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Abstract
By providing effective wireless vehicle-to-ev-

erything (V2X) communication, it is expected 
that the Internet of Vehicles will be provisioned, 
whereby various automotive service require-
ments could be satisfied (enhanced road safety, 
improved transportation efficiency, etc.). Despite 
the successful standardization of 802.11-based 
communication protocols in vehicular networks 
(e.g., 802.11p, 802.11af), there remains an essen-
tial issue, which is to adjust the transmission rate 
and mode to match the highly dynamic channel 
conditions in vehicular scenarios. In this article, 
we first investigate the requirements for intelli-
gent link adaptation (LA) in 802.11 V2X, and then 
present a data-driven learning-based LA architec-
ture that fits the road channel characteristics while 
capturing the quick variance due to the high 
mobility of vehicular networks. We also propose 
a reference model to show how the data-driven 
model can efficiently catch the channel variance 
and improve the “drive-thru Internet” throughput. 
Finally, we discuss the opportunities and challeng-
es, which should provide significant reference for 
the development and standardization of the intel-
ligent LA solution in 802.11 V2X networks. 

Introduction
The Internet of Vehicles (IoV) is inevitable, 
because it performs as a bridge connecting the 
emerging needs of modern vehicle users (safety 
concerns, transportation efficiency, etc.) to the 
rapidly evolving network technologies, including 
the cellular-based LTE-V2X and the WLAN-based 
802.11-V2X [1]. It is predicted that the global vehi-
cle-to-everything (V2X) market will reach US$100 
billion in the next few years, with the transmission 
requirement of more than 30 zettabytes data gen-
erated from connected vehicles [2]. 

To satisfy the emerging requirement of such 
enormous data transmission, in 2012, IEEE pub-
lished the 802.11-based standard, referred to as 
802.11p, to dedicate the band of 5.9 GHz for 
vehicle-to-vehicle (V2V) and vehicle-to-infrastruc-
ture (V2I) communication. The equipment of the 
Dedicated Short-Range Communication (DSRC) 
transceiver supporting 802.11p has become man-
datory for new vehicles manufactured in North 
America [3]. In 2016, the Third Generation 

Partnership Project (3GPP) specified the cellu-
lar-based V2X technology to support both direct 
transmission in small range and wide area com-
munication, compatible with fifth generation (5G) 
networks. Other than these standard promotions, 
academia has also considered the possibilities to 
apply other 802.11 radio technologies for V2X 
communication. For example, the effectiveness of 
a normal WiFi network has been demonstrated in 
the paradigm called “drive-thru Internet,” which 
provides Internet access for drive-by vehicles via 
communication with a roadside WiFi access point 
(AP). To expand the transmission range, the TV 
white space (TVWS) spectrum is utilized to sup-
port the 802.11af data pipe for vehicular content 
delivery [4]. 

Compared to the cellular one, 802.11-based 
V2X communication often requires less infrastruc-
ture investment and can be deployed flexibly in 
vehicular conditions, and also provides consid-
erable network performance. For example, 2.4 
GHz 802.11 WiFi APs can be placed along the 
roadside using commercial off-the-shelf prod-
ucts, which are as cheap as US$5 per transceiver 
model, and can achieve around 10 Mb/s V2I data 
throughput for vehicles driving up to 35 mph [5, 
6]. The recently released TV band 802.11af trans-
ceivers can provide 24 Mb/s throughput covering 
40 km communication range with better penetra-
tion capability and non-line-of-sight (NLoS) con-
nectivity [7]. Other advantages, such as universal 
compatibility of WiFi devices, spectrum versatility, 
and easy operation, could strengthen the compet-
itiveness of 802.11-based V2X in the market of 
connected vehicles.

However, a vital issue that prevents further 
usage of 802.11 V2X and requires careful consid-
eration is the link adaptation (LA) scheme of the 
802.11 transceiver to choose the optimal rate and 
transmission mode to send a packet to the chan-
nel. When channel quality is poor, the transceiver 
should use a low-rate and conservative modula-
tion mode to reduce the packet drop rate, while 
when the channel quality gets better, the trans-
ceiver should increase the rate to improve the 
throughput. Unlike cellular V2X, which monitors 
the channel quality and attunes the modulation 
and coding scheme (MCS) accordingly, 802.11 
protocols lack such a control function and leave 
the LA scheme to users’ discretion, for example, 
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by loading a customized library file to the wire-
less network driver [8]. In traditional 802.11 prod-
ucts, the LA mechanism in 802.11 relies on recent 
statistics of the transmission outcome or channel 
measurements at corresponding rates, including 
the Auto Rate Fall-back (ARF), SampleRate, and 
so on. [9]. As 802.11 products are designed main-
ly for indoor network users, such an LA mech-
anism is likely to cause inefficient usage of the 
bandwidth and reduce the network performance. 
Despite many proposals in LA algorithms against 
various types of channel dynamics in the past 
years, an efficient LA scheme for 802.11 radio 
technologies applied in vehicular communica-
tion is lacking, which is differnt from traditional 
802.11 networks in many aspects. First, vehicles 
move very fast, causing highly dynamic wireless 
channels. Second, there are many different types 
of communication peers, including vehicle-to-pe-
destrian (V2P), V2V, V2I, and so on, whose data 
transmissions are quite different. Furthermore, 
strict quality of service (QoS) is demanded by 
various vehicular applications (e.g., stringent 
delay guarantee for safety message delivery). All 
of these special requirements are urging 802.11 
V2X to better track channel variance and enhance 
bandwidth utilization.

Except for the physical channel fading, the 
efficiency of the 802.11 V2X LA algorithm is also 
determined by many other factors, such as packet 
collision due to concurrent transmission, hidden 
terminals, and NLoS/LoS conditions, which would 
be even more complicated in highly mobile sce-
narios. As the 802.11 protocols evolve rapidly, 
the LA scheme should not only determine a prop-
er medium access control (MAC) layer rate, but 
also the multiple-input multiple-output (MIMO) 
mode (e.g., single/double stream, SS, DS) and 
channel bonding (20/40 MHz) parameters. Such 
complexity is far beyond the ability of current 
algorithms, including both sampling approaches 

and measurement-based methods, which cannot 
efficiently balance the choice between fast chan-
nel following and bandwidth utilization [9], and 
thus slow down the practical use and standardiza-
tion of a unified 802.11 LA mechanism. 

A data-driven approach provides an opportu-
nity to take into account all impacting factors and 
provide a timely response to the varying of the 
transmission environment [10]. Intelligent data 
tools, such as reinforcement learning (RL), could 
help to capture both the long-term channel char-
acteristics and the transmission fluctuation in the 
short run [2]. In this article, we study the require-
ments for an intelligent LA scheme for 802.11 
V2X, and propose a data-driven learning-based 
architecture for 802.11 V2X wireless transmission. 
We also set up a reference model to show the 
throughput improvement by mining the underly-
ing channel pattern in drive-thru Internet. Finally, 
we identify the opportunities and challenges for 
the research and development of the intelligent 
802.11 V2X LA mechanism. 

802.11 V2X LA Requirements
The LA scheme adopted in current 802.11 V2X 
protocols needs to adapt to multi-dimension-
al information, including both the external and 
internal environments and the QoS of various 
vehicular applications. The application scenarios 
of such an intelligent LA scheme are shown in 
Fig. 1, including multi-band transmission, different 
V2X types and mobility patterns, QoS, and so on. 
The detailed requirements are summarized in the 
following subsections.

Network Awareness
The original intention of an 802.11 LA scheme is 
to capture the channel variance based on observ-
ing the historical frame dropping or measurement 
results, such as received signal strength indicator 
(RSSI) guided rate adjustment. An intelligent LA 

Figure 1. 802.11 V2X scenarios.
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scheme should consider more network informa-
tion beyond the channel status, including cross-lay-
ers status, network interworking, and so on. 

Physical Channel Status: The physical chan-
nel changes rapidly in vehicular networks. The 
LA scheme should be aware of different chan-
nel patterns and the channel variance, such as 
the RSSI trend between a moving vehicle and a 
static roadside AP, and the channel between two 
adjacent vehicles driving in the same direction, 
which would have widely different fading types. 
Other parameters include the LoS/NLoS condi-
tion, the effect of small-scale fading (e.g., due to 
multi-path reflection of the road condition), shad-
owing (due to obstructing objects), path loss, and 
so on. The physical layer channel information can 
be obtained from self RSSI or channel state infor-
mation (CSI) measurement/prediction and also 
information from external entities. 

MAC Layer Network Behavior: In an 802.11 
network, transmission failure is caused not only 
by channel error, but also by collision when mul-
tiple users transmit simultaneously1 [11]. Reduc-
ing the packet rate can cause longer transmission 
time, which could possibly lead to more collisions. 
Thus, when using the transmission history to pre-
dict the channel variance, the LA scheme should 
be able to distinguish the actual reason and dif-
ferentiate the channel error from all transmission 
failures. The LA scheme should also be aware of 
other MAC layer parameters, such as back-off 
stage/window size, frame aggregation, and group 
acknowledgment (ACK), which would have great 
influence on the result of a transmission attempt. 

Network Interworking: Connected vehicles 
often have multiple access radio technologies, 
which can work together to provide better net-
work performance. For instance, different 802.11 
V2X radios, such as 802.11p and 802.11af 
devices transmitting in different bands, can work 
together to aggregate the throughput of different 
data pipes. Besides, the interworking between the 
802.11 V2X and cellular networks can overcome 
the shortcoming of each other (e.g., to extend the 
coverage area for vehicle users and reduce the 
communication cost via traffic offloading diagram) 
[12]. The LA scheme should utilize such network 
resources in obtaining channel status, transmis-
sion assistance, and so on. 

Transceiver Status Perception
The wireless transmission not only depends on the 
external environment, but also the inner status of 
the transceiver. The LA scheme should be aware 
of the transceiver model and make full use of the 
hardware resources and protocol utilities.

Protocol-Specific: Different network proto-
col versions might have some difference as the 
transceiver vendor may upgrade the firmware/
software during the whole product life cycle. 
Understanding the updated features of the proto-
col software can help an LA scheme better utilize 
the protocol functions and hardware capabilities 
such as computing and storage capability, and 
circumvent hardware imperfections. 

Device Snapshot: An efficient LA strategy 
should monitor the instant status of the transceiv-
er device, such as the transmission queue buffer 
(would drop packets if all buffer space is exhaust-
ed), radio power, CPU load, available backhaul 

bandwidth, and antenna gain. Besides, an LA 
scheme should also consider the wireless config-
uration such as the applied MIMO mode (DS or 
SS), or if channel bonding is enabled. Such infor-
mation, combined with historical device status, 
can help the LA scheme determine the optimal 
rate/mode among all available settings. 

QoS Orientation
Automotive applications require quite differ-
ent communication QoS. Delay-sensitive tasks 
such as safety message sharing among vehicles 
require high reliability and low delay transmission 
rather than high data rate, while some delay-tol-
erant applications might require exhausting the 
bandwidth to achieve higher data rates. The LA 
scheme should be able to make different policy 
for packets with different QoS requirements, for 
example, reduce the link rate when sending safety 
packets, while risking frame loss to try higher rates 
to seek larger throughput. For data packets from 
the backhaul network, the LA scheme is required 
to identify and map the corresponding packet 
transmission priority to the QoS of the wireless 
transmission and choose the proper rate selection 
policy. 

Automotive Context and  
Peripheral Condition Detection

The automotive context is one of the main 
factors to shape the communication pattern 
[13]. The relative velocity/position between 
the transmitter and the receiver largely deter-
mines the Doppler and fast fading effect. For 
example, in drive-thru Internet, the LA scheme 
should be able to predict that the WiFi signal 
strength rises when the vehicle approaches the 
AP and decreases when the vehicle drives away. 
In a vehicle platoon situation, the V2V channel 
between platoon members is likely to be stable. 
Besides, in a highly dense area such as a road 
intersection, the communication channel is more 
congested than in a sparse area. The LA scheme 
should be able to detect and adapt to such com-
munication patterns and other peripheral condi-
tions (location, weather, etc.). 

Performance Focus
To efficiently utilize the available bandwidth 
resource and achieve better QoS satisfaction for 
different kinds of data tasks, the LA scheme should 
rapidly respond to the changing environment 
and provide packet-level rate/mode adjustment 
within 802.11 V2X channel coherence time. A 
lightweight LA scheme is preferred as it does not 
consume much computing and storage resources, 
which are limited on most network devices. 

Data-Driven Intelligent Link 
Adaptation Architecture

A traditional prediction or measurement-based 
LA scheme could not observe all the above-men-
tioned system status, not to mention the difficulty 
of taking into account all impacting factors, and 
thus could only be applied in limited scenarios. It 
seems impossible to design a unified algorithm to 
apply to all kinds of channel conditions in 802.11 
V2X. The success of the machine-learning-based 
data-driven methods in recent years has offered 

Different network proto-
col versions might have 
some difference as the 
transceiver vendor may 
upgrade the firmware/
software during the whole 
product life cycle. Under-
standing the updated 
features of the protocol 
software can help an LA 
scheme better utilize the 
protocol functions and 
hardware capabilities such 
as computing and storage 
capability, and circumvent 
hardware imperfections.

1 Collision happens due to 
the uncoordinated back-off 
process of 802.11 DCF, or 
for other reasons such as the 
hidden terminal problem.



IEEE Communications Standards Magazine • March 2019 15

the possibility of such intelligent algorithms solv-
ing the complicated rate/mode selection prob-
lem involving various environment conditions and 
multiple transceivers with either full or limited 
observation and transmission history data. 

The principle of the data-driven intelligent LA 
scheme is to capture both the long-term chan-
nel characteristics and the short-term fluctuations 
based on the big data from both external and 
internal environments, and choose the best trans-
mission rate and mode to fit the vehicular channel 
and satisfy users’ QoS. 

LA Architecture
The framework of the LA architecture is shown 
in Fig. 2. The function blocks can be divided into 
five components, which are explained as follows. 

Automotive Context Sampler: The automotive 
context sampler should observe the vehicular con-
ditions that would affect the wireless transmission, 
including the number of neighboring users that 
would contend for the communication channel, 
vehicle velocity, location, peer relation, weather, 
and so on. The sampler should also report the 
packet-level QoS for each application, such as 
delay-sensitive or tolerant and high throughput 
orientation, which would lead to different rate 
selection policies. 

Network Data Collector: Network data com-
prises long-term history data and short-term 
events. Long-term history can be from its own 
transmission records and also from the channel 
measurements of others.2 Short-term events can 
be recent packet transmission results or other 
network events that would alter the transmission 
condition, such as network topology change, 
transmission collision, and hidden terminal detec-
tion.

Transceiver Status Prober: Both the software 
and hardware status of the transceiver should be 
considered. Software information includes the 
wireless driver version, network protocol stack  
and other specifications, such as source patches 
and bug fixes. Hardware information includes the 
transmit queue buffer space, antenna configura-
tion, radio power parameter, and so on. The LA 
scheme should be aware of these statuses and 
make the optimal rate and mode selection.

Deep Learning Agent: The environment con-
ditions captured by the above components will 
input to the deep learning agent, which would 
first classify the scenarios into different commu-
nication patterns, such as the drive-thru Internet 
transmission, data transmission among platoon 
members, and V2V safety message dissemination. 
For a specific pattern, the agent would learn the 
relationship between the channel condition and 
achievable rate/mode from the long-term history 
data and the feedback of recent transmissions. 

Intelligent LA Decision Maker: The final rate/
mode decision is made by evaluating the learning 
result and short-term events (e.g., the feedback of 
a series of the recent decisions before they are 
trained in the learning model). The LA outputs are 
directly applied to the transceiver via the interface 
provide by the wireless driver. 

Feasibility Analysis
To apply the data-driven learning-based LA 
scheme in practice, it should work compatibly 
with current 802.11 V2X platforms, which may 
have very different configurations and specifica-
tions. The feasibility of the proposed LA architec-
ture in vehicular conditions is analyzed as follows. 

Information Source: Multi-dimensional informa-
tion can be obtained from various sources for the LA 
scheme. The local transmission records have already 
been utilized by many traditional LA schemes to 
predict the channel quality, which can be obtained 
by tracking the transmission result of each packet3 
The LA scheme can also acquire the records of his/
her brethren in other vehicles via the V2V sharing or 
download from a data server.4 Besides, commodity 
WiFi devices are able to provide a precise power 
delay profile by collecting the CSI information of the 
received frames to evaluate the channel signal-to-
noise-ratio (SNR) [14]. The onboard units equipped 
on modern cars can provide automotive status such 
as velocity and location, together with the surround-
ing infrastructure information, with which the LA 
scheme can efficiently detect the communication 
scenario and capture the transmission pattern. The 
LA model learned by an LA agent can be shared to 
other vehicles that pass a similar road section with a 
similar communication configuration. Such big data 
in vehicular conditions and the versatile data acqui-

2 Such as the RSSI measure-
ments obtained from other 
vehicles. 
 
3 For example, check if the 
ACK frame is received. 
 
4 Such as the roadside edge 
caching server or Internet 
database.

Figure 2. Data-driven intelligent LA architecture in 802.11 V2X.
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sition methods can help the LA scheme to better 
predict the channel variance and make the proper 
LA action. 

Computing Resource: With the development 
of the semiconductor industry, the processing 
capability of network devices has grown quick-
ly, which could help reduce the time to perform 
the machine learning process and provision the 
packet-level rate/mode selection based on quick 
calculation of the learned model output.5 The 
reduced cost of the storage devices could also 
help keep more transmission statistics and other 
information, and thus help build a better and 
more precise channel model.

Device Compatibility: Most of the 802.11 
software has left the choice of the LA scheme to 
vendors or customers, and thus a new LA scheme 
can easily be ported to the current software of 
the network device [9]. The core function of the 
machine learning process can run on a normal 
computing platform, and many embedded systems 
are devised with neural network units that could 
accelerate the learning process, which would help 
to accomplish the computation tasks of the learn-
ing output in milliseconds, and thus facilitate the 
application of the proposed LA scheme. Since the 
LA scheme only adjusts the packet rate and mode 
of the transceiver itself, and does not affect the 
transmission of others, it can work with traditional 
LA schemes running on other devices. 

Reference Model: Data-Driven 
Learning-Based LA for 
Drive-Thru Internet

To show the effectiveness of the data-driven 
learning-based LA scheme, we set up a reference 
model in drive-thru Internet, where a vehicle com-

municates with the roadside AP to download/
upload data traffic when it moves across the 
coverage area. We compared the proposed LA 
scheme with several other methods and show its 
advantages. 

Model Setup
The received signal strength is plotted by a 2D 
channel simulator considering both the multi-
path fading and shadowing as the vehicle cross-
es the roadside network at velocity of 60 km/h 
[15], whose parameters are listed in Table 1. 
A snapshot of the simulated channel status is 
shown in Fig. 4a, which show that the SNR level 
fi rst increases when the vehicle moves closer to 
the AP and decreases while the vehicle leaves. 
We use a neural network including three hid-
den fully connected layers to learn the under-
lying pattern in the channel variance, as shown 
in Fig. 3.

100 channel samples are generated by sim-
ulating the drive-thru Internet communication 
environment, where 50 samples are used to train 
the learning model and the remaining 50 are 
used to test the LA performance. We use the 
latest 20 SNR records in a sample as the input 
to the neural agent to select a rate, and design 
a reward function to train the rate selection pro-
cess and maximize the long-term gain function, 
that is, the overall throughput that the vehicle 
can transmit with the AP. Specifi cally, a random 
sample is selected as the channel condition in 
the environment, and the reward function is 
set to 0 if transmission fails, or to the applied 
link rate if transmission is successful. The agent 
would repeatedly adjust the rate selection in all 
environment conditions to gain corresponding 
experience for a certain time. The performance 
of the trained rate selection is compared to 
other strategies.

Performance Evaluation
Figure 4b shows the comparison between the 
learning-based LA scheme and other settings. It is 
shown that the traditional ARF algorithm cannot 
capture the quick variance of the vehicular chan-
nel and can only achieve 25 percent of the opti-
mal throughput,6 even worse than the random 
rate selection and fixed rate selection methods. 
The learning-based LA scheme achieves much 
better performance of almost 83 percent of the 
optimal throughput, which validates the eff ective-
ness of the learning-based LA method. 

Opportunities and Challenges
An efficient LA scheme provides numerous 
opportunities for industry, academia, and stan-
dardization organizations. It can improve the 
competitiveness of 802.11 V2X with other com-
munication technologies, especially the cellu-
lar-based V2X, that have a full control panel for 
communication resource management. Manufac-
turers and vendors will benefi t from such improve-
ment and reach higher market share. Besides, 
effi  cient LA scheme can expand the application of 
the high-performance and continuously evolving 
WiFi devices in vehicular conditions, which are 
designed mainly for low-mobility scenarios. The 
proposed reference model provides confidence 
for the research and development of an intelli-

Figure 3. Deep learning model for LA in drive-thru Internet.
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gent LA scheme for 802.11 V2X, including various 
automotive communication scenario categoriza-
tions, machine learning algorithms, and so on. 
Due to its strong adaptation to the changing envi-
ronment and its learning nature, it is promising 
to design a unified framework to support smart 
LA in multiple platforms, and thus there is a great 
opportunity to advocate standardization of the 
LA scheme for 802.11 products, which has never 
been fulfi lled before. 

However, it is diffi  cult to identify all V2X com-
munication scenarios, and the highly mobile 
nature of vehicle users also poses challenges to 
differentiate the boundaries of both the spacial 
and temporal domains. The learning-based mech-
anism requires repeated experimentation and 
adjustment to achieve acceptable performance, 
as there is no explicit theoretical guidance for the 
underlying channel pattern, which is hidden in 
neural networks. To design an effi  cient LA scheme 
that not only achieves superior performance but 
also can run in various embedded systems, great 
eff orts should be put into algorithm development 
and software/hardware porting. In addition, to 
promote the standardization, it is required to con-
duct compatibility tests; also, a unifi ed framework 
should be agreed by network users, vendors, stan-
dardization organizations, and other stakeholders. 

Conclusion
In this article, we have reviewed the require-
ments of the LA scheme in 802.11 V2X, and 
proposed a learning-based data-driven architec-
ture to mine the long-term regularity and short-
term variance in the vehicular communication 
environment. We have established a reference 
model to show that the learning-based model 
has great potential to deal with the complexi-
ty of an efficient LA scheme. We have also dis-
cussed the opportunities and challenges of the 
research and development of such an intelligent 
LA scheme, and envisioned the standardization 
of a unifi ed LA framework that can be applied in 
various V2X platforms. 
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