecom
operator. Here, the wireless AP could be a WiFi access point,
3G/4G macro-cell or small-cell base station. Suppose that there are
M available wireless channels denoted as M = {1, 2, . . . ,M}. We
use si ∈ {0}

∪
M to denote mobile user i’s computation offloading

strategy. Specifically, si > 0 denotes that user i chooses to offload
the computation task to the mobile cloud via wireless channel
si; in opposite, si = 0 denotes that user i decides to compute
its task locally without offloading to mobile cloud. Notice that
for each user i, choosing different channels will lead to different
offloading rates when it sends computation task to the AP, which
consequently yields different costs.

3.1 Dynamics of Mobile Users’ Activeness and Wireless
Channels

Communication systems operate in a time-slotted fashion over
time slots of equal duration (e.g., several microseconds or mil-
liseconds [32]). A computation offloading period (e.g., several
seconds [10]) usually consists of multiple time slots. In this paper,
we consider a general and practical case that mobile users may
become active or inactive dynamically within different time slots.
Specifically, a mobile user is active if it has a computation task to be
executed. Otherwise, the mobile user is inactive. We use the on-off
distribution to model mobile user i’s activeness, i.e., mobile user i
is active (or inactive) with probability θi (or 1− θi).

To model the time-varying wireless channels, we assume that
the channels between mobile users and the AP follow Rayleigh
fading, which is a realistic and widely adopted mobile channel
model [33], [34]. Specifically, the instantaneous channel power gain
from user i to the AP is given by gi,o = (di,o)

−α
βi,o, where di,o

is the distance from user i to the AP (for clear presentation, we
use “o” to denote the AP), α is the path loss exponent, and βi,o is
the Rayleigh fading factor. Notice that, the instantaneous random
coefficient βi,o varies from time slot to time slot.

We consider a more practical model that all system parameters
(i.e., channel power gains and the users’ active probabilities) are
unknown. For convenience of analysis, we define a probability
space as (Ω,H,P), where Ω is the sample space over all system
states, H is a minimal σ-algebra on subsets of Ω, and P is a
probability measure on (Ω,H). Let Λ denote an event in the sample
space Ω. Θ(Λ) = [a (Λ) ,g (Λ)] : Ω → 2N×RN is a random vector,
where a = [ai]∀i∈N , ai ∈ {0, 1} denotes the user i’s state (0 for
inactive, and 1 for active) that satisfies the on-off distribution with
probability θi, and g = [gi,o]∀i∈N follows Rayleigh fading. For
better reading, Table 1 summarizes the mainly used notations in
this paper.

3.2 Communication Model for Active Mobile Users
To make a clear presentation, we first consider one realization of
the stochastic system state, which is denoted by Λ. Given Λ, we
define the set of active users as A = {i ∈ N : ai = 1}. Suppose
that user i chooses to offload its computation task to the cloud via
wireless channel si > 0. Given the strategy profile sA = [si]∀i∈A
of all active mobile users, the uplink data rate of user i ∈ A can be
computed by2

Ri (sA,Λ) = Blog2

1 +
pigi,o∑

j∈A\{i}:sj=si

pjgj,o + σ0

 , (1)

where B is the channel bandwidth, pi is the transmit power of user
i, gi,o is the channel gain from user i to the AP, and σ0 denotes the
background noise power. As shown in (1), if too many active users
choose the same channel to offload their computation tasks to the
AP, they may incur severe interference to each other, resulting in
low offloading rates.

3.3 Computation Model for Active Mobile Users
We consider that each active user i ∈ A has a computation task Ti
that needs to be executed either locally on the mobile device or re-
motely on the telecom cloud through computation offloading. The
computation task can be expressed as Ti =

(
Ci, D

loc
i , Dclo

i

)
, where

Ci is the size of all input computation data (e.g., the mobile system
settings, the program codes, and the input parameters) involved in
the task, Dloc

i and Dclo
i are the total number of CPU cycles required

to complete the computation task on the mobile device and the
telecom cloud, respectively3. For the sake of clear presentation,
we use the letters “loc” and “clo” to represent LOCal computing
and CLOud computing, respectively. The detailed modelings of the
computation cost are as follows.

3.3.1 Computation Cost When Choosing to Perform Cloud Com-
puting
If active user i chooses to offload its computation task Ti to the
cloud, it would incur the cost for transmitting the input data to the

2. In this paper, we focus on the wireless interference model given in (1)
which is widely adopted in the literature. Note that, we can also adopt some
media access control protocols (such as CSMA) in which the multiple access
among users for the shared spectrum is carried out over the packet level.
As shown in [11], the analysis could be very similar to our adopted wireless
interference model.

3. A mobile user i can obtain the information of Ci, Dloc
i , and Dclo

i by apply-
ing the methods (e.g., call graph analysis) in [35], [36]. If we consider the related
overhead, it would be added just as a constant in the system model, which
would not affect the following mathematical analysis. Besides, since the mobile
devices and the remote cloud computing servers have different instruction set
architectures, the numbers of CPU cycles for the two architectures (i.e., Dloc

i
and Dclo

i ) are different.
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cloud via wireless access. According to the communication model
(1), the transmission time and energy consumption for offloading
the input data of size Ci can be respectively computed by

T clo
i,1 (sA,Λ) =

Ci

Ri (sA,Λ)
, and Eclo

i (sA,Λ) =
piCi

Ri (sA,Λ)
.

After the transmission, the cloud expends the execution time
T clo
i,2 =

Dclo
i

F clo
i

to finish mobile user i’s task, where F clo
i denotes the

computation capability (i.e., CPU cycles per second) assigned to
user i by the cloud4. Then, considering both the processing time5 and
the energy consumption, the total cost6 when mobile user i chooses
to perform cloud computing (i.e., si > 0) can be given by:

V clo
i (sA,Λ) = µT

i

(
T clo
i,1 (sA,Λ) + T clo

i,2

)
+ µE

i E
clo
i (sA,Λ)

=

(
µE
i pi + µT

i

)
Ci

Ri (sA,Λ)
+ µT

i T
clo
i,2 , i ∈ A, and si > 0,

(2)
where µT

i and µE
i ∈ (0, 1) denote the weights of computational

time and energy for mobile user i’s strategy decision, respectively.
Here, the units of µT

i and µE
i are 1

Second and 1
Joule , respectively.

3.3.2 Computation Cost When Choosing to Perform Local Com-
puting
Each active mobile user i can also choose to execute its computa-
tion task Ti locally by itself (i.e., without invoking any computation
offloading to the cloud). Let F loc

i be the computation capability
of mobile user i. The computation execution time of task Ti by
local computing is then given by T loc

i =
Dloc
i

F loc
i

. The corresponding

computational energy can be computed by Eloc
i = ηiD

loc
i , where ηi

is the coefficient denoting the energy consumption per CPU cycle.
Then, by taking into account both the processing time and the energy
consumption, we can compute mobile user i’s total cost when it
chooses to perform local computation (i.e., si = 0) as follows:

V loc
i = µT

i T
loc
i + µE

i E
loc
i , i ∈ A, and si = 0. (3)

Based on the communication and computation models above,
we see that, when choosing to offload computation task to the
cloud, each mobile user’s cost depends not only on its own of-
floading strategy, but also on all the other active peers’. Specifically,
as shown in the cost function (2), if too many mobile users are
active and using the same strategy (i.e., choosing to use the same
wireless channel) to offload their computation tasks to the cloud,
they may experience low offloading rates, which will incur more
computation cost (including longer transmission time and higher

4. F clo
i is considered to be preset for each user. In this paper, we do not study

the allocation/scheduling of computation resources to different users from the
perspective of mobile cloud, since this issue has been widely investigated in
literature, e.g., [4], [20].

5. Since the AP is connected to the mobile cloud via the high-speed fiber
link, the transmission time cost among them could be neglected, compared
with the much higher wireless access time cost (resulted from the constrained
wireless spectrum resource). Besides, since the size of the computation outcome
is usually much smaller than the size of input computation data for many
applications (e.g., face recognition), we neglect the time cost for the cloud to
send the computation outcome back to the mobile user. The similar assumption
also appears in many previous works [11], [17], [18], [19], [21].

6. It would also be interesting to consider users’ economic cost. Since F clo
i is

considered to be preset for each user in our system model, the economic cost is
just a constant added into Eq. (2), and thus it will not affect the following game-
theoretic solution. However, if F clo

i is considered as an optimization variable,
how to optimally decide the price for the computing resources would also be a
key problem for the service providers. In this case, the economic game models
such as the market model, bargaining model, bidding model, auction model,
duopoly model, and Stackelberg model could be adopted. Since this economic
consideration will lead to significant change of the current game model, we
consider this issue as an important future direction to extend our work.

energy consumption). In this case, it would be more beneficial for
the mobile user to compute the task locally by itself. Due to such
an inter-dependence among different mobile users, game theory is
a suitable mathematical tool to model and analyze users’ decision
making for computation offloading. However, due to dynamically
varying of mobile users’ activeness, each user may not be able to
know other peers’ active/inactive states. Moreover, mobile users
prefer better channel condition for offloading their computation
tasks, but the wireless channels are time-varying, which makes the
problem more challenging.

4 STOCHASTIC COMPUTATION OFFLOADING GAME

In this section, we formulate a stochastic game to model the
decision process for mobile users’ computation offloading to the
cloud. For the sake of clear presentation, we first describe the game
model in a static case, and then illustrate the dynamic case.

4.1 Game Models
4.1.1 Static Case
Given other users’ strategy decisions, each active user i ∈ A inde-
pendently adjusts its computation offloading strategy to minimize
its own computation cost. Specifically, given a realization Λ in
the probability space (Ω,H,P), the (state-based) payoff function
of each active user i is naturally defined by

u0i
(
si, sA\{i},Λ

)
=

{
V loc
i , if si = 0;

V clo
i

(
si, sA\{i},Λ

)
, if si > 0,

(4)

where si denotes active user i’s strategy, sA\{i} denotes the
strategy profile of all the active users excluding user i, V clo

i and
V loc
i are defined in (2) and (3), respectively. Then, the game can

be formulated as G0,Λ =
[
A,Λ, {Si}i∈N ,

{
u0i
}
i∈N

]
, where A is

the set of active users, Si denotes active user i’s strategy space,
Si = {0, 1, . . . ,M}. Each active user autonomously chooses its
strategy si to minimize its own payoff, i.e.,

(G0,Λ) : min
si∈Si

u0i
(
si, sA\{i},Λ

)
,∀i ∈ A. (5)

Definition 1: Given a computation offloading strategy profile
sA = [si]∀i∈A, for an active user i ∈ A that chooses the cloud
computing approach (i.e., si > 0), if the cloud computing does not
yield a higher cost than the local computing (i.e., V clo

i (sA,Λ) ≤
V loc
i ), we say that the cloud computing is beneficial to user i.

In particular, from (1), (2), and (3), we observe that whether
offloading computation task to cloud is beneficial to mobile
user i or not strongly depends on its suffered interference, i.e.,
Ii (sA,Λ) =

∑
j∈A\{i}:sj=si

pjgj,o. Referring to the similar proof in
[11], we can achieve Lemma 1 as follows:

Lemma 1. Given a computation offloading strategy profile sA, cloud
computing is beneficial to an active user i ∈A if its suffered interference
Ii(sA,Λ)=

∑
j∈A\{i}:sj=si

pjgj,o on the selected wireless channel si >
0 satisfies that Ii (sA,Λ) ≤ Qi, with the threshold Qi =

pigi,o
2ψi−1

− σ0,

where the parameter ψi =
(µEi pi+µTi )Ci

B(µTi T loc
i +µEi Eloc

i −µTi T
clo
i,2)

.

Proof: According to Definition 1, cloud computing is benefi-
cial to user i only if V clo

i (sA,Λ) ≤ V loc
i . Based on the computing

models in (2) and (3), this condition corresponds to(
µE
i pi + µT

i

)
Ci

Ri (sA,Λ)
+ µT

i T
clo
i,2 ≤ µT

i T
loc
i + µE

i E
loc
i ,

which after some manipulations leads to the following condition:

Ri (sA,Λ) ≥
(
µE
i pi + µT

i

)
Ci

µT
i T

loc
i + µE

i E
loc
i − µT

i T
clo
i,2

.
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Fig. 2. Graphical representation of relationships among the three proposed
game models.

Based on the communication model (1), the above condition can
be equivalently transformed into:∑

j∈A\{i}:sj=si
pjgj,o ≤ pigi,o

2

(µEi pi+µ
T
i )Ci

B(µTi T loc
i

+µE
i
Eloc
i

−µT
i
T clo
i,2) − 1

− σ0.

This completes the proof of Lemma 1.
Based on Lemma 1, we design the following game model G1,Λ

(which will be shown to be equivalent to G0,Λ with proofs in
Lemma 2 and Theorem 2) as follows:

(G1,Λ) : min
si∈Si

ui
(
si, sA\{i},Λ

)
,∀i ∈ A, (6)

where each user’s payoff function is given by:

ui
(
si, sA\{i},Λ

)
=

{
Qi, if si = 0;

Ii (sA,Λ) , if si > 0.
(7)

4.1.2 Dynamic Case
We next extend the static game G1,Λ (under a given Λ) into a
corresponding stochastic game that experiences all possible Λ.
Specifically, in the dynamic and stochastic environment, we define
an expected payoff function for each user i ∈ N as follows:

ūi(si, s−i)=EΘ[ui (si, s−i,Θ)]=

{
Q̄i, if si = 0;

EΘ[Ii (si, s−i,Θ)] , if si > 0,
(8)

where s−i = [sj ]∀j∈N\{i}denotes the strategy profile of all users
excluding user i, Q̄i =

piḡi,o
2ψi−1

−σ0, and ḡi,o is the expected channel
gain from mobile user i to the AP. Based on (8), we formulate
a stochastic game denoted by G2 =

[
N ,Θ, {Si}i∈N , {ūi}i∈N

]
.

Each mobile user independently adjusts its strategy to minimize
its individual expected payoff function, which can be expressed as:

(G2) : min
si∈Si

ūi (si, s−i) ,∀i ∈ N . (9)

Figure 2 illustrates the connections among the game models G0,Λ,
G1,Λ, and G2.

4.2 Analysis of Nash Equilibrium

In game theory, Nash Equilibrium (NE) is the most important solu-
tion concept for analyzing the outcome of the strategic interaction
of multiple decision-makers. In this subsection, we first investigate
the existence of NE for the static game models G0,Λ and G1,Λ.
Moreover, by proving the equivalence between G0,Λ and G1,Λ, we
illustrate the rationality of designing the game model G1,Λ. Then,
based on the analysis in the static case, we derive the existence
of NE in the stochastic game G2. To proceed, we first introduce the
definition of NE for game models in both static and dynamic cases.

Definition 2 (NE of G0,Λ): For a realization Λ ∈ Ω, a computation
offloading strategy profile s∗A = [s∗i ]∀i∈A is a (pure-strategy) NE of
the game G0,Λ if and only if no active mobile user can minimize its
payoff function u0i by unilaterally deviating, i.e.,

u0i

(
s∗i ,s

∗
A\{i},Λ

)
≤u0i

(
si,s

∗
A\{i},Λ

)
,∀i ∈ A,∀si ∈ Si. (10)

Definition 3 (NE of G1,Λ): For a realization Λ ∈ Ω, a computation
offloading strategy profile s∗A = [s∗i ]∀i∈A is a (pure-strategy) NE of
the game G1,Λ if and only if no active mobile user can minimize its
payoff function ui by unilaterally deviating, i.e.,

ui
(
s∗i ,s

∗
A\{i},Λ

)
≤ui

(
si,s

∗
A\{i},Λ

)
,∀i ∈ A, ∀si ∈ Si. (11)

Definition 4 (Expected NE of G2): A computation offloading
strategy profile s∗ = [s∗i ]∀i∈N is an expected (pure-strategy) NE of
the stochastic game G2 if and only if no mobile user can minimize
its expected payoff function ūi by deviating unilaterally, i.e.,

ūi
(
s∗i , s

∗
−i

)
≤ ūi

(
si, s

∗
−i

)
,∀i ∈ N ,∀si ∈ Si. (12)

Theorem 1. For an arbitrary realization Λ ∈ Ω, G1,Λ is a weighted
potential game which has at least one NE.

Proof: The key of the proof is to show that for each user k ∈
A, the change of its payoff function (due to its unilateral change
of strategy) is proportional to the change in a carefully chosen
potential function for the whole system. The details are as follows.

We first construct a state-based potential function as follows:

Φ(sA,Λ) =
1

2

∑
i∈A

∑
j∈A\{i}

pigi,opjgj,oℓ{sj=si}ℓ{si>0}

+
∑
i∈A

pigi,oQiℓ{si=0},
(13)

where ℓ{condition} is an indicator function, and it is equal to 0 (resp.,
1) when the condition is false (resp., true). The above equation (13)
can be equivalently written as follows:

Φ(sA,Λ) =
1

2

 ∑
j∈A\{k}

pkgk,opjgj,oℓ{sj=sk}ℓ{sk>0}

+
∑

i∈A\{k}

pigi,opkgk,oℓ{sk=si}ℓ{si>0}

+
∑

i∈A\{k}

∑
j∈A\{i,k}

pigi,opjgj,oℓ{sj=si}ℓ{si>0}


+ pkgk,oQkℓ{sk=0} +

∑
i∈A\{k}

pigi,oQiℓ{si=0}.

(14)

In particular, the following result always holds:∑
j∈A\{k}

pkgk,opjgj,oℓ{sj=sk}ℓ{sk>0} =
∑

i∈A\{k}

pigi,opkgk,oℓ{sk=si}ℓ{si>0}.

(15)
Using (14) and (15), we can derive the following result:

Φ(sA,Λ) =
∑

j∈A\{k}

pkgk,opjgj,oℓ{sj=sk}ℓ{sk>0}

+ pkgk,oQkℓ{sk=0} + Ξ
(
sA\{k},Λ

)
,

(16)

where Ξ
(
sA\{k},Λ

)
= 1

2

∑
i∈A\{k}

∑
j∈A\{i,k}

pigi,opjgj,oℓ{sj=si}ℓ{si>0}

+
∑

i∈A\{k}
pigi,oQiℓ{si=0} is independent of user k’s strategy sk.

Besides, based on (7), we have the following equation:

uk
(
sk, sA\{k},Λ

)
=Ik (sA,Λ) ℓ{sk>0} +Qkℓ{sk=0}

=
∑

j∈A\{k}

pjgj,oℓ{sj=sk}ℓ{sk>0} +Qkℓ{sk=0}. (17)
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Therefore, for each user k ∈ A and its two different strategies sk
and s′k, we have the following equation:

Φ
(
s′k, sA\{k},Λ

)
− Φ

(
sk, sA\{k},Λ

)
=
∑

j∈A\{k}

pkgk,opjgj,oℓ{sj=s′k}ℓ{s′k>0}+pkgk,oQkℓ{s′k=0}

−
∑

j∈A\{k}

pkgk,opjgj,oℓ{sj=sk}ℓ{sk>0}−pkgk,oQkℓ{sk=0}

= pkgk,o
(
uk
(
s′k, sA\{k},Λ

)
− uk

(
sk, sA\{k},Λ

))
.

(18)

As stated before, (18) essentially means that for each user k ∈ A,
the change of its payoff function (due to its unilateral change of
strategy) is proportional to the change in the potential function
(13) for the whole system. Thus, according to the potential game
theory in [24], G1,Λ is a weighted potential game (with weight-
factor pkgk,o) which has at least one NE. This concludes the proof.

According to the proof in [11], G0,Λ is an ordinal potential
game which also has at least one pure-strategy NE point. In the
following, we will investigate the relationship between G0,Λ and
G1,Λ, and illustrate the rationality of designing the game model
G1,Λ.

Lemma 2. In G0,Λ and G1,Λ, all users’ strategy preferences are the same.
That is, for an arbitrary realization Λ ∈ Ω, ∀i ∈ A, for any s′i ̸= si,

u0i
(
s′i,sA\{i},Λ

)
≤u0i

(
si,sA\{i},Λ

)
⇔ui

(
s′i,sA\{i},Λ

)
≤ui
(
si,sA\{i},Λ

)
.

(19)

Proof: The proof is essentially based on our previous Lemma
1. Specifically, we consider the following three cases:

1) s′i > 0, si = 0: According to the definition
of payoff functions, u0i

(
s′i,sA\{i},Λ

)
= V clo

i

(
s′i,sA\{i},Λ

)
,

u0i
(
si, sA\{i},Λ

)
= V loc

i , and ui
(
s′i, sA\{i},Λ

)
=

Ii
(
s′i, sA\{i},Λ

)
, ui

(
si, sA\{i},Λ

)
= Qi. Based on Lemma

1, V clo
i

(
s′i,sA\{i},Λ

)
≤ V loc

i ⇔ Ii
(
s′i,sA\{i},Λ

)
≤ Qi. Therefore,

u0i
(
s′i,sA\{i},Λ

)
≤ u0i

(
si, sA\{i},Λ

)
⇔ ui

(
s′i, sA\{i},Λ

)
≤

ui
(
si, sA\{i},Λ

)
.

2) s′i = 0, si > 0: According to the definition of payoff functions,
u0i
(
s′i,sA\{i},Λ

)
= V loc

i , u0i
(
si,sA\{i},Λ

)
= V clo

i (sA,Λ), and
ui
(
s′i,sA\{i},Λ

)
= Qi, ui

(
si,sA\{i},Λ

)
= Ii(sA,Λ). Based on

Lemma 1, V clo
i (sA,Λ) ≥ V loc

i ⇔ Ii (sA,Λ) ≥ Qi. There-
fore, u0i

(
s′i,sA\{i},Λ

)
≤ u0i

(
si,sA\{i},Λ

)
⇔ ui

(
s′i,sA\{i},Λ

)
≤

ui
(
si,sA\{i},Λ

)
.

3) s′i > 0, si > 0: According to the definition
of payoff functions, u0i

(
s′i,sA\{i},Λ

)
= V clo

i

(
s′i,sA\{i},Λ

)
,

u0i
(
si, sA\{i},Λ

)
= V clo

i (sA,Λ), and ui
(
s′i, sA\{i},Λ

)
=

Ii
(
s′i, sA\{i},Λ

)
, ui

(
si,sA\{i},Λ

)
= Ii (sA,Λ). Since V clo

i =
(µEi pi+µTi )Ci

Ri
+ µT

i T
clo
i,2 , we can get the following result:

V clo
i

(
s′i, sA\{i},Λ

)
≤ V clo

i (sA,Λ) ⇔ Ri

(
s′i, sA\{i},Λ

)
≥

Ri (sA,Λ). As Ri is a decreasing function of the received in-
terference Ii, Ri

(
s′i,sA\{i},Λ

)
≥Ri(sA,Λ)⇔Ii

(
s′i,sA\{i},Λ

)
≤

Ii(sA,Λ). Therefore, u0i
(
s′i,sA\{i},Λ

)
≤ u0i

(
si,sA\{i},Λ

)
⇔

ui
(
s′i,sA\{i},Λ

)
≤ ui

(
si,sA\{i},Λ

)
.

By summarizing the above three cases, we can obtain the results in
Lemma 2.

Theorem 2. Each NE of game G0,Λ is an NE of game G1,Λ, and each
NE of game G1,Λ is also an NE of game G0,Λ.

Proof: Denote the set of NE of G0,Λ by Ψ0, and the set of
NE of G1,Λ by Ψ1. ∀s∗ ∈ Ψ0, according to the definition of NE,
u0i

(
s∗i , s

∗
A\{i},Λ

)
≤ u0i

(
si, s

∗
A\{i},Λ

)
,∀i ∈ A, ∀si ∈ Si. Then,

based on (19), we have ui
(
s∗i , s

∗
A\{i},Λ

)
≤ ui

(
si, s

∗
A\{i},Λ

)
,∀i ∈

A,∀si ∈ Si, which implies that s∗ ∈ Ψ1. Following the similar
argument, we also have ∀s∗ ∈ Ψ1 ⇒ s∗ ∈ Ψ0. Therefore, we can
conclude that Ψ0 and Ψ1 are the same.

Lemma 2 and Theorem 2 together mean that G0,Λ and G1,Λ are
essentially equivalent. Thus, by deriving the NE of G1,Λ, we can
also get the NE for G0,Λ. Moreover, G1,Λ can be used for designing
the stochastic game model G2. Based on the property of G1,Λ as
shown in Theorem 1, we can obtain the following result.

Theorem 3. The stochastic game G2 is a weighted potential game with
the expected potential function given by:

Φ̄(s)=EΘ[Φ(s,Θ)]

=
1

2

∑
i∈N

∑
j∈N\{i}

θiθjpiḡi,opj ḡj,oℓ{sj=si}ℓ{si>0}+
∑
i∈N

θipiḡi,oQ̄iℓ{si=0},

(20)
where s = [si]∀i∈N denotes the strategy profile of all mobile users, θi is
the active probability of mobile user i ∈ N .

Proof: By taking the operation of expectation for (18), we can
obtain the following result

Φ̄(s′k,s−k)−Φ̄ (sk,s−k)=pkḡk,o
(
ūk(s

′
k,s−k)−ūk(sk,s−k)

)
, (21)

where ūk (sk, s−k) is the payoff function defined in (8). Thus,
according to the potential game theory in [24], G2 is a weighted
potential game with weight-factor pkḡk,o.

As proved in [24], every weighted potential game possesses
the finite improvement property, and thus G2 has at least one
pure-strategy NE. That is, the investigated mobile users’ decision-
making process for computation offloading is guaranteed to have
a pure-strategy NE under the dynamic environment. However, the
behaviors of users in the game are selfish to minimize its own
payoff (without caring about the other peers’), which may lead
to an inefficient NE. In the following section, we will analyze the
achievable performance of NE for the stochastic game G2 under
dynamic environment.

5 PERFORMANCE ANALYSIS OF NASH EQUILIBRIUM

To evaluate the performance of the NE, we first study the metric
of system-wide computation cost, and then analyze the number of
mobile users who benefit from cloud computing.

5.1 Metric I: System-Wide Computation Cost
In dynamic and stochastic environment, (2) cannot characterize
the cost of cloud computing, since the transmission rate Ri (s) is
dynamically varying. Therefore, we compute the expected cost of
offloading computation task to mobile cloud in dynamic environ-
ment as follows7:

V̄ clo
i (s) =

(
µE
i pi + µT

i

)
Ci

EΘ[Ri (s,Θ)]
+ µT

i T
clo
i,2 . (22)

In comparison, each mobile user’s total cost for performing local
computing is still given by (3), since the dynamic environment
(channel dynamics, users’ dynamic activeness) does not impact the
local computing. In summary, we evaluate the computation cost in
dynamic environment by the following metric:

Γi (si, s−i) =

{
V loc
i , if si = 0;

V̄ clo
i (s) , if si > 0.

(23)

7. An alternative choice of the expected cost can be V̄ clo
i (s) =

EΘ[
(µEi pi+µTi )Ci

Ri(s,Θ)
] + µT

i T clo
i,2. In this paper, we choose to use (22) for the

convenience of analysis.
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Definition 5 (Price of Anarchy [38]): Price of Anarchy (PoA) is
the ratio of system-wide computation costs between the worst
(expected) NE and the globally optimal solution in centralized
schemes, i.e.,

PoA =
max
s∗∈Ψ

∑
i∈N θiΓi(s

∗)∑
i∈N θiΓi(ŝ)

, (24)

where θi is mobile user i’s active probability, Ψ is the set of
expected NE of the stochastic game G2, and ŝ denotes the central-
ized optimal solution that minimizes the system-wide computation
cost, i.e., ŝ = argmin

s∈S

∑
i∈N θiΓi(s), where S denotes the strategy

space of all the users. Notice that the PoA provides a meaningful
metric that indicates how good the NE is compared to the central-
ized optimal solution for minimizing the system cost.

Lemma 3. For an arbitrary expected NE s∗ of the stochastic game
G2, if s∗i > 0, user i’s expected transmission rate EΘ[Ri (s

∗,Θ)] for
computation offloading is lower bounded by

R̄inf
i =Egi,o

[
Blog2

(
1+

pigi,o
σ0

)]
−Blog2

(
1+

∑
j∈N\{i} pj ḡj,oθj

Mσ0

)
.

(25)

Proof: According to Definition 4 for the expected Nash
Equilibrium, ∀i ∈ N , ūi

(
s∗i , s

∗
−i

)
≤ ūi

(
si, s

∗
−i

)
, which along with

(8) leads to

EΘ

[
Ii
(
s∗i , s

∗
−i,Θ

)]
≤ EΘ

[
Ii
(
si, s

∗
−i,Θ

)]
,∀si ∈ M ⊆ Si. (26)

By summing up the two sides of (26), we can derive

MEΘ

[
Ii
(
s∗i , s

∗
−i,Θ

)]
≤
∑

si∈M
EΘ

[
Ii
(
si, s

∗
−i,Θ

)]
. (27)

Obviously, EΘ

[
Ii
(
si, s

∗
−i,Θ

)]
=
∑

j∈N\{i}:s∗j=si
pj ḡj,oθj . Thus,∑

si∈M
EΘ

[
Ii
(
si, s

∗
−i,Θ

)]
=
∑

si∈M

∑
j∈N\{i}:s∗j=si

pj ḡj,oθj

=
∑

si∈M

∑
j∈N\{i}

pj ḡj,oθjℓ{s∗j=si}
=
∑

j∈N\{i}
pj ḡj,oθj

∑
si∈M

ℓ{s∗j=si}.
(28)

If s∗j = 0,
∑

si∈M ℓ{s∗j=si} = 0; if s∗j ∈ M,
∑

si∈M ℓ{s∗j=si} = 1.
Thus, ∑

si∈M
EΘ

[
Ii
(
si, s

∗
−i,Θ

)]
≤
∑

j∈N\{i}
pj ḡj,oθj , (29)

which along with (27) yields

EΘ

[
Ii
(
s∗i , s

∗
−i,Θ

)]
≤ 1

M

∑
j∈N\{i}

pj ḡj,oθj . (30)

Besides,

EΘ [Ri (s
∗,Θ)] = EΘ

[
Blog2

(
1 +

pigi,o
Ii (s∗,Θ) + σ0

)]
=EΘ

[
Blog2

(
1+

Ii(s
∗,Θ)+pigi,o
σ0

)]
−EΘ

[
Blog2

(
1+

Ii(s
∗,Θ)

σ0

)]
= Egi,o

[
Blog2

(
1 +

pigi,o
σ0

)]
− Egi,o

[
Blog2

(
1 +

pigi,o
σ0

)]
+EΘ

[
Blog2

(
1+

Ii(s
∗,Θ)+pigi,o
σ0

)]
−EΘ

[
Blog2

(
1+

Ii(s
∗,Θ)

σ0

)]
.

(31)
Notably,

Egi,o

[
Blog2

(
1+

pigi,o
σ0

)]
≤ EΘ

[
Blog2

(
1+

Ii (s
∗,Θ)+pigi,o
σ0

)]
.

(32)

Moreover, according to Jensen’s inequality [41] and the upper
bound of expected interference given in (30), we have

EΘ

[
Blog2

(
1+

Ii (s
∗,Θ)

σ0

)]
≤ Blog2

(
1+

EΘ [Ii (s
∗,Θ)]

σ0

)
≤ Blog2

(
1+

∑
j∈N\{i} pj ḡj,oθj

Mσ0

)
.

(33)

Then, (31), (32) and (33) lead to

EΘ [Ri (s
∗,Θ)] ≥ Egi,o

[
Blog2

(
1 +

pigi,o
σ0

)]
−Blog2

(
1+

∑
j∈N\{i} pj ḡj,oθj

Mσ0

)
.

(34)

Lemma 3 characterizes the lower bound of expected transmis-
sion rate of each user for computation offloading at any NE point.
According to (25), the lower bound R̄inf

i increases with the number
of available channels M . The reason is that as the number of
channels increases, mobile users can avoid mutual interference by
choosing different channels for computation offloading. Secondly,
when mobile users’ active probabilities are lower, the lower bound
R̄inf

i becomes larger, which implies that higher offloading rate can
be achieved. With Lemma 3, the following result can be achieved.

Theorem 4. For the multi-user stochastic computation offloading game
G2, the PoA of the system-wide computation cost satisfies that

1 ≤ PoA ≤

N∑
i=1

θi max

{
V loc
i ,

(µEi pi+µTi )Ci
R̄inf
i

+ µT
i T

clo
i,2

}
N∑
i=1

θi min

{
V loc
i ,

(µEi pi+µTi )Ci
R̄sup
i

+ µT
i T

clo
i,2

} , (35)

where R̄sup
i = Blog2

(
1 +

piḡi,o
σ0

)
.

Proof: 1) Let s∗ ∈ Ψ be an arbitrary expected NE of the game
G2. If s∗i = 0, user i chooses local computing with the cost V loc

i ; if
s∗i > 0, user i chooses cloud computing with the cost V̄ clo

i (s∗).
Thus, the following result always holds:

Γi (s
∗) ≤ max

{
V loc
i , V̄ clo

i (s∗)
}
. (36)

Besides, according to Lemma 3, we have

V̄ clo
i (s∗)=

(
µE
i pi+µ

T
i

)
Ci

EΘ[Ri (s∗,Θ)]
+ µT

i T
clo
i,2 ≤

(
µE
i pi+µ

T
i

)
Ci

R̄inf
i

+ µT
i T

clo
i,2 .

(37)
Therefore,

Γi (s
∗) ≤ max

{
V loc
i ,

(
µE
i pi + µT

i

)
Ci

R̄inf
i

+ µT
i T

clo
i,2

}
. (38)

2) For the centralized optimal solution ŝ, the expected trans-
mission rate for computation offloading is

EΘ[Ri (ŝ,Θ)]=EΘ

[
Blog2

(
1+

pigi,o
Ii (ŝ,Θ) + σ0

)]
≤ Egi,o

[
Blog2

(
1+

pigi,o
σ0

)]
≤Blog2

(
1+

piḡi,o
σ0

)
,

(39)

where the last inequality in (39) is based on Jensen’s inequality
[41]. Then, we obtain the following result:

V̄ clo
i (ŝ)=

(
µE
i pi+µ

T
i

)
Ci

EΘ[Ri (ŝ,Θ)]
+ µT

i T
clo
i,2 ≥

(
µE
i pi+µ

T
i

)
Ci

R̄sup
i

+ µT
i T

clo
i,2 .

(40)
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Since user i’s computation cost is either V loc
i or V clo

i (ŝ), we
have

Γi(ŝ)≥min
{
V loc
i ,V̄ clo

i (ŝ)
}
≥min

{
V loc
i ,

(
µE
i pi+µ

T
i

)
Ci

R̄sup
i

+µT
i T

clo
i,2

}
,

(41)
which along with (38) leads to the upper bound of the PoA given
in (35).

Besides, since the centralized optimum ŝ minimizes the system-
wide computation cost, we hence have PoA ≥ 1. Therefore, we
complete the proof of Theorem 4.

According to Theorem 4 and Lemma 3, more available channels
and lower active probabilities help increase the lower bound of
expected offloading rate, which thus decreases the gap between
the worst NE and the centralized optimal solution.

5.2 Metric II: Beneficial Cloud Computing Users
For an arbitrary NE s∗, let us denote the number of users who
benefit from cloud computing by N c (s∗). Next, we will analyze
the bound of N c (s∗).

Letting Zmax , maxi∈N {piḡi,o}, Zmin , mini∈N {piḡi,o},
Q̄max , maxi∈N {Q̄i}, Q̄min , mini∈N {Q̄i}, θmax , maxi∈N {θi},
and θmin , mini∈N {θi}, we can derive the following theorem.

Theorem 5. Suppose 0 < N c (s∗) < N , then for the multi-user
dynamic computation offloading game, the total number of users who
benefit from cloud computing at any NE point satisfies:

MQ̄min

Zmaxθmax
≤ N c (s∗) ≤M

(
Q̄max

Zminθmin
+ 1

)
. (42)

Proof: 1) Since N c (s∗) < N , there exists at least one user k
that chooses the local computing manner, i.e., s∗k = 0. Since s∗ is an
NE, we know that the user cannot reduce its payoff by choosing
computation offloading via any channel m ∈ M. According to
(8), we have EΘ[Ik (s

∗,Θ)] =
∑

j∈N\{k} pj ḡj,oθjℓ{s∗k=m} ≥ Q̄k,
∀m ∈ M. Then, let N c

m (s∗) =
∑N

i=1 ℓ{s∗i=m} denote the number
of users on channel m, and we have

N c
m (s∗)Zmaxθmax ≥

∑
j∈N\{k}

pj ḡj,oθjℓ{s∗k=m} ≥ Q̄k ≥ Q̄min.

(43)
Thus, N c

m (s∗) ≥ Q̄min

Zmaxθmax
, ∀m ∈ M. Then, we can obtain

N c (s∗) =
∑M

m=1
N c

m (s∗) ≥ MQ̄min

Zmaxθmax
. (44)

2) Since N c (s∗) > 0, there exists at least one user k̃ that
chooses the cloud computing manner, i.e., s∗

k̃
> 0. Without loss of

generality, suppose user k̃ is on the channel m, which is occupied
by most users, i.e., N c

m (s∗) ≥ N c
m̃ (s∗), ∀m̃ ∈ M. Since s∗ is an

NE, we know that the user cannot reduce its payoff by choosing
local computation. According to (8), we have EΘ[Ik̃ (s

∗,Θ)] ≤ Q̄k̃.
That is,

∑
j∈N\{k̃} pjgj,oθjℓ{s∗j=m} ≤ Q̄k̃. Then, the following

result always holds:(
N c

m(s∗)−1
)
Zminθmin≤

∑
j∈N\{k̃}pjgj,oθjℓ{s∗j=m}≤Q̄k̃≤Q̄max,

(45)
which leads to N c

m (s∗) ≤ Q̄max

Zminθmin
+1. Then, we have

N c(s∗)=
∑M

m̃=1
N c

m̃(s∗)≤
∑M

m̃=1
N c

m(s∗)≤M
(

Q̄max

Zminθmin
+1

)
.

(46)
Therefore, Theorem 5 is proved.

Theorem 5 provides a quantitative characterization about how
many users can eventually benefit from offloading computation
tasks to the mobile cloud, by playing the stochastic game G2.

Remark 1. The above analysis indicates that the NE points might
enable mobile users to achieve desirable and attractive performance by
playing the proposed stochastic game for computation offloading. It is
very interesting since mobile users’ selfish and competitive behaviors lead
to desirable game outcomes. The reasons can be explained as follows. If
too many mobile users are using the same wireless channel to offload their
computation tasks to the cloud, they may experience low offloading rates.
In order to reduce the computation cost, some mobile users will definitely
choose other wireless channels for offloading or compute the task locally by
itself. Consequently, it leads to balanced occupation of wireless channels
for computation offloading, which is beneficial for the whole system.

6 MULTI-AGENT STOCHASTIC LEARNING UNDER DY-
NAMIC ENVIRONMENT

Although the NE points exhibit desirable and attractive perfor-
mance, it is challenging for mobile users to reach the NE in a
distributed manner and under dynamic environment. Most ex-
isting game-theoretic algorithms (e.g., best (or better) response
[24], spatial adaptive play [26]) update users’ strategies based
on their received instantaneous utility/payoff. However, due to
the dynamics of users’ activeness and wireless channels in our
computation offloading problem, each user might receive different
utilities/payoffs in different time slots, even if it chooses to use
the same strategy. Thus, the existing game-theoretic algorithms
may never reach NE. This motivates us to incorporate the idea
of stochastic learning [28], [29], [30] into the design of an efficient
yet distributed algorithm under dynamic environment in order to
reach the NE of our proposed stochastic game G2.

6.1 Proposed Multi-Agent Stochastic Learning Algorithm

The details are shown in the Multi-Agent Stochastic Learning
Algorithm (i.e., referred as MASL-Algorithm). Specifically, each
mobile user acts as a learning automaton that independently and
automatically selects its offloading strategy according to a proba-
bility vector over the strategy space, and updates the probability
vector based on the action-reward received from the dynamic
environment. For the sake of clear presentation, we denote the
strategy selection probability vector for an arbitrary user i as
wi = (wi0, wi1, . . . , wiM ), where wi0 denotes the probability to
select the strategy of local computing, wim (m ∈ M) denotes the
probability to select offloading the computation task to the mobile
cloud via wireless channel m.

MASL-Algorithm: To reach the NE of the stochastic game G2

Initialization: At the initial time t = 0, each mobile user
i ∈ N sets its strategy selection probability vector as a uniform
distribution, i.e., wt

i =
(

1
M+1 , . . . ,

1
M+1

)
.

Loop for t = 0, 1, 2, . . .

1) Updating computation offloading strategy: In the t-th time
slot, each active user i ∈ At, selects an offloading strategy sti
according to its current strategy selection probability vector
wt

i . The inactive users N\At keep silent and take no action.
2) Measuring instantaneous payoff8: Each active user evaluates

its respective payoff uti according to (7), namely, active user
i evaluates its received interference Iti if sti > 0; otherwise,
active user i directly computes Qt

i (which is given in Lemma

8. As we discussed before, the received payoff ut
i depends not only on other

users’ activeness, but also on the current channel condition. Specifically, other
users’ activeness impacts its received interference Iti , while the current channel
condition impacts both Iti and Qt

i .
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1). Besides, the inactive users N\At keep silent and take no
action.

3) Updating strategy selection probability: Each active user
updates its strategy selection probability vector for the next
time slot according to the following rule:

wt+1
i = wt

i + brti

(
esti −wt

i

)
, (47)

where 0 < b < 1 is the learning step-size, esti is an (M + 1)-
dimensional unit vector with the sti-th element being one, and
rti is the received action-reward defined by rti = 1− γiu

t
i. (The

computation offloading strategy with less cost is given larger
action-reward. Here γi is a scaling factor, and we require γi ≤

1
max
t

{uti}
to guarantee the action-reward rti positive.) Besides,

the inactive mobile users N\At keep their strategy selection
probability vectors unchanged, i.e.,

wt+1
i = wt

i . (48)

End loop until all users do not adjust their respective offloading
strategies.

As shown above, the proposed MASL-Algorithm is operated
in an iterative manner. Within each round of iteration, each active
user independently selects its offloading strategy based on a proba-
bility vector over the strategy space, and receives an action-reward
from the dynamic environment. The computation offloading strat-
egy with less cost is given larger action-reward, and the strategy
with larger reward value will be assigned with larger probability.
By continuously interacting with the random environment, each
mobile user will finally choose its optimal offloading strategy with
probability one. We emphasize that during the operation of MASL-
Algorithm, each mobile user operates entirely based on its own
strategies and the consequently received reward, without requiring
any knowledge from other users and any prior knowledge of
probability space (Ω,H,P) of the dynamic environment. Therefore,
the proposed MASL-Algorithm is fully distributed which makes
itself attractive for a practical implementation.

Notice that due to the dynamics of users’ activeness and
wireless channels, user i might receive different action-rewards in
different time slots, even if it chooses to use the same strategy.
This imposes the key challenge to establish the convergence of
MASL-Algorithm. Although there exist several previous studies
[28], [29], [30] investigating the convergence of some stochastic
learning algorithms, our proposed MASL-Algorithm differs from
those algorithms in terms of taking into account the dynamics of
both users’ activeness and wireless channels. Moreover, the def-
inition of payoff function is application-dependent, and different
payoff functions (adopted by even the same learning mechanism)
will lead to different learning solutions [31]. Therefore, the previ-
ous analyses are not applicable to our case in this study, which
motivates us to perform a deep analysis about the convergence
property of the MASL-Algorithm in the next subsection.

6.2 Convergence Properties of MASL-Algorithm
We first re-write the updating rule in Step 3 of the proposed
algorithm as follows:

wt+1
i = wt

i + batir
t
i

(
esti −wt

i

)
, ∀i ∈ N , (49)

where ati denotes the activeness of user i in the t-th time slot. Let
Wt =

(
wt

1, . . . ,w
t
N

)T
denote the strategy selection probability

vector of all the users, and thus we can express the evolution of
the strategy selection probability vector of the game G2 as follows:

Wt+1 = Wt + bf
(
Wt,at, st, rt

)
, (50)

where at =
(
at1, . . . , a

t
N

)
, st =

(
st1, . . . , s

t
N

)
, rt =

(
rt1, . . . , r

t
N

)
,

and f(·) represents the updating rule specified by (49). Then,
according to Theorem 3.1 in [28], we can derive the following
lemma.

Lemma 4. With a sufficiently small step-size b, i.e., b→ 0, the sequence
{Wt} will converge weakly to the solution of the following ordinary
differential equation (ODE):

dW

dt
= h(W), (51)

with the initial state W0 =
[

1
M+1

]
N×(M+1)

, and h (W) =

EΘ

[
f
(
Wt,at, st, rt,Θ

)
|Wt = W

]
.

Lemma 5. With a sufficiently small step-size b, our proposed MASL-
Algorithm converges to a stable stationary point of the ODE given in
(51).

Proof: Let r̄i (s) = EΘ [ri(s,Θ)] denote user i’s expected
reward function under strategy profile s, and let Xi (m,W−i)
denote user i’s probabilistic reward function when it adopts pure
strategy m and other users adopt probability vector (for strategy
selection) W−i = (w1, . . .wi−1,wi+1, . . . ,wN ). Specifically, de-
fine

Xi (m,W−i) = r̄i (m,W−i) =
∑

s−i∈S−i

r̄i (m, s−i)
∏
j ̸=i

wj,sj , (52)

where S−i denotes the strategy space of all the users excluding
i, wj,sj is the probability of user j to choose pure strategy sj . In
addition, define the probabilistic potential function

Y (W) = Φ̄(W) =
∑
s∈S

Φ̄ (s)
∏
i∈N

wi,si , (53)

and

Yi (m,W−i) =
∂Y (W)

∂wi,m
=

∑
s−i∈S−i

Φ̄ (m, s−i)
∏
j ̸=i

wj,sj , (54)

where Φ̄ is the expected potential function defined in (20), S
denotes the strategy space of all the users.

According to Lemma 4, we have

dwi,m

dt
=θi

wi,m(1−wi,m)r̄i(m,W−i)+
∑

m′ ̸=m

wi,m′(−wi,m) r̄i(m
′,W−i)


= θiwi,m

r̄i (m,W−i)−
∑

m′∈Si

wi,m′ r̄i (m
′,W−i)


= θiwi,m

Xi (m,W−i)−
∑

m′∈Si

wi,m′Xi (m
′,W−i)


= θiwi,m

∑
m′∈Si

wi,m′
(
Xi (m,W−i)−Xi (m

′,W−i)
)
.

(55)
Then,

dY (W)

dt
=
∑
i,m

∂Y (W)

∂wi,m

dwi,m

dt

=
∑
i,m

Yi(m,W−i) θiwi,m

∑
m′∈Si

wi,m′
(
Xi (m,W−i)−Xi (m

′,W−i)
)

=
∑

i,m,m′

θiwi,mwi,m′Yi (m,W−i)
(
Xi (m,W−i)−Xi (m

′,W−i)
)
.

(56)



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2847337, IEEE
Transactions on Mobile Computing 10

Notably,∑
i,m,m′

θiwi,mwi,m′Yi (m,W−i)
(
Xi (m,W−i)−Xi (m

′,W−i)
)

=
∑

i,m,m′

θiwi,m′wi,mYi(m
′,W−i)

(
Xi (m

′,W−i)−Xi (m,W−i)
)
.

(57)
Therefore, we can obtain the following result:

dY (W)

dt
=

1

2

∑
i,m,m′

θiwi,mwi,m′
(
Yi(m,W−i)−Yi(m′,W−i)

)
×
(
Xi(m,W−i)−Xi(m

′,W−i)
)
.

(58)

As given in Step 3 of the proposed algorithm, ∀t, rti = 1− γuti,
thus the expected reward r̄i = 1− γūi. Then, (21) yields

Φ̄ (s′i, s−i)− Φ̄ (si, s−i) =
piḡi,o
γi

(
r̄i (si, s−i)− r̄i (s

′
i, s−i)

)
. (59)

By using Eqs. (52), (54), and (59), we can derive that ∀m,m′ ∈ Si,

Yi(m,W−i)− Yi (m
′,W−i) =

piḡi,o
γi

(
Xi (m

′,W−i)−Xi (m,W−i)
)
,

(60)
which, together with (58), yields

dY(W)

dt
=−1

2

∑
i,m,m′

θiwi,mwi,m′
piḡi,o
γi

(
Xi(m,W−i)−Xi

(
m′,W−i

))2≤0.

(61)
(61) indicates that Y (W) monotonously decreases when the

algorithm iterates. Moreover, since Y (W) is lower bounded by
Y (W) ≥ 0, we know Y (W) will converge to a stationary point
when dY (W)

dt = 0, and

dY (W)

dt
= 0 ⇒ wi,mwi,m′

(
Xi (m,W−i)−Xi (m

′,W−i)
)
= 0.

(62)
Then, according to (55), we have dwi,m

dt = 0,∀i,m, and thus dW
dt =

0. Hence, W converges to a stationary point of ODE (51). This
completes the proof of Lemma 5.

It has been proved by Theorem 3.2 in [28] that all pure-strategy
NE of G2 coincide with the stable stationary points of the ODE
given in (51). Thus, based on Lemma 5, we can derive the following
theorem.

Theorem 6. With a sufficiently small step-size b, our proposed MASL-
Algorithm converges to a pure-strategy NE point of G2.

Moreover, the convergence rate of the MASL-Algorithm can be
characterized as follows:

Theorem 7. The average convergence rate of the proposed MASL-
Algorithm is given by:

ρave =
√
ρ0ρ∞, (63)

with

ρ0=1−
b
∑
i∈N

∑
m∈Si

∑
m′∈Si

∑
s−i∈S−i

θiγipiḡi,o
(
ūi (m

′, s−i)−ūi (m, s−i)
)
2

2(M + 1)N
∑
s∈S

(
Φ̄ (s)− Φ̄ (s∗)

) ,

(64)
and

ρ∞ = 1−
b
∑
i∈N

∑
si∈Si

θiγipiḡi,o
(
ūi(si, s

∗
−i)− ūi (s

∗)
)2

∑
i∈N

∑
si∈Si

(
Φ̄(si, s∗−i)− Φ̄ (s∗)

) , (65)

where S−i denotes the strategy space of all the users excluding i, S
denotes the strategy space of all the users, and s∗ is a pure-strategy NE.

Proof: As shown in (61), the probabilistic potential function
Y (W) = Φ̄(W) monotonously converges. Specifically, at iteration
index t, the corresponding convergence rate is given by:

ρt =
Φ̄
(
Wt+1

)
− Φ̄ (W∗)

Φ̄
(
Wt

)
− Φ̄ (W∗)

= 1 +
Y
(
Wt+1

)
− Y

(
Wt

)
Y
(
Wt

)
− Y (W∗)

, (66)

where W∗ is a stationary point of the ODE, i.e., an NE. As stated
in [39], ρt indicates how close Φ̄

(
Wt+1

)
is to Φ̄ (W∗), compared

with Φ̄
(
Wt

)
.

Y
(
Wt+1)− Y

(
Wt) ≈∑

i,m

∂Y (W)

∂wi,m
|Wt∆wi,m

=
∑
i,m

Yi

(
m,Wt

−i

)
θibwi,m

∑
m′∈Si

wi,m′

(
Xi

(
m,Wt

−i

)
−Xi

(
m′,Wt

−i

))
= b

∑
i,m,m′

θiw
t
i,mwt

i,m′Yi

(
m,Wt

−i

)(
Xi

(
m,Wt

−i

)
−Xi

(
m′,Wt

−i

))
= − b

2

∑
i,m,m′

θiw
t
i,mwt

i,m′
piḡi,o
γi

(
Xi

(
m,Wt

−i

)
−Xi

(
m′,Wt

−i

))2
.

(67)

Besides, [28], [40] show that only the pure-strategy NE is
stable, thus we only study the convergence to a pure-strategy
NE s∗. Obviously, Y (W∗) can be equivalently written as Φ̄ (s∗).
Therefore,

ρt=1−

b
2

∑
i,m,m′

θiw
t
i,mw

t
i,m′

piḡi,o
γi

(
Xi

(
m,Wt

−i

)
−Xi

(
m′,Wt

−i

))2
∑
s∈S

Φ̄ (s)
∏
i∈N

wt
i,si

− Φ̄ (s∗)
,

(68)
which along with (52) yields

ρt=1−

b
2

∑
i,m,m′

∑
s−i∈S−i

θi
piḡi,o

γi

(
r̄i(m, s−i)−r̄i(m

′, s−i)
)
2wt

i,mwt
i,m′

(∏
j ̸=i

wt
j,sj

)
2

∑
s∈S

Φ̄ (s)
∏
i∈N

wt
i,si

− Φ̄ (s∗)

= 1−

b
2

∑
i,m,m′

∑
s−i∈S−i

θiγipiḡi,o
(
ūi(m

′, s−i)−ūi(m, s−i)
)2 ∏
i∈N:si=m

wt
i,si

∏
i∈N:si=m′

wt
i,si∑

s∈S
Φ̄ (s)

∏
i∈N

wt
i,si

− Φ̄ (s∗)
.

(69)

At t = 0, w0
i,si

= 1
M+1 , ∀i ∈ N ,∀si ∈ Si, thus, we can derive ρ0

as (64). At t = ∞, let the probability in NE
∏
i∈N

w∞
i,s∗i

= 1 − ε, the

probability for only one user deviating NE w∞
j,sj

∏
i∈N\{j}

w∞
i,s∗i

=

ε
NM , sj ̸= s∗j , and the probability for more than one user deviating
NE to be 0. As ε→ 0, we obtain ρ∞ as (65). Then, according to the
definition in [39], the average rate of convergence can be computed
by ρave =

√
ρ0ρ∞. Notably, the time taken for Φ̄

(
W0

)
− Φ̄ (W∗)

to decrease L times its value is T ave = logL
log ρave .

Remark 2. (The impact of step-size b) It is noted that the convergence
rate is higher when ρave is smaller [39]. Notably, ρave decreases linearly
with the value of b. Thus, when b is larger, the convergence gets faster.
However, the approximation of the iterative process to the ODE requires
a sufficiently small b, as shown in Lemma 4. [40] has characterized the
accuracy of approximation as

E
[
Wt − W̃bt

]
= O

(√
b
)
, (70)

where Wt is the iterative process of algorithm, and W̃bt represents the
value of the trajectory of ODE at time bt. Therefore, there is a tradeoff
between the convergence rate and the accuracy of approximation to NE
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TABLE 2
Parameters Setting

Coverage of AP 50 m Data size Ci 5000 KB
Number of mobile users N [20, 45] Number of CPU cycles for local computing Dloc

i 1000 Megacycles
User’s active probability θi (0, 1] Number of CPU cycles for cloud computing Dclo

i 1200 Megacycles
Number of channels M [4, 14] Local computational capability F loc

i Randomly set from {0.5, 0.8, 1.0} GHz
Bandwidth of channel B 5 MHz Cloud computational capability F clo

i 12 GHz
Transmit power pi 100 mW Weight of computational energy µE

i Randomly set from {0, 0.5, 1.0}
Pass loss exponent α 4 Weight of computational time µT

i 1− µE
i

Background noise σ0 -100 dBm Computing energy efficiency 1/ηi Randomly set from {400, 500, 600} Megacycles/J
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of the stochastic game, and the parameter setting of b is application-
dependent in practice. Figure 5 in the next section verifies the above
discussions.

7 SIMULATION RESULTS

In this section, we conduct simulations to validate the proposed
MASL-Algorithm and its performance under dynamic environ-
ment. We set up a scenario network where a group of mobile
users are randomly scattered in the coverage of the AP. For each
user i, we randomly set its active probability θi according to
a uniform distribution within (0,1]. The time-varying channels
follow Rayleigh fading, where the random fading coefficient β is
exponentially distributed with unit-mean. Table 2 summarizes the
key parameters used in simulations, which are set similar to [10],
[11]. If not otherwise specified, the default setting for the number
of users is 30, and that for the number of channels is 5. Moreover,
in the proposed MASL-Algorithm, the default value of the step-
size b is 0.1, and that of the scaling factor γi is 105 (the impact will
be discussed later on).

7.1 Convergence Analysis

To evaluate convergence of the proposed MASL-Algorithm, we
plot the strategy selection probabilities of one arbitrarily selected
user in Figure 3. At the very beginning, this target user randomly
selects its computation offloading strategy according to a uniform
distribution. As the MASL-Algorithm operates, this target user’s
strategy selection probabilities keep on updating and finally con-

verge after around 300 iterations9. Specifically, after convergence,
the probability of choosing offloading computation task via chan-
nel 1 is equal to 1, while the probabilities for other strategies
decrease to 0. This result means that, after convergence, the target
user will only choose channel 1 to offload computation task to the
mobile cloud.

Figure 4 plots the dynamics of system-wide computation cost
for our MASL-Algorithm. For comparison, the best-response algo-
rithm (referred as BR-Algorithm) in [11] is plotted, which also runs
in an iterative manner. At each iteration, the BR-Algorithm allows
the user who received the update-permission message to select
its optimal strategy based on its instantaneous computation cost,
while other users keep their strategies unchanged. We can see that
the MASL-Algorithm can greatly reduce the computation cost to
its minimum (i.e., NE) after convergence, while the BS-Algorithm
yields a fluctuating computational cost which is much greater than
that of the MASL-Algorithm. This is because the BR-Algorithm
always conducts a myopic play based on the instantaneous com-
putation cost, while the environment is dynamically varying.

We then analyze the computational complexity of the pro-
posed algorithm. Since most operations only involve some basic
arithmetical calculations, the dominating part is the updating of
the strategy selection probability in Step 3, which involves the
operations of 2 vector-vector sums, 1 scalar-vector product, and
1 scalar-scalar product. Thus, the proposed MASL-Algorithm runs

9. Since the typical length of a time slot in wireless systems is at the time
scale of microseconds (e.g., 70 microseconds for a time slot in LTE system
[32]), the time used by the computation offloading decision process is actually
very short (e.g., 21 milliseconds for 300 iterations in LTE system). Such a
short duration is negligible, compared with the computation execution process,
which is typically at the scale of seconds (e.g., the execution time for mobile
gaming applications is typically several hundred milliseconds [37]).
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Fig. 5. Impact of different values of step-size b.
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Fig. 7. Performance comparison in terms of system cost
for different numbers of mobile users.
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Fig. 8. Performance comparison in terms of system cost
for different numbers of channels.

in a low complexity of O(3M +1). In contrast, [11] has shown that
the computational complexity of the BR-Algorithm is O(M logM).

Figure 5 shows the impact of the step-size on the convergence
speed of the proposed MASL-Algorithm. We vary the step-size b
to be 0.05, 0.1, 0.2, 0.3, and 0.4, respectively. Figure 5 shows that as
the step-size increases, the algorithm can speed up its convergence,
but obtains an inferior solution (not NE). As shown in Remark 2
(Section VI), there is a tradeoff between the convergence speed
and the accuracy of convergence to NE, which are both impacted
by the step-size b. For our case, it is preferable to set the step-size as
0.1, which can lead the algorithm converge to an NE within about
350 iterations. It is noted setting the step-size as 0.05 can also get
the NE, but the convergence speed is very slow (more than 500
iterations).

Moreover, Figure 6 shows the impact of the scaling factor γi on
the performance of the proposed MASL-Algorithm. We vary the
parameter γi to be 103, 104, 105, and 106, respectively. Figure 6
shows that when γi = 105, the algorithm achieves the best per-
formance in terms of reducing the system-wide computation cost.
Larger γi setting could enhance users’ response to the computation
cost, and thus lead users’ sensitive strategy adjustment towards
the optimal one. That is why we observe from the figure that 105 is
better than 103 and 104 for the setting of γi. However, γi cannot be
too large in order to guarantee the action-reward rti positive. As a

result, the performance of the algorithm gets worse when γi = 106.

7.2 Performance Evaluation

We further evaluate the performance of the proposed MASL-
Algorithm, in comparison with the performance of the BR-
Algorithm [11] and the random strategy selection algorithm (re-
ferred as RSS-Algorithm). Specifically, in the RSS-Algorithm, each
mobile user randomly selects a strategy in each time slot. The
following presented results are obtained by simulating 500 inde-
pendent trials and then taking the average value.

Figure 7 shows the performance of our proposed MASL-
Algorithm versus different numbers of mobile users. Figure 7
shows that the MASL-Algorithm always consumes a significantly
less total cost than the BR-Algorithm and the RSS-Algorithm.
In addition, the consumed total cost increases as the number of
mobile users increases, which is consistent with the intuition.
Figure 8 further shows the advantage of using MASL-Algorithm
by varying different numbers of channels. Figure 8 again shows
that our proposed MASL-Algorithm always outperforms the BR-
Algorithm and the RSS-Algorithm.

Figures 9 and 10 evaluate our proposed MASL-Algorithm in
terms of the number of mobile users who benefit from performing
cloud computing (notice that the decimals in the results are due
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Fig. 9. Performance comparison in terms of beneficial
cloud computing users for different numbers of users.
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Fig. 10. Performance comparison in terms of beneficial
cloud computing users for different numbers of channels.

to the average results). Both figures demonstrate that our pro-
posed MASL-Algorithm achieves better performances than the BR-
Algorithm and the RSS-Algorithm. Figure 9 shows that the number
of users who benefit from cloud computing increases when the
number of users becomes larger. Intuitively, when the number
of total users increases, more users may possibly choose cloud
computing. However, due to limitation of available channels, the
number of beneficial cloud computing users is also limited, since
users would generate severe interference to each other, leading
to lower offloading rates. Figure 10 shows that the number of
beneficial cloud computing users increases when the number of
available channels increases.

8 CONCLUSION

In this paper, we have investigated the problem of multi-user
computation offloading for mobile cloud computing under the
practical dynamic environment. By formulating this problem as
a stochastic game, we proved that such a dynamic offloading
decision process always leads to a pure-strategy NE. Moreover,
we have analyzed the performance bounds of the NE in terms of
both the system cost and the number of users who can benefit from
cloud computing. To reach the NE, we proposed a fully distributed
algorithm (i.e., MASL-Algorithm) with a guaranteed convergence
rate under dynamic environment. Simulation results have been
presented to validate the effectiveness of our proposed algorithm
and show its significant performance advantage. In our future
work, we will study the joint optimization of dynamic offloading
decision-making and transmit power control, which will be an
important and technical challenging problem. Another interesting
direction is to investigate the mobile computation offloading from
the perspective of economics, and specifically, to consider mobile
users’ economic expenses for offloading computation tasks to the
mobile cloud.
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