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Abstract—A vehicle-to-vehicle (V2V) energy swapping strategy
can provide an alternative fast charging way for gridable electric
vehicles (GEVs) to relieve the charging overload problem in the
power system during peak-demand hours. The main challenges
in designing an efficient V2V energy swapping strategy are i)
to stimulate mobile GEVs to participate in an energy swapping
transaction that balances supply with demand at aggregators,
and ii) to achieve optimal energy utilization and individual GEVs’
profits. In this paper, we present a novel smart grid architecture
with enhanced communication capabilities for mobile GEVs,
via a heterogeneous wireless network-enhanced smart grid. We
propose an online V2V energy swapping strategy based on
price control. Specifically, mobile GEVs with surplus energy are
motivated by getting paid to contribute to a V2V energy swapping
transaction at aggregators with energy-hungry GEVs. To evaluate
the performance of the proposed V2V energy swapping strategy,
a realistic suburban scenario is developed in VISSIM to track the
GEVs’ mobility using the generated simulation traces. Extensive
simulation results are given to demonstrate the efficacy of the
proposed V2V energy swapping strategy.

I. INTRODUCTION

Electric vehicles (EVs) represent an effective approach
for sustainable and eco-friendly transportation systems. In
addition, EVs have great potential to save thousands of dollars
for drivers across the vehicle lifetime [1]. The widespread
adoption of EVs in the transportation system results in prob-
lems for charging EVs which are fully reliant on rechargeable
batteries. A major challenge is the overloading problem of the
power system, since EV loads is the burden on the existing grid
assets resulting in higher system peak and overload, especially
at the distribution system level [2]- [4]. The problem is more
critical for the fast charging since it requires much higher
power than the regular charging. Therefore, to avoid pow-
er system overload during peak-demand hours and improve
energy utilization without additional deployment costs, load
management strategies are applied to efficiently distribute the
EV charging load. Several works in literature [5], [6] have
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investigated coordinated charging strategies for EVs, where
EVs obtain energy from charging stations via grid-to-vehicle
(G2V) transfers. However, G2V is restricted by the technical
limitations of the power system when the charging demand
is very high. Thus, more efficient and economical charging
approaches should be explored.

In literature, gridable EVs (GEVs) represent EVs with
bidirectional chargers [7], which enable the energy delivery
from EVs to the grid through vehicle-to-grid (V2G) discharg-
ing. Moreover, through bidirectional chargers, the discharged
energy from some GEVs can be used for charging other GEVs,
referred to as vehicle-to-vehicle (V2V) energy swapping in this
paper [7]. As shown in Fig. 1, the V2V energy swapping can
be performed via interaction among GEVs. Specifically, ener-
gy can be directly transferred among GEVs at an aggregator
[8], which is connected to the smart grid and controlled by the
grid operator, to offload the heavy power demands. Through
V2V energy swapping, the charging efficiency of GEVs can
be improved with simple infrastructure requirements.

To the best of our knowledge, there is a lack of re-
search work to investigate charging/discharging coordination
strategies for mobile GEVs in a V2V scenario. However,
such a model is very useful for mobile GEVs (e.g., electric
taxis/buses) that may require charging while on the road or
may seek revenues by assisting in charging other GEVs.
Unlike conventional coordination strategies, a V2V strategy,
besides coordinating charging for the GEVs that need energy,
should motivate discharging of the GEVs with surplus energy.
In the presence of a set of aggregators in the power grid,
spatial and temporal charging/discharging coordination can
be implemented for mobile GEVs, due to the spatial and
temporal fluctuations associated with charging demands and
discharging offers at different aggregators. Through spatio-
temporal coordination, the total supply and demand can be
matched. Moreover, for mobile GEV charging/discharging, the
assigned aggregators must be within the range of individual
mobile GEVs given the GEV’s current locations and battery
energy levels, due to the tension between the available energy
in battery and energy required to reach an aggregator, which
is referred to as range anxiety.

In this paper, we aim to employ the real-time information
of mobile vehicle locations and available energy to design an
efficient spatio-temporal coordinated V2V energy swapping
strategy. The main contributions of this paper are:

• A heterogeneous wireless network-enhanced smart grid
is proposed, by integrating vehicular ad-hoc networks
(VANETs [9]) and cellular networks (4G-LTE [10]), to
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Fig. 1: Illustration of V2V energy swapping framework in
the smart grid.

enable efficient collection of vehicular information and
dispatch of the charging/discharging decisions to GEVs
in a real-time manner.

• Based on the gathered information from both GEVs and
the power grid, the aggregators determine the energy price
for GEVs. The price control strategy is modeled as an
Oligopoly game [11] with competition among GEVs.

• Using the announced price, a mobility-aware spatio-
temporal coordinated V2V energy swapping strategy
is designed to enable energy exchange among GEVs
at the aggregators. The proposed strategy is modeled
as a time-coupled mixed-integer non-linear program-
ming (MINLP), which is decoupled into a series of
sub-MINLPs through Lagrange duality [12]. Each sub-
MINLP is further solved by the branch-and-cut-based
outer approximation (BCBOA) algorithm [13].

• Extensive simulations are conducted to evaluate the per-
formance of the proposed GEV energy swapping strategy.
A realistic suburban scenario is developed in VISSIM
[14], from which simulation traces are extracted.

Such a bidirectional energy swapping principle is not well
studied in literature, and further investigation is required on
optimal strategy design for joint fast charging and discharging
of mobile GEVs from a game theoretic perspective. By consid-
ering the energy-excessive GEVs to supply the energy-hungry
GEVs, our work finds an alternative and promising way to
release the pressure on the power grid caused by peak-time
GEV charging demands. The obtained results should shed the
light on strategy designing for GEV fast charging/discharging
in eco-friendly transportation systems as well as the economic
interplay modeling between smart grid and individual GEVs.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. The system model is
presented in Section III. In Sections IV and V, the coordinated
V2V energy swapping problem is formulated and solved,
respectively. Section VI demonstrates the proposed strategy
performance by computer simulations. Section VII concludes
the paper. Mathematical proofs are given in the Appendix.

II. RELATED WORK

In literature, several works have reported coordinated charg-
ing strategies of EVs. In [5], [6], [8], [15], [16], based on the
collected information from the grid, the charging decisions
are taken to improve the utilization of the power grid. All
these works are designed for parked EVs, however, for mobile
EVs, such decisions may cause a conflict between the system
technical limitations and driver preferences, due to the range
anxiety problem. For instance, some EVs can be charged only
in the given nearby stations due to the existing battery levels
and locations. However, the EV charging requests might be
blocked due to the high charging loads present at the stations.

Through V2V transactions, high power demands can be
offloaded from the power system to GEVs with excess energy
to improve the GEVs’ charging efficiency. Our objective is
to design a mobility-aware V2V energy swapping strategy for
mobile GEVs, with real-time vehicle information collection
and decision dissemination through either cellular networks or
VANETs. Our preliminary works [17] have investigated this
problem by considering a single aggregator system without
spatial coordinations. Another preliminary work [18] has pro-
posed the basic idea to include the spatial coordination into the
swapping strategy design. Building upon [17] and [18], this
paper incorporates the spatio-temporal coordinations of the
mobile GEVs into the optimization framework and describes
the details of the proposed strategy.

III. SYSTEM MODEL

In this section, first the heterogeneous wireless network and
the transmission mechanism are introduced, leading to the het-
erogeneous wireless network-enhanced smart grid. Then, the
power system model and individual GEV charging/discharging
models are presented. In addition, the electricity price model
is described. Finally, an overview of the proposed energy
swapping strategy is shown.

A. Heterogeneous Wireless Network

To collect the information required by the energy swapping
strategy in a real-time manner, the existing literature relies on
cellular networks (e.g., GSM, 3G, LTE, etc.) [10], due to the
large coverage area of base stations (BSs). However, as cellular
systems are not dedicated for vehicular data collection, the
associated cost will be very high, and may lead to numerous
congestion for other cellular services.

VANETs, dedicated to vehicular communications, can be
used for real-time information collection by deploying road-
side units (RSUs) and equipping vehicles with on-board
communication facilities (e.g., on-board units (OBUs)). Two
communication modes can be adopted, namely, vehicle-to-
RSU (V2R) communications and vehicle-to-vehicle (V2V)
communications1. Designed for information exchange among
highly mobile vehicles, the vehicle information collection in
VANETs is made cheaper than that in cellular networks, with
the adoption of the draft standard IEEE 802.11p [9] (DSRC).

1In this paper, the term V2V is used in two different contexts, namely,
for communications among vehicles over VANETs and for energy swapping
among GEVs, respectively.
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However, VANETs may suffer from intermittent disconnec-
tions due to the short-range V2V and V2R communications.

In this paper, cellular networks and VANETs are integrated
into an heterogeneous wireless network to deliver messages for
energy swapping. More efficient methods for message delivery
can be deployed in the heterogeneous communication network
that assumes low deployment and operation costs.

B. Transmission Mechanism in the Heterogeneous Wireless
Network

Efficient GEV energy swapping strategies must be designed
to consider real-time vehicle information (e.g., current loca-
tions, battery energy levels, drivers’ behaviors, and charging
abilities, etc.) in order to address the range anxiety problem
and incorporate spatial coordination. To collect the informa-
tion required by the energy swapping strategy in a real-time
manner, cellular networks and VANETs are integrated into a
heterogeneous wireless network (HetNet) to deliver messages.

Based on the heterogeneous wireless network, a GEV
resorts first to the VANET for data transmission (either in V2V
or V2R mode) when the connectivity probability in VANETs
is estimated to be larger than a predefined threshold Γ, e.g.,
Γ = 0.8. The connectivity probability in VANETs can be
estimated from the collected vehicle information and RSU
deployment. As an example, the connectivity probability can
be calculated based on vehicle density, vehicle mobility model,
RSU deployment, etc [18]. The connectivity probability in
VANETs can increase with 1) a surge in vehicle mobility
parameters since an increased velocity reduces the average
number of hops in a multihop VANET transmission link; 2)
an expansion of vehicle density which may provide more
opportunities to establish a successful V2V/V2R transmission;
and 3) a rise in the transmission range and number of RSUs
which provides more opportunities for V2R.

In the case that the estimated connectivity probability
through VANETs is less than the threshold Γ, the GEV then
relies on the cellular network for data transmission. Hence, the
proposed architecture benefits from the VANET low transmis-
sion cost and relies on the cellular network only in case of poor
V2V/V2R connections to guarantee successful information
transmission. The proposed communication mechanism helps
to relieve possible congestions induced by GEVs transmissions
into the cellular network.

For analysis simplicity, in the link layer of VANETs, we
consider an ideal medium access control (MAC) protocol.
As one vehicle moves into the coverage area of an RSU,
the RSU is able to schedule time slots for V2R transmission
without collisions. In the proposed energy swapping strategy,
the transmitted data packet size can be small. If the link
data rate of a V2V or V2R transmission is considered to be
constant, the contact duration between each transmission pair
(e.g., V2V or V2R) is considered long enough to accomplish
one packet delivery by appropriately setting the packet size.

C. Heterogeneous Wireless Network-Enhanced Smart Grid
Fig. 2 shows the proposed HetNet-enhanced smart grid

architecture, consisting of a power distribution system, aggre-
gators, RSUs, a base station (BS) of the cellular network, and
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Fig. 2: HetNet-enhanced smart grid.

mobile GEVs. The power distribution system supplies energy
to the whole network through power feeders/connection points
(i.e., transmission lines). The set of connection points in the
power grid is denoted as B.

A set of aggregators is located in the network and connected
to the power grid via transformers to a set of connection points
A (A ⊂ B). The aggregators provide fast-charging/discharging
for GEVs via V2V energy swapping [19]. Aggregators are
controlled by the grid operator, to offload the heavy power
demands. The aggregators are not only the infrastructure for
charging/discharging but also the market organizer to make
the price updates in our work. Time is partitioned into periods
with equal duration τ . At the beginning of each period, through
the remote terminal units (RTUs) readings, the maximal power
that can be connected at aggregators is estimated in advance,
i.e., the load/supply capacity of an aggregator which is denoted
by Ca for the aggregator on connection point a (i.e., Ba ∈ B).
The aggregators manage the energy price uk in period k for
GEVs based on the load capacities, the collected GEV charg-
ing/discharging profiles (i.e., the maximum charging requests
PD or discharging offers PS), and their current locations.

RSUs are deployed along the roads, denoted as the set
R, to collect the GEV charging/discharging information (e.g.,
individual maximum charging requirements/discharging capa-
bilities of GEVs and their current locations) through V2R
transmissions in VANETs. A BS is also deployed in the
network to support the cellular communications with portable
transceivers in the GEVs. RSUs and the BS can relay the
collected GEV information to aggregators based on wired
connections, to determine the electricity price in order to
balance energy demands and supplies. Thereafter, when the
RSUs/BS receive the energy price from the aggregators, they
relay the price to GEVs through the HetNet so that vehicles
can make energy swapping decisions.

The set of mobile GEVs is denoted as V. GEVs may need
to be charged/discharged when moving along roads across the
network. The set of GEVs that need to be charged is denoted
by D (D ⊂ V) and is referred to as demanding GEVs, and the
set of GEVs supplying electricity is S (S ⊂ V) and referred to
supplying GEVs. The mobility of each GEV can be described
by two random variables (M,N) [20], where M represents
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the GEV velocity which takes two possible state values (i.e.,
a lower velocity mL and a higher velocity mH ), and 1/N
stands for the transition rate between these two velocity states.
Such a model can describe the realistic driving behaviors, e.g.,
a driver usually travels at one speed for a while and then
changes to a higher/lower speed depending on his/her will
and/or road conditions. Moreover, under this mobility model,
vehicles are considered to move independently [21] and the
headway distance2 follows the exponential distribution with
rate ζ [22] when the vehicle density is low or medium (e.g,
no larger than 30 vehicle/km/lane).

The charging/discharging decisions of individual GEVs in-
clude the charging/discharging rate of GEV v at the aggregator
on connection point a (i.e., Ba) in period k (denoted as P v,a,k)
and the charging/discharging indicator (denoted as Iv,a,k).
If GEV v will be charged/discharged at the aggregator at
connection point Ba in period k, Iv,a,k is set to 1, otherwise it
is set to 0. If GEV v is to be charged, the charging load P v,a,k

is expressed as P d,a,k (d ∈ D); otherwise, the discharging
power P v,a,k is expressed as P s,a,k (s ∈ S).

D. Power System Model

In general, the power system is composed of generation,
transmission, distribution systems and customers. In this work,
the aggregators are located in the distribution systems. As
a case study, we consider a one-line diagram with multiple
connection points (e.g., 12-connection point system) as a
distribution system, as shown in Fig. 3, which can be extended
directly to the larger system. To make the case study more
appropriate, the considered 12-connection point system is
connected to the feeder through a step down transformer.
Transformers are in general highly efficient, and large power
transformers (around 100 MVA and larger) may attain an
efficiency as high as 99.75% [23]. In this work, the loss at
transformer will not be considered in the problem formulation.
Such an approximation has been applied in [24], [25].

Electricity price update is performed at the aggregators
based on the collected GEV charging/discharging profiles
and the load capacities of aggregators. There exist not only
temporal fluctuations in the load capacity of each distribution
feeder but also spatial fluctuations in the load capacities among
different distribution feeders at the same time.

Fig. 3 shows the power system model as a one-line diagram
with multiple connection points (e.g., 12-connection point
system), which is abstracted from Fig. 2. The power system is
supplied through the substation at the generation connection
point. The set of aggregators A is located in the network at load
connection points (∈ B), e.g., B2 and B11, respectively. Each
aggregator is connected to the grid via a standard single-phase
alternating-current (AC) connection [6]. The total charging
demand (or discharging power) of GEVs at the aggregator
on connection point Ba in period k is denoted as P a,k

D (or
P a,k
S ). If the total discharging power cannot cover the total

charging demand (i.e., P a,k
S < P a,k

D ), the additional GEV
power demand is drawed from the power grid at Ba in period

2In this paper, the headway distance is defined as the distance between two
neighboring vehicles in the same lane.
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Fig. 3: Single line diagram of the system under study.

k, and is given by P a,k
L = P a,k

D − P a,k
S , which is subject to a

load-capacity constraint Ca due to the thermal limit of service
cable or current rating of fuse [6]. On the other hand, when
the total charging power is less than the possible discharging
power, there is no additional load at this aggregator in the
power grid, i.e., P a,k

L = 0. Moreover, no additional power
will be injected into the power grid.

The voltage drop between any two neighboring connec-
tion points, e.g., connection point i (e.g., B1) and con-
nection point j (e.g., B2), in period k is Vi,k − Vj,k =
(Pij,k−(P j,k

D −P j,k
S ))·rij+Qij,k·xij

Vj,k
, i, j ∈ B, where Vi,k and Vj,k

are the voltages at Bi and Bj in period k; Pij,k and Qij,k are
the active and reactive power flows from Bi to Bj in period k,
respectively [26]. As aforementioned, P j,k

D − P j,k
S represents

the power load added to connection point j. Here, rij and
xij are the real and imaginary part of the impedance of the
feeder line i-j [26]. Per unit, the power flow equation can be
approximated as:

Vi,k − Vj,k = (Pij,k − P j,k
L ) · rij +Qij,k · xij . (1)

Since all the voltages of the connection points should be within
a certain range [26], the voltage magnitude at Bj in period k
is bounded by both lower and upper limits, V min

j,k and V max
j,k ,

respectively, i.e., V min
j,k ≤ Vj,k ≤ V max

j,k . Thus, based on the
power flow equation (1) and the voltage limits, the total power
supply from the power grid to a GEV aggregator a in period k
at connection point a, i.e., P a,k

L , can be calculated and bounded
by the load capacity of the feeder in period k, Ck

a [6],

P a,k
L ≤ Pia,k − Vi,k−Vmax−Qia,k·xia

ria
= Ck

a (2)

where Vi,k, Pia,k, and Qia,k can be found from RTU readings.

E. GEV Charging/Discharging Models

For a mobile demanding (or supplying) GEV, the charging
load of GEV d (∈ D) (or discharging power of GEV s (∈ S)) at
aggregator a (∈ A) in period k, i.e., Pd,a,k (or Ps,a,k), should
be within a certain range due to the GEV charger output (input)
power constraint [28], i.e.,

0 ≤ Pd,a,k ≤ Pmax
d,a,k and 0 ≤ Ps,a,k ≤ Pmax

s,a,k (3)
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where Pmax
d,a,k (or Pmax

s,a,k) is the upper bound of the charging
load Pd,a,k (or discharging power Ps,a,k). If GEV d (or s)
does not plan to get charged (or discharged) at aggregator a
in period k, i.e., Id,a,k = 0 (or Is,a,k = 0), the charging load
of GEV d (or discharging power of GEV s) at aggregator a
in period k is 0,

Pd,a,k

Pmax
d,a,k

≤ Id,a,k and
Ps,a,k

Pmax
s,a,k

≤ Is,a,k. (4)

A GEV can be dispatched to at most one aggregator in one
period. Charging (discharging) indicator Id,a,k(Is,a,k) satisfies∑

a∈A
Id,a,k ≤ 1 and

∑
a∈A

Is,a,k ≤ 1; Id,a,k, Is,a,k ∈ I = [0, 1] ∩ Z

(5)
where Z is the integer set. And∑

k

∑
a∈A

Id,a,k ≤ Imax
D and

∑
k

∑
a∈A

Is,a,k ≤ Imax
S , (6)

where Imax
D (or Imax

S ) is the upper bound of the total charging
(or discharging) times for a demand (or supply) GEV within
all the considered periods, since frequent charging (or dis-
charging) may result in GEV battery damage [27]. Then, the
total charging load (or discharging power) of demanding (or
supplying) GEVs P a,k

D (or P a,k
S ) at aggregator a in period k is

P a,k
D =

∑
d∈D

Pd,a,k (or P a,k
S =

∑
s∈S

Ps,a,k). The total charging

demand (or discharging power) of the whole network in period
k is P k

D =
∑
a∈A

P a,k
D ( or P k

S =
∑
a∈A

P a,k
S ).

F. Electricity Price Model

As shown in Fig. 4, based on the collected GEV profiles
(e.g., charging requirements PD and discharging capabilities
PS) by the HetNet, aggregators specify the electricity price.
Two cases can be distinguished for price decision:

• High demand case: If the collected PD is larger than PS
in period k, the electricity price in period k, i.e., uk

′, is
determined based on the amount of GEV energy supply
(i.e., P k

S ), uk
′ = b1 − b2P

k
S , where b1 and b2 are the

positive coefficients of the linear price function [11]. The
supplying GEVs sell energy at price uk

′. In this case,
some GEVs with charging demands may be turned down
by V2V charging. Then, these GEVs may be served by
the power grid via G2V charging, following the current
electricity price in the power grid, e.g., uk

′′. Hence,
eventually, supply and demand matching is satisfied at
the aggregator. The final electricity price announced to
the demand side is the average price uk over both supply
parts (i.e., the supplying GEVs and the power grid), i.e.,
uk =

Pk
S

PD
· uk

′ +
PD−Pk

S

PD
· uk

′′.
• Surplus supply case: If PS is no less than PD in period

k, the electricity price is determined based on GEV
demands P k

D in period k. The energy price on the demand
side is uk = b1 − b2P

k
D, and the energy price on the

supply side uk
′ is equal to uk. In this case, some GEVs

with discharging capabilities may not be involved in the
V2V transaction, and eventually the supply and demand
matching is satisfied at the aggregator.

Once the aggregator has determined the electricity price, a
price control signal is delivered to GEVs via the HetNet.
Based on the received electricity price, GEVs will make their
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Fig. 4: Illustration of spatio-temporal coordinated V2V
energy swapping strategy based on price control.

charging/discharging decisions. Note that as shown in [11], a
linear price function among many possible price functions can
not only reveal the market competing philosophy but also take
advantage of the symmetry of the model. In addition, by this
linear function, the equilibrium does converge to a competitive
equilibrium. The parameter in the linear function (i.e., b1 and
b2 in our manuscript) should be decided or calculated by the
market operator based on the market situation, for instance,
the grid operator.

G. Overview on Proposed Energy Swapping Strategy

Efficient spatial coordination of mobile GEVs charg-
ing/discharging should account for the GEVs range anxieties,
otherwise, the batteries of demanding GEVs will be depleted
on their way to the aggregator and less revenues will be
achieved for the supplying GEVs. Hence, efficient GEV energy
swapping strategies must be designed to consider real-time
vehicle information (e.g., current locations and battery energy
levels) in order to address the range anxiety problem and
incorporate spatial coordination.

In summary, the proposed energy swapping strategy op-
erates based on the information exchange in two stages, as
shown in Fig. 4:

• Price update at the aggregators: To balance the power
demands and power supplies at the aggregators, the elec-
tricity price is updated based on the collected information,
which includes the historic remote terminal unit (RTU)
readings of the connection points at aggregators in the
power system and potential GEV charging/discharging
requests/offers. The RTU readings are gathered by the
aggregators through a wired connection, based on which
the charging load capacity constraints at the aggregators
can be estimated. The GEVs’ energy requests/offers are
collected from the vehicles via the heterogeneous wireless
network, based on which GEVs’ energy demand/supply
conditions can be estimated. Aggregators communicate
with each other via the wired connections to exchange
information regarding the total power demands and power
supplies to determine the electricity price.
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• Coordinated GEV charging/discharging decision mak-
ing: The aggregators broadcast the updated electricity
price to the GEVs, based on which the GEVs calcu-
late the optimal GEV charging/discharging decisions by
considering the range anxieties and the charging cost
or discharging revenues. The GEV charging/discharging
decisions include both the charging/discharging rate for
vehicle v at aggregator a in period k, Pv,a,k, and the
charging/discharging indicator, Iv,a,k, which equals 1 if
vehicle v is scheduled to charge/discharge at aggregator
a in period k, and equals 0 otherwise. The decisions are
in turn sent back to aggregators.

Once a charging/discharging decision is made, the decision is
available to the GEV global positioning system (GPS) device,
which will navigate the GEV to the assigned aggregator.

Here, the primary objective of the proposed V2V energy
swapping strategy is to prevent the grid from overloading
rather than to minimize the charging cost for demanding GEVs
first. Consider that at peak-demand time and when considering
the high demand case, neither V2V nor the power grid alone
can satisfy the target demand. In that sense, some GEVs rely
on V2V to get charged and the rest rely on the grid limited
capability at peak-load to satisfy its demand (if possible). On
the other hand, when considering the surplus supply case and
since the grid is again assumed to be at peak-demand time,
V2V alone can support all target demands and completely
offload this demand from the power grid.

Note that since it is not very possible to add additional
infrastructure or power lines in the power system to connect
the aggregators directly, aggregators are usually connected
to the existing distributed systems. Even assuming supplying
GEV has V2G capability, it cannot be guaranteed that all the
injected energy from V2G at one connection point (e.g., at
B2 in Fig. 3) can be utilized by the particular connection
point (e.g., the aggregator at B11 in Fig. 3), and thus the
total amount of charged energy by demanding GEVs may be
reduced compared to that through V2V energy swapping.

IV. PROBLEM FORMULATION

In this section, the power balance constraint, GEV charg-
ing/discharging constraints, and travel costs of GEVs are
explained. Finally, optimization problems are discussed.

A. Power balance constraint at the aggregator

For V2V energy swapping at the aggregators, the total
charging power is balanced with the total discharging power:∑

s∈S
Ps,a,k + P a,k

L =
∑
d∈D

Pd,a,k,∀a ∈ A. (7)

For the high demand case, since the supplied energy from
supplying GEVs cannot satisfy all demanded energy, electric
energy has to be drawn from the power grid. For the surplus
supply case, no extra energy is required from the power grid,
i.e., P a,k

L = 0.

B. GEV Charging/Discharging Constraints

The charging (or discharging) energy of each GEV should
be limited by its battery-capacity E, and the battery should

not be depleted on the way to the aggregator, i.e.,

0 ≤ Einit
d,k + (

∑
a∈A

∆P d,a,k − Ed,k
cost − Ek

cons(1−
∑
a∈A

Id,a,k)) ≤ E,

and

Es ≤ Einit
s,k + (−

∑
a∈A

∆P s,a,k − Es,k
cost − Ek

cons(1−
∑
a∈A

Is,a,k)) ≤ E,

(8)
where Einit

d,k (or Einit
s,k ) is the initial energy stored in GEV d

(or GEV s) in period k, and Ed,k
cost (or Es,k

cost) is the travel cost
for charging (or discharging) in period k for GEV d (or GEV
s) routing to aggregator a (see next subsection). Let Ek

cons

be the average energy cost of each GEV to keep moving
on the road if the GEV is not charged (or discharged) in
period k. The energy swapping duration in each period is set
to ∆ hours. For instance, if we consider a 30-minute energy
swapping duration for each period, ∆ = 0.5. Without loss
of generality, consider this charging (or discharging) duration
to be the same for all demanding (or supplying) GEVs. In
addition, after discharging, GEV s should keep a minimum
amount of energy Es at its battery to guarantee the expected
energy required to complete its own journey, after period k.

Hence, the charging (or discharging) cost cd,k (or cs,k) for
GEV d (or GEV s) with charging (or discharging) power∑
a∈A

∆ · Pd,a,k (or
∑
a∈A

∆ · Ps,a,k) in period k is

cd,k = uk ·
∑
a∈A

∆ · Pd,a,k + ud · Ed,k
cost +Wd + Td,k

and cs,k = us · (
∑
a∈A

∆ · Ps,a,k + Es,k
cost) +Ws + Ts,k,

(9)

where uk is the energy price in period k, as set by the aggre-
gator. Let us (ud) denote the preknown price at which GEV s
(GEV d) purchased its stored energy originally. The quadratic
battery wear cost function of charging GEV d [28] is defined as
Wd = e1(

∑
w∈W

∆ · Pd,a,k)
2 + e2(

∑
a∈A

∆ · Pd,a,k) + e3, where

e1, e2, and e3 are the coefficients of the function with
e1, e2, e3 ≥ 0. The quadratic battery wear cost function
for discharging GEV s can be determined to be Ws in the
same way as Wd. Based on the designed communication
mechanism, Td,k (or Ts,k) is the monetary cost of information
transmission for GEV d (or GEV s) in period k. When GEVs
use cellular networks to deliver the message, drivers have to
pay transmission fees; otherwise, Td,k = 0 (or Ts,k = 0) for
VANETs. Then, the revenue Rs,k of the supplied GEV s is

Rs,k = uk
′ ·

∑
a∈A

∆ · Ps,a,k − cs,k, (10)

where uk
′ is the energy selling price for supplied GEVs.

C. Travel Cost for GEVs and Range Anxiety

If the V2V strategy guides GEV v to be charged/discharged
in the next period k, then

∑
a∈A

Iv,a,k = 1. The travel time

spent on highways and local roads by GEV v from its current
position to an aggregator in period k is denoted as thyv,k
and tlcv,k, respectively. The travel time is affected by many
factors, including drivers’ behaviors (e.g., the driver prefers
highways/local roads, or avoids certain road segments, etc.),
working hours (rush hours may lead to traffic jam), and
traffic conditions (e.g., road gridlock and traffic congestion).
Using the GPS device, travel time could be estimated by
combining the preferred path information and the real-time
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traffic conditions collected from the heterogeneous network
[29]. Thus, the travel time of GEV v in period k for charging is
defined as thyv,k + tlcv,k =

∑
a∈A

[thy(Iv,a,k) + tlc(Iv,a,k)]·Iv,a,k,

where thy(Iv,a,k) (tlc(Iv,a,k)) denotes the actual time spent
on highway (local roads) if GEV v is scheduled to aggregator
a. Based on thyv,k and tlcv,k, we denote F (thyv,k, t

lc
v,k) as the travel

cost for GEV v in period k in terms of energy, where F (·)
is a linear non-decreasing function to measure the impact of
travel time on the travel cost [5]. The coefficients of the linear
function can be achieved based on statistics of the vehicle fuel
economics for highways and local roads, respectively. Due
to the range anxiety, the current stored energy Einit

v,k is no
less than F (thyv,k, t

lc
v,k); otherwise, the battery will be depleted

before the GEV reaches the destination, i.e.,

Ev,k
cost = F (thyv,k, t

lc
v,k) ≤ Einit

v,k . (11)

In our simulation, we consider a suburban scenario without
highways and use shortest path algorithm [29] and constant
traffic density in measuring the GEV range anxiety as a case
study. In addition, for demanding GEVs, the travel cost should
be no less than the charging energy, i.e.,

Ed,k
cost ≤ ∆× Pd,a,k. (12)

D. V2V Charging/Discharging Optimization Problems

Considering GEV discharging capabilities, charging de-
mands and energy price, our strategy is modeled as a time-
coupled Oligopoly game [11] and an MINLP in two cases:

• High Demand Case: When PS is less than PD, the
problem is solved in two steps. The first one is the price
decision making step where the electricity price is deter-
mined based on the supply side, P k

S . The supplying GEVs
compete for energy discharge based on an Oligopoly
game, to maximize the discharging revenues as

max
Ps,a,k,Is,a,k

∑
k
Rs,k, ∀s ∈ S

s.t., (3)− (6), (8), (11).
(13)

Thereafter, the optimal price uk
′∗ can be considered into

the total energy supplied from GEVs as P ∗
s,k = b1

b2
− uk

′∗

b2
.

The second step is the charging decision making step,
based on the specified price u∗

k =
Pk

S

PD
× uk

′∗ +
PD−Pk

S

PD
×

uk
′′ where uk

′∗ is the solution of (13) and uk
′′ is the

energy price of the power grid in period k. GEVs with
discharging demands aim to minimize total charging cost

min
Pd,a,k,Id,a,k

∑
k

∑
d∈D

cd,k

s.t., (2)− (6), (7), (8), (11), (12).
(14)

• Surplus Supply Case: When PS is no less than PD,
the electricity price is determined based on the demand
side, P k

D. In the price decision making step, GEVs with
charging demands compete for energy charging based
on a time-coupled Oligopoly game to minimize charging
costs min

Pd,a,k,Id,a,k

∑
k
cd,k, ∀d ∈ D

s.t., (3)− (6), (8), (11), (12).
(15)

The optimal price u∗
k can be obtained from the total

demanded energy by GEVs as P ∗
d,k = b1

b2
− u∗

k

b2
.

In the discharging decision making step, based on the
specified price, the GEVs with discharging supply aim to

maximize revenues, i.e.,
max

Ps,a,k,Is,a,k

∑
k

∑
s∈S

Rs,k

s.t., (3)− (6), (7), (8), (11).
(16)

V2V energy swapping relieves the peak-demand of GEV
charging in two folds. First, V2V energy swapping offloads
the peak charging demand from the grid to the aggregators
and exploits the excessive GEV energy to match the charging
demand. Second, when the total available energy from both
grid and supplying GEVs is still not enough to match the
peak charging demand (in extremely high demand case), to
prevent the grid from overloading, optimization problem (14)
determines: i) the optimal charging period (i.e., temporal
coordination) and rate for each demanding GEV to guarantee
that the load capacity constraints are not violated, and ii)
the optimal charging aggregator (i.e., spatial coordination)
while considering the GEV range anxiety and distributing
the demanding GEVs among all the aggregators as much as
possible. In this manner, the peak-hour load is shifted and the
spatial demand relocation is achieved.

Note that Equation (13) is the optimization problem of
each individual supply GEV to maximize its own revenues
during the Oligopoly Game. The Oligopoly Game is proven
in our work to have a Nash equilibrium that can maximize
the individual revenue for each supplying GEV. Even if a
supplying GEV discharge more energy than the amount given
in the equilibrium, it may get less revenue, which can be
evaluated in the simulation parts.

V. ONLINE SPATIO-TEMPORAL COORDINATED V2V
CHARGING/DISCHARGING STRATEGY

In this section, we derive the solutions of (13)-(16) to
design the coordinated V2V energy swapping strategy. We
only present the detailed methodology for the solution in the
high demand case as an example, and due to space limitations
we omit the mathematical details for the surplus supply case,
which follows the same procedure as the high demand case.

A. Price Decision Making in High Demand Case

Due to the objective function, the original problem
(13) is a time-coupled MINLP problem w.r.t period
k, thus being very complicated to solve. However, as
the only time-coupled constraint, i.e.,

∑
k

∑
a∈A

Is,a,k ≤

Imax
S , ∀s ∈ S, is linear, the original time-coupled

MINLP problem (13) can be first time-decoupled into
a series of sub-MINLPs through Lagrange duality [12],
L(Ps,a,k, Is,a,k) =

∑
k

Rs,k − λs[
∑
k

∑
a∈A

Is,a,k − Imax
S ], where

λs ≥ 0 is Lagrange multiplier associated with the sth inequal-
ity constraint

∑
k

∑
a∈A

Is,a,k ≤ Imax
S . Define Dk(λs) as

Dk(λs) = max
Ps,a,k,Is,a,k

{Rs,k −
∑
a∈A

λsIs,a,k}. (17)

Let the Lagrangian dual function D(λs) be the maximum
of the Lagrangian function L(·) over all Ps,a,k and Is,a,k,
we have D(λs) =

∑
k

Dk(λs) + λsI
max
S . By minimizing the

Lagrangian dual function over all dual variables λs, the ϵ-
optimal solution of the original problem (13) can be obtained,
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min
λs, s∈S

D(λs)

s.t. λs ≥ 0.
(18)

As shown in [30], given λs, if the optimal solution {Ps,a,k}
and {Is,a,k} of (17) satisfies the time-coupled constrain-
t, the solution is ϵ-optimal to the original problem, with
ϵ = −λs(

∑
k

∑
a∈A

Is,a,k − Imax
S ). Each sub-MINLP (17) cor-

responds to a period k with only parameters and decision
variables corresponding to that period. In the price decision
making step, in Theorem 1, we show that for a supplying GEV,
if the Nash equilibrium exists, the aggregator assigned to each
discharging GEV is the nearest one for this GEV; that is, the
integer variable Is,a,k can be determined apriori.

Theorem 1: (The nearest, the best) In the high demand
case, the aggregator assigned for each supplying GEV is the
nearest one.

Proof: See the Appendix.
Hence, the sub-MINLP (17) becomes an Oligopoly game
among GEVs with only the continuous decision variable,
Ps,a,k, and can be solved as discussed in [11]. Furthermore,
similar to [11], the optimal selling price uk

′∗ can be found as
the global revenue-maximum for each GEV [11].

B. Charging Decision Making in High Demand Case

Given the optimal selling price uk
′∗ for the supplying

GEVs, the energy buying price for demanding GEVs (i.e., u∗
k)

is given by u∗
k =

Pk
S

PD
·uk

′∗+
PD−Pk

S

PD
·uk

′′. In order to minimize
the charging costs for GEVs, we solve (14) which presents a
convex objective function with all linear constraints. Using the
Lagrange duality theory [12], we can decouple problem (14).
The decoupling procedure is very similar to that in solving
problem (13). Thus, we directly present the decoupled sub-
optimization problem (with the Lagrange multiplier λd) w.r.t
period k in the following, which is denoted as problem P .

P



min
Pd,a,k,Id,a,k

∑
d∈D

cd,k +
∑
d∈D

∑
a∈A

λdId,a,k

s.t.

fd,a,1(Ik, Pk) =
Pd,a,k

Pmax
d,a,k

− Id,a,k ≤ 0,∀d ∈ D,∀a ∈ A
fd,2(Ik, Pk) =

∑
a∈A

Id,a,k − 1 ≤ 0, ∀d ∈ D

fa,3(Ik, Pk) =
∑
s∈S

Ps,a,k + Pa,k
L −

∑
d∈D

Pd,a,k ≤ 0, ∀a ∈ A

fa,4(Ik, Pk) =
∑
d∈D

Pd,a,k −
∑
s∈S

Ps,a,k − Pa,k
L ≤ 0, ∀a ∈ A

fa,5(Ik, Pk) = Pa,k
L − Pia,k +

Vi,k−Vmax

ria
≤ 0, ∀i ∈ B, a ∈ A

fd,6(Ik, Pk) = Einit
d,k + (

∑
a∈A

∆ · P d,a,k − F (thyd,k, t
lc
d,k)

−Ek
cons(1−

∑
a
Id,a,k))− E ≤ 0,∀d ∈ D

fd,7(Ik, Pk) = −[Einit
d,k + (

∑
a∈A

∆ · P d,a,k − F (thyd,k, t
lc
d,k)

−Ek
cons(1−

∑
a
Id,a,k))] ≤ 0,∀d ∈ D

fd,8(Ik, Pk) = F (thyd,k, t
lc
d,k)− Einit

d,k ≤ 0, ∀d ∈ D
fd,a,9(Ik, Pk) = F (thyd,k, t

lc
d,k)−∆Pd,a,k ≤ 0,∀d ∈ D, ∀a ∈ A

0 ≤ P d,a,k ≤ Pmax
d,a,k, Id,a,k ∈ {0, 1}, ∀d ∈ D

(19)
where Ik and Pk are the set of {Id,a,k} and {Pd,a,k} (∀d, a) in
period k, respectively. Since the sub-optimization problem (19)
is an MINLP as it involves both binary and continuous deci-
sion variables, it can be solved by the BCBOA algorithm [13].
The BCBOA algorithm is an iterative procedure that solves the
original MINLP by solving an alternating sequence of relaxed

(mixed-integer linear program) MILPs and nonlinear programs
(NLPs). The relaxed MILP is obtained from the original
problem P by replacing the original constraints of linear
functions by polyhedral outer approximations (OAs). The OA
is to provide a polyhedral representation of the feasible space
P . Such a representation hence reduces the complexity of
the original problem. Given any set of feasible solutions for
problem P , e.g., T = {(I1k , P 1

k ), ..., (I
t
k, P

t)k, ...}, the MINLP
(19) is relaxed to the MILP as

POA(T)



max
Pd,a,k,Id,a,k

ϖ

s.t.

∇G(Ik, Pk)
T
|(It

k
,P t

k
)

(
Ik − Itk
Pk − P t

k

)
+G(Itk, P

t
k) ≥ ϖ

∇F(Ik, Pk)
T
|(It

k
,P t

k
)

(
Ik − Itk
Pk − P t

k

)
+ F(Itk, P

t
k) ≤ 0

∀(Itk, P
t
k) ∈ T, Ik ∩ Zn,

0 ≤ P d,a,k ≤ Pmax
d,a,k,

(20)
where G(Ik, Pk) =

∑
d∈D

cd,k +
∑
d∈D

∑
a∈A

λdId,a,k, F =

{fd,a,1, fd,2, fa,3, fa,4, fa,5, fd,6, fd,7, fd,8, fd,a,9} (∀d ∈
D, ∀a ∈ A), ϖ is an auxiliary variable, and ∇G(·)T denotes
the transpose of the gradient of G. According to Theorem 1
in [31], if T contains suitable points and the KKT conditions
are satisfied at these points, the relaxed MILP is equivalent
to the MINLP (19). T is calculated from the branch-and-cut
involved in the BCBOA algorithm. Theorem 1 in [31] shows
that if 1) the solution set, T, contains suitable solutions of
the original problem; 2) KKT conditions are satisfied at these
points, then the problems POA(T) and P are equivalent.

The proposed charging strategy can be obtained by first
time-decoupling the original problem into a series of sub-
MINLPs through Lagrange duality (19). With BCBOA algo-
rithm, each sub-MINLP is broken into an alternating sequence
of MILPs and NLPs. Each MILP can be solved via the
branch-and-cut method. Each NLP can be solved by convex
optimization techniques, since the objective function is convex
and all constraints are linear. The optimal solution leads to the
charging decisions, i.e., Pd,a,k and Id,a,k. These decisions are
dispatched to GEVs by heterogeneous networks.
Remark 1: In the high demand case, if a given charging power
with a farther aggregator is feasible, the same charging power
may not be feasible for a nearer aggregator due to the aggrega-
tor charging capacity constraint. Thus, the nearest aggregator
is not always the best choice for demanding GEVs for charging
decision making, leading to the essentiality of the spatial
coordinations between demanding GEVs and aggregators.
Remark 2: For the surplus supply case, the nearest charging
place is always the best for demanding GEVs, while the
nearest aggregator is not always the best choice for supplying
GEVs due to the supply capacity of the individual aggregator,
leading to the essentiality of the spatial coordinations between
supplying GEVs and aggregators.
Remark 3: As V2V energy swapping is conducted at the ag-
gregator, energy can be directly and locally transferred among
GEVs instead of bi-directional V2G/G2V operations, thus
significantly reducing the involvement level of the smart grid
and the implementation complexity. Besides, the downside of
the V2V energy swapping strategy is the additional but simple
infrastructure requirements on the aggregators.
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VI. PERFORMANCE EVALUATION

A. Simulation Setup

A realistic suburban scenario that represents the region
around the campus of University of Waterloo (Waterloo, ON,
Canada) is considered in the simulation environment, as shown
in Fig. 5. RSUs are uniformly deployed along the roads, and
two aggregators are deployed in Fig. 5(a). The parameters of
the 12-connection point distribution system (only load points)
in [26] are considered with the load enlarged to the MW level.
Two aggregators are connected to connection points B2 and
B11, respectively. The loads connected to each connection
point at 21:00 is given in Table I. The input voltage is set to
1.0 per unit (pu), and the minimum allowable voltage is 0.9
pu, with the impedance of any line section being r = 0.005
and x = 0.0046. The normalized power over the power at
21:00 for all the connection points without GEV charging
load is shown in Table II, according to the trend in [32]. The
load values at the aggregators are to be determined (TBD), as
indicated in Table I. In this section, we first consider the high
demand case to evaluate the strategy performance, and due to
space limitations we briefly explain the performance under the
surplus supply case.

In addition, vehicles on the road follow the mobility model
in Section III-C. To model the vehicle traffic, a highly-realistic
microscopic vehicle traffic simulator, VISSIM [14], is em-
ployed to generate vehicle trace files to record vehicle mobility
characteristics. Based on the trace files and power system data,
we evaluate the performance of the proposed energy swapping
strategy by a custom simulator built in Matlab.

1) VISSIM Setup: To simulate a vehicular network with
VISSIM, vehicles are distributed in a region of 6000 m × 2800
m, as shown in Fig. 5(a). At the beginning of the simulation,
vehicles enter the region following a Poisson process at rate ζ
(e.g., ζ = 2500 vehicle/hour/entry) from the preseted entries.
After a certain duration tζ (e.g., 240 sec), the vehicles stop
entering the region. The car following model, Wiedemann 74
model [33], is utilized to model the traffic. The velocity dis-
tribution for all vehicles follows the velocity model described
in Subsection III-C with parameters M = {mL,mH} and N
(e.g., taking mL = 30 km/hour, mH = 60 km/hour, N = 60
s as a case study). The information (e.g., locations, velocities,
etc.) of vehicles is recorded at the end of every simulation
step (e.g., 0.2 sec) in the recorded trace files. We consider
two groups of vehicles, i.e., supply group and demand group.
For each group, the GEV penetration level of the group of
vehicles is set at 10%. For example, in the supply group with
600 vehicles, only 60 vehicles of them are GEVs and can
contribute in a V2V energy swapping transaction. In addition,
25 RSUs are deployed uniformly along roads in the region,
with transmission range of 150 m. The coverage range of a
BS is set to 1500 m. The total simulation time is 3000 sec.

2) Energy Swapping Setup: In the V2V strategy evaluation-
s, we set the GEV battery capacity to 85 KWh according to the
TESLA Model S [1]. The energy swapping period is set to 30
min as a case study, with a maximum charging energy of 30
KWh. If a GEV is not scheduled for charging/discharging in a
period, the energy cost for running on the road in that period

is uniformly chosen within [0, 10] KWh. The coefficients of
the linear price function, i.e., b1 and b2, are set to 40 and
0.004, respectively. The initial state of remaining energy in
the battery for each GEV is uniformly chosen from [20, 50]
KWh. The ending state of remaining energy in the battery for
each supplying GEV (i.e., Es) is set to 10 KWh.

To better illustrate the performance of the proposed V2V
energy swapping strategy, the centralized charging strategy in
[6] is used as as benchmark where the optimization objective
is to only maximize the total amount of GEV charging
energy without considering the mobility of GEVs or spatial
coordinations. The performance evaluation metrics include the
total amount of demanded energy (TADE), the number of
GEVs successfully charged, and the average charging cost.

B. Evaluation of Data Transmissions in the Heterogeneous
Wireless Network

Based on the trace files from VISSIM, Fig. 6 shows
the probability density function (PDF) of vehicle headway
distance. It is shown that the PDF of the headway distance
matches well with an exponential distribution, which validates
the premise in Subsection III-C.

We then evaluate the data transmission performance for
vehicle information collection in VANETs, in terms of the
connection probability of a vehicle to an RSU and the end-
to-end transmission delay. In Fig. 7, the connection proba-
bility is high with the support of VANETs. For instance, the
connection probability is 80%, when the vehicle transmission
range is set to 120 m, which is very easy to be reached as
discussed in [34] and way larger than the average headway
distance; and the transmission delay in VANETs is only 5.5
sec. The connection probability increases as the transmission
range of vehicle increases, since increasing the transmission
range gives more chances to connect with other vehicles or
RSUs. Furthermore, these results indicate that given a vehicle-
traffic density, RSU deployment and the vehicle transmission
range, the connectivity probability can be estimated. Once the
estimated connectivity probability is less than the threshold
Γ (e.g., Γ = 0.8), the cellular interface of the heterogeneous
wireless network is activated to deliver the vehicular messages
instead of VANETs, due to intermittent connectivity. For
example, when the vehicles present a decreased transmission
range, the connectivity probability may decrease below the
threshold, such as the vehicle transmission ranges between 80
and 100 meters.

More importantly, the results show that although the trans-
mission of the heterogeneous network is subject to a delay, the
delay is tolerable enough for V2V energy swapping strategy
compared with the scheduling period.

C. Evaluation of the Proposed V2V Energy Swapping Strategy

In this subsection, we evaluate the performance of the
proposed energy swapping strategy. As a case study, the
charging duration is 30 mins (i.e., ∆ = 0.5). The period
duration τ is 1 hr and the periods cover 24 hours of a day.

1) For the high demand case: We first investigate the
performance of the proposed V2V energy swapping strategy
under the high demand case. Fig. 8 shows the performance of
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(a) A snap shot of the simulation region with simulated roads labeled
in blue.

(b) 3D vehicle traffic illustration of one intersection highlighted
in red in (a).

Fig. 5: Simulation scenario of University of Waterloo region in VISSIM.

TABLE I: Example of active and reactive power values at each connection point of the system
Hour Connection Point Number 2 3 4 5 6 7 8 9 10 11 12
21:00 P(MW) TBD 4.0 5.5 - 6.0 5.5 4.5 - 3.5 TBD 3.0

Q(MVar) - 3.0 5.5 - 1.5 5.5 4.5 - 3.0 - 1.5

TABLE II: Normalized power over the power at 21:00 for all the connection points without GEV charging load
Hour 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Normalized Power 0.5 0.5 0.5 0.5 0.7 0.9 1.3 1.5 2.1 2.3 2.5 2.5
Hour 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Normalized Power 2.5 2.3 2.1 1.8 1.5 1.4 1.3 1.2 1.0 0.7 0.7 0.7

Fig. 6: PDF of vehicle headway distance.

Fig. 7: Data transmission performance in VANETs.

the supply side, given a fixed demand, which is always higher
than the supply. Fig. 8(a) shows the total discharged energy
from the supplying GEVs, and electricity price for discharging,
varying with the total number of vehicles in the supply group.
Fig. 8(b) shows the average discharged energy and average
reward per supplying GEV. From Fig. 8(a), it can be seen that
with the increasing number of supplying vehicles, the total
supplied energy increases, and therefore, the electricity price
drops. From Fig. 8(b), it can be observed that the average
discharged energy per GEV first increases then decreases.
Before the point 220, based on a limited number of supplying
GEVs, the total number of supplying GEVs is far insufficient.
Each GEV has to increase the discharged energy as much as
possible to maximize its own revenue. But after 220, as more
and more supplying GEVs are involved, the total discharged
energy increases. For example, with 280 supplying GEVs, if
the average discharged energy still keeps at a higher level, the
revenue for individual GEVs is not optimal due to the decreas-
ing electricity price. In this situation, the supplying GEVs can
decide relatively smaller individual discharged energy while
deciding an optimal electricity price to optimize the individual
revenue through negotiation. Besides, the average reward per
GEV decreases with an increasing number of supplying GEVs
due to the reduced electricity price.

Fig. 9 shows TADE at the demand side under the proposed
strategy and the benchmark in [6] for weekday daily profile.
The number of supplying GEVs is fixed and only the load
capacity at the aggregators varies on a hourly basis, which
can be estimated based on the regular loads. The total number
of vehicles in the demand group is set to 600, and in the
supply group there are 340 GEVs. The black line represents
the maximum total available energy from both the supplying
GEVs and the grid. First, it can be observed that the total
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(a) Total supplied energy vs. electricity price.

(b) Average discharging rewards vs. Average supplied
energy.

Fig. 8: Tradeoff between the supplied energy and the
rewards for supplying GEVs.

Fig. 9: TADE comparison in daily profile for demanding
GEVs.

amount of charging energy under the proposed strategy is
considerably higher than that under the benchmark with a
15%-22% gain. Since the benchmark strategy does not collect
real-time vehicle information and does not implement spatial
coordinations, the charging decisions are made without con-
sidering the GEV mobility and the travel cost. As a result,
some GEVs may be dispatched to an aggregator that is too
far to reach based on their current battery levels, making
GEV batteries get depleted on the way and fail to be charged.
On the contrary, the proposed strategy considers the travel
cost based on the vehicle information collected through the
hetergeneous wireless network and dispatches the GEVs only

Fig. 10: Number of supplying GEVs vs. average charging
cost and number of successfully charged GEVs.

to the aggregators within their reach, thus having a larger
TADE. Besides, before 6:00 am, the TADE does not change
with time. This is because the total available energy before
6:00 am is sufficient to charge all the demanding GEVs.
Between 7:00 am and 8:00 pm, the gap between black line
and green line becomes larger when the grid electricity price
is higher. For example, the gap at 10:00 am is smaller than
that at 1:00 pm, as the grid price at 1:00 pm is higher. The
price is announced by the supplying side and delivered to the
demanding GEVs via the heterogeneous wireless network.

Fig. 10 shows the relationship among the total number of
vehicles in the supply group, the average demanding GEV
charging cost, and the number of successfully charged GEVs.
The total number of GEVs in the demand group is 600. It can
be seen that the average charging cost under both strategies
decreases due to a decreased electricity price at the supply
side. Besides, the average cost under the proposed strategy is
smaller than that for the benchmark due to the smaller average
travel cost incurred by the demanding GEVs. In addition, the
total number of successfully charged GEVs under the proposed
strategy is larger than that for the benchmark, due to the spatial
coordination and considering the GEVs’ range anxieties.

2) For the surplus supply case: Fig. 11 shows the results
on both supply and demand sides in the surplus supply case.
The total number of potential supplying GEVs is fixed to
600. It can be observed that the electricity price decreases
with the total number of demanding GEVs. This is because
more demanding GEVs require more charging energy, and the
supplying GEVs will lower the price in order to sell more
electricity. Besides, the average reward per discharged GEV
first increases and then decreases. This behavior is due to the
price drop which is not that large at the beginning. Thus,
the increase of discharged energy per supplying GEV brings
more rewards. Then, the decrease in electricity price becomes
dominant, resulting in a decrease in the average reward per
supplying GEV. In addition, the average cost per demanding
GEV decreases due to the decrease of price.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a V2V energy swapping
strategy based on a HetNet-enhanced smart grid. A mobility-
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Fig. 11: Performance evaluation in surplus supply case.

aware coordinated V2V energy swapping strategy has been
proposed based on a price control mechanism to maximize
the discharging revenues for supplying GEVs and minimize
the charging cost for demanding GEVs while avoiding power
system overload. Extensive simulations have demonstrated that
the proposed strategy can achieve better performance than the
benchmark in terms of the total GEV charging power, average
GEV travel cost, and the number of successfully charged
GEVs. In our future work, we intend to incorporate large
power system test and large-scale real-world vehicle traffic
traces to further validate the benefits of the proposed strategy
in practical scenarios. In addition, we will involve the phase
unbalanced problem in our future work.

APPENDIX

Proof of Theorem 1: If the Nash equilibrium exists for
the set of supplying GEVs in the high demand case, for each
supplying GEV, two variables, i.e., Ps,a,k and Is,a,k (= 1),
can be obtained to maximize the GEV revenue. Assume that
for GEV s, based on Is,a,k, the assigned aggregator in period
k is aggregator a, and is not the nearest aggregator to GEV
s. Meanwhile, the decision variables Ps,a,k and Is,a,k should
satisfy the corresponding constraints, with the revenue Rs,k.

However, if we define the nearest aggregator a′ to the
same GEV s, Ps,a′,k(= Ps,a,k) and Is,a′,k(= 1, meanwhile
Is,a,k = 0) are still feasible for the original problem (13) and
satisfy all the associated constraints. The reason is that there
is no additional power constraint due to the capacity of the
aggregator from the power grid, since in the high demand
scenario, the demanding GEVs will consume all the collected
energy in the second step and no additional energy will be
fed back to the power grid. Hence, for GEV s, if a given
discharging power in a faraway aggregator is feasible, the same
discharging power in a nearer aggregator is also feasible, yet
with a better revenue for that GEV s, Rs′,k, can be obtained
due to a shorter travel distance for discharging.
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