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Abstract—In this paper, we investigate the network utility maximization
problem in energy harvesting cognitive radio sensor networks (CRSNs).
Different from traditional sensor networks, sensor nodes in CRSNs are
embedded cognitive radio modules, enabling them to dynamically ac-
cess the licensed channels. Since the dynamic channel access is critical
to guarantee the network capacity for CRSNs, existing solutions without
considering the dynamic channel access cannot be directly applied into
CRSNs. To this end, we aim at maximizing the network utility by jointly
controlling the sampling rates and channel access of sensor nodes,
under the energy consumption, channel capacity and interference con-
straints. With the consideration of fluctuated energy harvesting rates and
channel switching costs, we formulate the network utility maximization
as a mix-integer non-linear programming problem and solve it in an
efficient and decoupled way by means of dual decomposition. A joint
channel access and sampling rate control scheme, named JASC, is then
proposed considering the real-time channel sensing results and energy
harvesting rates. Extensive simulation results demonstrate that JASC
can efficiently improve the network utility in CRSNs based on a realistic
energy harvesting dataset.

Index Terms—cognitive radio sensor network, energy harvesting, sam-
pling rate control, dynamic channel access, network utility maximization.

1 INTRODUCTION

A S a promising data gathering technique, wireless
sensor network (WSN) has been widely applied

and becomes one of the significant and fundamental
networks in the foreseeable era of Internet of things and
big data [1], [2]. However, since sensor nodes are gener-
ally low-cost and battery-powered, the development and
spread of WSN are limited by the highly-constrained net-
work lifetime. The emergence and maturation of energy
harvesting technology provides a solution to address this
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issue by enabling sensor nodes to harvest energy from
the ambient environment [3], which greatly accelerates
the flourish of WSN applications in recent years. On
the other hand, as the explosion of wireless services
makes the unlicensed spectrum increasingly crowded,
WSNs operating over the unlicensed spectrum suffer
from heavy interference caused by the applications using
the same spectrum. Cognitive Radio (CR) technique has
been developed as an efficient way to address the spec-
trum scarcity problem by enabling opportunistic access
to the licensed spectrum bands [4]. This technology can
also be applied to WSNs, giving rise to Cognitive Radio
Sensor Networks (CRSNs).

In CRSNs, sensor nodes can opportunistically access
licensed channels for data transmission and reception by
adjusting their radio configuration, when the licensed
channels are sensed as available. As a result, the dynamic
channel access becomes critical to guarantee the quality-
of-service (QoS) for CRSNs. In this regard, a number of
existing works provide comprehensive investigation to
reduce transmission delay [5]–[8] and improve network
capacity [9], [10], laying a solid foundation for studying
the dynamic channel access in CRSNs. Meanwhile, for
most of data-gathering WSN applications, network util-
ity is an important indicator to evaluate data collection
efficiency. Since network utility depends on the sampling
rates of sensor nodes and network capacity, it motivates
us to jointly study the sampling rate control and dy-
namic channel access to optimize the network utility in
CRSNs.

To this end, this paper focuses on the network util-
ity maximization problem in energy harvesting CRSNs.
Different from the existing works that maximize the
network utility for the WSNs with a fixed and stable
network capacity, the dynamic channel access leads to a
dynamic network capacity in CRSNs. Therefore, network
utility maximization in energy harvesting CRSNs faces
a great challenge of scheduling channel access for sen-
sor nodes, in addition to the inherent challenges such
as sampling rate controlling and stochastic renewable
energy constraints.
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In this paper, we investigate the network utility maxi-
mization problem in energy harvesting CRSNs by jointly
considering the sampling rate control and channel ac-
cess. The network operation is divided into different en-
ergy harvesting cycles, each of which is time slotted for
dynamic channel access. Since the energy consumption
for sensing the availability of licensed channels is consid-
erable for sensor nodes, a spectrum market is introduced
to take charge of channel sensing at each time slot and
use the historical sensing results to predict the channel
availability information for the CRSN. Sensor nodes are
scheduled to access the available channels under the
channel interference constraint at each time slot. The
network utility is defined as increasing with the amount
of sensory data collected by the CRSN and decreasing
with the capacity of the accessed channels. Consequently,
the network utility would be greatly impacted by sam-
pling rate control and channel access schedule, under
the harvested energy, channel capacity and interference
constraints. Therefore, we jointly optimize the channel
access and sampling rates and propose an efficient algo-
rithm to maximize the network utility. Specifically, the
contributions of this paper are three-fold.

(i) With the consideration of fluctuated energy har-
vesting rates and energy consumption in channel
switching, we formulate the network utility max-
imization problem as a mixed-integer nonlinear
optimization problem (MINLP), to determine the
optimal channel access and sampling rate for each
sensor node at different time slots.

(ii) To address the MINLP, we decouple the primal
problem into two independent subproblems by
dual decomposition and present two efficient solu-
tions for the subproblems. Based on the subproblem
solutions, a subgradient method based algorithm is
proposed to solve the network utility maximization
problem.

(iii) To mitigate the impact of prediction error, we fur-
ther propose a Joint channel Access and Sampling
rate Control scheme, named JASC, to maximize the
network utility, which can determine the sampling
rates and accessed channels of sensor nodes at each
time slot, adapting to the real-time channel sensing
results and energy harvesting rates.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. The system model
and problem formulation are introduced in Section 3. In
Section 4, we decouple the network utility maximization
problem into two subproblems by dual decomposition.
Section 5 presents the solutions of the two subprob-
lems. The joint channel access and sampling rate control
scheme is proposed in Section 6. Simulation results are
provided in Section 7 to evaluate the performance of the
proposed scheme. Finally, Section 8 concludes the paper
and outlines our future work.

2 RELATED WORKS

Recently, the network utility maximization problem has
attracted considerable attention in traditional energy
harvesting WSNs. Liu et al. [11] propose a QuickFix al-
gorithm to maximize the network utility by determining
the sampling rates and routes for sensor nodes. To adjust
the sampling rates adaptive to battery levels, a local algo-
rithm, called SanpIt, is developed to sustain the network
operation. Deng et al. [12] investigate the network utility
maximization problem with spatiotemporally-coupled
constraints in rechargeable sensor networks. To address
the problem, they propose a distributed algorithm to
jointly optimize the sampling rates and battery levels to
achieve the globally optimal solution. Different from the
aforementioned works maximizing the network utility
based on predictable energy harvesting rates, Chen et
al. [13] propose an online solution to address the en-
ergy allocation and routing problem for maximizing the
network utility without prior knowledge of the replen-
ishment profile. Huang and Neely [14] investigate the
general network utility maximization problem in energy
harvesting networks. They propose an online algorithm
to jointly manage the harvested energy and adjust trans-
mit power to optimize the time-average expected net-
work utility and guarantee the network stability and en-
ergy supply. Besides the discussed works, Zhao et al. [13]
develop a distributed algorithm to adjust the sampling
rates of sensor nodes for maximizing network utility,
by leveraging a mobile entity as mobile data collector
and energy transporter. In [15] and [16] , limited battery
capacity is considered and studied for the optimization
of sampling rates in energy harvesting WSNs.

Most of existing solutions can effectively improve the
network utility and manage the harvested energy in
traditional energy harvesting WSNs [17]. However, since
the dynamic channel access becomes a new challenge
for maximizing the network utility in CRSNs, existing
solutions cannot be directly applied into CRSNs. As
an emerging solution to the spectrum scarcity problem,
CRSN, especially the dynamic channel access in CRSN,
has also been well studied to improve the network
performances in recent literatures, in terms of delay,
throughput and energy efficiency.

Liang et al. [5] analyze the delay performance of
dynamic channel access to support real-time traffic in
CRSNs. They derive the average packet transmission
delay for two types of channel switching mechanisms,
called periodic switching and triggered switching, un-
der two kinds of real-time traffic, including periodic
data traffic and Poisson traffic, respectively. Quang and
Kim [9] develop a throughput-aware routing scheme
to improve network throughput and decrease end-to-
end delay for a large-scale clustered CRSN based on
ISA100.11a. Han et al. [18] propose a channel man-
agement scheme for CRSNs, which can adaptively
choose the operation mode of the network in terms
of channel sensing, channel switching, and data trans-



2168-6750 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2555806, IEEE
Transactions on Emerging Topics in Computing

3

PU

PU PU

Base
Station

Primary
Network

Sink

Spectrum
Market

Sink Sensor node Primary user Licensed channel

Fig. 1. The architecture of CRSN.

mission/reception, for energy efficiency improvement
according to the outcome of channel sensing. In addition,
opportunistic medium access (MAC) protocol design
and performance analysis are studied to support the
dynamic channel access for CRSNs in [19]–[21]. Moti-
vated by the superior energy efficiency of clustering,
dynamic spectrum-aware clustering strategies are also
investigated in [22], [23] to improve energy efficiency
and spectrum utilization for CRSNs.

However, to the best of our knowledge, the network
utility maximization problem, with the consideration
of energy management, dynamic channel access and
interference control, has not been investigated in CRSNs.

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

3.1 Network Model
Consider a cognitive radio sensor network with a set
of cognitive sensor nodes N = {1, ..., N} distributed
to monitor an area of interest, as shown in Fig. 1.
Each sensor node is equipped with energy harvesting
devices to harvest energy from ambient environment
and a rechargeable battery to store the harvested energy.
The time cycle of the network is defined as an energy
harvesting period T , and each time cycle is divided into
a set of time slots T = {1, ..., T}. During each time slot t,
sensor node i senses the monitored area with a sampling
rate si,t and transmits the sensory data to the sink via a
static multi-hop routing path, which makes the network
topology be a tree with the sink as the root.

The sensor nodes originally work on a unlicensed
channel (e.g., 2.4 GHz), but they are embedded with
cognitive radio modules, which enable them to oppor-
tunistically access licensed channels by adjusting their
radio parameters. Meanwhile, there are a number of
overlapping wireless applications working on the same
unlicensed channel, causing significant and uncontrol-
lable interference to the CRSN. As a result, sensor nodes
have to sense and access licensed channels for data trans-
mission to guarantee the required network performances
(e.g., delay and throughput). There are a set of licensed
channels C = {1, ...,K} with different channel capacities
{C1, ..., CK} in the primary network coexisting with the

CRSN 1. The primary user (PU) behavior is assumed
to be stationary and ergodic over the K channels. The
cognitive sensor nodes of the CRSN are secondary users
(SUs) in the primary network and can opportunistically
access the idle licensed channels. There exists a spec-
trum market that is in charge of channel sensing and
providing available licensed channel information to SUs
(e.g., sensor nodes in the CRSN). At the beginning of
each time slot, the spectrum market senses the licensed
channels and provide the available channels that can
be accessed during the time slot. Denote the available
licensed channel set at time slot t as Ct, and we have
Ct ⊆ C. Due to the stochastic PU traffic over the licensed
channels, the available licensed channel set Ct may vary
at different time slots. Moreover, at each time slot t,
the spectrum market can predict the availability of each
licensed channel k ∈ C for the next T time slots based
on historical channel sensing results with high accuracy,
by hidden Markov models [24] or neural networks [25].
In other words, the CRSN can obtain the predicted
available channel sets {C1, ..., CT } over the whole period
T .

During each time slot t, the CRSN schedules each
node i to access a licensed channel k ∈ Ct to transmit
its data. To coordinate the channel accessing, a common
channel is assumed to be available to exchange control
information among sensor nodes and the sink. To ease
the presentation, the key notations are listed in Table 1.

3.2 Communication Link Model

According to the network model, node i senses data at
si,t and transmits its sensory data via a fixed routing
path to the sink. Let Ri be the set of relays for node i,
Ai , {j | i ∈ Rj} be the set of ancestors that use node i
as a relay along their routing paths, and Bi denote the set
of brothers that have the same next hop as node i. There
are only a transmitter and a receiver embedded in each
sensor node as well as the sink. Both of transmitter and
receiver can independently adjust their radio parameters
to use a specific channel independently. It indicates
that each sensor node should transmit or receive data
over a single channel, but the channels used for data
transmission and reception can be different.

We use a binary variable zi,t,k to denote whether node
i’s transmitter is scheduled to access channel k during
time slot t. If i is scheduled to access channel k, zi,t,k =
1; otherwise, zi,t,k = 0. Since each transmitter can only
access a specific channel, we have∑

k∈Ct

zi,t,k = 1, ∀i ∈ N ,∀t ∈ T . (1)

Meanwhile, each data receiver, including each relay node
and the sink, can only receive data over a specific

1. TV white spaces are the considered licensed channels in our
network scenario. A TV tower is the primary user in the primary
network, which can make the availability of each licensed channel the
same to all the sensor nodes.
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TABLE 1
The Key Notations

Notation Definition

N ,T ,C Set of sensor nodes, time slots and licensed channels
i or j Index of sensor node
t or h, k Index of time slot and licensed channel
Ct Available channel set at time slot t
A, R, B Set of ancestors, relays and neighbors
si,t, S i’s sampling rate at time slot t, sampling rate matrix
zi,t,k , Z 0-1 variable denoting whether i accesses channel k at

time slot t, channel access decision matrix
Di,t i’s data transmission rate at time slot t
Ck Capacity of channel k
es, et, er ,
ew

Energy consumption for data sensing, transmitting,
receiving and channel switching

φi,t Energy consumption rate of node i at time slot t
Ewi,t i’s channel switching energy consumption at t
Rui,t Energy consumption upper bound of i at time slot t
∆t Duration of a time slot
Ii, Si Interference set of node i, set of node i’s sons
ψi,t i’s energy harvesting rate at time slot t
I(a) Indicator function, if a is true, I(a) = 1; otherwise,

I(a) = 0

ϕ Channel cost for the channel with unit capacity
α, β Lagrangian multiplier matrices
λ, µ, η Intermediate variable matrices
yi,t,k , Y 0-1 variable denoting whether TRS p accesses channel

k at time slot t, channel access decision matrix
Qp, Np Set of transmitters in TRS p, Set of sensor nodes

(including transmitters and the receiver) in TRS p

channel, which indicates that node i and its brothers
should access the same channel. Thus, we have,

zi,t,k = zj,t,k, ∀j ∈ Bi,∀k ∈ C,∀i ∈ N ,∀t ∈ T . (2)

Furthermore, if node i and the nodes of Bi are sched-
uled to access channel k, the channel capacity should be
no less than the sum of node i’s transmission rate and
its brothers’ transmission rates to avoid link congestion.
Let Di,t be the data transmission rate of node i, then
we have Di,t = si,t +

∑
j∈Ai,t sj,t, and the link capacity

constraint

Di,t +
∑
j∈Bi,t

Dj,t ≤
∑
k∈Ct

zi,t,kCk, ∀i ∈ N ,∀t ∈ T . (3)

Actually, the utilization of channel capacity Ck depends
on the number of nodes in Bi,t and the adopted MAC
protocol. To focus on the network utility optimization in
high network layers, we consider that the MAC protocol
can provide full utilization of the channel capacity.

3.3 Energy Harvesting and Consumption Model
Let ψi,t denote the energy harvesting rate of node i at
time slot t, which is assumed to be stable during the time
slot and can be predicted with high accuracy for the next
T time slots. Each sensor node consumes energy in data
sensing, transmitting and receiving. For each node i, let

es, et and er be the energy consumption rates for data
sensing, transmitting and receiving, respectively. Thus,
during each time slot t, the energy consumption rate φi,t
of node i is defined as

φi,t , (es + et) · si,t + (er + et) ·
∑
j∈Ai

sj,t. (4)

In addition, there is energy consumption associated
with node i for channel switching, if its accessed channel
changes from time slot t − 1 to t. Let Si be the set
of i’s sons who use i as the next hop, and s be one
of the sensor nodes in Si. Therefore, for each i ∈ N ,
i’s energy consumption for channel switching is Ewi,t ,∑
k∈Ct I(zs,t−1,k 6= zs,t,k)ewzi,t,k +

∑
k∈Ct I(zi,t−1,k 6=

zi,t,k)ewzi,t,k, where ew is the energy consumption for
channel switching, and I(a) is an indicator function such
that if a is true, I(a) = 1; otherwise, I(a) = 0. Note that,
if node i is a leaf node, Si = ∅ and I(zs,t−1,k 6= zs,t,k) = 0.

We assume that the battery capacity is large enough to
store the harvested energy, such that we only focus on
controlling the energy consumption rates to guarantee
the sustainability of sensor nodes. Let ∆t be the duration
of each time slot and ri,t be i’s residual energy at the
end of time slot t. Then, we have ri,t = ri,t−1 +ψi,t∆t−
φi,t∆t − Ewi,t. Denote ri,0 as i’s initial energy, which is
known in advance. ri,t can be recursively calculated as

ri,t = ri,0 +
t∑

h=1

ψi,h∆t−
t∑

h=1

φi,h∆t−
t∑

h=1

Ewi,h. (5)

In order to guarantee that sensor nodes have enough
energy to switch channel at the beginning of each time
slot t, we have ri,t ≥ ri,w, where ri,w is i’s reserved
energy for channel switching. If i is a leaf node, ri,w =
ew; otherwise ri,w = 2ew. Therefore, for each node i at
time slot t, we have the following energy consumption
constraint:

ri,0 +
t∑

h=1

ψi,h∆t−
t∑

h=1

φi,h∆t−
t∑

h=1

Ewi,h ≥ ri,w. (6)

Since ri,0, ri,w and
∑t
h=1 ψi,h∆t are constant in the

constraint, we define the energy consumption upper
bound as Rui,t , ri,0 +

∑t
h=1 ψi,h∆t − ri,w and rewrite

the energy consumption as

t∑
h=1

φi,h∆t+
t∑

h=1

Ewi,h ≤ Rui,t, ∀i ∈ N ,∀t ∈ T . (7)

3.4 Channel Interference Model
Due to the broadcast nature of wireless channels, sensor
nodes may cause interference to the sensor nodes within
their interference range, if they are scheduled to access
the same channel [26]. Since all the sensor nodes have a
fixed transmission power, the interference range of each
sensor node is also fixed. For two communication links
a → b and c → d, if node d (or b) is in the interference
range of node a (or c), a and c cannot operate on the same
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Fig. 2. Interference set illustration.

channel to avoid interference. Let Ii be the interference
set of node i, which consists of the sensor nodes that
cannot access the same channel as node i. Therefore, for
∀i ∈ N , we have∑

k∈Ct

(zi,t,k · zj,t,k) = 0, ∀j ∈ Ii,∀t ∈ T , (8)

where the interference set Ii has no intersection with
Bi, i.e., Ii ∩ Bi = ∅. Fig. 2 illustrates a specific case
with channel interference. According to the interference
definition, we have Ia = {f}, Ib = {e, g, h}, Ic = {f},
Id = {f}, Ie = {f}, If = {a, c, d, e, g, h}, Ig = {b, f} and
Ih = {f}.

3.5 Problem Formulation
The objective is to maximize the network utility by
controlling the sampling rate si,t and determining the
channel access zi,t,k for each node i over a period T .
The network utility is defined as the utility of sensory
data subtracting the channel cost [11], [12], while the
sensory data utility and channel cost are specifically
defined as follows. Let V (i, t) be the utility of i’s sensory
data at time slot t. Then, the total utility of sensory data
is V ,

∑
t∈T

∑
i∈N V (i, t). The utility function V (·) is

assumed to be increasing and strictly concave to guar-
antee the fairness for sensor nodes [12]. For example,
V (i, t) = log(1 + si,t). On the other hand, since the spec-
trum market periodically senses the licensed channels
and provides the available channel information to the
CRSN, the CRSN should pay for the channels accessed
by sensor nodes, which is defined as channel cost. We
consider that the channel cost depends on the total chan-
nel capacity of the accessed channels. Let ϕ be the cost
for the channel with unit capacity, then, the channel cost
is W ,

∑
t∈T

∑
k∈Ct

(
I(
∑
i∈N zi,t,k 6= 0) · ϕCk

)
, where

I(
∑
i∈N zi,t,k 6= 0) is to indicate whether channel k is

accessed by the CRSN. In summary, the network utility
is defined as

U ,
∑
t∈T

∑
i∈N

log(1 + si,t)−
∑
t∈T

∑
k∈Ct

(
I

(∑
i∈N

zi,t,k 6= 0

)
ϕCk

)
.

(9)

Let a matrix S , {si,t | ∀i ∈ N ,∀t ∈ T } and a binary
matrix Z = {zi,t,k | ∀i ∈ N ,∀t ∈ T ,∀k ∈ Ct} denote the
allocated sampling rates and channels for sensor nodes
over time period T , respectively, the network utility
maximization problem can be formulated as

(NUMP) max
S,Z

U

s.t.


(1), (2), (3), (7) and (8)

si,t ≥ 0

zi,t,k = 0 or 1,∀k ∈ Ct
, ∀i ∈ N ,∀t ∈ T .

Since Eq. (8) is a non-linear constraint, (NUMP) is a
mix-integer non-linear optimization problem, which is
challenging to solve. In the following section, we will
focus on solving this intractable optimization problem.

4 PROBLEM DECOMPOSITION AND SOLUTION

In this section, we aim to decouple (NUMP) into separa-
ble subproblems by dual decomposition, and then tackle
the subproblems separately and efficiently.

4.1 Lagrangian

Since Eq. (3) and (7) are the constraints coupling the two
decision variable matrices S and Z, we can decouple
them by relaxing these two constraints with Lagrangian
relaxation. We introduce two Lagrangian multiplier ma-
trices α , {αi,t | ∀i ∈ N ,∀t ∈ T } and β , {βi,t | ∀i ∈
N ,∀t ∈ T }, and define the Lagrangian associated with
the primal problem (NUMP) as

L(α,β) =
∑
t∈T

∑
i∈N

log(1 + si,t)

−
∑
t∈T

∑
k∈Ct

(
I

(∑
i∈N

zi,t,k 6= 0

)
ϕCk

)

+
∑
t∈T

∑
i∈N

αi,t

∑
k∈Ct

zi,t,kCk −Di,t −
∑
j∈Bi,t

Dj,t


+
∑
t∈T

∑
i∈N

βi,t

[
Rui,t −

t∑
h=1

φi,h∆t−
t∑

h=1

Ewi,h

]
,

(10)

where the Lagrangian multipliers αi,t and βi,t should be
no less than 0, i.e., αi,t ≥ 0 and βi,t ≥ 0, ∀i ∈ N ,∀t ∈ T .
According to the communication link model, we have
∑
i∈N

αi,t

(
Di,t +

∑
j∈Bi

Dj,t

)
=
∑
i∈N

Di,t

(
αi,t +

∑
j∈Bi

αj,t

)
∑
i∈N

αi,t

(
si,t +

∑
j∈Ai

sj,t

)
=
∑
i∈N

si,t

(
αi,t +

∑
j∈Ri

αj,t

)
(11)
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Thus, if we define the following intermediate variables

λi,t , αi,t +
∑
j∈Bi

αj,t +
∑
j∈Ri

[
αj,t +

∑
x∈Bj

αx,t

]

µi,t ,
t∑

h=1

[
βi,h(es + et) +

∑
j∈Ri

βj,h(er + et)

]
·∆t

ηi,t ,
t∑

h=1

βi,h

,

(12)

the Lagrangian can be rewritten as

L(α,β,S,Z) =
∑
t∈T

∑
i∈N

[
log(1 + si,t)− (λi,t + µi,t)si,t

]
−
∑
t∈T

∑
k∈Ct

(
I

(∑
i∈N

zi,t,k 6= 0

)
· ϕCk

)

+
∑
t∈T

∑
i∈N

[
αi,t

∑
k∈Ct

zi,t,kCk − ηi,tEwi,t + βi,tR
u
i,t

]
. (13)

4.2 Problem Decomposition and Dual Problem
Based on the Lagrangian (13), the dual function (i.e., the
objective function of the dual problem) is the maximum
value of the Lagrangian over S and Z:

D(α,β) = sup
S,Z
L(α,β,S,Z). (14)

Due to the separability of the two variable matrices, we
define two subproblems to decouple S and Z:

(SP1) D1(α,β) , max
S

∑
t∈T

∑
i∈N

[
log(1 + si,t)− (λi,t + µi,t)si,t

]
s.t. si,t ≥ 0, ∀i ∈ N , ∀t ∈ T .

(SP2) D2(α,β) , max
Z

∑
t∈T

∑
i∈N

[
αi,t

∑
k∈Ct

zi,t,kCk − ηi,tEwi,t

]

−
∑
t∈T

∑
k∈Ct

(
I

(∑
i∈N

zi,t,k 6= 0

)
· ϕCk

)

s.t.

{
(1), (2) and (8)

zi,t,k = 0 or 1, ∀k ∈ Ct
, ∀i ∈ N , ∀t ∈ T .

Based on the definition of (SP1) and (SP2), the dual
function can be rewritten as

D(α,β) = D1(α,β) +D2(α,β) +
∑
t∈T

∑
i∈N

βi,tR
u
i,t. (15)

The dual problem is to minimize the dual function over
the Lagrangian multiplier matrices α and β:

(DP-NUMP) min
α,β
D(α,β)

s.t. αi,t, βi,t ≥ 0, ∀i ∈ N ,∀t ∈ T .

According to the analysis and proof in [27], [28],
only weak duality can be guaranteed by Lagrangian
relaxation, which indicates that there exists a duality gap
between the optimal solutions to the dual problem and
the primal problem. Let Op and Od be the optimal results
of (NUMP) and (DP-NUMP). We have, Op ≤ Od holds
for all feasible solutions and Od actually becomes the
upper bound of Op [29].

4.3 Subgradient Method for Solving Dual Problem
Given α and β, if we can address (SP1) and (SP2) sepa-
rately, the dual problem (DP-NUMP) can be iteratively
solved using a subgradient method. Specifically, during
each iteration, the Lagrangian multipliers are updated
in an opposite direction to the partial gradient of the
Lagrangian dual function [12], [30], i.e.,{

αi,t(m+ 1) = [αi,t(m)− γα · fα,i,t(m)]+

βi,t(m+ 1) = [βi,t(m)− γβ · fβ,i,t(m)]+
(16)

where m ∈ N+ is the iteration index; γα > 0 and γβ > 0
are the step sizes adjusting the convergence rate; [a]+ ,
max{a, 0} and fα,i(m) and fβ,i(m) are subgradients of
dual function with respect to αi,t and βi,t, respectively,
fα,i,t(m) =

∂D(α,β)

∂αi,t
= Ck −Di,t(m)−

∑
j∈Bi

Dj,t(m)

fβ,i,t(m) =
∂D(α,β)

∂βi,t
= Rui,t −

t∑
h=1

φi,h(m)∆t−
t∑

h=1

Ewi,h(m).

(17)

Note that, Di,t(m) and
∑t
h=1 φi,h(m) can be calculated

with si,t(m), and
∑t
h=1E

w
i,h(m) can be calculated with

zi,t,k, while si,t(m) and zi,t,k(m) can be obtained by
solving (SP1) and (SP2) with given α(m) and β(m). With
sufficient iterations, the duality gap between the optimal
values of D(α,β) and U can be reduced to an accept-
able threshold. The detailed algorithm for solving (DP-
NUMP) and (NUMP) will be discussed in Section 6.1.

5 SUBPROBLEM SOLUTIONS

In this section, we solve the subproblems of the dual
problem (DP-NUMP). Due to the iteration process in
addressing the dual problem, subproblems should be
solved efficiently to guarantee the efficiency of our solu-
tion.

5.1 Optimal Solution for (SP1)
Given α and β, (SP1) becomes a separate optimization
problem to maximize D1(α,β) by determining the op-
timal sampling rates for sensor nodes at different time
slots. Obviously, (SP1) is a convex optimization problem,
due to the property of maximizing the concave objective
function over a convex feasible set. Proposition 1 pro-
vides the optimal solution of (SP1).

Proposition 1. If the optimal solution to (SP1) exists, i.e.,
the feasible set of (SP1) is not empty, the optimal sampling
rate S∗ is, for each i ∈ N and t ∈ T ,

s∗i,t =
1

ln 2 · (λi,t + µi,t)
− 1. (18)

Proof: Due to the convexity of (SP1), the locally
optimal solution is the globally optimal solution. Let
f(si,t) , log(1+si,t)−(λi,t+µi,t)si,t. Its first-order partial
derivate is

∂f

∂si,t
=

1

ln 2 · (1 + si,t)
− λi,t − µi,t. (19)
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By setting ∂f
∂si,t

= 0, we have si,t =
1

ln 2 · (λi,t + µi,t)
−

1. We set si,t| ∂f
∂si,t

=0 ,
1

ln 2 · (λi,t + µi,t)
. Since ∂f

∂si,t
is

a monotonously increasing function over the constraint
set of si,t, f(si,t) increases when si,t ≥ si,t| ∂f

∂si,t
=0 and

the situation reverses when si,x ≤ si,t| ∂f
∂si,t

=0. Therefore,

f(si,t) would achieve the maximum value at si,t| ∂f
∂si,t

=0.

Meanwhile, since for each i ∈ N and t ∈ T , αi,t ≥ 0
and βi,t ≥ 0, we have λi,t ≥ 0 and µi,t ≥ 0 ac-
cording to Eq. (12). Thus, si,t| ∂f

∂si,t
=0 > 0. Since the

feasible set of f(si,t) is si,t ≥ 0, the optimal solution of
f(si,t) is achieved at si,t| ∂f

∂si,t
=0, i.e., s∗i,t = si,t| ∂f

∂si,t
=0 =

1

ln 2 · (λi,t + µi,t)
− 1.

5.2 Computational Complexity Analysis on (SP2)
Given α and β, (SP2) is a channel access problem to
maximize D2(α,β) by determining the optimal binary
matrix Z∗. In the following, we prove that (SP2) is a
NP-hard problem which cannot be optimally solved in
polynomial time. We aim to reduce (SP2) to the vertex
K-coloring problem (VKCP), which is a classic NP-hard
problem. Before that, we first define VKCP as follows.

Definition 1. The vertex K-coloring problem (VKCP): Given
an undirected graph G = {V,E} and K colors, where K is
an integer with K ≥ 0, using at most K colors to find a
coloring solution (i.e., assigning one of the K colors to each
vertex) such that no two vertices sharing the same edge have
the same color and the number of colors used to color the
vertices is the smallest.

Lemma 1. VKCP is a NP-hard problem when K ≥ 3.

Proof: See Appendix A on the appendix file.
The proof of Lemma 1 can be found in [31] and [32].

In order to reduce (SP2) into VKCP, we reconstruct the
problem as follows. We divide the network routing tree
into a number of transmitter-receiver sets (TRSs). Each
TRS consists of a data receiver and its sons. For a specific
network routing tree, data receivers include all non-leaf
sensor nodes and the sink. To illustrate the definition of
TRS, Fig. 3 shows an example of dividing the network
case in Fig. 2 into 4 TRSs. The red dash link between
two TRSs denotes that there exists interference between
them, which means any pair of connected TRSs cannot
access the same channel to avoid interference.

According to the communication link model, the chan-
nel access in the CRSN is a receiver-based access prob-
lem, which means that the sensor nodes of each TRS
should access the same channel for data transmission
and reception. Let P denote the set of TRSs in the
network. Then, the channel access problem changes to
schedule each TRS p ∈ P to access a specific channel
k ∈ Ct. We use a binary matrix Y = {yp,t,k | ∀p ∈
P,∀t ∈ T ,∀k ∈ Ct} to denote whether TRS p accesses
channel k at time slot t. Meanwhile, if we let Qp be

a

b

c

d

e
f

g
h

Sink

a

d

e

b

f

c

g ha
b

c

Sink
TRS 1

TRS 2

TRS 3

TRS 4

TRS 
Tranformation

Fig. 3. Illustration of TRS definition.

the set of transmitters in TRS p, respectively, we have
zi,t,k = yp,t,k | ∀p ∈ P,∀t ∈ T ,∀k ∈ Ct for each i ∈ Qp.
Then, the constraints of (SP2) can be rewritten as follows:

(a) Eq. (1) changes to
∑
k∈Ct yp,t,k = 1, ∀ p ∈ P, t ∈ T ;

(b) Eq. (2) is removed, since all the sensor nodes of a
TRS can only access one channel;

(c) Eq. (8) changes to
∑
k∈Ct(yp,t,k · yq,t,k) = 0, ∀q ∈

Ip,∀ p ∈ P,∀t ∈ T , where Ip denotes the set of TRSs
that may have interference with TRS p.

Meanwhile, the objective function D2(α,β) can be
rewritten with respect to Y as

TD2(α,β) =
∑
t∈T

∑
p∈P

∑
i∈Qp

αi,t
∑
k∈Ct

yp,t,kCk −
∑
i∈Np

βi,tE
w
p,t


−
∑
t∈T

∑
k∈Ct

(
I

(∑
p∈P

yp,t,k 6= 0

)
· ϕCk

)
, (20)

where Np denotes the set of sensor nodes in TRS
p including the transmitters and receivers and Ewp,t ,∑
k∈Ct I(yp,t−1,k 6= yp,t,k)ewyp,t,k.
Thus, (SP2) can be transformed to an equivalent prob-

lem (SP2-E), which is to determine Y to

(SP2-E) max
Yt

TD2(α,β)

s.t.


∑
k∈Ct

yp,t,k = 1∑
k∈Ct

(yp,t,k · yq,t,k) = 0, ∀q ∈ Ip

yp,t,k = 0 or 1, ∀k ∈ Ct

,∀p ∈ P,∀t ∈ T .

Theorem 1. In period T , if there exists a time slot t with
|Ct| ≥ 3, (SP2-E) is NP-hard.

Proof: See Appendix B on the appendix file.

Corollary 1. In period T , if there exists a time slot t with
|Ct| ≥ 3, (SP2) is NP-hard.

Corollary 1 always holds, since (SP2) is equivalent
to (SP2-E). We consider that the number of available
channels provided by the spectrum market is usually
larger than 3 [5], which means that we cannot obtain
the optimal solution of (SP2) in polynomial time.

5.3 Suboptimal Solution for (SP2)
In the following, we propose a cross-entropy based
heuristic algorithm (CEHA) to determine a suboptimal
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solution for the problem in an efficient way. Due to the
equivalence of (SP2) and (SP2-E), we focus on solving
(SP2-E) and use the solution of (SP2-E) to derive the so-
lution of (SP2). The main idea of cross-entropy methods
is to transform a deterministic problem to an associated
stochastic problem, which has been widely used in com-
binational optimization for suboptimal results [33].

CEHA defines a matrix H , {Hp,t,k | ∀p ∈ P,∀t ∈
T ,∀k ∈ Ct}, where Hp,t,k denotes the probability of TRS
p accessing channel k at time slot t. For each p ∈ P
at each t ∈ T , Hp,t,k is initialized as a specific value
for each k ∈ Ct to make

∑
k∈Ct Hp,t,k = 1. As a result,

Hp,t(k) , Pr(X = k) = Hp,t,k is actually a PMF function
for k ∈ Ct. Then, CEHA finds the solution by an iterative
procedure, where each iteration consists of two phases.
In the first phase, a set of random samples are generated
according to the PMF for each p ∈ P and t ∈ T , which
are used to calculate the corresponding solutions. In the
second phase, the PMFs are updated based on some
better solutions for the next iteration. Specifically, we
describe the detailed procedures of CEHA as follows.

(1) Constraint Relaxation — We introduce a constant κ
to relax the second constraint of (SP2-E), which leads to
the modified objective function

TD2(α,β) = TD2(α,β)

− κ ·
∑
t∈T

∑
p∈P

∑
q∈Ip

I

(∑
k∈Ct

(yq,t,k · yq,t,k) 6= 0

)

where κ ,
∑
t∈T

∑
p∈P

∑
i∈Qp

∑
k∈Ct αi,tCk is a penalty

to objective function if the constraint of TD2(α,β) is
violated. Notably, κ is an upper bound of TD2(α,β) to
guarantee that every feasible solution without violating
the constraint will achieve a lower objective value than
the infeasible solutions.

(2) Initialization — Initialize the maximum iteration
number Γ and a difference threshold ε. Set the iteration
counter τ = 1. For each time slot t, we index the
available channel set Ct as {1, ..., |Ct|}, and set TRS p
accesses each channel k ∈ Ct with equal probabilities,
i.e., for each k ∈ Ct, the PMF Hτ

p,t is initialized as
Hτ
p,t(k) = Hτ

p,t,k = 1
|Ct| .

(3) Sample Generation —Use Hτ
p,t to generate M values

for each p and t. Each value denotes that p will access
which channel at time slot t. For the m-th value Xm (1 ≤
m ≤M ), we create a binary string xp,t,m containing |Ct|
digits, where the Xm-th digit is 1 and the other digits are
0. For example, if |Ct| = 4 and X1 = 2, we have xp,t,1 =
0100 which means p will access the 2nd channel in Ct at
time slot t. Such that, M samples can be generated by the
strings, with the m-th sample as {xp,t,m | p ∈ P, t ∈ T }.

(4) Sample Evaluation — We use the M samples to
calculate the corresponding values of TD2(α,β). Note
that, for the m-th sample, if the k-th digit of xp,t,m
is 1, it denotes yp,t,k = 1, and yp,t,l = 0 for each
l ∈ Ct − {k}. Let θm be the value of TD2(α,β) using
the m-th sample. Then, sort the M values of TD2(α,β)

in a non-decreasing order and let Θ be the sorted set of
the M values. We denote the corresponding samples of
the first dρMe values in Θ as a set Mρ(τ), which are
called as “better” samples in this iteration.

(5) PMF Update — The PMF is updated based on
Mρ(τ) in the iteration. For each p ∈ P and t ∈ T , we
update Hτ+1 as

Hτ+1
p,t,k =

∑
m∈Mρ(τ)

G(xp,t,m, k)

dρMe
, k = 1, ..., |Ct|,

where G(a, b) is a function to obtain the k-th digit of a,
e.g., G(0100, 2) = 1 and G(0010, 2) = 0.

(6) Stopping Rule — The iteration stops if either of the
following two conditions is met. The first is the iteration
count achieves the maximum iteration number Γ. The
second is the difference of Hτ and Hτ+1 is lower than
a required threshold, i.e., ||Hτ+1−Hτ ||F ≤ ε, where ||·||F
is the Frobenius norm, and ε is the required threshold.
Otherwise, set τ = τ + 1 and go back to step (2).

(7) Result Output — Generate a sample {x∗p,t | p ∈
P, t ∈ T } with the PMFs {Hτ+1

p,t | ∀p ∈ P,∀t ∈ T }, and
then use the sample to generate the solution Y ∗ of (SP2-
E). Since (SP2-E) is equivalent to (SP2), the solution of
(SP2) is z∗i,t,k = y∗p,t,k, ∀p ∈ P,∀t ∈ T ,∀k ∈ Ct,∀i ∈ Qp.
Output Z∗

t = {z∗i,t,k | ∀i ∈ N ,∀t ∈ T ,∀k ∈ Ct}.
Note that, the stopping rules of ECHA can guaran-

tee the computational complexity within a controllable
range. Meanwhile, the update of PMF in each iteration
can make the generated samples toward better solutions.

6 JASC: PROPOSED JOINT CHANNEL AC-
CESS AND SAMPLING RATE CONTROL SCHEME

From the discussion of the previous subsections, we can
efficiently solve the subproblems of the dual problem
(DP-NUMP) with given α and β. In this section, we
summarize the steps of solving (NUMP) by the subgra-
dient method and propose a joint channel access and
sampling rate control scheme, named JASC, to maximize
the network utility.

6.1 Algorithm for Solving (NUMP)
We first focus on the primal problem (NUMP), which
is to schedule the channel access and sampling rates of
sensor nodes over a period. According to the system
model, except the decision variables S and Z, all the
parameters of (NUMP) are known in advance or can be
predicted for the next T time slots, including the energy
harvesting rate φi,t, and the available channel set Ct.
(NUMP) can be solved by addressing its dual problem
(DP-NUMP) with the subgradient method discussed in
Section 4.3. Since there is a duality gap between (NUMP)
and (DP-NUMP), we introduce a duality gap thresh-
old to terminate the iteration of solving (DP-NUMP).
Moreover, a maximum iteration number Π is predefined
to guarantee the efficiency of the algorithm when the
convergence is slow. Specifically, the main idea of solving
(NUMP) is described in Algorithm 1.
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Algorithm 1 Subgradient Method for Solving (NUMP).
Input: The parameters of (NUMP), the maximum itera-

tion number Π and duality gap threshold δ.
Output: The optimal S∗ and Y ∗.

1: Let m = 1; Initialize Lagrangian multipliers
αi,t(m) = 1 and βi,t(m) = 1;

2: repeat
3: With given α(m) and β(m), determine the optimal

S∗(m) and Y ∗(m) by solving (SP1) and (SP2)
according to Proposition 1 and the CEHA in
Section 5.3, respectively;

4: With the derived S∗(m) and Y ∗(m), calculate
the values of U and D(α,β) as U∗(m) and
D∗(α(m), β(m)), according to Eq. (9) and (15),
respectively;

5: Generate α∗(m + 1) and β∗(m + 1) for the next
iteration according to Eq. (16);

6: m = m+ 1;
7: until D∗(α(m), β(m))− U∗(m) ≤ ω or m > Π;
8: return S∗(m) and Y ∗(m);

6.2 Joint Channel Access and Sampling Rate Con-
trol Scheme
In Algorithm 1, the channel access and sampling rate
control solution is determined based on the predicted
energy harvesting rates and available channel sets over
the whole period. Although existing prediction algo-
rithms can achieve an acceptable accuracy, the prediction
error, especially in the availability of licensed channels,
cannot be entirely avoided and will impact the solution
of Algorithm 1. For example, if channel k is wrongly
predicted as available at time slot t and is scheduled
to be accessed by the CRSN, the CRSN will suffer
from significant interference caused by PUs. Therefore,
to avoid such situation, the CRSN should communicate
with the spectrum market to require the real-time avail-
able channel set C′t at the beginning of each time slot t
and use the real-time available set to adjust the channel
access and sampling rate control solution.

To this end, we propose a joint channel access and
sampling rate control scheme, named JASC, which can
provide a real-time solution based on the real-time C′t
and energy harvesting rate φ′i,t to maximize the network
utility. Fig. 4 shows the main ideas of the JASC scheme
and Algorithm 2 presents the detailed procedures.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed JASC scheme by extensive simulations on
OMNET++ [34], [35]. We setup a network consisting of
8 sensor nodes and a sink node. The network topol-
ogy is the same as Fig. 2. Each sensor node has a
30 × 30 mm2 solar photovoltaic panel with an energy
conversion efficiency 20%, and a rechargeable battery
with enough capacity [12]. For example, if the solar
radiation data during a time slot is 100 W/m2, the

SP1 SP2

Sampling Rate
Control

Dynamic 
Channel Access

)(, ms ti )(,, mz kti

)1(,i mt
)1(, mti

NUMP NUMP-DP

)1(,i mt
)1(, mti
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tC
Realtime sensing 

results
Realtime energy
harvesting ratest,i

Fig. 4. Illustration of the JASC scheme.

Algorithm 2 Joint Channel Access and Sampling Rate
Control Scheme (JASC).
Input: The inputs of Algorithm 1.
Output: The optimal sampling rates S′t and channel

access schedule Y ′t at each time slot t.
1: t = 1;
2: repeat
3: At the beginning of time slot t, communicate

with the spectrum market to require the realistic
available channel set C′t and obtain the energy
harvesting rates of sensor nodes {ψ′1,t, ..., ψ′N,t};

4: Use C′t and ψ′i,t, as well as the predicted avail-
able sets {Ct+1, ..., CT } and energy harvesting rates
{ψi,l| 1 ≤ i ≤ N, t + 1 ≤ l ≤ T}, as input to run
Algorithm 1 to obtain the real-time sampling rates
S′t = {s′1,t, ..., s′N,t} and channel access schedule
Y ′t = {yi,t,k | ∀i ∈ N ,∀k ∈ C′t} for time slot t;

5: Adjust the sampling rates and schedule the chan-
nel access of sensor nodes according to S′t and Y ′t ;

6: t = t+ 1;
7: until t ≥ T ;
8: return S′t and Y ′t for each t ∈ T ;

corresponding energy harvesting rate is 0.018 J/s. The
energy consumption rates for data sampling, receiving,
and transmitting are 0.0013 J/Kb, 0.0024 J/Kb, and
0.0046 J/Kb, respectively, which are adopted from the
measurements on the Mica 2 platform [36], [37]. The
initial battery level is 0.05 J . The energy harvesting cycle
is a day, and we divide each cycle into 24 × 6 time
slots. Then, the duration of each time slot is 10 mins.
Meanwhile, there are 10 licensed channels in the primary
network. The capacity of the m-th (1 ≤ m ≤ 10) licensed
channel is 5 ∗m Kb/s, and the idle probability of each
licensed channel is 65%, and the channel cost ϕ is 0.02.
The main parameter settings are summarized in Table 2.

The energy harvesting rates of sensor nodes are set
according to the real solar data collected by the NREL
Solar Radiation Research Laboratory in Rancho Cordova,
California [38]. We choose the solar radiation data on
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TABLE 2
Parameter Settings

Parameters Settings Parameters Settings

es 0.0013 J/Kb er 0.0024 J/Kb

et 0.0046 J/Kb ∆t 300 s

|N | 8 |T | 288

ri,0 0.05 J ew 10−4 J

Cm 5 ∗m Kb/s m [1, ..., 10]

4 : 0 0 6 : 0 0 8 : 0 0 1 0 : 0 0 1 2 : 0 0 1 4 : 0 0 1 6 : 0 0 1 8 : 0 0 2 0 : 0 0
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Fig. 5. Energy Harvesting Rates on Different Days.

four different days, which can provide different amount
of solar energy for sensor nodes, to generate the energy
harvesting profiles. The energy harvesting rates of a sen-
sor node in the four days are shown in Fig. 5. To evaluate
the effectiveness of JASC, we compare it with an existing
method, named DSCC [12]. Since DSCC is proposed for
sampling rate control in traditional rechargeable sensor
networks, we employ a dynamic channel allocation algo-
rithm named GBCA [39], to collaborate with DSCC for
sampling rate and channel access control in cognitive
radio sensor networks. We first dynamically allocate the
available licensed channels to sensor nodes by GBCA,
and then use DSCC to schedule the sampling rates of
sensor nodes for network utility maximization.

7.1 Utility Comparison and Efficiency Evaluation

Fig. 6 shows the network utility comparison on different
days. It can be seen from the figure that JASC can achieve
improved network utility than DSCC+GBCA on differ-
ent days. The improved ratio is close to 10%. Especially,
when the harvested solar energy is plentiful, e.g. on June
25, 2014, the improved ratio is approaching 15%. Fig. 7
shows the network utility comparison under different
network scales. It can be seen that JASC can outperform
DSCC+GBCA under different network scales, in terms of
network utility. Moreover, with the increasing number
of sensor nodes, the network utility of both schemes
gradually increases. However, it experiences very slight
increment after the number of sensor nodes achieves
40. This is because the limited network capacity will
significantly decrease the sampling rates of sensor nodes
under a large network scale.

Fig. 8 shows the converge speed comparison of JASC
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Fig. 6. Network Utility Comparison on Different Days.
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Fig. 7. Network Utility Comparison under Different Net-
work Scales.

under different network scales. As shown in the figure,
the network utility of JASC can quickly converge to
a certain value within 20 iterations, when there are 8
sensor nodes in the network. But when the network scale
increases to 20 sensor nodes, JASC has to experience
nearly 50 iterations to achieve a converged network
utility. Although the increasing network scale can de-
grade the converge speed of JASC, JASC still has a high
efficiency to achieve a converged network utility.

7.2 Channel Access and Interference Evaluation
In this subsection, we aim to evaluate the dynamic
channel access of sensor nodes and channel interference
probability of JASC. Fig. 9 shows the accessed channels
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Fig. 10. Channel Interference Comparison under Differ-
ent Network Scales.

of different sensor nodes over different time slots under
the network topology (i.e., Fig. 2). It can be seen that the
sensor nodes in TRS1 and TRS2 keep accessing the same
channel due to no interference between them, while the
sensor nodes in TRS3 and TRS4 access different channels
with lower bandwidth. Since TRS1 is the bottleneck
of the whole network capacity, it can greatly increase
the network capacity by accessing a channel with large
bandwidth. However, since the harvested energy is an-
other key factor to limit the network throughput, TRS1
choose to access the channels with low bandwidth to
save channel cost when the time is before 8:00am and af-
ter 18:00. Because during those time slots, the harvested
energy can only afford a low network throughput, which
can be guaranteed by accessing the channels with low
bandwidth. Furthermore, the stochastic channel avail-
ability makes the accessed channel of each TRS vary over
different time slots.

We also compare JASC with DSCC+GBCA under dif-
ferent network scenarios in Fig. 10, in terms of channel
interference probability. It can be observed that the chan-
nel interference probability increases with the number
of sensor nodes under a certain number of licensed
channels. This is because a larger number of sensor
nodes may produce a more complicated TRS partition,
which requires more available channels to avoid interfer-
ence. When the number of channels is fixed, interference
probability may increase with the required number of
available channels.
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7.3 Impacts of System Parameters
In this subsection, we evaluate the impacts of two system
parameters, including energy harvesting capability and
channel capacity, on the performance of JASC.

Fig. 11 shows the impacts of energy harvesting capa-
bility on network utility. The energy harvesting capabil-
ity in this figure is defined as the energy harvesting rate
of a sensor node when the solar radiation is 1W/m2.
It can be observed that network utility increases with
energy harvesting capability under both of JASC and
DSCC+GBCA. However, it does not increase indefinitely
but reaches the saturation points, which are caused by
the limited channel capacity, after the energy harvesting
capability becomes larger than 3.8 ∗ 10−5J/s. Fig. 12
shows the impacts of channel capacity on network utility.
The channel capacity here is defined as the channel
capacity of channel 1. It means that, for each channel
1 ≤ m ≤ 10, its channel capacity is m ∗ dKb/s, where d
is the defined channel capacity in the figure. Similar to
the situation in Fig. 11, network utility keeps pace with
the growing channel capacity and achieves its saturation
point when the channel capacity is over 7Kb/s, due to
the limited harvested energy.

8 CONCLUSION

In this paper, we have investigated the network utility
maximization problem in energy harvesting CRSNs by
jointly considering the sampling rate control and dy-
namic channel access. We have formulated the problem
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as a mix-integer non-linear programming problem. By
employing dual decomposition, the joint optimization
problem is decoupled as two separable subproblems. We
have also proposed a joint channel access and sampling
rate control scheme, named JASC, for utilizing the real-
time sensing results to adjust the dynamic channel access
and sampling rates for sensor nods. Simulation results
demonstrate that the proposed JASC can achieve an
improved network utility than existing methods. For
our future work, we will study CRSNs with dynamic
routing, where the channel access and sampling rate
control should be adaptive to the dynamically changed
routing paths.
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