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Abstract—Human-to-human infection, as a type of fatal public health threats, can rapidly spread in a human population, resulting in
a large amount of labor and health cost for treatment, control and prevention. To slow down the spread of infection, social network is
envisioned to provide detailed contact statistics to isolate susceptive people who has frequent contacts with infected patients. In this
paper, we propose a novel human-to-human infection analysis approach by exploiting social network data and health data that are
collected by social network and e-healthcare technologies. We enable the social cloud server and health cloud server to exchange
social contact information of infected patients and user’s health condition in a privacy-preserving way. Specifically, we propose a
privacy-preserving data query method based on conditional oblivious transfer to guarantee that only the authorized entities can query
users’ social data and the social cloud server cannot infer anything during the query. In addition, we propose a privacy-preserving
classification-based infection analysis method that can be performed by untrusted cloud servers without accessing the users’ health
data. The performance evaluation shows that the proposed approach achieves higher infection analysis accuracy with the acceptable
computational overhead.

Index Terms—Social network, infection analysis, privacy preservation
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1 INTRODUCTION

Infectious diseases, such as swine flu, Ebola, and acute respira-

tory infection, can rapidly spread from human to human within

a short period. In 2013, over 200, 000 Canadians get infected

with these highly contagious diseases annually, while more

than 8, 000 infected patients die as a result [1]. The outbreaks

of these infectious diseases usually occur when the infected

patients cough and sneeze around non-infected people [2], [3].

It is observed that people with strong social-ties and having

frequent or long-lasting contacts (e.g., students studying in

the same classroom, and families living in the same house) is

likely to spread infectious diseases from the biomedical and

sociology perspective [4]. One traditional approach to prevent

the spread of infectious diseases [1] is to isolate susceptible

patients (who travel from the infected region or have frequent

contacts with infected patients during the outbreak season)

from the public for a certain period (e.g., two or three weeks)

depending on the latent time period of the diseases.

However, this traditional infection prevention approach in-

curs a large amount of the governmental health expense

and labor costs, the isolated patient’s economic loss, and

even anxiety or panic of the society. To resolve this type

of public health crisis, a promising wearable cyber physical

system [5] associated with e-healthcare technologies emerges

to continuously monitor users’ real-time health parameters

(temperature, heart rate, electrocardiogram (ECG), etc.), which

are formatted in image, audio and text. These health data
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are collected by a server to analyze abnormal phenomena

and provide supporting information for doctor’s diagnosis [6].

Although such a wearable cyber physical system is helpful to

analyze user’s health condition, i.e., whether a user is already

infected or not, it lacks sufficient social information to infer

the spread of infectious diseases, i.e., whether the user has a

high probability to get infected from others.

Social network can offer various applications to mine

users’ social data during their social interactions [7], [8].

For example, the built-in face-tagging function of Facebook

application can identify user’s face in pictures and infer if

certain users have close social relationships; Wechat friend

discovery program can find users in the physical proximity

and record social interactions; speech recognition can help to

detect if some people cough or sneeze. The fusion of these

social network data associated with the monitored health data

can provide a novel paradigm to enhance infection analysis.

Suppose a junior school student Bob is continuously monitored

from both health and social perspectives during the outbreak of

infectious disease. Once Bob’s immunity strength goes very

low and he frequently contacts an infected student, he may

be inferred as a susceptible patient in the early stage. The

health and social multimedia data are usually collected and

processed by multiple independent service providers, such as

health institution and social networking service provider (e.g.,

Facebook and Wechat), respectively. The collaboration of these

service providers becomes essential to enable data sharing and

processing [9], especially when the volume of continuously

monitored data keeps increasing. Incorporating health cloud

server collecting users’ health parameters and social cloud

server, which is maintained by social network service provider

to collect users’ social networking data including social con-

tact and relationships between users, we envision that the

infection analysis can be enhanced.
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Meanwhile, users’ health and social data, such as infection

status and social contact, are privacy-sensitive [10], [11], and

many users are not willing to excessively reveal this private

information to the untrusted or unauthorized entities [12].

If the health data and social data are sent to cloud servers

in clear text, the untrusted cloud servers may track users’

health condition, identity, profiles, contact and social activities,

resulting in severe privacy violations, especially for the infect-

ed or susceptible patients during the outbreak of infectious

diseases. To preserve data privacy, users could encrypt their

data and send the ciphertexts to cloud servers [13]. However,

this approach may limit the data processing capability of

cloud servers [14] and even disable the infection analysis.

Therefore, it is challenging to enable the infection analysis

and preserve user’s privacy at the same time. In addition,

social networking data contain some sensitive information

of infected and susceptible patients, such as identity and

contact details, which may be inferred by the social cloud

server when these data are shared to other entities for further

health analysis. For example, if the hospital or public health

agency queries an infected patient’s data on the social cloud

server, the social cloud server may infer that the queried

user is infected. Meanwhile, the hospital without the user’s

authorization should not be able to query non-infected user’s

social networking data. Without sufficient privacy protections,

users may not want to share their social and health data to

the untrusted cloud servers for infection analysis. Therefore,

it is still challenging to address the aforementioned issues

when exploiting social networking data to enhance infection

analysis.

In this paper, we propose a Privacy-preserving Infection

Analysis approach (PIA) considering social network data

associated with health data to infer human-to-human infection

spread. This approach employs a privacy-preserving data query

method based on conditional oblivious transfer to enable

data sharing among different entities and a privacy-preserving

classification-based infection analysis method to enable the

cloud servers to infer infection spread and preserve health data

privacy. The main contributions of this paper are four-fold.

• Firstly, we analyze the spread process of infectious

disease with the consideration of user’s social contact and

health condition. We exploit several key factors of infection,

including immunity strength of the susceptible user, infectivity

of the infected patient, their contact duration, and the type of

contact. We also utilize naive Bayesian classification method

to enhance infection analysis with the collaboration of social

and health cloud servers.

• Secondly, we propose a privacy-preserving data query

method (PPDQ) based on conditional oblivious transfer to

allow the authorized entity (i.e., hospital) to access the infected

patient’s social network data from the social cloud server, but

not allow the social cloud server to access and infer any data

including patient’s identity. Furthermore, this method enables

users to grant authorization to hospital, which cannot query

any data without user’s authorization.

• Thirdly, we propose a privacy-preserving classification-

based infection analysis method (PCIA) to prevent user’s

private social and health data from disclosing to the untrusted

health cloud server. The PCIA enables users to encrypt raw

data based on homomorphic encryption and send ciphertexts to

the cloud server. Then, the health cloud server can infer infec-

tion spread during human-to-human contact without learning

any user’s private information.

• Finally, privacy analysis shows that the proposed approach

preserves the privacy of user’s health data and social net-

work data, and achieves patient’s identity privacy during the

query. Furthermore, we conduct the extensive simulation to

demonstrate that the PIA exploits the social network data and

adjusts to effectively analyze infection spread with acceptable

computational overhead.

The remainder of the paper is organized as follows. We

review the related works in Section 2. Then, we present the

system model and design goals in Section 3. We propose the

PIA with details in Section 4 and Section 5. The privacy

properties are analyzed in Section 6, and the performance is

evaluated in Section 7, respectively. Finally, we conclude the

paper in Section 8.

2 RELATED WORKS

Social network data analysis has attracted a lot of attentions

from both academic and industrial fields as the big volume

of social network data are collected for analysis [15], [16].

Some sophisticated machine learning schemes, such as support

vector machine, naive Bayesian classification and decision

tree based classification [17], are widely applied in practical

applications [18]. These schemes usually require the labeled

training data set to establish the learning/classification model,

which is used to classify the new data. In addition, abnormal

event detection is of great importance especially in social

network analysis, and requires prior expert knowledge with

well-defined models [19], [20]. Due to rarity, unexpectedness

and relevance features of abnormal events, Zhang et al. [21]

develop a semi-supervised adapted Hidden Markov Model

with Bayesian adaptation to adjust abnormal events. It first

labels an abnormal event model in an unsupervised pattern

from a large volume of ground truth data. An iterative structure

is utilized to adapt any emerging abnormal event at each

iteration. This framework can address the difficulty in labeling

abnormal events and the scarcity of training data [22].

To leverage privacy preservation and data usability [23] for

social network data analysis, extensive research efforts have

been put in recent years. A variant of “doubly homomorphic”

encryption scheme [24] for secure multi-party computation is

introduced to perform flexible operations over the encrypted

data. With the advanced and efficient homomorphic encryption

techniques [25], Graepel et al. [26] propose a machine learning

scheme with privacy preservation to outsource the heavy

computation tasks to the powerful cloud servers. At the same

time, data confidential and user privacy are achieved with the

advantages of the adopted leveled homomorphic encryption

scheme. This privacy-preserving machine learning scheme

mainly solves the privacy issues during the data training phase.

To perform both training and learning over encrypted data,

Bost et al. [18] develop a set of secure machine learning

classification schemes based on leveled fully homomorphic

2
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Fig. 1. Infection Analysis System Considering Social Network and Health Data

encryption. In [18], a client performs learning operations with

an untrusted server over ciphertexts. In [27], Barni et al. devel-

op a neural network based classification scheme with privacy

preservation with linear branching programs to address privacy

issues in ECG classification. Samanthula et al. [28] propose

a k-nearest neighbor classification algorithm based on Paillier

cryptosystem [29] which enables operations over ciphertexts

for healthcare systems. In [17], a privacy-preserving clinical

decision support system is proposed based on naive Bayesian

classification. It first aggregates ground truth data for training,

and then enables untrusted cloud servers to perform secure

classification algorithm over encrypted data. Users are also

allowed to retrieve top-k diagnosis results with their interests

and requests. Yuan et al. [30] propose a privacy-preserving

back-propagation neural network learning algorithm based

on “doubly homomorphic” encryption. This algorithm allows

users to send encrypted data to the cloud server, which

performs most of the computation tasks without compromising

the privacy of user’s raw data. Another type of lightweight

machine learning is decision tree based classification, which

is studied in [31] and developed with privacy protection

mechanisms. Recently, Zhou et al. [32] propose a secure text

mining scheme, where a privacy-preserving data aggregation

method is served as the building block to enable data training

in cloud assisted e-healthcare system. Considering the data

access problem, Zhou et al. [33] propose a user-controlled

multi-level cooperative authentication scheme to protect user’s

attribute information from disclosing during the data exchange.

However, most of existing works focus on a single cloud

platform involving in e-healthcare systems. Due to the unique

characteristics of infectious disease, it is necessary to inte-

grate various sources of user’s information, such as health

and social data for infection analysis. Meanwhile, the large

volume of long-lasting health and social data from users pose

a big challenge for data management and collaboration in

the traditional e-healthcare framework. Therefore, multiple

independent cloud servers with different functionalities are

involved in our approach to enhance the infection analysis

with sufficient knowledge of patients and susceptible users

from both health and social perspectives. In addition, data

privacy, usability (i.e., secure operations over encrypted data)

and efficiency should be considered when designing a novel

infection analysis system.

3 SYSTEM MODEL AND DESIGN GOALS
In this section, we propose the infection analysis system model

and identify the design goals, respectively.

3.1 System Model
The proposed infection analysis system consists of five enti-

ties: trusted authority (TA), users (i.e., data owners), hospital,

social cloud server (SC) and health cloud server (HC) as shown

in Fig. 1. The system is divided into health domain and social

domain according to different types of collected data. Users,

HC and hospital have operations on health data in the health

domain, while users, SC and hospital (as a query requestor)

are involved in the social domain. The details of each entity

in the PIA are presented as follows.
• Trusted Authority (TA) bootstraps the system, processes

user’s registration, and generates the certificates for legal user’s

key generation. Afterwards, TA is not involved in network and

users’ interactions.
• Users first register to the TA and generate valid keys in

the initialization phase. They measure their health parameters

via wearable devices and periodically send health data to the

health cloud server. When user Ui and Uj have contacts with

each other, their smartphones record the contact information,

such as identity, duration and social relationships, which are

sent to the social cloud server.
• Health Cloud (HC) has powerful computational and

storage capabilities to perform the complicated and time-

consuming operations on health data. HC receives health data

from users, and training data from medical institutions for

analysis.

3
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• Social Cloud (SC) is the cloud server dedicated for social

network data storage and processing [34], which is similar to

HC. SC only operates in social domain.

• Hospital (H) is the entity to analyze user’s infection

status. If H diagnoses a user Ui as infected patient, H queries

Ui’s social network data from SC. Having Ui’s social network

data, H performs infection analysis with HC to determine

whether Ui’s encountered users are susceptible or not, and

informs users the analysis results.

3.2 Security Model

HC and SC are honest-but-curious entities in the system, i.e.,

they honestly follow the protocols but are curious about users

and other entities’ private information. H is trusted by users

and has the authorization from users to access their health

data stored on HC. However, H is semi-trusted in social

domain. If H diagnoses a user Ui as infected patient, Ui

grants authorization to H and allows H to access Ui’s social

data from SC. Otherwise, H is an honest-but-curious entity in

social domain and not allowed to access any user’s social data

in SC except without the authorization.

3.3 Privacy Requirements and Design Goals

Under the honest-but-curious model, user’s personal infor-

mation included social data and health data should be kept

confidential towards untrusted and unauthorized entities. The

privacy requirements are identified as follows.

(1) Health Data Privacy. User’s health data should be

prevented from disclosing to other unauthorized entities, such

as HC, SC and any unauthorized user. Particularly, the infected

patient’s infectivity and other health data are highly privacy

sensitive and should not be disclosed to the cloud servers

and other users. Furthermore, historical data (i.e., training data

set) from medical institutions should also be encrypted in the

ciphertext during the classification by HC.

(2) Social Data Privacy. User’s social contact data are part

of user privacy. The encountered user’s information, such as

identities, contact type and duration, should be invisible to SC

and other users when the data are stored in SC. Without user’s

authorization, H should not be able to access this user’s social

network data as well.

(3) Privacy of Susceptible User and Infected Patient. Some

users may be susceptible to be infected. Before diagnosis, their

information, such as identities and health status, should also

be protected against SC’s inferring. In addition, susceptible

user’s risk analysis result) should be invisible to HC, SC and

any user except authorized hospital. This risk analysis result

reflects user’s infection status, which is highly sensitive to him.

The proposed system should achieve privacy requirements

and computational efficiency simultaneously. On one hand, the

proposed system should be able to protect user’s social data

and health data from disclosing to (or inferring by) untrusted

entities. On the other hand, it should take a reasonable compu-

tational and communication overheads, which would prolong

the system’s lifetime and improve user’s experiences.

Fig. 2. Infectious Disease Spread Trend [36]

4 INFECTION ANALYSIS

Infection spread depends on various factors related to health

condition and social contact. In this section, we discuss the

analytic model on spread of infectious disease and utilize naive

Bayesian classification to infer the infection spread.

4.1 Analysis of Infectious Disease Spread
We first propose the analytic model of infectious disease

spread. Many infectious diseases, such as acute respiratory

diseases, H1N1, measles and flu, can be spread human-to-

human via infected droplets during sneezing or coughing,

as well as contaminated surfaces and hands. For instance,

in a conference environment, Alice has flu and attends the

conference where crowd of people are in the same area/room.

Alice has many contact with other people such that the flu

is likely spread to the contacted people if they do not have

sufficient antibody against this type of flu.

(1) Factors on Infectious Disease Spread
The infectious disease spread process between a patient u∗

a

and a normal user ub may be impacted by several factors, i.e.,

u∗
a’s status (e.g., spread strength), contact duration between u∗

a

and ub, ub’s health condition (e.g., immunity strength).

• Infectivity from infected user: We characterize patient

u∗
a’s status in terms of his infectivity IFu∗

a
as a function of

the time starting from when u∗
a is a case [35]. The infectivity

IF is impacted by the time (t0) of symptom start when u∗
a

is a case, the time (t1) of infection when u∗
a is a case,

and a vector x∗
a of u∗

a’s personal health status measured by

wearable devices (temperature, blood oxygen saturation, etc.)

and from hospital including white blood cell and red blood

cell content, hemoglobin, etc. Furthermore, symptoms indicate

the infectivity to some extent. For example, users have acute

respiratory diseases may have at least two symptoms among

fever, cough, sore throat, and runny nose. The infectivity is

proportional to the strength of these symptoms, but is not

proportional to time. As shown in Fig. 2, the generation time

of infectious disease is relatively short (only 2 days) [36]. The

infectivity (shown as probability density) keeps increasing at

the beginning and decreases after the infectious period.

4
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• Contact: According to a recent study [4], sitting next to

a patient or being his playmate in a short contact period (e.g.,

contact lasting minutes with the patient) is not expected to

considerably increase the risk of infection. However, a long

period contact with patients, such as the structuring of school

into classes and grades, would strongly affect spread with an

increasing infection risk. The contact duration between the

patient u∗
a and normal user ub can be denoted as Da,b.

Another important feature of user’s contact is the contact

type TCa,b. We define TCa,b as 1 = “household” (users living

in the same house), 2 = “office” (users in the same office (or

classroom in school)), 3 = “department” (uses in the same

department (or grade in school)), 4 = “company” (users in the

same company (or school)), 5 = “community” (users from the

same community, club or social group). The contact type also

reflects the social relationship and social-tie strength between

contacted users. From “household” to “community”, TCa,b

decreases.

The contact information can be bi-directionally captured by

wearable devices and smartphones in various ways. User’s s-

martphones can start a Bluetooth discovery program to find the

nearby users within a certain range, e.g., 5m or 2m. The con-

tact duration is easy to record by smartphones. Alternatively,

GPS and WiFi techniques are possible to measure the location

or distance between the contacted users. But this approach

is inevitable to face the problem of localization accuracy,

especially in the indoor environment or when the accuracy

requirement is within meters. Contact type can be captured

through the contacted user’s social network profiles, such as

Facebook, Twitter and WeChat. As the contact information is

accumulated at the user side, SC is adopted to help users to

store their contact information.

• Normal user’s health condition: When a normal user

ub has contact with the patient u∗
a, ub’s health conditions,

especially immunity strength, and some other parameters

including sleep of quality and physical strength, have impact

on disease spread. Let ISb be the immunity strength of ub

against infectious disease. For simplicity, we consider only

one type of infectious disease in the following of this paper.

(2) Spread Model of infectious disease
The infectivity to user ub during a time period T is

Sb =
∑

u∗
a∈IU,a �=b

Sa∗,b

(
Da,b,

1

TCa,b
, IFu∗

a
,

1

ISub

)
. (1)

Here, Sa∗,b a linear function which denotes the instan-

taneous infectivity from u∗
a to ub. Sa∗,b is proportional to

Da,b,
1

TCa,b
, IFu∗

a
and 1

ISub
. The infectivity increases with the

longer contact duration, the closer social relationship, the

higher infectivity from the patient and the lower immunity

strength. When a user has contact with multiple patients, the

infectivity to this user depends on the contacted patient with

the maximum infectivity.

When an infectious disease breaks out in a certain human

population, responses in behavior changing according to the

outbreak can slow down the progression of the infectious

disease to some extent [2]. If a person is aware of the disease

in a certain local area or proximity, he would take preventions

Susceptible

Infected

RecoverededdedSus

PSI

PII

PSS

PSR

PIR

PRR

Fig. 3. Infection State of Infectious Disease

to considerably reduce his susceptibility. It is important to

provide analysis results on the susceptible user’s infection.

Generally, a type of infectious disease has three s-

tates on a user Ui, i.e., Si = {si,1, si,2, si,3}. si,j ∈
{“Susceptible”, “Infected”, “Recovered”}, as shown in Fig. 3.

The infection process can be formulated as a state transition

model, where the “Susceptible” state is the initial state. When

a patient recovers from the infectious disease, his immune

system can generate antibodies against the pervious infected

disease. Similarly to [4], in this paper, we define “Recover”

status as the end state.

(3) Infection Analysis

To analyze whether user uj has a risk to get infected, uj’s

health and social data can be considered together to classify

if uj is infected. We utilize naive Bayes classification [37] to

analyze infection status. Suppose uj’s data x = {x1, · · · , xl}
is an l-dimensional vector, where xi ∈ R and i ∈ {1, · · · , l}.

The format of x is shown in Fig. 4. A classification algorithm

C(x, w) : Rd �→ {c1, · · · , ck} takes input as x and outputs

k∗ = C(w, x) ∈ {1, · · · , k}. Here, k∗ is the class (i.e.,

infection status) to which x corresponds given model w trained

by ground truth data. With the abundant health data from

hospital, it is feasible to obtain such a model in the PIA.

In the model w, each class ci corresponds to a probability

{Prob(C = ci)}ki=1. The j-th element xj of x is a and falls

into a class ci with a probability Prob(Xj = a|C = ci). Here,

Aj is Xj’s domain and a ∈ Aj (j ∈ [1, d] and i ∈ [1, k]).

The naive Bayes classifier adopts a maximum a posteriori

decision rule to select the class with the highest posterior

probability as Eqn. 2.

k∗ =argmax
i∈[k]

Prob(C = ci|X = x)

= argmax
i∈[k]

Prob(C = ci, X = x)

= argmax
i∈[k]

Prob(C = ci, X1 = x1, · · · , Xd = xd)

(2)

Prob(X = x) is the normalizing factor and deleted given the

fixed x according to Bayes theorem.

The Naive Bayes model assumes that Prob(C = ci, X = x)

5
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can be factorized as

Prob(C = ci, X1 = x1, · · · , Xd = xd)

= Prob(C = ci)

d∏
j=1

Prob(Xj = xj |C = ci).
(3)

From Eqn. 3, each feature is conditionally independent

given the class. The feature value’s domain is finite and

discrete. The optimal k∗ can be selected according to Eqn. 4.

k∗ =argmax
i∈[k]

{logProb(C = ci|X = x)}

=argmax
i∈[k]

{logProb(C = ci)

+
d∑

j=1

logProb(Xj = xj |C = ci)}

(4)

The class ck∗ corresponds to the infection status of user uj .

The integration of social network data and health data includes

key factors of infection spread and enhances the traditional

infection analysis.

5 PRIVACY-PRESERVING INFECTION ANALY-
SIS APPROACH

In this section, we exploit social network data to analyze

infection spread in a privacy-preserving way. We first pro-

vide an overview of the PIA approach. Then, we propose a

privacy-preserving data query method and a privacy-preserving

classification-based infection analysis method to achieve the

design goals.

5.1 Overview of PIA
The PIA adopts naive Bayesian classifier to detect the infected

and susceptible users. It consists of four components as shown

in Fig. 5. In each component, user’s privacy is protected from

disclosing to untrusted entities.

(1) Health Data Collection
Users first adopt on-body sensors and wearable devices to

measure their health parameters (temperature, heart rate, sleep

quality, ECG, exercise statistics and so forth). Before sending

the data to HC, users encrypt the measured health data into

ciphertexts since these health data are highly privacy-sensitive

to users. Finally, the health data are stored in HC.

(2) Social Data Collection
When users contact each other, their smartphones can record

the detailed contact information, including identity, duration,

social-tie and type of contact, which can be timely uploaded

to SC for storage. The smartphones utilize the short range

communication techniques (e.g., bluetooth and NFC) and some

other built-in sensors (e.g., acoustic sensors) to detect the

contact between the smartphone owner and the other user

when they are in the physical proximity [38], [34]. The

included information is highly private-sensitive and should be

invisible to unauthorized entities (e.g., SC).

(3) Privacy-preserving Data Query
The hospital H diagnoses infected disease of patients and

determines the infectivity IF as shown in Fig. 2 according to

[36]. Then, H informs the infected patients with the diagnosis

results. After the diagnosis, H performs a social contact query

to SC with the authorization from users. H sends the query

request, including infected user uj’s identity associated with

the queried contact duration and some other social information,

to SC in the ciphertext. SC performs operations on the query

request without knowing the query result and feedbacks it to

the hospital.

(4) Privacy-preserving Infection Analysis
HC and H compute the contacted user Ui’s infection status

based on Ui’s immunity (measured by Ui), uj’s infectivity,

contact duration, contact type and social-tie in a privacy-

preserving way. Finally, H sends the analysis results to Ui

as the guidelines to treat the potential disease.

5.2 Health Data Collection
To preserve user’s health data privacy, users should encrypt

their data before sending to the cloud servers. We revisit an

RLWE (Ring Learning With Error) based somewhat homomor-

phic encryption scheme [25] as the preliminary to construct

our building block. In the initialization phase, the TA picks the

system parameters as follows: 1) a ring R = Z[x]/〈fω(X)〉
where fω is ω-th cyclotomic polynomial; 2) an odd positive

integer modulus q and a prime p � q as the plaintext base;

3) the dimension n and N = polylog(q, ω); 4) a ring over

modulus q is Rq = R/qR; and 5) an error distribution χ with

small coefficient.

The TA runs a key generation algorithm KeyGen to gen-

erate user u’s secret key sku and public key pku. sku =
(1, s) ∈ Rn+1

q , where s is randomly selected from χn.

The TA randomly selects e = (e1, · · · , eN ) ∈ RN and

α = (α1, · · · , αN ) ∈ RN
q . Then, the TA computes βi =

αis + p · ei mod (fω(X), q). pku = (βi,−α).
An encryption algorithm Enc takes input as pku and mes-

sage M ∈ Rp. It makes m = (M, 0) ∈ RN+1
q and randomly

6



1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2016.2626288, IEEE
Transactions on Dependable and Secure Computing

Social Cloud

   Social Contact Collection

ui : {(i, j,Di,j), (i, l,Di,l)…, (i, m,Di,m)}
ui's Contact List ci

Health Cloud

ui's Health Data hi 

     Social Contact Query

ui

   2

     4

Hospital

      Infection Analysis    5       Infection Analysis    5

     Infection Diagnosis     3

      Social Contact Query     4

uj

ul

um

Analysis Result

Disease 
Diagnosis

   Health Data Collection   1

d

ui's Health Data hi

Social Cloud

Contact Collection

(i, l,l Di,i l)…, (i, m,Di,i m)}
ntact List ci

ial Contact Query

Health Data Flow

Social Data Flow

Fig. 5. Illustration of Privacy-preserving Infection Analysis Approach

selects r = (r1, · · · , rN ) ∈ RN
p . The ciphertext is CT =

Encpku(M) = m +
N∑
i=1

ri · pku mod (fω(X), q) ∈ Rq ×Rq .

A decryption algorithm Dec takes input as CT and secret

key sku, and outputs the message M = Decsku
(CT) as

〈CT, sku〉 mod (fω(X), p). Here, 〈CT, sku〉 =
n+1∑
j=1

CT(j) ·
sku(j) denotes the inner product. We have

〈CT, sku〉 =M +

N∑
i=1

ri〈sku, pku〉

=M + p

N∑
i=1

riei

=M + p

N∑
i=1

riei(mod fω(X), q).

(5)

Since e and r (i.e., ei and ri) are small, δ =
N∑
i=1

riei(mod fω(X), q) is small such that M can be finally

decrypted [25].

This homomorphic encryption scheme can support addition

and multiplication operations over ciphertexts. Specifically,

the addition of M1 and M2 is achieved via component-wise

addition of the ciphertexts Enci(M1) and Enci(M2). Let

〈CT1, sku〉 = M1 + p · δ1 and 〈CT2, sku〉 = M2 + p · δ2.

〈CT1 +CT2, sku〉 = (M1 +M2) + p · (δ1 + δ2). M1 +M2 =
Deci(Enci(M1) + Enci(M2)) if δ1 + δ2 is still small.

To obtain the multiplication of M1 and M2, the multiplied

ciphertext is Enci(M1)× Enci(M2) as shown in Eqn. 6.

〈CT1, sku〉 × 〈CT2, sku〉
= (M1 + p · δ1) · (M2 + p · δ2)
= M1 ·M2 + p · (pδ1δ2 +M1δ2 +M2δ1)(mod fω(X), q)

(6)

If pδ1δ2 + M1δ2 + M2δ1 is small, M1 × M2 =
Deci(Enci(M1)× Enci(M2)).

With the addition and multiplication over the ciphertext,

homomorphic encryption schemes can allow an untrusted

entity to perform these operations without knowing secret keys

and the content included in the ciphertexts.

When Ui measures his health data hi, Ui encrypts hi as

Enci(hi). To enable the hospital (i.e., trusted entity) to access

Ui’s health data, Ui generates re-encryption key R̃Ki→H to

transform Enci(hi) to EncH(hi) according to [39], [25].

5.3 Social Data Collection
When two users Ui and Uj move in the physical proximity of

each other, the contact information, such as contacted users’

identities, contact duration, contact type (or social-tie), are

recorded by users’ smartphones. For example, a Wechat appli-

cation on smartphones can launch a friend discovery program

to find the nearby users (running the same application) and

allow them to chat with each other. For simplicity, we assume

that user’s smartphone measures the social contact of the

nearby users as indicated in [38]. We formulate social contact

as follows. Let CI(i, j) denote the contact data between i
and j. CI(i, j) = (i, j,Di,j ,TCi,j , · · · ). Then, Ui converts

Di,j to a binary vector Di,j = {Di,j,1, Di,j,2, · · · , Di,j,ω}
where ω = �logl	 and l is the maximum duration. For

example, if users upload their social information to SC every

hour, l = 60 with minute as the unit of contact time (or

l = 3600 when using second as unit). The contact duration is

7
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a keyword during the query. It is encrypted as Enci(Di,j) =

{Enci(Di,j,1),Enci(Di,j,2), · · · ,Enci(Di,j,ω)}. If Ui grants

the authorization of social information query to the hospital, Ui

generates re-encryption key RK∗
i→H to transform Enci(Di,j)

to EncH(Di,j).
To make user’s uploaded social data invisible to the un-

trusted SC, these data should be encrypted. Let G be a cyclic

group of order p with generator g ∈ Z∗
p [40]. Ui randomly

chooses his secret key SKi = xi ∈ Zq . Ui computes

PKi = gxi . During the encryption, Ui randomly chooses

r ∈ Zq , and encrypts CI(i, j) as Ei(CI(i, j)) = (c1, c2) =

(gr mod p,CI(i, j)gxir mod p). To decrypt Ei(CI(i, j)), the

decryptor computes CI(i, j) = c2/(c
xi
1 )−1. Finally, Ui sends

Ei(CI(i, j)) and Enci(Di,j) to SC.
If Ui grants H the authorization to query Ui’s social

information in SC, Ui generates the re-encryption key to

SC as a proxy to re-encrypt Ui’s ciphertext for the hospital.

Specifically, Ui splits his secret key xi into two parts xi,0

and xi,1 such that xi = xi,0 + xi,1 [41], [42]. SC has the re-

encryption key RKi→H = xi,0. H receives the decryption

key as xi,1. To re-encrypt Ui’s ciphertext Ei(CI(i, j)), SC

computes c′2 = c2/(g
r)RKi→H and outputs the ciphertext as

Ei→H(CI(i, j)) = (c1, c
′
2). Note that H can decrypt Ui’s

social information by computing CI(i, j)gx2r/(gr)x2 .

5.4 Privacy-preserving Data Query
After making diagnosis of the infected patients, the hospital

initiates a query to SC to find the contacted users in a

certain period with the infected patients. These users may have

potentials to be infected. Since SC is not trusted, the disclosing

of users’ contact information, e.g., when and where to meet

another user, may violate their privacy such that attackers

would infer user’s habits and preference. In particular, the

infected patient’s identity is another kind of sensitive infor-

mation. Imagine that SC knows the hospital queries certain

user’s social contact data. It is very likely that this queried user

either has already been infected or is susceptible. Therefore,

it is essential to prevent SC from knowing the query content

from the hospital and replied results to the hospital. To protect

user’s social information from disclosing to SC, the uploaded

social contact data should be encrypted. However, it poses a

new challenging issue to enable the hospital’s oblivious query

[43]. To this end, we propose a privacy-preserving data query

method (PPDQ) based on conditional oblivious transfer, which

allows the hospital to query users’ encrypted social contact

data in SC without disclosing the query content and results.
The hospital picks the infected patient Ui’s identity i and

sends Query(i, d, s) to SC. The hospital receives the query

result Q.Result(CLi). Note that CLi = {CI(i, j1),CI(i, j2),
· · · , CI(i, jm)}, where CI(i, jx) = (i, jx, Di,jx , STi,jx) (x ∈
{1, · · · ,m}) is i’s contacted user with Di,jx > d and STi,jx >
s. For simplicity, we present the details of the query containing

identity and contact duration. The other social metrics can be

simply extended based on the PPDQ. The hospital requests a

range of query user list (including n users) from SC to blind

the exact queried user i.
Step 1: The hospital H builds an identity query vector (n-

dimension) I = {0, 0, · · · , 0, 1, 0, · · · , 0}, where i-th element

of I is 1 and others are 0 (i.e., H queries Ui’s data). Then,

the hospital converts the minimum contact duration d to a

binary vector D = {D1, D2, · · · , Dω}. Note that ω = �logl	.

The hospital sends EncH(I) and EncH(d) to SC for query.

Here, EncH(I) = {EncH(I1),EncH(I2), · · · ,EncH(In)},

and EncH(d) = {EncH(D1),EncH(D2), · · · ,EncH(Dω)}.

In this section, we present the details of how to query 1-of-n
users. The PPDQ can be also extended to query k-of-n users.

Step 2: SC holds ei,0 = Ei→H(CI(i, jx)) and ei,1 = ⊥.

Then, SC performs as follows.

a) Compute EncH(Py) = EncH(dy) − EncH(Di,j,y) for

1 � y � ω, implying Py = dy −Di,j,y .

b) Compute EncH(Ry) = (EncH(dy) − EncH(Di,j,y))
2,

implying Ry = (dy −Di,j,y)
2.

c) Set θ0 = 0 and compute EncH(θy) = 2 ·EncH(θy−1) +
EncH(Ry), implying θy = 2 ∗ θy−1 +Ry .

d) Choose a random number ry ∈ Zp and compute

EncH(βy) = EncH(Py) + EncH(ry) × [EncH(θy) −
EncH(1)], implying βy = Py + ry(θy − 1).

e) Choose a random number γ ∈ Zp and compute

EncH(φy) as

n∑
i=1

[(ei,1 − ei,0)EncH(βy) + (ei,1 + ei,0)EncH(1)]

× [γ(EncH(Ii)
2 − EncH(Ii)) + EncH(Ii)

]
+ γ

(
n∑

i=1

EncH(Ii)− EncH(1)

)
,

implying φy =
n∑

i=1

(ei,1(βy + 1) + ei,0(1− βy)) × (γ(I2i −

Ii) + Ii) + γ ×
(

n∑
i=1

Ii − 1

)
.

Then, SC has a tuple EncH(φ) = 〈EncH(φ1), EncH(φ2),
· · · , EncH(φω)〉. SC randomly permutes this tuple and has

π(EncH(φ)), which is sent to the hospital as the query result.

Step 3: Receiving the tuple from SC, the hospital decrypts

the tuple and obtains the effective query result 2ei,0 if d <
Di,j ; and 2ei,1 otherwise. Finally, the hospital decrypts Ui’s

social information by computing CI(i, j)gx2r/(gr)x2 .

Finally, the hospital can obtain CLi={(i, j1, Di,j1 , STi,j1),
(i, j2, Di,j2 , STi,j2), · · · , (i, jm, Di,jm , STi,jm)} where

uj1 , uj2 , · · · , ujm have contact duration (> d) with the

infected patient Ui.

5.5 Privacy-preserving Classification-based Infec-
tion Analysis

We propose a privacy-preserving classification-based infection

analysis method (PCIA) to analyze the infection status based

on naive Bayesian classification. The input vector includes sus-

ceptible user’s immune strength, contact information with the

patient and this patient’s infectivity as indicated in Fig. 4. The

infectivity is diagnosed and assigned by the hospital, while the

immunity strength is measured by user and stored on HC. H
performs PPDQ with HC to retrieve user’s health data without

directly disclosing any identity and health data to HC. We

present details of the key components of the PCIA, including

8
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Algorithm 1 Privacy-preserving Comparison Algorithm

1: Input: EncH(x), EncH(y)
2: Output: x > y
3: HC computes EncH(a) = EncH(y) + EncH(2l) − EncH(x) and

randomly selects r ∈ (0, 2λ+l). Then, HC computes EncH(θ) =
EncH(a) + EncH(r) and sends EncH(θ) to H .

4: H decrypts EncH(θ) by using skH , and computes η = θ mod 2l.
5: HC computes ω = r mod 2l. Then, HC privately computes QEH(u)

with H , and obtains u = 1 if η < ω according to DGK cryptosystem
[45].

6: H encrypts θl as QEH(θl), which is sent to HC.
7: HC encrypts rl and computes QEH(γ) = QEH(u)·QEH(θl)·QEH(rl).

Then, HC sends QEH(γ) to H .
8: H decrypts γ and finds γ = 0 if x > y; otherwise, γ = 1.

Algorithm 2 Privacy-preserving Argmax Algorithm

1: Input: Enc(x1), ·,Enc(xn)
2: Output: Enc(Max)
3: HC adopts a random permutation π and computes EncH(x′

i) =
EncH(xπ(i)).

4: Let max = 1 and EncH(Max) = EncH(xπ(1))
5: for i = 2 : n do
6: H runs PPC with the result bi in each iteration. bi = 1 if Max �

aπ(i); otherwise, bi = 0.

7: HC selects two random numbers ri and si ∈ (0, 2λ+l). Then, HC
computes EncH(m′

i) = EncH(Max)+EncH(ri) and EncH(a′i) =
EncH(aπ(i))+EncH(si). Then, EncH(m′

i) and EncH(a′i) are sent
to H .

8: if bi = 1 then
9: H sets max = i, and computes EncH(vi) =

Refresh(EncH(a′i)).
10: else
11: H computes EncH(vi) = Refresh(EncH(m′

i))
12: end if
13: H sends EncH(vi) and EncH(bi) to HC.
14: HC computes EncH(Max) = EncH(vi)+(EncH(bi)−EncH(1))·

EncH(ri)− EncH(bi) · EncH(si).
15: end for
16: H sends EncH(max) to HC.
17: Finally, HC computes the result π−1(max).

privacy preservation techniques on comparison, argmax and

classification.

i) Privacy-preserving Comparison (PPC)
During the comparison, HC compares two ciphertexts of

integers x and y encrypted by the hospital H’s public key. Let

l be the bit length of x and y. Since some operations are on

single bit, we adopt Quadratic Residuosity (QR) cryptosystem

[44] as the additive homomorphic building block to further

improve the computational efficiency. Let QR’s plaintext space

be F2 (bits) and QE(x) is the ciphertext of input bit x.

SKHC and PKHC are HC’s secret and public keys in QR

cryptosystem.

The details can be found in Algorithm 1. HC first inject-

s random number r in the computation of EncH(x) and

EncH(y) to blind the comparison results against H . Intu-

itively, the PPC algorithm checks the most significant bit of

θ = y + 2l − x, indicating whether x � y. In line 5 of

Algorithm 1, HC and H privately compute u = 1 if η < ω
based on DGK cryptosystem [45], which is a practical integer

comparison protocol with small plaintext size and ciphertext

size. It only requires 5 extra multiplication operations, which

improves the algorithm efficiency.

ii) Privacy-preserving argmax (PPAM)
The privacy-preserving argmax algorithm (PPAM) allows

Algorithm 3 Privacy-preserving Classification-based Infection

Analysis Algorithm

1: Input: (Enc(x1), ·,Enc(xn)) from H
2: Output: i∗
3: H form a vector x = (x1, x2, · · · , xd) ∈ Zd containing ub’s collected

health data related to immunity strength ISb and u∗
a’s infectivity IFa

(measured by hospital), contact duration and contact type with the patient
u∗
a, i.e., Da,b and STa,b which are queried from SC.

4: HC sends EncT (P ∗(i)) and EncT (P j
i (x)) (for all possible x in each

feature), which are sent to H .
5: H re-encrypts EncT (P ∗(i)) and EncT (P j

i (x)) to EncHC(P ∗(i)) and

EncHC(P j
i (x)).

6: for i = 1 : k do
7: H computes EncHC(Probi) = EncHC(P ∗(i)) +

d∑

j=1
EncHC(P j

i (xj)).

8: end for
9: H runs the PPAM with HC. H obtains i∗ = argmaxProbi.

HC to output the index of the largest value of x1, · · · , xn

encrypted under H’s secret key. The PPAM can achieve: 1)

H can only learn the index of the largest value but learn

nothing else; and 2) H cannot learn the order relations between

xi and xj . The detailed steps of PPAM are illustrated in

Algorithm 3. First, HC adopts a random permutation π to

prevent H from learning the order of {x1, · · · , xn}. With π,

HC has EncH(x′
i) = EncH(x′

π(i)). H runs PPC with the

result bi in each iteration (totally n iterations), where bi = 1
if Max � aπ(i); otherwise, bi = 0. In each iteration, H can

randomize the encryption after determining the maximum of

the compared two values. A “refresh” algorithm is introduced

to randomize ciphertexts of homomorphic encryption [18]. If

the “refresher” knows the secret key, it decrypts the ciphertext

and re-encrypts it; otherwise, it multiplies a ciphertext of

0. This “refresh” algorithm is implemented by using re-

encryption of homomorphic encryption.

iii) Privacy-preserving Classification-based Infection
Analysis (PCIA)

In the privacy-preserving classification-based infection anal-

ysis (PCIA) method, H and HC computes user ub’s infec-

tious status according to a training set (model) which can

be obtained from the ground truth data (in medical center,

institution or government). The training process follows [36].

This training set is encrypted by medical health center (T )

and stored in HC for classification. T grants the hospital H
the authorization of computation between HC and H . This

authorization is enabled by re-encryption of homomorphic

encryption. The re-encryption key R̃KT→HC is assigned to

H and allows H to transfer T ’s ciphertext to HC’s domain.

Since the input of homomorphic encryption is integer, the log

of probability should be converted to integer by multiplying a

constant Δ. For simplicity, let P ∗(i) = �Δ logProb(C = ci)	
and P j

i (x) = �Δ logProb(Xj = x|C = ci)	 where x ∈ Dj

the domain of xj . The detailed steps are as follows.

In summary, the PIA provides a privacy-preserving comput-

ing framework not only for hospital to analyze the infection s-

tatus within the contacted population but also prevent (infected

and susceptible) user’s sensitive information from disclosing.

9
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6 PRIVACY DISCUSSIONS

In this section, we discuss the privacy features of the PIA

according to the design goals in Section 3.

6.1 Health Data Privacy
We discuss the health data privacy of the PIA in the storage

and processing phases. When the health data is stored in HC,

a user Ui’s health data hi is invisible to HC due to sematic

security of homomorphic encryption [25]. In other words, any

adversary holding only the public key and ciphertext of hi

cannot learn any information about hi. Before sending to

HC, hi is encrypted with Ui’s public key. Under the honest-

but-curious model, HC cannot decrypt or infer hi without

having Ui’s secret key if the ring learning with error (RLWE)

assumption holds. The RLWE assumption is that to distinguish

the following two distributions is infeasible. The distributions

are: 1) a uniform sample (ai, bi) ∈ R2
q ; 2) another sample

(ai, bi) ∈ R2
q where we uniformly select s ∈ Rq , then

uniformly sample ai ∈ Rq and ei ∈ χ to have bi = ai · s+ ei.
Before the infection analysis, HC re-encrypts Enci(hi) with

R̃Ki→H which is the homomorphic re-encryption key to H’s

domain. Similarly, HC still cannot obtain H’s decryption key

to know hi. Meanwhile, the infected patient’s infectivity and

identity is also encrypted in the ciphertext with H’s encryption

key. The infected patient’s health information is invisible to

HC.

In the naive Bayesian classification, each entity’s view dur-

ing the execution and interaction can be simulated according to

his input and output. In other words, each entity cannot learn

anything except its inputs and outputs, i.e., each party’s views

generated by a simulator are computationally indistinguishable

to his views from the protocol. We show that the PPC, PPAM

and PCIA protocols are secure under the honest-but-curious

model.

In the PPC protocol, HC’s real view is viewHC =
(EncH(x),EncH(y), l,PKH , pkH , r,QEH(u),QEH(θl)).
We can also build a simulator for HC

where the simulator’s view is SimHC =
(EncH(x),EncH(y),PKH , pkH , r̃,QEH(θ̃l)). Due to

the semantic security of the adopted homomorphic encryption

scheme, the ciphertexts are indistinguishable. The random

number distributions are the same in the real view case

and simulation case such that viewHC and SimHC are

computationally indistinguishable. Meanwhile, H’s real view

is viewH = (SKH , skH , l,EncH(θ),QEHC(γ)). The view of

H’s simulator is SimH = (SKH , skH , l,EncH(θ̃),QEH(γ̃)).
As the random number r is selected by HC and θ = a + r,

θ and θ̃ have the same distribution such that they

are indistinguishable. Then, (QEH(θ),QEH(γ)) and

QEH(θ̃),QEH(γ̃) are also computationally indistinguishable.

H’s real view viewH and simulation view SimH are also

indistinguishable. Therefore, the PPC protocol is secure under

the honest-but-curious model.

In the PPAM protocol, HC’s real view is viewHC =
({EncH(xi)}i={1,··· ,n}, π,PKH , pkH ; {ri, si}i={1,··· ,n};
{EncH(vi),EncH(bi)}i={1,··· ,n}, π(argmaxi∈[n] xi)).
The simulator’s view of HC is SimHC =

({EncH(xi)}i={1,··· ,n}, π̃,PKH , pkH ; {r̃i, s̃i}i={1,··· ,n},
{EncH(ṽi),EncH(b̃i)}i={1,··· ,n}; argmaxi∈[n] xi). Since

the distributions of ri, si and r̃i, s̃i are the same, they

are indistinguishable. Due to the semantic security of the

homomorphic encryption scheme and the PPC protocol,

EncH(vi),EncH(bi) and EncH(ṽi),EncH(b̃i) are also

indistinguishable. In addition, π and π̃ are selected by HC

such that they are indistinguishable. Therefore, viewHC

and SimHC are indistinguishable. On the other hand,

H’s real view is viewH = (SKH , skH ; {bi}i={2,··· ,n};
{EncH(m′

i),EncH(xi)}i={2,··· ,n}). The view of H’s

simulator is SimH = (SKH , skH ; {bi}i={2,··· ,n};
{EncH(m̃′

i),EncH(x̃i)}i={2,··· ,n}) Since the permutation

π is a mapping function without changing the order of

{xi}i={1,··· ,n}, bi does not change as well. As ri, si are

randomly selected by HC, EncH(m′
i) and EncH(m̃′

i)
are indistinguishable. Finally, H’s real view viewH and

simulation view SimH are indistinguishable. Therefore, the

PPAM protocol is secure under the honest-but-curious model.

In the PCIA protocol, HC cannot view anything other than

the inputs since the PPC and PPAM protocols are both secure

under the honest-but-curious model. H’s real view is viewH =
(SKH , skH , {xi}i={1,··· ,n}; {EncH(P j

i )}i={1,··· ,n};j={1,··· ,d},

EncH(P ∗), i∗). The view of H’s simulator is SimH =

(SKH , skH , {xi}i={1,··· ,n}; {EncH(P̃ j
i )}i={1,··· ,n};j={1,··· ,d},

EncH(P̃ ∗), ĩ∗). Due to the semantic security of the

homomorphic encryption scheme, PPC and PPAM protocols,

viewH and SimH are indistinguishable. Therefore, the PCIA

protocol is secure under the honest-but-curious model.

6.2 Social Data Privacy

User’s social contact information CI(i, j) is encrypted by Ui

with his public key. Without Ui’s secret key, SC cannot decrypt

and have the plaintext if the decisional Diffie-Hellman problem

is hard in G. Therefore, when the social data are stored on SC,

no private information of users can be disclosed to SC.

As the hospital H is an honest-but-curious entity in social

domain, it follows the protocol without maliciously querying

user’s social data in SC. Furthermore, the diagnosis from

the hospital provides the second-level decryption key for the

hospital to decrypt the plaintext of Ui’s social contact informa-

tion. Users are able to grant social contact information access

permission by issuing re-encryption key R̃Ki→H to allow SC

to re-encrypt CI(i, j) to the hospital’s domain. Without the

permission, the hospital still cannot decrypt to have CI(i, j),
even though it can obtain the query results from SC. Note

that re-encryption is unidirectional such that the users cannot

recover the hospital’s secret key to decrypt other user’s social

information. The infected patient’s identity is also protected

against HC during infection analysis. Therefore, the patient’s

identities and contact information, including contacted users

and duration, are protected against SC. The hospital can only

obtain user’s social contact information after he is diagnosed

as infected.

10
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6.3 Privacy of Patient and Susceptible User

Susceptible user’s identity and analysis results can be invisible

to HC, SC and any other unauthorized entities. When a

patient is diagnosed, the hospital H sends social data query

request to SC. During the social data query process, SC learns

nothing except that n users are involved in the hospital’s

query request. But SC cannot know which one user (or k-of-

n users) can be queried if PPDQ method is semantic secure

under the honest-but-curious model. We show the semantic

security of PPDQ method as follows. H’s query request

Query(i, d, s) and query result Q.Result(CLi) are privacy-

preserving against SC because the adopted homomorphic

encryption scheme and ElGamal cryptosystem are semantic

secure under the honest-but-curious model. Without the secret

key, Query(i, d, s) and Q.Result(CLi) are invisible to SC.

SC’s real view is viewSC = (EncH(d),EncH(I); ry(1 �
y � ω),EncH(φ)). The simulator’s view of SC is SimSC =

(EncH(d),EncH(I); r̃y(1 � y � ω), ˜EncH(φ)). Since the

distributions of ry and r̃y are the same, they are compu-

tational indistinguishable. Due to the semantic security of

the homomorphic encryption scheme and the PPC protocol,

EncH(φ) and ˜EncH(φ) are also indistinguishable. Therefore,

SC’s real view viewSC and simulation view SimSC are

indistinguishable. The identity query vector I can bound the

maximum number of H’s queried users. H can decrypt the

valid result only if
n∑

i=1

EncH(Ii)− EncH(1) = 0. Therefore,

the PPDQ is secure under the honest-but-curious model. PPDQ

can be secure performed between HC and H when H retrieves

users’ health data from HC.

Only infected patients grant social data access to H after

they are diagnosed in the hospital. Then, the infected patient’s

decryption key for his re-encrypted ciphertexts is sent to H
such that H can decrypt patient’s social data after the query.

If H arbitrarily builds identity query vector I , H cannot find

any valid information due to the semantic security of ElGamal

cryptosystem.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the PIA with

respect to simulation and computational overhead.

7.1 Simulations

We conduct extensive simulation based on Infocom06 data set

[38], which contains 78 mobile users in a conference. Each us-

er takes a portable device with Bluetooth proximity discovery

program to find the nearby users. The social-tie (used to reflect

contact type) is also obtained according to user’s interactions

in the data set. We use this scenario to simulate the infectious

disease spread under an indoor environment. In this simulation,

we randomly select 8 infected patients with a random assigned

infectivity value ranging from 50 to 100. We also set user’s

immunity strength similarly in the range of [50, 100].
In the simulation, we aim to show the trend of the social

characteristic impact other than quantifying the formula be-

tween immunity strength and infectivity. The hospital or users

can define thresholds to trigger queries, where we consid-

er the thresholds of contact number NC, contact duration

D and social-tie ST as shown in Fig. 6. From Fig. 6(a),

we can see that the number of queries decreases with the

increasing threshold contact number. When NC is small,

e.g., 20 or 30, more queries are triggered since the PIA

provides a conservative strategy to include more queries. As

shown in Fig. 6(b), the decreased duration threshold results

in the increasing number of queries since the longer contact

between the infected patient and normal users could increase

the infection risk of the normal users. In Fig. 6(c), the PIA

operates with a conservative strategy as ST is small. But the

number of queries does not vary too much when ST is from 20
to 40. The reason is that a higher social-tie in a certain range

(e.g., in a low level from 20 to 40) may not indicate frequent

contacts which are the key factor to accumulate the infection

spread [2]. When ST keeps increasing, it shows significant

impact on the number of queries. This result also validates

the point from [2] that the social relationship is an important

factor to influence the spread process of infectious disease

and the close relationships (e.g., students in the same class, or

families) may cause severe infection spread. By adjusting ST ,

the PIA can efficiently notify the people with high social-ties

to take actions to prevent the infection spread from human-to-

human contact. Therefore, the above results validate the trend

in Eqn. 1 and show that the PIA is effective in responding to

the spread of infectious disease.

7.2 Computational Performance

We use the acute inflammations data set [46] including 120
instances with attributes (i.e., patient’s temperature, lumbar

pain, urine pushing, micturition pains, urethra status) and

corresponding decisions (i.e., inflammation of urinary bladder,

and nephritis of renal pelvis origin). We first test the accuracy

of the PIA. The total 59 instances with inflammation of urinary

bladder and 50 instances with nephritis of renal pelvis origin

are all detected. But the PIA detects 47 non-inflammation

instances and 59 non-nephritis ones. The accuracy towards

individual decision is 88.33% and 90.83%, respectively.

To demonstrate the advantages of using social data for

infection analysis, we generate a data set including the contact

information from the real world human trace and synthetic

health data. In this data set, each instance contains: con-

tact duration, social-tie, immunity strength, infectivity and

infection status. According to [36], we use the 1/4 data set

(corresponding to the first day of the conference) to label

the training set including 100 instances. We generate 200
input instances with the randomly selected health data (i.e.,

immunity strength, infectivity and infection status according

to [36]) for a baseline classification scheme that only has

health data to analyze the infection status. Note that we only

label “Susceptible” and “Recovered” in the infection status

since we focus on the analysis of infection spread. Meanwhile,

we generate 200 instances including contact information from

the other 3/4 data set of the real world human trace and the

same health data used in the baseline classification scheme.

In the 200-instance data set, the number of “Susceptible”
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Fig. 6. Impact of Social Characteristics

TABLE 1
Infection Analysis Comparison

PIA Baseline Scheme

“Susceptible” 103/120 (85.83%) 71/120 (59.16%)

“Recovered” 73/80 (91.25%) 62/80 (77.5%)

Overall 176/200 (88%) 133/200 (66.5%)

and “Recovered” is 120 and 80, respectively. As shown in

Table 1, the PIA detects 103 “Susceptible” instances and 73
“Recovered” ones, while the baseline scheme detects 71 and

62. Therefore, the integrated social data has the advantages of

analyzing infection spread.

With respect to the computational cost of PCIA, we con-

duct the experiment under a homomorphic encryption library

HELib [47] on an Intel Core i5 2.7GHz machine with 4GB

RAM to test the computational running time of the proposed

methods based on Infocom06 trace. It achieves 80 bits of

security with the parameter settings. To mimic the real network

environment, we set the communication overhead as 30ms

during each interaction of different entities (similar to [18]).

In the PPC, H takes 42.94 ms, while HC takes 65.674 ms.

In the PPAM, H takes 6.350 s, while HC takes 12.741 s. To

perform the PCIA, H takes 7.016 s, while HC takes 24.282 s.

Therefore, we can see that HC takes over the majority of the

computational overhead since HC has powerful computational

capability. The overhead for H is not high, compared with

[18] in Table 2.

We also test the running time of the PPDQ with HELib and

Crypto++ [48]. We set l = 1024, ω = 10 and n = 78. H
takes 329.234 ms to generate the query to SC and retrieve the

results, while SC takes 6.487 s to return the query results. The

majority of computational overhead is at the SC side.

8 CONCLUSIONS

In this paper, we have proposed a human-to-human infection

analysis approach by utilizing social network data and health

data to enhance infection analysis without privacy leakage.

First, we have analyzed the infectious disease spread process

and adopted naive Bayesian classification to detect user’s

infection status. Furthermore, we have exploited social cloud

server to collect users’ social networking data, and relied

on health cloud server to process/classify users’ health data.

We have proposed a privacy-preserving data query method

to enable hospital to query infected patient’s social contacts

without allowing the social cloud server to infer the patient’s

identity and contact details. We have also proposed a privacy-

preserving classification-based infection analysis method to

perform infection analysis over the encrypted social and

health data on the health cloud server. Performance evaluation

demonstrates that the PIA can enhance infection analysis

efficiency with acceptable overhead. For the future work, we

will develop deep learning algorithms for the PIA to perform

the comprehensive analysis.
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