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Abstract —With the increasing popularity of services published online, energy consumption of services computing systems is
growing dramatically. Besides Quality of Service (QoS), energy efficiency has become an important issue and drawn significant
attention. However, energy efficient request scheduling and service management for large-scale services computing systems
face challenges because of the high dynamics and unpredictability of request arrivals. In this paper, we jointly consider the
conflicting metrics of performance, queue congestion and energy consumption. We propose a distributed online scheduling
and management algorithm which does not require any priori statistical knowledge of request arrivals. Mathematical analysis
is conducted which demonstrates that our algorithm can achieve arbitrary tradeoff between performance and energy efficiency.
Numerical and real trace data based experiments are carried out to validate the effectiveness of our algorithm in optimizing
energy efficiency while stabilizing the system.
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1 INTRODUCTION

S ERVICES represent a type of relationships-based
interactions between service providers and service

consumers to achieve a certain business goal or solu-
tion objective [1]. Services Computing, as an emerging
cross-discipline covering various aspects of business
and IT services, is to create, operate, manage and
optimize these services in a well-defined architecture
for higher flexibility facing future business dynamics.
With the increasing presence and adoption of services
on the World Wide Web, there is a growing popularity
of third-party commodity clusters and cloud environ-
ments providing services with different functionali-
ties. As the number of functionally similar services
available on the Internet increases rapidly, Quality
of Service (QoS) is employed for describing non-
functional characteristics of services [2]. Therefore,
upon arrival of service requests, how to select the
optimal execution plan that maximizes the end-to-
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end QoS has drawn significant attention, and there
have been many research efforts with regard to such
problem in services computing systems [3], [4].

The development and management of services com-
puting systems has been focused on the improvement
of performance, such as response time, throughput,
reliability, etc. Recently, however, more and more
attention has been paid to energy consumption, es-
pecially in large-scale computing infrastructures such
as service systems, cloud systems and data centers [5],
[6]. It is reported that the energy consumed by data
centers in the US is more than 1.5 percent of the total
energy consumption in the country, and the number
is still increasing [7]. It is also estimated that the
energy consumption of a Google search is 0.0003kWh
on average, resulting in more than 32 million kWh
energy consumed every year [8]. How to improve
energy efficiency has become an important issue in
service systems.

There are several approaches for reducing energy
consumption in services computing systems: (1) the
first approach is energy efficient request dispatch.
It has been shown in [9] and [10] that, there is a
significant opportunity promoting energy efficiency
through effective request dispatch and allocation; (2)
the second approach to reduce energy consumption
is service management at service level, which mon-
itors the workload and utilization information, and
switches the service or its hosting virtual machine
between active and idle states accordingly [11]; and
(3) the third approach is power management at the
hardware level, e.g., Dynamic Voltage and Frequency
Scaling (DVFS). DVFS is one of the most popular
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techniques for power management in computer sys-
tems [12]. In this paper, we jointly consider the three
approaches to improve energy efficiency in services
computing system, which is unexplored in previous
literature.

Furthermore, existing research works generally pro-
mote QoS and energy efficiency based on assumption
or prediction of request arrival or QoS properties [13],
[14], [15]. In reality, the accuracy of such predictions
can hardly be guaranteed. Because of the burstiness
and fluctuations of request arrivals, it is extremely
hard or even impossible to precisely predict the ar-
rival statistics of service requests [11], [16]. Moreover,
with the growing popularity of services on the In-
ternet, traditional centralized optimization techniques
such as combinatorial optimization and dynamic pro-
gramming may not be applicable in large-scale service
systems because of their high time-complexity.

To address these challenges, we introduce a dis-
tributed online energy efficient request scheduling
and service management mechanism without requir-
ing a priori knowledge of any statistical informa-
tion of requests arrivals. In specific, we formulate
the request scheduling and service management as
an optimization problem, which can be widely ap-
plied to classical research problems, such as service
selection. We develop a general model considering
the decisions of request dispatch, service manage-
ment and DVFS to improve energy efficiency from
a systematical point of view. Based on Lyapunov
optimization techniques, we propose a Distributed
Online Scheduling and Management algorithm called
DOSM. With an arbitrary parameter V to control the
tradeoff between energy efficiency and queue length,
the DOSM algorithm is proven to be O(1/V )-optimal
with respect to the average energy efficiency while
bounding the queue length by O(V ). Furthermore, we
conduct both numerical experiments and real trace
based simulations to demonstrate the effectiveness
and efficiency of DOSM algorithm. Besides, sensitivity
analysis is performed which can provide guidance for
system management and optimization.

Our preliminary work was presented in the ICWS
2014 [17]. The main differences are as follows. (1) Our
request scheduling and service management model is
more generic than the conference version. The appli-
cability of our model in services computing system
is discussed in detail. Specifically, the relationship
between our model and the traditional service selec-
tion is studied. (2) We combine dynamic voltage and
frequency scaling which reduces the energy consump-
tion at the hardware level to achieve a comprehensive
optimization of energy efficiency in service systems.
(3) The algorithm has been modified. In the worst
case, the time complexity of the algorithm has been
reduced from O(n + 2m) to O(n + Nm), which is
polynomial time. (4) We redo the experiments and
conduct real trace based simulations to further val-

idate the effectiveness of our model and algorithm
in complex and real world situations. (5) Sensitivity
analysis based on real trace is carried out which
can find effective ways for system management and
optimization.

The remainder of the paper is organized as follows.
Section 2 introduces related work. In Section 3, we
formulate the energy efficient request scheduling and
service management problem. In Section 4, based on
Lyapunov optimization techniques, we propose a dis-
tributed online algorithm. Optimality analysis of our
algorithm is also provided. In Section 5, we conduct
numerical experiments and real trace based simula-
tions to verify its effectiveness. Sensitivity analysis is
also performed. We conclude the paper in Section 6.

2 RELATED WORK

With the increasing energy consumption associated
with IT and service systems, energy efficiency has
drawn significant attention in both the computing and
mobile services [6], [9], [18]. There are several ap-
proaches to reduce energy consumption. In this paper,
we consider three approaches, i.e., request dispatch,
service management and DVFS [5], [10], [19].

Effective request dispatch is to make full use of
services diversity, and distribute the requests to the
appropriate services in order to meet the requirement
and reduce energy consumption at the same time [20].
It has been shown that the energy efficiency can be
improved significantly by effective request dispatch
and allocation [9]. Gao et al. [21] proposed a flow op-
timization based framework for request dispatch and
engineering, which monitored the request workload
information and dynamically controlled the dispatch
of user requests. Also, in our previous work [14],
we proposed an energy efficient approach for service
request dispatch, and proved that an effective request
dispatch mechanism can significantly reduce energy
consumption in large-scale service systems. Lin et al.
[22] discussed environmental potential of workload
dispatch and balancing based on the “receding hori-
zon control” (RHC) algorithm, and studied how to
introduce variants of RHC in the face of heterogeneity
of delays, servers, and electricity prices. Adnan et al.
[23] took advantage of geographical load balancing
and combined the flexibility from the Service Level
Agreements (SLAs) to differentiate among workloads
for cost savings. They showed that significant cost
savings can be achieved by dispatch of workload with
future electricity price prediction. For our work, we do
not require the prediction on electricity price, since the
accuracy of prediction can hardly be guaranteed.

Service management is an effective approach to
reduce energy consumption at service level. It controls
the states of services on servers by switching the ser-
vices (or the virtual machines that host them) between
active and idle states according to their workload
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and utilization [16]. It has been demonstrated that
service management can improve system utilization
and achieve the desired tradeoff between energy cost
and performance. Zhou et al. [24] took advantage of
service management and presented an optimization
framework for service platforms, which was able to
reduce energy and achieve performance guarantees.
Beloglazov et al. [25] proposed service management
and allocation algorithm for energy-efficient manage-
ment of service systems. The algorithm could reduce
power consumption while satisfying QoS constraints.
Jang et al. [26] proposed techniques for reducing
energy consumption by tuning the services with low
workload into standby state.

Another way to reduce energy consumption is
DVFS at the hardware level [5]. Equipped by mod-
ern hardware computer components, dynamic speed
scaling is helpful for improving energy efficiency,
which adjusts the CPU frequencies of the server [12].
Another popular technique, i.e., dynamic voltage scal-
ing, is commonly used in conjunction with frequency
scaling [5]. It has been shown in [12] that power con-
sumption can be dramatically cut down by decreas-
ing the CPU voltage and frequency simultaneously.
Such combined technique, called DVFS, has been
widely used and supported by most modern CPUs.
For example, most Intel CPUs have been equipped
with the techniques of SpeedStep and TurboBoost,
adjusting CPU’s voltage and speed to its utilization
[27]. The other famous CPU manufacturer, AMD, has
also equipped their CPUs with the similar mecha-
nisms, such as PowerNow! [28]. Guerra et al. [29]
used dynamic voltage scaling techniques and Vary-On
Vary-Off configuration to improve energy efficiency.
Wierman et al. [15] discussed how to reduce power
consumption by DVFS method. They assumed the
request arrival as a Poisson process and modeled the
system by an M/GI/1 queue. In our work, we do not
require any statistical information of requests arrivals.

Although the request dispatch, service management
and DVFS approaches have been well studied sepa-
rately by the research community, our work jointly
considers the three approaches in services computing
systems and present a comprehensive optimization
framework of energy efficiency in service systems. We
design efficient algorithms providing reference value
for system management and optimization. Extended
from our previous work [17], we develop a more
comprehensive model to study energy efficiency. Our
model is applicable to the traditional service selection
which is one of the most popular problems in the ser-
vices computing community. Different from previous
works which focused on local optimization at each
time period without considering the variations across
time [30], we guarantee the average performance and
cost over a long-time period.

Fig. 1. Framework for energy efficient scheduling and
management.

3 SYSTEM MODEL

In this section, we formulate the request scheduling
and service management problem and discuss the
applicability of our formulation in services computing
systems.

3.1 System Architecture

Fig. 1 shows a framework for energy efficient schedul-
ing and management in a general services computing
system. There are multiple services deployed on dif-
ferent servers, and many of them are duplicated for
the following two reasons. First, some of the services
with the same functionality are published by different
service providers. Second, even one service provider
may deploy multiple duplications of a service on
different servers to guarantee the service availability
to the users [31].

The brokers are responsible for service discovery,
status monitor and QoS management. Upon arrival of
user requests, the brokers search published services
that can fulfill the functionalities and QoS require-
ments of these requests, and dispatch requests to
the appropriate services [32]. There is a manager
for each of the servers, managing the status of the
services while determining the operational status of
the servers (such as CPU voltage and server frequency
using DVFS techniques).

3.2 Problem Formulation

Consider the services computing system with m cate-
gories of services denoted by a set I . Each category of
services has candidates deployed on different servers
and the set of all service candidates is denoted as
C. The set of service candidates that are appropriate
to accomplish service category i ∈ I is expressed
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TABLE 1
Notations and Definitions.

Notation Definition

I set of services.

C set of service candidates.

J set of servers.

κ service request.

Ai(t) number of requests for service i that arrive in slot
t.

Dij(t) number of requests dispatched to service candi-
date i on server j in slot t.

yij(t) binary variable denoting the state of service can-
didate i on server j in slot t.

uj(t) running frequency of server j in slot t.

QoSw
κ (t) w-th QoS requirement of request κ in slot t.

qoswκ (t) w-th QoS value of request κ in slot t.

f(t) system profit in slot t.

rij(t) reward of a request on service candidate i on
server j in slot t.

Pj(t) power consumption of server j in slot t.

ϕ(t) price of unitary energy consumption in slot t.

τ slot length.

Qij(t) queue length of service candidate i on server j in
slot t.

by Ci. Let J = {1, 2, . . . , n} denote the set of all
physical servers in the services computing system. In
order to make our approach more general, we assume
the physical servers to be heterogeneous. The main
notations in this paper are listed in Table 1.

3.2.1 Service Request Model

Each service request is characterized by a tuple κ =
〈i, di, Oi〉, where i ∈ I denotes the category of service
that the request belongs to, and di denotes the de-
mand (i.e., job length or hardware resources) of such
request. Oi is the set of servers where the services are
deployed. K represents the set of all the requests.

We model the system as a discrete time-slotted
system where the length of each time period τ can
range from milliseconds to minutes. Let Ai(t) denote
the number of requests for service i arrived in time
slot t.

We highlight the generality and practicability of
our model that it does not necessarily require a priori
knowledge of any statistical information of Ai(t), which
is generally unpredictable and difficult to obtain in
practice.

3.2.2 Request Scheduling and Service Management

Let Bm×n = [bij ]m×n represent the mapping matrix
of services on servers, where bij = 1 represents that
service i is deployed on server j, otherwise bij = 0.
The problem of service deployment or placement is
out of the scope of this paper, and the mapping matrix
Bm×n is assumed to be predefined. In each time slot
t, the service brokers make decisions to select the

appropriate service candidates to serve the requests,
and decide how many requests to be distributed to
the services. Let Dij(t) denote the number of requests
dispatched to service candidate i on server j. For
those j with bij = 0, the variables Dij(t) are set to
be zero.

Our approach also determines the state of service
i (or its hosting virtual machine) on server j in
each time slot t, and can switch it between active
state and idle state in response to time-varying sys-
tem workload, in order to arbitrate the performance-
energy tradeoff. Let yij(t) be the indicator variable
of the state of service i on server j in slot t, where
yij(t) = 1 means service i on server j is active,
otherwise yij(t) = 0.

As the voltages of computer components are closely
related to the server speed and dynamic voltage
scaling is usually applied in conjunction with speed
scaling [5], we let uj(t) be the DVFS decision variable,
standing for the running frequency of server j in slot
t. The set of all available frequencies for server j is
represented by Uj .

In services computing systems, users usually have
preferences and QoS requirements towards the ser-
vices they are offered, and thus Service Level Agree-
ment (SLA) should be carefully considered. Let W
represent the set of indices referring to different QoS
properties, including reliability, availability, integrity,
etc. We use the superscript w to index QoS properties.
Let QoSw

κ (t) represent the w-th QoS requirement of
request κ in slot t. qoswκ (t) stands for the w-th QoS
value of request κ. We only consider the cases that
larger QoS values represent better quality, since the
other cases can be transformed by taking the opposite
values. Thus it should be satisfied that qoswκ (t) ≥
QoSw

κ (t), ∀κ ∈ K, ∀w ∈ W .
We aim to maximize the system profit in the ser-

vices computing system, which is a function of the
decision variables Dij(t), yij(t) and uj(t), denoted
by f(Dij(t), yij(t), uj(t)). Then the problem can be
formulated as

max
Dij(t),yij(t),uj(t)

f(Dij(t), yij(t), uj(t)); (1)

subject to
∑

j∈J

Dij(t) = Ai(t), ∀i ∈ I, ∀t ∈ N; (2)

yij(t) ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J, ∀t ∈ N; (3)

uj(t) ∈ Uj , ∀j ∈ J, ∀t ∈ N; (4)

qoswκ (t) = qoswκ (Dij(t), yij(t), uj(t))

≥ QoSw
κ (t), ∀κ ∈ K, ∀w ∈ W. (5)

3.3 Model Applicability

Many service providers offer services that are func-
tionally similar but differ in non-functional properties.
When a request is submitted, how to choose the
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appropriate candidate service to provide the required
functionality and satisfy the requirements has become
an important problem. This issue, known as “service
selection”, has been widely studied by the services
computing community [1]. Here, we discuss how
service selection is related to our request scheduling
and service management problem.

Consider a discrete time-slotted system and the
total requests are classified into |I| categories. Let
xκ
ij(t) represent the service selection decision variable

of request κ in time slot t, where xκ
ij(t) = 1 means that

service candidate i on server j is selected, otherwise
xκ
ij(t) = 0. The profit of request κ after service se-

lection is denoted by g(xκ
ij(t)) and the total requests’

profit is
∑

i

∑

j

∑

κ

g(xκ
ij(t)). Then the service selection

problem can be formulated as

max
xκ
ij
(t)

∑

i∈I

∑

j∈J

∑

κ∈K

g(xκ
ij(t)); (6)

subject to

xκ
ij(t) ∈ {0, 1}, ∀κ ∈ K, ∀i ∈ I, ∀j ∈ J, ∀t ∈ N; (7)
n
∑

j=1

xκ
ij(t) = 1, ∀κ ∈ K, ∀i ∈ I, ∀t ∈ N; (8)

qoswκ (t) = qoswκ (x
κ
ij(t)) ≥ QoSw

i (t), ∀κ ∈ K, ∀w ∈ W.
(9)

We elucidate that service selection can be applicable
in our model. When considering service selection
without service management and DVFS, the objective
is deduced to maximize the system profit f(Dij(t))
with single argument Dij(t). Let h(Dij(t)) denote the
profit obtained by each service i on server j in time
slot t, so we have f(Dij(t)) =

∑

i

∑

j

h(Dij(t)). We

present Theorem 1 which elucidates the connection
of our model with service selection.

THEOREM 1: Our request scheduling model is
equivalent to service selection if the functions h(·) and
g(·) satisfy (10),

h(kx) = kg(x). (10)

Therefore, it can be seen that our request schedul-
ing and service management model is general and
the traditional service selection can be regarded as
part of the considered problem. Interested readers are
referred to our detailed proof for Theorem 1 in the
appendix.

3.4 Model Specification

In this subsection, we refine our request scheduling
and service management problem in detail and de-
velop a more specific model to describe the system
properties. We try to maximize energy efficiency while
bounding the queue length.

The reward of services is a critical concern in ser-
vices computing systems. Let rij(t) denote the reward

obtained by a request served by service i on server j in
time slot t, and thus we obtain ri(t) =

∑

j rij(t)Dij(t)
as the total reward of service i.

According to [5], the power consumption of a
server consists of two parts, static power and dynamic
power. For server j, the power consumed in time slot
t can be expressed by (11), where Psj represents the
static power, k and α (α ≥ 1) are constant, ρj ∈ [0, 1]
and uj represent the utilization and the frequency of
the server, respectively.

Pj(t) = Psj + kρj(t)u
α
j (t). (11)

Define sij ∈ [0, 1] as the ratio of the processing
requirement from service i to the the total processing
capacity of its hosting server j. It should be satisfied
that

∑

i sij = 1, ∀j ∈ J . The utilization of server j in
time slot t can be expressed as ρj(t) =

∑

i sijyij(t).
Besides physical servers, other facilities such as

cooling systems also consume a fraction of power
in large-scale service systems. The ratio of power
consumed by the entire service system to power
consumed by servers is denoted by Power Usage Effi-
ciency (PUE), which is commonly a constant in a cer-
tain large-scale computing system [33]. So the power
consumption of the whole services computing system
in time slot t can be expressed as PUE·

∑

j Pj(t).
Define ϕ(t) as the price of unitary energy consump-
tion in time slot t, and the energy cost of the whole
service system in slot t can be approximated as
ϕ(t) · PUE

∑

j Pj(t)τ . The profit of the service system
in slot t is expressed as

f(t) =
∑

i

∑

j

rij(t)Dij(t)−ϕ(t) ·PUE
∑

j

Pj(t)τ. (12)

Unlike previous work focusing on the instanta-
neous system profit, we study the average property
which can guarantee long-term profit over a large
time horizon. The average profit of the services com-
puting system over time slots t = {0, 1, 2, . . . , T − 1}
is expressed as below.

f = lim
T→∞

1

T

T−1
∑

t=0

E{f(t)}.

Queueing delay is an important metric and can
influence the degree of customer satisfaction. Accord-
ing to Little’s Law, the queueing delay of a service is
in proportion to the number of requests waiting in
the queue, i.e., the queue length. Therefore, we aim
to reduce the queue length and achieve low system
congestion. Optimization of queue length has been
considered in many previous works [11], [16], [19].
In this paper, we use Qij(t) to represent the queue
length of service i on server j in time slot t.

Let u0
j represent the base frequency of server j,

which is assumed to be fixed for each server j. lij is
defined as the number of requests that can be served
in each slot by service i on server j running at base
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frequency u0
j , and lij is a constant. In each slot t,

for server j running in frequency uj(t), assume the
number of requests it can serve for service i can be

calculated by lij ·
uj(t)

u0

j

. The queue length is updated
as

Qij(t+ 1) = max

[

Qij(t)− lijyij(t)
uj(t)

u0
j

, 0

]

+Dij(t).

(13)
To reduce queueing delay, we try to push the

queues under low congestion states and bound the
average queue length qij . Let ξ be the bound of queue
length, then

qij = lim
T→∞

1

T

T−1
∑

t=0

E{Qij(t)} ≤ ξ, ∀i ∈ I, ∀j ∈ J, ∃ ξ ∈ R
+.

(14)
The optimization framework can be formulated as

max
Dij(t),yij(t),uj(t)

lim
T→∞

1

T

T−1
∑

t=0

E{f(t)}; (15)

subject to (2), (3), (4), (5), (14).
Solving the problem offline is problematic since it

involves unpredictable future information, e.g., ser-
vice request arrivals. Besides, as the scale of the ser-
vice system increases, it is computationally complex
and challenging using centralized solutions. There-
fore, we propose a distributed and online algorithm
which can solve the problem efficiently and effec-
tively.

4 OPTIMIZING ENERGY EFFICIENCY

By taking advantage of Lyapunov optimization tech-
niques [34], we propose a Distributed Online Schedul-
ing and Management algorithm called DOSM, which
makes control decisions in each time slot to optimize
the long-term average system profit.

4.1 Problem Transformation

Let Θ(t) = (Qij(t)) denote the queue matrix of ser-
vices on servers. We define the Lyapunov function as

L(Θ(t)) =
1

2

∑

i∈I

∑

j∈J

Q2
ij(t), (16)

where L(Θ(t)) reflects the queue congestion state of
the services computing system at the beginning of
time slot t. To maintain system stability and reduce
queueing delay, we try to reduce L(Θ(t)) and push the
services computing system towards a low congestion
state.

We define the conditional Lyapunov drift as follows.

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (17)

Minimizing the drift ∆(Θ(t)) alone would tend to
push the queues towards a low congestion state

and reduce the queue length, but the resulting aver-
age power expenditure might be unnecessarily large,
which would incur a large cost and reduce the total
profit [11]. Thus there exists tradeoff between these
factors [34]. Following the Lyapunov framework, we
define the drift minus profit expressed as ∆(Θ(t)) −
VE{f(t)|Θ(t)}. The parameter V > 0 represents the
tradeoff between queueing delay and system profit,
and can be regarded as a weight placed on the profit.
It can be determined by service providers or users
according to their requirements in real applications.

In Theorem 2, we show that the drift minus profit
can be upper bounded.

THEOREM 2: (Bounding Drift Minus Profit) In each
slot t, under any algorithm, for all possible values of
Θ(t) and any parameter value of V , if there exits a
peak value Amax

i that upper bounds the number of
requests arrived in each slot, the drift minus profit can
be upper bounded by

∆(Θ(t))− VE{f(t)|Θ(t)}

≤B −
∑

i

∑

j

E{V rij(t)Dij(t)−Qij(t)Dij(t)|Θ(t)}

−
∑

j

E

{(

∑

iQij(t)lijyij(t)
uj(t)

u0

j

−V ϕ(t)PUEPj(t)τ

)∣

∣

∣

∣

∣

Θ(t)

}

,

(18)

where B = 1
2 [
∑

i

∑

j(lij
ûj

u0

j

)2 +
∑

i(A
max
i )2] is a con-

stant.
The proof of Theorem 2 is provided in the appendix.

4.2 Distributed Online Algorithm for Energy Effi-
cient request scheduling and Service management

We aim to minimize the upper bound of drift minus
profit, as shown by the right-hand-side (R.H.S.) of
(18). We propose an online algorithm DOSM, which
can decompose the problem into subproblems, and
solve the problem in a distributed way. Furthermore,
it can be proven that DOSM can approach the opti-
mal profit while still bounding the queue length in
Section 4.3.

In each slot t, DOSM observes the current queue
length Θ(t) and makes the following control decisions
to minimize the upper bound of drift minus profit:
(1) request dispatch, which is to decide how many
requests to dispatch to each service candidate, and (2)
service management and DVFS, which switch services
between active and idle states as well as adjust the
server frequencies. After the decisions are made, the
queue length evolves as (13).

(1) Request Dispatch. In each slot t, DOSM performs
request dispatch to minimize the second term of the
R.H.S of (18), which is equivalent to maximize the
opposite of it. Furthermore, the dispatch decisions
of requests for different categories of services are
independent from each other, and the subproblem can
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be reduced to the following problem for each i ∈ I ,
which can be solved concurrently.

max
Dij(t)

∑

j

(V rij(t)−Qij(t))Dij(t); (19)

subject to (2), (5).
(19) can be viewed as a generalized max-weight

problem, where in each time slot t the number of
requests dispatched to service is weighted by V rij(t)−
Qij(t). User preferences and QoS requirements are
also considered, and let O′

i(t) be the set of candidates
that satisfy users requirements. O′

i(t) can be obtained
by comparing each candidate’s QoS values with user’s
QoS requirements. We call the candidates that belong
to O′

i(t) the potential candidates. So the optimal solution
is to dispatch all the requests to the one with the
maximum value of V rij(t) − Qij(t) in O′

i, which is
given by

Dij(t) =

{

Ai(t), j = j∗i ;

0, otherwise,
(20)

where j∗i = argmax
j∈O′

i
(t)(V rij(t) − Qij(t)) denotes

the index of the server with the maximum profit minus
queue.

The result elucidates that the optimal policy is
to distribute all the requests to a single candidate
service i on server j∗i , which indicates that only one
of the candidate services is selected to handle all the
requests. Therefore, at service layer viewpoint, our
scheduling problem is equivalent to service selection,
which also proves the applicability of our model.

(2) Service Management and DVFS. DOSM makes
the service management decision yij(t) and DVFS
decision uj(t) in each slot t in order to minimize
the third term of the R.H.S. of (18). Similarly, this
can be transformed to maximizing its opposite. The
variables yij(t) and uj(t) are independent among
different servers, and this subproblem can be reduced
to solving problem (21) concurrently for each server
j ∈ J .

max
yij(t),uj(t)

∑

i

Qij(t)lijyij(t)
uj(t)

u0
j

− V ϕ(t)PUEPj(t)τ ;

(21)
subject to (3) and (4).

Problem (21) involves integer variables yij(t) and
it is a generalized mixed integer programming (MIP)
problem. In the following, we explore the charac-
teristics of the problem and solve it in polynomial
time, which is efficient and can guarantee to find the
optimal solutions.

For each given uj(t) ∈ Uj , the original objective of
(21) can be rewritten as

Obj =
∑

i

(Qij(t)lij
uj(t)

u0
j

− V ϕ(t)PUEτkuα
j (t)sij)yij(t)

− V ϕ(t)PUEτPsj .

Algorithm 1 Distributed Online Scheduling and Man-
agement (DOSM)

1: In the beginning of each time slot t, observe the
current queue length Qij(t).

2: Solve the Max-Weight problem (19) for each cate-
gory of service i ∈ I in parallel

3: Solve the MIP problem (21) for each server j ∈ J
in parallel

4: t = t+ 1
5: Repeat steps 1-4

Algorithm 2 Max-Weight Problem Solving for Service
i

1: for all Potential candidates do
2: Calculate V rij(t)−Qij(t)
3: Search for the candidate on server j∗ with the

maximum value of V rij(t)−Qij(t)
4: Set Dij(t) according to (20)

Algorithm 3 MIP Problem Solving for Server j

1: maxObj = −∞
2: for all uj(t) ∈ Uj do
3: for all candidates i on the server do
4: if γij(t) > 0 then
5: yij(t) = 1
6: else
7: yij(t) = 0
8: if Obj > maxObj then
9: maxObj = Obj

10: maxuj = uj(t)
11: for all candidates i on the server do
12: maxyij(t) = yij(t)
13: uj(t) = maxuj

14: for all candidates i on the server do
15: yij(t) = maxyij(t)

Let γij(t) = Qij(t)lij
uj(t)

u0

j

− V ϕ(t)PUEτkuα
j (t)sij .

Considering that the expression of −V ϕ(t)PUEτPsj is
a constant to the decision variables, so for each given
uj(t) ∈ Uj , (21) can be reduced to solving (22) for each
server j ∈ J .

max
yij(t)

∑

i

γij(t)yij(t); (22)

subject to (3).
(22) is a binary integer programming (BIP) prob-

lem. The decision variables yij(t) are set to 1 when
γij(t) > 0, and 0 otherwise. So (21) can be solved
by enumerating each uj(t) ∈ Uj and comparing each
optimal result of (22).

The detailed algorithm is shown in Algorithm 1-3.
The time complexity of our DOSM algorithm for

the worst case can be divided into the following
two parts: (1) request dispatch, and (2) service man-
agement and DVFS. In the request dispatch part,
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since our algorithm can solve it concurrently for each
service i ∈ I , and the max-weight problem can be
solved by exploring every value (V rij(t) − Qij(t))
once, the time complexity of this part is O(n). For
solving the MIP problem in the service management
and DVFS part, similarly, our DOSM algorithm can
solve it concurrently. Let N be the maximum number
of possible solutions of uj(t) for all j ∈ J . For each
given uj(t), it needs O(m) operations to solve the
reduced BIP problem, so the time complexity of this
part is O(Nm). The overall time complexity of our
DOSM algorithm is O(n+Nm), which is polynomial
time.

4.3 Optimality Analysis

We show that DOSM can also obtain arbitrary trade-
offs between system profit and queue length, ap-
proaching the optimal profit while still bounding the
queue length. Note that there exists upper bound
f̂ and lower bound f̌ of the objective f under the
assumption that the number of requests arrived in
each slot can be bounded by Amax

i . We prove that
the average system profit and queue length under our
DOSM algorithm are bounded as in Theorem 3.

THEOREM 3: If there exists ε satisfying λ + ε ∈ Λ,
where Λ is the capacity region of the system, then
under the DOSM algorithm, for any value of the
parameter V , the average queue length is bounded
by (23).

Q̄ = lim
T→∞

1

T

T−1
∑

t=0

∑

i

∑

j

E{Qij(t)}

≤
B + V (f̂ − f̌)

ε
.

(23)

Furthermore, the average system profit can be
bounded by (24), which indicates the profit derived
by our algorithm can approach the optimal value by
increasing the parameter V . Here B is the constant
defined in Theorem 2.

fDOSM ≥ f∗ −
B

V
. (24)

Theorem 3 indicates a [O(1/V ), O(V )] tradeoff be-
tween the average system profit and queue length
under the DOSM algorithm. In addition, it can reach
to the optimal system profit by increasing the param-
eter V . Although this would also increase the average
queue length, the queue length qij of each service

can still be bounded, since letting ξ = B+V (f̂−f̌)
ε

,
(14) can be satisfied. In practice, service operators can
choose the parameter V according to actual demands
and make the desired choice. The detailed proof of
Theorem 3 can be found in the appendix.

5 EVALUATION

In this section, we conduct numerical experiments
and real trace based simulation to validate the ef-
fectiveness of our DOSM algorithm. We also present
sensitivity analysis to help identify the bottleneck of
the services computing system and provide guidance
for system optimization.

5.1 Numerical Experiments

5.1.1 Experiment Setup

In the numerical experiments, there are n = 400
servers and m = 400 categories of services in the
system. Each service has 10 candidates that are func-
tionally similar but differ in QoS properties. Each
server holds 10 candidates. The reward of each re-
quest is generated randomly between 0.1 and 0.2.
Two QoS properties are considered, i.e., reliability and
availability. The reliability and availability values of
each candidate are generated randomly between 0.4
and 1. Users’ reliability and availability requirements
are randomly set between 0.5 and 0.9.

The slot length τ is set as 300 seconds. We will
discuss the details on τ later. The service rate of each
service i ∈ I , i.e., the number of requests that can be
served in each time slot is set randomly between 60
and 300. The arrival rate λi is set to be the service rate
multiplied by a factor β ≤ 1. The requests arriving
processes are generated according to Poisson distri-
bution [15]. Note that our approach is more general
and is able to deal with any type of requests arrivals.

We use power-measuring equipments to collect
power consumption data from servers with Intel Ne-
halem Bloomfield processor. The average static power
consumption is p̄s = 140 watt and the coefficient k is
set to be 100 based on the data. The parameter α is set
to be 3 according to [5]. For each server j ∈ J , the base
frequency is 133MHz, and there are four multipliers,
i.e., 0, 12, 20, 22. PUE is set to be 1.2 based on [24].

5.1.2 Parameter Analysis

1) Impact of tradeoff parameter V .
Fig. 2 shows the average system profit and queue

length with different values of V . It can be seen that
as V increases, the average system profit improves
under our DOSM algorithm, and tends to the opti-
mum when V becomes sufficiently large. However,
the improvement of profit starts to diminish with far
more increase of V . This is consistent with (24) in The-
orem 3, which shows that our DOSM algorithm can
approach the maximum profit with a gap of O(1/V ).
The queue length also grows with the increase of V .
This is consistent with (23) in Theorem 3 that the
queue length is upper bounded by O(V ). Along with
system profit, it shows the tradeoff between average
system profit and queue congestion.

2) Impact of unitary energy price parameter ϕ.
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Fig. 2. Average system profit and queue length with
different V.
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Fig. 3. Average system profit and queue length with
different ϕ.

We evaluate the impact of parameter ϕ on system
profit and queue length. Fig. 3 shows the average
system profit and queue length with different values
of ϕ. It can be seen that the system profit decreases
as ϕ increases, due to the rising of energy cost. The
queue length also increases for the same reason. Our
DOSM algorithm trys to reduce the energy consump-
tion by adjusting the servers to run at low speed and
switching some services to idle state, thus increasing
the total queue length. However, the rise of queue
length will start to diminish with far more increase of
ϕ, which shows that the queue length will stabilize
gradually.

3) Impact of arrival rate λi.
To evaluate the impact of arrival rate on the system,

we scale the arrival rate up or down to ϑ · λi. Three
experiments with ϑ= 0.5, 1 and 1.5 are discussed.
The experiment is carried out for 1,000 time slots
for each setting. Fig. 4 shows the average sum of
all servers’ frequencies and number of active services
under different ϑ. As it can be seen, both servers
speed and number of active services increase when ϑ
becomes larger. This shows that our DOSM algorithm
can adapt to different arrival rates and adjust the
decisions accordingly. Besides, both the servers speed
and number of active services will become stable as
time goes by.

4) Impact of slot length τ .
To evaluate the impact of slot length τ on average

system profit (in second) and queue length, we vary
τ from 100 seconds to 900 seconds. The experiment is
carried out for 5,000 slots for each setting. Fig. 5 shows
that when τ becomes larger, the average profit in each
second drops slightly, and the queue length increases.
This is because a larger τ makes it hard to adapt to
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Fig. 4. Average server frequencies and number of
active services under different ϑ.
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the system dynamics as the system variables would
vary during a long time slot. So a smaller τ can help to
adapt to changes and achieve better results. However,
when τ is too small, it would lead to high overheads
of estimating or obtaining the system variables. One
typical way is to set τ corresponding to the price
updating frequencies in electricity markets [11], [16].

5.2 Simulation Experiments Based on Real Trace
Data

5.2.1 Simulation Setup
Workload Data: In the simulation experiments, we use
two real world workload traces to verify our approach
under different services computing contexts.

The first workload trace is from LHC Computing
Grid (LCG). The project is a global collaboration of
more than 170 computing centres in 40 countries, and
provides SaaS services for data storage and analysis
[35]. The LCG data was provided by the e-Science
Group of HEP at Imperial College London. The time
period of the whole data lasts for 11 days from Nov
20th to 30th, 2005. The submission time, duration time
and resource demand of the service requests can be
found in the trace [36]. We classify the requests into 20
categories of services according to their duration time
and resource demand. Each service has 50 candidates
and the whole candidates are deployed on 200 servers
in the system.

The second workload trace is from LPC of Blaise
Pascal University of Clermont-Ferrand. LPC is part of
the EGEE project (Enabling Grids for E-science in Eu-
rope), which develops an infrastructure and provides
IaaS services to users [37]. We choose 11 days of data
from the LPC trace, in accordance with LCG trace.
The requests are also classified into 20 categories of
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Fig. 7. LPC Workload trace.

services according to the duration time and resource
demand.

The period τ of each time slot t is set to be 300 sec-
onds corresponding to the power price data updating
frequency, which will be introduced later. Thus, there
are 3,168 time slots in our simulation. Based on the
submission time logs, we can obtain the number of
requests for each service that arrived in each time slot
t. Fig. 6 shows the number of requests that arrived in
the LCG system over time slots. It can be seen that
the workload fluctuates over time. Fig. 7 shows the
workload trace of LPC system (scaled up by a factor
10). The service rates are set inversely proportional to
the duration times.

Price Data: We collect the real world locational
marginal price (LMP, in unit of $/MWHr) from the
website of New York independent system operator
(ISO) [38], which publishes the updated power price
data every 300 seconds. We choose 3,168 price data
in accordance to the workload data. Fig. 8 shows the
power price trace over the 3,168 time slots. It can be
seen that the price fluctuations periodically and the
time of each period is about 250 time slots, roughly
equal to one day. The reward data are set to be the
same as that in the numerical experiments.

QoS Data: We adopt the updated QWS Dataset
which includes 2,507 real Web services. The QoS
parameters of these services were measured using the
Web Service Broker (WSB) framework over a six-day
period [39]. We choose 5 QoS properties from the
dataset, including availability, successability, reliabil-
ity, compliance and best practices. For all these QoS
properties, a higher value stands for a better service.
We randomly select 1,000 services from the dataset.
Users’ QoS preferences and requirements are gener-
ated based on the value ranges of the corresponding
QoS property in the dataset.
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Fig. 9. Average system profit and queue length of the
LCG system under different algorithms.

5.2.2 Comparative Analysis
Based on the trace data, we compare our DOSM
algorithm with three other algorithms: (1) Best Effort
algorithm, where the server runs at the maximum
speed and the service is switched active as long as the
corresponding queue is not empty, while we use the
same method as our DOSM algorithm for request dis-
patch; (2) Load-balanced algorithm, where the requests
are dispatched to each service based on the serving
capacity, while the service management and DVFS are
the same as our DOSM algorithm; and (3) Randomized
algorithm, where the requests are dispatched to each
service randomly, while the rest is the same as DOSM
algorithm.

Fig. 9 shows the average system profit and queue
length of the LCG system under different algo-
rithms. It can be seen that our DOSM algorithm
achieves the highest profit among the four algorithms,
which shows the effectiveness of DOSM. The Best
Effort algorithm achieves higher profit than the Load-
balanced and Randomized algorithms, since it can
serve more requests in each time slot, thus reduce
energy cost. The queue length of the Best Effort
algorithm is the lowest, since the the actual serving
rate of the Best Effort algorithm is the largest. The
queue length of our DOSM algorithm is smaller than
those of Load-balanced and Randomized algorithms.
Together with system profit, it is shown that DOSM
algorithm outperforms the Load-balanced and Ran-
domized algorithms in both system profit and queue
congestion, and DOSM achieves the highest system
profit with a little sacrifice of queue congestion.

Fig. 10 shows the average system profit and queue
length of the LPC system under different algorithms.
It can be seen that the profit under DOSM algorithm
is the highest among all algorithms. The queue length
under DOSM algorithm is slightly larger than that of
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Fig. 10. Average system profit and queue length of the
LPC system under different algorithms.

TABLE 2
Execution Time of Different Algorithms

System
Algorithms Execution Time (s)

DOSM Best Effort Load-balanced Randomized
LCG 0.953 0.907 0.947 0.949
LPC 0.955 0.901 0.946 0.948

the Best Effort algorithm, but smaller than those of
Load-balanced and Randomized algorithms. Similar
results have also been obtained for the LCG system.

Table 2 gives the execution times (in second) of
the four algorithms in the LCG and LPC systems.
For each experiment, we run 20 times to calculate
the average result. It can be seen that the execution
time differences among our DOSM algorithm, Load-
balanced and Randomized algorithms are small. The
execution time of the Best Effort algorithm is slightly
smaller than the other three algorithms.

5.3 Sensitivity Analysis

Sensitivity analysis is often performed in the process
of system optimization, which can help to find bot-
tlenecks and provide guidance for system design and
management [40]. We conduct parametric sensitivity
analysis and discuss the sensitivity of system profit
and queue length based on the real trace data pre-
sented in Section 5.2.

Let F be the objective function and η be one of the
parameters. In practise, the sensitivity can be obtained
by the definition of partial differential coefficient de-
scribed in (25).

Sη(F ) =

∣

∣

∣

∣

F (η +∆η)− F (η)

∆η

∣

∣

∣

∣

. (25)

Fig. 11 shows system profit sensitivity and queue
length sensitivity of the LCG and LPC systems in
terms of V over the 3,168 time slots. The parameter
V is set to be 60 and ∆V is set as 0.001× V = 0.06. It
can be seen that the profit sensitivities of both systems
fluctuate over time. The profit sensitivity of the LCG
system reaches to the maximum value at t1 = 2,500,
i.e., the profit can reach to the maximum gain when
changing V at time slot t1, which provides guidance
for profit optimization. The queue length sensitivity of
the LCG system increases sustainably during the last
200 time slots. The profit sensitivity of the LPC system
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Fig. 11. Profit sensitivity and queue length sensitivity
with V in the LCG and LPC systems.
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Fig. 12. Profit sensitivity and queue length sensitivity
with ϕ in the LCG and LPC systems.

reaches to the maximum value at the 1,600 slot and
the queue length sensitivity of the LPC system reaches
to the highest value at the 2,300 slot.

Fig. 12 shows system profit sensitivity and queue
length sensitivity of the LCG and LPC systems with
ϕ over time slots. The parameter ϕ is set to be the
same value as the trace in Section 5.2 and ∆ϕ =
0.3$/MWHr. It can be seen that the profit sensitivity
of the LCG system reaches to the maximum value at
t2 = 2490, which indicates that the profit optimization
by changing ϕ is the most effective at time slot t2. The
queue length sensitivity of the LCG system becomes
the maximum at t3 = 3050. It can be seen that t3
is a good point to adjust ϕ to optimize both system
profit and queue length of the LCG system. The profit
sensitivity of the LPC system reaches to the maximum
value at t4 = 1700. The queue length sensitivity of the
LPC system is also large at t4. Thus t4 is a good point
to adjust ϕ to optimize both system profit and queue
length of the LPC system.

6 CONCLUSION

In this paper, we study energy efficient scheduling
and management for large-scale services computing
systems. We jointly consider the metrics of energy ef-
ficiency, performance and queue congestion. We com-
bine the three approaches of request dispatch, service
management and DVFS to improve energy efficiency
from a systematical point of view. A distributed on-
line algorithm based on Lyapunov optimization tech-
niques is proposed, which can achieve near optimal
system profit while bounding the queue length. Our
algorithm does not require any arrival statistics or
any prediction on future information. Mathematical
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analysis is provided to evaluate the effectiveness of
our algorithm, which is further validated by both nu-
merical experiments and real trace based simulation.
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